晶体管放大电路的基本知识
第2章 基本放大电路(1)2.1放大的概念和放大电路的主要性能指标2.2基本放大电路的工作原理
18 33 25 2 - 1 - 35
2.2.4 放大电路的组成原则(P82~P83) 放大电路的组成原则(
一、放大电路的组成原则
1. 晶体管必须偏置在放大区: 晶体管必须偏置在放大区: ——发射结正偏,集电结反偏。 发射结正偏,集电结反偏。 发射结正偏 2. 正确设置静态工作点,使整个波形处于放大区。 正确设置静态工作点,使整个波形处于放大区。 3. 输入信号能通过输入回路作用于放大管。 输入信号能通过输入回路作用于放大管。 4. 输出回路将变化的电流作用于负载。 输出回路将变化的电流作用于负载。
IC IE
( 略 小 IB) 忽 微 量
**3、输出特性三个区域的特点 、输出特性三个区域的特点:
(1) 放大区:发射结正偏,集电结反偏。 放大区:发射结正偏,集电结反偏。 即: IC=βIB , 且 ∆IC = β ∆ IB
c b N P N e
UC>UB >UE
c b P N P e
UC<UB <UE
V BB − U BEQ + u i iB = Rb
= I BQ
= I BQ
ui + Rb + ib
2 - 1 - 30
iC = β i B
= β ( I BQ + i b ) = I CQ + i c
2 - 1 - 31
u CE = V CC − i C R c
= V CC − ( I CQ + i c ) R c
Ri越大,Ii 就越小,ui就越接近 S 越大, 就越小, 就越接近u
2 - 1 - 12
RO
表征放大电路带负载能力的。 表征放大电路带负载能力的 三、输出电阻 ------表征放大电路带负载能力的。 断开负载后, 断开负载后,向放大电路输出端看进去的等效内 定义为输出电压有效值与输出电流有效值之比 输出电压有效值与输出电流有效值之比。 阻,定义为输出电压有效值与输出电流有效值之比。
晶体管前级放大电路讲解
晶体管前级放大电路讲解
晶体管前级放大电路是一种常见的放大电路,常用于扩大输入信号的幅度。
它由晶体管、偏置电路和耦合电容等元件组成。
首先,偏置电路的作用是为晶体管提供正确的工作点,以确保其工作在放大区。
偏置电路一般由电阻和电容组成,通过将电流引入晶体管的基极,调整其电压使其位于合适的工作区域。
接下来是晶体管的工作原理。
晶体管通常由三个区域组成:发射区(Emitter)、基区(Base)和集电区(Collector)。
当输入信号施加在基极上时,由于基区较窄,电流会被浓度较高的发射区和集电区控制。
通过调整发射区和基区的电压和电流,可以控制集电区的电流,进而实现信号的放大。
最后是耦合电容。
耦合电容用于将输入信号与输出信号隔离,以防止直流偏置电压通过晶体管流入输出电路。
它通常位于晶体管的集电极和负载电阻之间。
需要注意的是,晶体管前级放大电路还可能使用负反馈电路以改善放大器的性能,如提高频率响应和减小非线性失真。
具体的电路设计会根据应用需求而有所不同。
双极性晶体管的基本放大电路
双极性晶体管的基本放大电路在现代电子技术的发展中,晶体管是一种常见且重要的电子器件。
作为一种用于放大信号和控制电流的半导体器件,晶体管在各类电子设备中起着至关重要的作用。
而双极性晶体管就是其中一种常见的晶体管。
本文将介绍双极性晶体管的基本放大电路原理,以及其在实际应用中的重要性。
首先,让我们来了解一下双极性晶体管的基本结构。
双极性晶体管通常由三层半导体材料构成,其中两个外层为P型半导体,中间一层为N型半导体。
这三层分别被称为发射极(Emitter)、基极(Base)和集电极(Collector)。
通过外接电路的作用,可以控制基极和发射极之间的电流,进而调节集电极和发射极之间的电流。
在基本放大电路中,双极性晶体管起到了信号放大的关键作用。
下面我们以共射极放大电路为例来介绍双极性晶体管的放大原理。
在共射极放大电路中,双极性晶体管的基极通过一个输入源与负载电阻相连,而发射极与地连接。
集电极则接在一个电源上。
当输入信号施加到基极时,双极性晶体管的发射极电流将受到控制,从而产生集电极电流的变化。
这种变化使得输出信号经过负载电阻时产生相应的增益,从而实现信号的放大作用。
在共射极放大电路中,双极性晶体管的工作状态可以通过其静态工作点来描述。
静态工作点是指在无输入信号时,双极性晶体管的集电极电流和基极电流的大小。
通过适当选择电阻和电源电压,可以使双极性晶体管处于饱和区或截止区工作。
当输入信号施加到基极时,双极性晶体管的工作状态将发生变化,进而产生不同程度的集电极电流变化,实现信号的放大。
双极性晶体管的基本放大电路广泛应用于各类电子设备中。
在广播电视接收机中,它被用来放大无线电频率信号,使其能够被扬声器播放出来。
在音响设备中,它被用来放大音频信号,使得音乐声能够有足够的音量。
在计算机的中央处理器中,它被用来放大控制信号,使得处理器能够按照指令正确运行。
总结而言,双极性晶体管的基本放大电路是一种重要的电子技术应用。
放大电路基本知识点总结
放大电路基本知识点总结一、电路的放大器放大电路是一种将输入信号放大到更高幅度的电路。
放大电路通常由一个激励信号源、一个放大器和一个负载组成。
激励信号源提供输入信号,放大器将这个输入信号放大到一个更高的幅度,而负载是放大器的输出端负载。
放大器的基本功能就是将输入信号的电压、电流或功率放大到更高的幅度。
放大器的基本性能参数有增益、带宽、输入电阻、输出电阻、共模抑制比等。
二、放大器的分类根据输入信号类型的不同,放大器可分为电压放大器、电流放大器和功率放大器。
根据放大器的工作方式的不同,放大器可分为线性放大器和非线性放大器。
线性放大器输出信号与输入信号成正比,非线性放大器则不成比例。
根据放大电路的构造方式,放大器可分为分立元件放大器和集成电路放大器。
三、放大器的基本构成放大器一般由输入端、输出端和放大器核心构成。
输入端是输入电路,用于接收输入信号,输出端是负载,放大器核心是实现信号放大的核心部分。
一般情况下,放大器核心由放大器管(如晶体管、场效应管等)组成。
四、常见放大电路1. 电压放大电路电压放大电路是将输入电压信号放大到更高电压幅度的电路。
常见的电压放大电路有共集放大电路、共阴放大电路、共源放大电路等。
2. 电流放大电路电流放大电路是将输入电流信号放大到更高电流幅度的电路。
常见的电流放大电路有共射放大电路、共集放大电路、共源放大电路等。
3. 功率放大电路功率放大电路是将输入信号的功率放大到更高功率幅度的电路。
功率放大电路的输出功率通常会比输入功率要大。
5、放大器的增益放大器的增益是衡量放大器放大性能的重要参数,它是输出信号幅度与输入信号幅度之比。
增益分为电压增益、电流增益和功率增益。
电压增益是输出电压与输入电压之比,电流增益是输出电流与输入电流之比,功率增益是输出功率与输入功率之比。
增益是放大器的关键指标之一。
6、放大器的带宽带宽是放大器能够放大的频率范围。
对于一个特定的放大器,当输入信号的频率超过了其带宽时,输出信号就无法完整地被放大了。
晶体管差分放大电路
晶体管差分放大电路1. 前言晶体管是一种应用非常广泛的电子元件,它被广泛用于各种电子器件中。
例如,它可以作为开关来控制电流的流动,或者作为放大器来放大信号。
在本文中,我们将关注晶体管的一个重要应用——差分放大电路。
2. 差分放大电路的基本概念差分放大电路是一种基本的放大电路,它通常由两个晶体管组成。
这两个晶体管可以看作是一个晶体管对的形式,一个晶体管对相对于另一个晶体管对是反向的。
在差分放大电路中,晶体管对会受到输入电压的影响,从而输出一个放大后的电压。
3. 差分放大电路的工作原理差分放大电路的工作原理可以分为两个部分:差分输入电路和共射放大电路。
在差分输入电路中,输入信号被应用到晶体管对的基极上。
由于它是一个以反向有源负载为特点的放大器,因此输出电流会从一个晶体管到另一个晶体管,从而产生放大后的输出电路。
共射放大电路通常是用来产生输出信号的一个节点。
在这种放大器中,晶体管对位于电路的输入段,而晶体管的反向有源负载则位于电路的输出段。
这种放大器的输出信号是晶体管对的输出电流的一个函数。
一般情况下,差分输入电路中的电流会被放大,从而产生一个较大的电流信号。
由于输出电流被流通到共射放大器中,因此它被分为两部分,分别流向上面的电路电阻和下面的电路电阻。
该电路电阻是通过调整不同电流管的电阻来实现的。
4. 差分放大电路的应用差分放大器广泛应用于电子电路和通信电路中。
在电子电路中,它通常用作一种前置放大器或通用放大器,以增加电路输入信号的幅度。
在通信电路中,它通常用于放大电路接收器中的不同信号,以便更好地识别信号。
此外,差分放大器还被发现可以用于控制系统中的某些应用中,例如调节系统参数等,从而提高系统的稳定性并降低系统成本。
5. 结论总的来说,差分放大电路是一种重要的电子元件,在广泛的领域中得到了广泛的应用。
电子工程师们利用差分放大电路的特性,设计出很多不同用途的电子电路和通信电路,从而实现了很多不同的功能和应用。
电子技术基础: 晶体管放大电路
输入电压为零时, 电路输出电压会偏离 初始值,随时间作缓慢、
无规则地变动。
Vcc
三、电路特点
ui
uo
6.4 功率放大电路
6.4.1 功率放大电路的基本特点
一、输出功率足够大
输出足够大的信号电压、足够大的信号电流。
二、转换效率尽可能高
效率:交流输出功率与电源提供的直流功率之比。
6.2.4 稳定静态工作点的放大电路
1.温度对静态工作点的影响 T↑→ICBO↑,温度每升高10oC, ICBO↑一倍 T↑→UBE↓,温度每升高1oC, UBE↓2.5mv T↑→β↑,温度每升高1oC,β↑ 0.5%—1%
100℃ 27℃
0℃
温度扫描分析
6.2.4 稳定静态工作点的放大电路
2. 典型的稳定静态工作点电路 一、电路构成
三、非线性失真尽可能小
工作在大信号状态,难免带来非线性失真。
四、重视功率管的散热和保护
功率放大电路的分类 分类:
1、甲类状态:晶体管在整个信号周期内导通。
2、乙类状态:晶体管只在信号半个周期内导通。 3、甲乙类状态:晶体管导通时间略大于半个周期。
6.4.2 互补对称功率放大电路
1.互补对称乙类功放电路(OCL电路)
(1 )RL rbe (1 )RL
RL = Re // RL
输入电阻Ri
Ri
Ui Ii
Rb
// [rbe
(1 )RL ]
输出电阻Ro
Ro
Uo Io
Re
// (rbe
RS // Rb )
1
特点:Au略小于1;Uo与Ui同相;Ri大,Ro小; 有电流、功率放大作用。
晶体管的放大原理
晶体管的放大原理
晶体管是一种电子设备,广泛应用于信号放大、开关、数字逻辑和模拟电路等领域。
晶体管的放大原理基于其特殊的结构和电荷输运机制。
晶体管由三个区域组成,分别是发射区、基区和集电区。
在正常工作状态下,晶体管的发射区与基区之间形成一个p-n结,而基区与集电区之间形成另一个p-n结。
当发射极与基极之间的电压为正向偏置时,发射区的p-n结被击穿,电子从发射区中注入到基区中,形成多数载流子。
由于基区很薄,多数载流子迅速通过基区,并进入集电区。
此时,晶体管处于放大状态。
当输入信号加在基极上时,基极电流会受到控制,并进一步控制集电极电流。
结果是,输入信号被放大,并经过集电区输出。
晶体管的放大原理可以通过控制基极电流来实现。
如果基极电流较小,集电极电流也会相应较小,这被称为截止区。
如果基极电流适中,集电极电流会被放大,但还未达到饱和状态。
如果基极电流较大,集电极电流会达到饱和状态。
因此,晶体管的放大原理是基于控制输入信号来调整晶体管的工作状态,并通过基极电流的变化来放大输入信号,从而实现信号的放大。
晶体管放大电路的原理
晶体管放大电路的原理介绍晶体管放大电路是现代电子设备中广泛应用的一种电路结构。
它利用晶体管的放大特性来增加输入信号的幅度,并输出一个放大后的信号。
晶体管放大电路有着许多优点,例如高增益、低噪声等,因此在放大、调节和传输信号方面发挥着重要作用。
本文将深入探讨晶体管放大电路的原理。
三极管基本原理三极管是一种常用的晶体管,它由三个掺杂不同类型材料的半导体层构成:发射区、基区和集电区。
三极管常用的两种工作方式是共射极和共基极。
共射极放大电路共射极放大电路是最常见的三极管放大电路之一。
它的特点是输入信号接在基极上,输出信号从集电极上取出。
这种电路常用于需要较大电压增益的应用。
共射极放大电路的工作原理1.基极-发射区电流控制:输入信号通过耦合电容C1进入基极,使得基极电压发生变化。
当输入信号为正半周时,与基极相连的电容C1充电,基极电流增大,发射区电流也随之增大;当输入信号为负半周时,电容C1放电,基极电流减小,发射区电流也随之减小。
2.集电极电流变化:发射区电流的变化会导致集电区电流的变化。
当发射区电流增大时,集电区电流也会增大;反之,当发射区电流减小时,集电区电流也会减小。
3.输出信号增强:由于晶体管的放大特性,集电极电流的变化会引起输出信号的放大,即得到了较大幅度的输出信号。
共射极放大电路的特点•高输入电阻:晶体管的基极-发射极之间电流极小,所以输入电阻较高,可以减小输入信号源的负载效应。
•低输出电阻:输出信号是取集电极电流,因此输出电阻较低。
•相位反转:输入信号和输出信号之间相位存在180度的反转。
共基极放大电路共基极放大电路是另一种常用的三极管放大电路,它的特点是输入信号接在发射区上,输出信号从集电极上取出。
这种电路常用于需要较大电流增益的应用。
共基极放大电路的工作原理1.输入信号作用:输入信号通过耦合电容C1进入发射区,使得发射区电流发生变化。
2.集电极电流控制:发射区电流的变化会导致集电区电流的变化。
晶体管单管放大电路的三种基本接法的特点
晶体管单管放大电路的三种基本接法
的特点
晶体管单管放大电路是电子电路中非常基础且重要的部分,它主要有三种基本接法:共射接法、共基接法和共集接法。
每种接法都有其独特的特点和应用场景。
共射接法:在共射接法中,输入信号加在基极和发射极之间,输出信号取自集电极和发射极之间。
这种接法的电压放大倍数较高,电流放大倍数也较大,输入电阻适中,输出电阻较高。
因此,共射接法常用于电压放大和功率放大。
然而,由于输出电阻较高,它对负载的变化较为敏感,可能导致电路的稳定性下降。
共基接法:在共基接法中,输入信号加在发射极和基极之间,输出信号取自集电极和发射极之间。
这种接法的电压放大倍数较低,电流放大倍数较大,输入电阻较小,输出电阻也较低。
因此,共基接法常用于高频放大和宽频带放大,因为它对输入信号的变化较为敏感,且具有较好的频率响应。
共集接法:在共集接法中,输入信号加在基极和集电极之间,输出信号取自发射极和集电极之间。
这种接法的电压放大倍数接近于1,电流放大倍数较小,输入电阻较大,输出电阻较小。
因此,共集接法常用于电压跟随和缓冲放大,因为它具有较小的输出电阻,对负载的变化不敏感,能够提供良好的电路稳定性。
总的来说,三种基本接法各有优缺点,应根据具体的应用需求来选择合适的接法。
在实际的电子电路设计中,常常会根据电路的性能要求,结合三种接法的特点,采用复合电路或者多级放大电路来实现所需的功能。
电路放大倍数的基本原理
电路放大倍数的基本原理
电路放大倍数的基本原理是利用电子器件(如晶体管)的放大特性,将输入信号放大到更大的幅度输出。
具体原理如下:
1. 晶体管工作在放大区:晶体管通常工作在放大区,其输入信号作用在基极上时,由于基极与发射极之间的电压增大,使得发射极电流也随之增大。
即输入信号使得晶体管的控制电流(即基极电流)发生了变化。
2. 晶体管的电流放大特性:晶体管的发射极电流与控制电流之间存在一定的关系,即发射极电流随着基极电流的变化而变化。
这种关系可以由晶体管的电流放大倍数(即β值)来描述,β值可达到几百至几千。
3. 输入信号放大:当输入信号大小较小时,由于晶体管的放大作用,输出信号的幅度可以明显增大。
具体而言,输入信号使得基极电流发生变化,进而引起发射极电流的变化。
由于放大倍数的存在,输出信号的幅度变化相对较大,起到放大输入信号的作用。
4. 输出信号放大:经过放大电路的作用,输出信号的幅度增大。
通过适当的电阻、电容等元件的设计,可以实现对放大信号的增益控制。
总结来说,电路放大倍数的基本原理是通过晶体管等电子器件的放大特性,使得输入信号的幅度放大到更大的输出。
输入信号改变控制电流,进而通过放大倍数
得到输出信号,实现对输入信号的放大。
晶体放大电路
电压放大倍数
总结词
电压放大倍数是晶体放大电路最重要 的性能指标之一,它反映了电路的放 大能力。
详细描述
电压放大倍数是指输出电压与输入电 压的比值,反映了晶体管对信号的放 大能力。一般来说,电压放大倍数越 大,说明电路的放大能力越强。
输入电阻和输出电阻
总结词
输入电阻和输出电阻是晶体放大电路的重要性能指标,它们决定了电路对信号的传输能力和负载能力 。
晶体管的参数包括电流放大倍 数、频率响应、噪声系数等, 需要根据实际需求进行选择和 调整。
输入和输出变压器
输入和输出变压器是晶体放 大电路中用于信号传输的重
要元件。
1
输入变压器负责将信号从信 号源传输到晶体管,而输出 变压器则将放大后的信号传
输到负载。
变压器的选择和设计对放大 电路的性能和稳定性有重要 影响,需要根据实际需求进 行选择和调整。
计算元件参数
根据设计要求和晶体管参数, 计算电路中电阻、电容等元件 的参数值。
元件选择与计算
电阻选择与计算
根据电路需求选择合适的电阻类型和精度,计算 其在电路中的阻值。
晶体管选择与参数确定
根据设计要求选择合适的晶体管型号,并确定其 输入阻抗、输出阻抗、增益等参数。
ABCD
电容选择与计算
根据频率特性、电压和电流要求选择合适的电容 类型和容量,计算其在电路中的容值。
详细描述
失真产生的原因主要是由于晶体管内部的非线性特性以及电路参数的不理想。失真会导致输出信号的波形发生畸 变,影响信号的质量和传输效果。失真越小,说明电路的性能越好,信号的保真度越高。
04
晶体放大电路的应用
音频放大
总结词
晶体放大电路广泛应用于音频信号的 放大,如音响设备、麦克风等。
晶体管放大电路
2、晶体管放大电路原理2.1 晶体管和FET 的工作原理2.1.1晶体管和FET 的放大工作的理解晶体管和FET 的放大作用:晶体管或FET 的输入信号通过器件而出来,晶体管或FET 吸收此时输入信号的振幅信息,由电源重新产生输出信号,由于该输出信号比输入信号大,可以看成将输入信号放大而成为输出信号。
这就是放大的原理。
2.1.2晶体管和FET 的工作原理1、双极型晶体管的工作原理晶体管内部工作原理:对流过基极与发射极之间的电流进行不断地监视,并控制集电极-发射极间电流源使基极-发射极间电流的β倍的电流流在集电极与发射极之间。
就是说,晶体管是用基极电流来控制集电极-发射极电流的器件。
电源电源输入输出输出(a )双极型晶体管(以NPN 型为例) (b )FET (以N 型JFET 为例)A被基极电流控制的电流源检测基极电流的电流计集电极(输出端)基极(输入端)发射极(公共端)双极型晶体管的内部原理2、FET 的工作原理FET 内部工作原理:对加在栅极与源极之间的电压进行不断地监视,并控制漏极-源极间电流源使栅极-源极间电压的g m 倍的电流流在漏极与源极之间。
就是说,FET 是用栅极电压来控制漏极-源极电流的器件。
2.1.3分立元件放大电路的组成原理放大电路的组成原理(应具备的条件)1放大器件工作在放大区(三极管的发射结正向偏置,集电结反向偏置;结型FET 与耗尽型MOSFET 可采用自偏压方式或分压式偏置或混合偏置方式,增强型MOSFET 则一定要采用分压式偏置或混合偏置 方式)即要保证合适的直流偏置; (2):输入信号能输送至放大器件的输入端; (3):有信号电压输出。
判断放大电路是否具有放大作用,就是根据这几点,它们必须同时具备。
2.1.4晶体管放大电路的直流工作状态分析(以晶体管电路为例)直流通路:在没有信号输入时,估算晶体管的各极直流电流和极间直流电压,将放大电路中的电容视为开路,电感视为短路即得。
第六章晶体放大电路
IB =80uA
集电极电流通过集
IB =60uA
电结时所产生的功耗,
IB =40uA
PC= ICUCE < PCM
IB =20uA
IB=0
u
CE
(V)
(3)反向击穿电压
BJT有两个PN结,其反向击穿电压有以下几种:
① U(BR)EBO——集电极开路时,发射极与基极之间允许的最大 反向电压。其值一般1伏以下~几伏。 ② U(BR)CBO——发射极开路时,集电极与基极之间允许的最大 反向电压。其值一般为几十伏~上千伏。
当UB > UE , UB > UC时,晶体管处于饱和区。
当UB UE , UB < UC时,晶体管处于截止区。
C
晶体管
C
T1 T2 T3
T4
N
基极直流电位UB /V 0.7 1 -1 0
B
B
P
发射极直流电位UE /V 0 0.3 -1.7 0
N
集电极直流电位UC /V 5 0.7 0
15
E
工作状态
(2)V1=3V, V2=2.7V, V3=12V。 鍺管,1、2、3依次为B、E、C
符号规定
UA 大写字母、大写下标,表示直流量。 uA 小写字母、大写下标,表示全量。
ua 小写字母、小写下标,表示交流分量。
uA
全量
ua
交流分量
UA直流分量
t
6.3 双极型晶体三极管放大电路
6.3.1 共发射极基本放大电路
能够控制能量的元件
放大的基本要求:不失真——放大的前提
判断电路能否放大的基本出发点
放大电路的主要技术指标 1.放大倍数——表示放大器的放大能力
《晶体管放大电路》课件
共射极放大电路
共射极放大电路是一种常见的晶体管放大电路,通过控制基极电流和集电极 电压来实现信号的放大和处理。
晶体管放大电路的应用和优点
晶体管放大电路广泛应用于音频放大、射频放大、信号处理等领域,具有体 积小、功耗低、响应快等优点。
晶体管放大电路的构成
晶体管放大电路由晶体管及相关电路元件组成,包括输入电路、输出电路和 偏置电路,通过这些元件实现信号的放大和处理。
公共发射极放大电路
公共发射极放大电路是一种常见的晶体管放大电路,通过控制发射极电流来 实现信号的放大和处理。
共集电极放大电路
共集电极放大电路是一种常用的晶体管放大电路,通过控制基极电压和集电极电流来实现信号的放大和处理。
晶体管放大电路
晶体管放大电路是一种用晶体管作为放大元件的电路,通过增强和放大输入 信放大电路
晶体管放大电路是一种电子电路,利用晶体管的放大特性来增强和放大输入 信号,从而实现信号的处理和增益。
晶体管的基本原理
晶体管是一种半导体器件,通过控制电流和电压来控制其导电能力,基于电 流和电压控制的特性实现信号的放大。
晶体管基本放大电路的基本原理(一)
晶体管基本放大电路的基本原理(一)晶体管基本放大电路的基本什么是晶体管基本放大电路?晶体管基本放大电路是一种常见的电子放大器电路,通过晶体管来放大电信号的幅度。
晶体管的基本原理•晶体管是一种半导体器件,由三个区域组成:发射区、基区和集电区。
•发射区负责控制电流的注入,基区负责控制电流的传导,而集电区负责控制电流的输出。
•晶体管的工作原理主要是通过控制基极电流来调节集电极电流,从而实现电信号的放大。
NPN型晶体管基本放大电路原理1.输入信号通过电容耦合的方式传入晶体管的基极。
2.当输入信号的电压大于晶体管的基极-发射极压差时,基极-发射极结极的二极管会导通。
3.当基极-发射极二极管导通后,电流会从基极流入基区,并将集电极电流放大到较大的数值。
4.放大后的电流通过电容耦合方式输出到下一级电路或负载。
PNP型晶体管基本放大电路原理1.输入信号通过电容耦合的方式传入晶体管的基极。
2.当输入信号的电压小于晶体管的基极-发射极压差时,基极-发射极结极的二极管会导通。
3.当基极-发射极二极管导通后,电流会从集电极流入基区,并将基极电流放大到较大的数值。
4.放大后的电流通过电容耦合方式输出到下一级电路或负载。
晶体管基本放大电路的特点•可以实现电信号的放大。
•晶体管工作在放大区,具有一定的放大倍数。
•可以调节偏置电流和增益来满足不同应用场景的需求。
晶体管基本放大电路的应用•音频放大器:将微弱的音频信号放大到足够驱动扬声器的幅度。
•射频放大器:将微弱的射频信号放大到足够驱动天线的幅度。
总结晶体管基本放大电路是一种常见的电子放大器电路,利用晶体管的放大特性可以将微弱的电信号放大到合适的幅度。
通过控制偏置电流和增益,可以满足不同应用场景的需求。
在音频放大器和射频放大器等领域有广泛的应用。
晶体管的工作模式晶体管在放大电路中有三种工作模式:放大区、截止区和饱和区。
放大区(Active Region)放大区是晶体管的工作状态,在这个状态下,晶体管的基极电流和集电极电流都存在,且集电极电流大于零。
晶体管放大电路
U CEQ VCC I CQ Rc
列晶体管输入、输出回路方程,将UBEQ作为已知
条件,令ICQ=βIBQ,可估算出静态工作点。
15
阻容耦合共射放大电路的直流通路和交流通路
直流通路
I
=VCC-U
BQ
Rb
BEQ
I CQ I BQ
U CEQ VCC I CQ Rc
当VCC>>UBEQ时,
I BQ
Re起直流负反馈作用,其值越大,反馈越强,Q点越稳定。
32
3. Q 点分析
分压式电流负反馈工作点稳定电路
VBB IBQ Rb U BEQ IEQ Re
VBB
Rb1 Rb1 Rb2
VCC
Rb Rb1 ∥ Rb2
U BQ
Rb1 Rb1 Rb2
VCC
I EQ
U BQ
U BEQ Re
判断方法: Rb1 ∥ Rb2 (1 )Re ?
以N沟道为例
单极型管∶噪声小、抗辐射能力强、低电压工作
场效应管有三个极:源极(s)、栅极(g)、漏极(d),对应于晶体
管的e、b、c;有三个工作区域:截止区、恒流区、可变电阻区,对应于
晶体管的截止区、放大区、饱和区
1. 结型场效应管
结构示意图
3. 通频带
衡量放大电路对不同频率信号的适应能力
由于电容、电感及放大管PN结的电容效应,使放大电路在信号频率较低
和较高时电压放大倍数数值下降,并产生相移。
下限频率
f bw f H f L
上限频率
4. 最大不失真输出电压Uom:交流有效值 5. 最大输出功率Pom和效率η:功率放大电路的参数
6
§2 基本共射放大电路的工作原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下一页
返回
第二节多级放大器和射极输出器的结构 及特点
二、阻容藕合多级放大器的工作特点
1.静态分析 因为藕合电容具有隔直作用,所以在直流状态下,各级放大电路 彼此独立,互不影响,其分析方法与单级电路相同。 2.动态分析 (1)电压放大倍数Au阻容藕合多级放大电路总的电压放大倍数等于各级 电路电压放大倍数的乘积。即
上一页
下一页
返回
第一节低频电压放大器的结构及特点
2.静态工作点的计算 (1)直流通路输入信号为零时(ui =0),放大电路中只有直流电源Ucc起作 用,电路中的各个电流或电压只含有直流分量,而不含有交流分量, 此时电路中的电容相当于开路,这样画出的电路称为直流通路。 共射放大电路及其直流通路如图5 -8所示,直流通路只能用来分 析求解静态量。 (2)求解静态工作点对放大电路进行静态分析,即通过该电路的直流通 路,运用近似的方法求解其静态工作点Q处的IBQ, ICQ和UEQ 在图5-8 (b)所示的直流通路中
上一页
下一页
返回
第一节低频电压放大器的结构及特点
1.静态工作点的作用 如果放大器设置了合适的工作点,当加上输入信号电压ui时,则 输入电压ui与静态电压UBE叠加在一起再加到基极上,使发射结始终 处于导通状态。因此在输入电压的整个周期内都有一个随输入信号电 压而变化的基极电流,如图5 -7所示,从而使放大器能不失真地把输 入信号加以放大。
上一页
返回
图5-图5一5静态工作点
返回
图5 -7设置静态工作点时ib的变化波形
返回
图5 -8共射放大电路的直流诵路
返回
图5 -9共射放大电路
返回
图5-10共射放大电路的交流诵路
返回
图5-11 RC藕合两级放大器
返回
图5-12变压器藕合多级放大器
返回
图5-16共集电极放大电路的直流通路和微变 等效电路
上一页
下一页
返回
第三节集成运算放大器的基本结构 及应用
3.电压比较器 如图5-25 ( a)所示的电路,集成运放工作于开环状态。输入电 压ui加于同相输入端,反相输入端接地。当ui略高于0时,由于运放的 开环放大倍数很高,只要输入一个微小的信号,就会放大到极值,输 出级将因信号过大而进入饱和状态,这时ui达到它的正极限值U0+, 并且在ui继续升高时仍保持这个正极限值。同理,当ui略低于0时, uo 达到它的负极限值U0- ,并且在ui继续下降时仍保持这个负极限值。 图5-25 (b)表示上述输入与输出的关系。因此,可根据输出的状态判 断输入是大于0还是小于0,这种电路称为过零比较器或检零计。 检零计输入正弦信号时, ui每次过零时都使输出产生突变,形 成矩形脉冲波,如图5 -25 ( c)所示。运算放大器实现了波形的转换。 利用比较器可设计出一种监控报警电路,如图5 -26所示。
下一页 返回
第一节低频电压放大器的结构及特点
4.藕合电容C1 C2 它们起隔直流和通交流两方面的作用。 5.集电极负载电阻R c 集电极负载电阻R c也称为负载电阻,通过R c可以将放大后的电 流转换成电压输出,一般为几千欧。
二、低频电压放大电路的静态分析
放大器没有交流信号输入(即ui =0)时的工作状态,称为静态。静 态时的基极电流IB、集电极电流IB和集一射极电压UCE的值叫静态值。 三个静态值在输入、输出特性曲线上对应着一点口,如图5 -5所示。 通常把Q点(或IB , IC和UCE)力叫静态工作点
下一页
返回
第三节集成运算放大器的基本结构 及应用
集成电路的特点是:体积小、重量轻、功率消耗小、技术性能好、 可靠性高、通用性强、灵活方便,由于减小了焊点,所以工作可靠性 高,价格低廉,在检测、自动控制、信号产生与处理等很多方面都发 挥着重要的作用,有“万能放大器”的美称。 运算放大器通常由输入级、中间级、输出级和偏置电路4部分组 成。如图5-17所示。
上一页
下一页
返回
第一节低频电压放大器的结构及特点
三、低频电压放大电路的动态分析
1.电压放大的过程如图5 -9所示 2.电压放大倍数的计算 放大倍数(也称增益)是用来衡量放大器放大信号能力的物理量, 它等于输出信号量与输入信号量之比。 假设C1和C2的容量足够大,则对信号的交流阻抗很小,可看作 对交流短路,同时电源UCC内阻也很小,在它上面几乎没有交流压降, 所以UCC也可看成交流短路。这样,图5 -9所示放大器的交流通路如 图5-10所示。 电压放大倍数用字母AU表示,则根据放大倍数的定义可得 由交流通路就可计算出电路的电压放大倍数。
上一页
返回
第二节多级放大器和射极输出器的结构 及特点
一、级间藕合的种类
多级放大器是由多个单级放大器组合而成的。放大器前后级之间 的信号连接与传递形式叫做藕合方式,这是个看似简单而实际却很复 杂的问题。最常见的藕合方式有三种:阻容藕合、变压器藕合和直接 藕合。 图5-11所示的两级放大器属于阻容藕合放大器。信号通过电容C 和放大器的输入电阻R,进行传输。阻容藕合方式的优点是各级放大 器的直流工作点相互隔离,互不影响;缺点是频率特性比较差,特别 是低频特性受藕合电容影响极大。这是因为在低频工作时,藕合电容 的容抗很大,信号被衰减。 多级放大器前后级之间也可以用变压器实现藕合,如图5 -12所示。
上一页
下一页
返回
第二节多级放大器和射极输出器的结构 及特点
(2)输入电阻Ri和输出电阻R0 阻容藕合多级放大电路的输入电阻为第一 级放大电路的输入电阻,即
多级放大电路的输出电阻为最后一级(第n级)放大电路的输出电阻,即
上一页
下一页
返回
第二节多级放大器和射极输出器的结构 及特点
3.藕合放大器的电路特点 电路的静态工作点彼此独立,电路设计和调整灵活方便。 由于藕合电容对于缓慢变化的信号和直流信号所呈现的容抗较大, 电容上信号损失也就较大,传愉给下一级的信号就会很小。因此阻容 藕合电路不适合放大变化缓慢的信号,只能放大频率较高的交流信号, 故也称它为交流放大器。 由于集成电路中制造较大容量的电容很困难,因此集成电路中一 般不采用阻容藕合。
上一页
下一页
返回
第三节集成运算放大器的基本结构 及应用
(2)反相比例求和电路如果反相输入端有若干个输入信号,则构成反相比 例求和电路,也叫加法运算电路,如图5 -22所示。 2.同相比例运算电路 图5 -23所示为同相比例运算电路,输入信号ui通过电阻R2接在 同相输入端,输出信号通过反馈电阻Rf回送到反相输入端。反相输入 端经电阻R1接地,即构成同相比例运算电路。
第五章晶体管放大电路的基本知识
第一节低频电压放大器的结构及特点 第二节多级放大器和射极输出器的结构及特点 第三节集成运算放大器的基本结构及应用
第一节低频电压放大器的结构及特点
一、低频电压放大电路的基本结构
如图5- 4所示电路中构成元件的组成及作用如下: 1.电源Ucc: 电源Ucc提供了三极管工作所需要的能量,且使三极管的发射结 正偏,集电结反偏,保证三极管处在放大状态,同时也是放大器的能 量来源,提供电流IB和IC 。 Ucc一般在几伏到十几伏之间。 2.基极偏置电阻RB 基极偏置电阻RB用来调节基极偏置电流IB,使三极管有一个合适 的工作点,一般为几十千欧到几百千欧。 3. NPN型三极管VT NPN型三极管VT是整个电路的核心,是电流放大元件,用基极 电流控制集电极电流。
上一页
下一页
返回
第三节集成运算放大器的基本结构 及应用
二、集成运算放大器的特性
图5-19是集成运算放大器的外形和图形符号。
三、运算放大器的应用
1.反相运算电路 反相运算电路是线性运算电路中的一类。待放大的输入信号加 在反相输入端与参考端之间,经放大后的输出信号与输入信号相位相 反。这是应用最为广泛的一种输入方式,可构成反相比例、加法、微 分、积分、对数等运算电路。 (1)反相比例运算电路反相比例运算电路如图5 -21所示。
上一页
下一页
返回
第二节多级放大器和射极输出器的结构 及特点
四、射极输出器
共集电极放大电路的输入信号加在基极一集电极上,信号从发射 极一集电极输出,集电极是输入、输出的公共端,故称为共集电极电 路;又因其从发射极输出信号,故又称为射极输出器。 图5-16(a)所示为共集电极放大电路的直流通路, 图5-16(b)所示 为其微变等效电路。 射极输出器具有以下特点: 输出电压与输入电压相位相同且大小近似相等。即 电压放大倍数: 输入电阻高、愉出电阻低
上一页
返回
第三节集成运算放大器的基本结构 及应用
一、集成运算放大器的基本组成
在自动控制系统中,常需将被控制的非电量转换为电信号,并与 给定量比较,得到一个微弱的偏差信号,再将其放大到一定的程度, 去推动执行机构动作或送到仪表中显示,完成自动控制和测量。实现 偏差信号放大的最常用的器件是运算放大器。 将整个电路中的元器件及相互之间的连接线制作在同一块半导体芯片 上,构成具有特定功能的电子电路,称为集成电路。 集成电路种类繁多,按集成度分有小规模、中规模、大规模和超 大规模等;按导电类型分有单极型、双极型和两种兼容的;按功能分有 数字集成电路和模拟集成电路两类。模拟集成电路则有运算放大器、 宽频带放大器、集成功率放大器、集成稳压电源、音像设备中常用的 各种模拟集成电路等。
返回
图5-17运算放大器的组成
返回
图5-19集成运算放大器的外形 和图形符号
返回
图5 -21反相比例运算电路
返回
图5 -22反相比例求和电路
返回
图5 -23同相比例运算电路
返回
图5-25过零比较器
返回
图5-26利用比较器监控报警
返回