剩余油饱和度监测技术
示踪剂研究剩余油资料
2、油藏高渗层(大孔道)的饱和度分布
•应用分配性示踪剂可以定量解释主渗通道上的 饱和度。同样,也是一个分布趋势。
• 单纯利用示踪剂解释不可能分析出高渗层以外 部分的饱和度分布。
示踪剂可解释 参数及与其它方法结合
示踪剂方法与其它油藏测试方法的结合
• 示踪剂方法需要借助于其它油藏工程方法来确定 合理的参数选择范围或者提供辅助参数。
1.压力计算的数学模型
压力计算采用黑油模型,油水两相的连续性方 程如下:
kkro
Boo
po
o gD
qo
osc
t
so
Bo
kkrw
Bww
pw
wgD
qw
wsc
t
sw
Bw
• 示踪剂分为非分配性示踪剂与分配性示踪剂。 非分配性示踪剂主要用来确定井间连通与渗 透率的变异情况,分配性示踪剂主要辅助解 决井间高渗层的剩余油饱和度问题。
利用示踪剂技术监测井间 剩余油饱和度
• • • • • • • • •
结实半半半数半可解
论例解解解学解解释
分析析析模析释技
析方方方型方参术
法法法
4、分流量方程
通过对分流量方程的合适改造,可以用来计算流道 上的饱和度分布。
利用示踪剂技术监测井间 剩余油饱和度
• • • • • • • • •
结 实 半半半 数半 可解
论 例 解解解 学解 解释
分 析析析 模析 释技
析 方方方 型方 参术
法法法
套后剩余油饱和度测井方法综述
0引言大庆油田经过四十多年的开发,特别是中区已进入特高含水期,为了提高油田采收率、挖掘油田剩余储量,对套后剩余油饱和度测井方法提出了新的要求:(1)确定油井的高含水层位,达到油井增产降水的目的。
(2)寻找潜在的油层,提高薄层剩余油饱和度评价水平。
为油田的稳产提供可靠的保证。
(3)监测剩余油的空间变化,为油田开发效果分析,方案的调整提供可靠的资料。
1套后剩余油饱和度测井方法原理1.1测—注—测中子寿命测井原理:中子寿命测井采用脉冲中子源脉冲式向地层发射快中子,并利用探测器记录地层吸收热中子的宏观俘获截面及中子的平均生存时间。
该方法在高矿化度地层水和较高的孔隙度地区,可直接确定地层含油饱和度,但当地层水矿化度较低时,由于油、水的宏观热中子俘获截面差别较小,则计算的含水饱和度误差较大,因此,中子寿命测井采用测—注—测工艺方法来确定地层的剩余油饱和度。
大庆油田测—注—测中子寿命测井技术使用硼酸试剂。
优点:在井地层条件及施工工艺适合的情况下,通过合理控制压井,优化硼酸用量、浓度,确定合理注硼压力,了解硼酸扩散渗吸规律,确定选择最佳测试时间等,可准确判断高含水层位和窜槽层位。
缺点:该方法施工工艺复杂,价格昂贵,对裂缝发育和非均质性强的地层不适用。
1.2碳氧比能谱测井原理:C/O 能谱测井是一种脉冲中子测井方法,所依据的理论是快中子的非弹性散射理论,测量的是特征非弹性散射伽马射线。
在测量过程中,主要关注的是碳和氧的非弹性散射特征伽马射线,其能量分别为4.43Mev 和6.13Mev,由于岩石孔隙中的石油含有大量碳元素,储层岩石骨架中含有大量的氧元素,因此,通过分析非弹性散射伽马射线能谱,便可以知道地层中的碳和氧元素的相对含量,从而由碳氧比值的高低可计算出储层的含油饱和度。
优点:是几乎不受地层水矿化度影响,能够在套管井中确定地层含油饱和度。
在油田注水开发过程中,可以用来在套后生产井划分水淹级别,在枯竭井中寻找新层位和判别油气界面等。
PNN剩余油饱和度测井技术在青海油田的应用
PNN剩余油饱和度测井技术在青海油田的应用【摘要】青海油田现在进入中高含水开发期,一方面,需要对单井进行层调、补孔、寻找潜力层、堵水作业;另一方面,许多老井受到当时条件的限制,录取的地质资料过少,不能满足油田后期再开发。
所以青海油田测试公司在2007年从奥地利引进PNN饱和合度测井仪器,力争为油田二次开发做出贡献。
通过对青海油田主力油田进行PNN饱和度测井,结合裸眼井资料、井况以及该井的生产史资料,总结分析对PNN饱和度测井解释的主要影响因素:(1)岩性分析;(2)地层水矿化度;(3)孔隙度和泥质含量;(4)求取SIGMA曲线;(5)综合分析。
通过对这些因素的把握,提高了PNN饱和度资料解释的准确性。
【关键词】PNN;测井;剩余油饱和度1.测井原理PNN是脉冲中子中子(Pulse Neutron Neutron)仪器的简称,中子管发射出14.1Mev的快中子,通过和地层元素的非弹性碰撞、弹性碰撞,快中子衰减到能量为0.025Mev的热中子,热中子开始在地层以热分子运动向四周扩散。
PNN分为长短两个探测器,他们分别记录热中子从产生到被地层俘获的热中子数,而中子寿命记录的是俘获热中子释放的伽马射线。
热中子衰减的快慢受地层水矿化度影响很大,可以很好的判断油水性质。
从而可以计算地层含水饱和度,划分水淹层,寻找潜力层。
2.剩余油饱和度影响因素分析PNN资料就是求取岩石的热中子俘获截面,含泥质地层求取含水饱和度公式:Σlog-利用PNN测得的中子计数率计算的地层俘获截面Σma—骨架的俘获截面;Σsh-泥质的俘获截面Σh-烃的俘获截面Σw-水的俘获截面VSH-泥质含量Φ-孔隙度要准确的求取Sw值,首先对公式中的参数必须求取准确。
(1)测井环境:确保地层已经射孔不受压井液和洗井等条件的影响,其次对井筒的管柱组合熟悉,否则探测到的计数率不是地层的真实反应。
(2)对需要测取PNN剩余油饱和度的井,首先要知道该井沉积环境、沉积序列、岩石骨架组分、泥岩组分。
套管井剩余油饱和度测井新技术
• 时间门A记录脉冲中子发射过程中所有的伽马射线 能谱,包括非弹性能谱和俘获能谱;时间门B测量 的是中子发射后的早期俘获能谱,用于从先前的 非弹性能谱A中减去俘获谱B的β倍,以消除俘获 本底的影响,因此就得出净非弹性谱;时间门C测 量的是中子发射后的后期俘获能谱。
• 俘获-∑模式同时记录俘获伽马射线能谱、全部的 俘获伽马射线计数率以及热中子衰减时间分布。 每个测量周期含有2个中子脉冲——1个短脉冲和1 个长脉冲。短脉冲发射过程中及发射后采集的全 部计数率被用来确定井眼流体的∑;长脉冲发射 后采集的全部计数率被用来确定地层的∑,以126 个不同宽度的时间门记录计数率谱,它覆盖了一 个完整的俘获-∑测量过程,包括脉冲中子发射和 发射后的本底。
• 利用C/O能谱测井和热中子寿命测井时测井 基础理论、谱数据处理方法、地层的适应 性及测井响应、各种因素对测井响应的影 响和影响因素的校正是确定高含水储层饱 和度的关键所在。
一、脉冲中子饱和度测井基础理论
(一)中子与地层的相互作用
1.快中子非弹性散射
快中子与地层中的靶核发生反应后,处于激发 态的靶核常常以发射伽马射线的方式放出激发能而 回到基态,由此产生的伽马射线称为非弹性散射伽 马射线。中子的能量必须大于靶核的最低激发能级 才能发生非弹性散射。
• ②若地层孔隙流体为地层水、原油和天然气的混 合物,则按其体积比可以计算Σ值。
• 对于纯地层来说,其总的宏观俘获截面为
• 当地层含有泥质时公式变为
3.中子寿命测井的显示方式
• 现代的中子寿命测井仪安有两个探测器,叫双探测 器或双源距寿命测井仪,测井时记录下列曲线:
(1)用短源距(普通源距)探测器测量门I、门II和 门III(背景值)计数率,分ቤተ መጻሕፍቲ ባይዱ记作N1、N2和N3 ;
用试井方法研究剩余油饱和度技术3
用试井方法研究剩余油饱和度分布王慧英张文昌罗沛摘要本文阐述了用多相流数值试井方法研究水驱油藏井组内剩余油饱和度分布的技术原理和基本步骤,并介绍了该方法在中原油田的应用实例和效果。
关键词试井数值试井剩余油饱和度一、引言目前,研究剩余油饱和度的方法主要有:基于中子衰减能谱原理的C/O、PND、RMT测井法、岩心分析法、井间示踪剂法、试井法和油藏数值模拟法等。
这些方法在研究剩余油饱和度方面,各具优势,但存在局限性或诸多不适应性。
测井方法的探测范围很小,局限于井筒周围区域;岩心分析方法只局限于取心井;井间示踪剂法主要反映流道上的剩余油状况,而不适合于不完善井网和非均质储层;油藏数值模拟法依赖于对油藏的认识,并受各种动、静态资料的真实性和可靠性的制约。
在剩余油饱和度的测井方面,近两年出现了瞬变电磁法和三维电阻率(电位)测井法,但尚处于研究探索阶段。
用试井方法研究剩余油饱和度技术开始于60年代,但由于受解析分析方法的限制,发展缓慢。
过去主要是通过不稳定试井获取的有效渗透率,并结合相对渗透率曲线来确定井控范围内的平均剩余油饱和度,难以适应开发后期、特别是油藏水淹后的剩余油饱研究。
到了80年代中后期,Abbaszadeh和Kamal等人以Buckley-Leverret 理论为基础,建立了水驱饱和度剖面模型,给出了注水井压降试井分析的水驱变饱和度模型,这一方法被用来研究水驱前缘以内的饱和度。
但对严重水淹油藏和注水时间很长的井难以适应。
近年来,随着数值试井解释技术的飞速发展,困扰常规的解析试井分析方法的多相流、复杂边界、复杂井网和储层的平面非均质性等问题得到了很好地解决,为试井方法研究剩余油饱和度开辟了广阔的前景。
二、基本原理数值试井方法确定储层平面的剩余油分布是通过对组分模型的简化,建立符合油藏实际渗流特点的扩散方程,并选择合适的网格离散技术,定量描述油藏空间各点上的流体性质及渗流特征。
1、数学模型地层中油、气、水三相流动,如忽略重力和毛管力的影响,流体组分物质平衡方程为:⎥⎥⎦⎤⎢⎢⎣⎡∂∂=⎪⎪⎭⎫⎝⎛Φ∇∇=p P pprp B S t B K kφμp式中:K rp ——p 相的相对渗透率B p ——p 相的体积系数 S p ——p 相的饱和度 S p ——p 相的饱和度pΦ∇—p 相的势2、网格剖分为了更好的模拟油藏实际,数值试井模型在生成网格时采用目前最先进的非结构网格(V oronoi )。
15.剩余油饱和度测井新技术在江汉油区的应用
φ=14~20% φ=11 24% 11~ φ=14~20%,Ex下 φ=11~24%) 14
潜江组20 30万ppm,新沟组12 23万 20~ 12~ 3、地层水矿化度变化大(潜江组20~30万ppm,新沟组12~23万ppm)
中国石化江汉石油管理局测录井工程公司
Well Logging Engineering Company Jianghan Petroleum Administration SINOPEC
中国石化江汉石油管理局测录井工程公司
Well Logging Engineering Company Jianghan Petroleum Administration SINOPEC
PNN测井仪器主要技术指标 PNN测井仪器主要技术指标
PNN参数 PNN参数 长度 外径 重量 耐压 耐温 探测方式 探测半径 中子探测器效能 中子探测器统计误差 中子产额 测井速度 适用范围 仪器现场刻度 技术指标 5.7m 43mm 41.5kg 105MPa 在175℃(外部环境温度)时,可以工作1小时 175℃(外部环境温度) 可以工作1 热中子 纵向分辨率: 纵向分辨率:45cm 横向分辨率:短源距为42cm 长源距为72cm 42cm, 横向分辨率:短源距为42cm,长源距为72cm 97% ±2% 2×108个/秒 2~3m/min 直井、 直井、大斜度井和水平井 无需刻度
中国石化江汉石油管理局测录井工程公司
Well Logging Engineering Company Jianghan Petroleum Administration SINOPEC
江汉油田油藏地质特点
含膏、含灰质) 1、岩性复杂、单层厚度小(含膏、含灰质) 岩性复杂、
§6-1 剩余油概念及检测方法
基本概念
• 由于地下油层与油层中的孔隙以及其中的 油气,其状况与分布均极复杂,其准确数 量很难弄清,因此,所说的油气地质储量, 只是人们在一定勘探开发阶段上(一定的资 料丰度上)对油藏及其油气数量的认识水平。 随着油田开发过程的逐步深入,这种认识 水平将逐渐接近地下油藏的客观实际。
基本概念
• 2.可采储量 • 所谓可采储量,是指在现代经济技术条 所谓可采储量, 件下可以开采出的油气数量。 件下可以开采出的油气数量。在油藏开发 尚未结束之前,可采储量都是通过各种方 法预测估计的,多数情况下是在编制开发 方案、调整方案或在做储量研究报告时所 预测估计的。它与油藏开采结束时的累积 采油量(或称实际最终采油量)是两个概念, 并且在数值上常常有很大差距。
基本概念
• 已开发油藏 或油层)中尚未采出的油气。它 已开发油藏(或油层 中尚未采出的油气 或油层 中尚未采出的油气。 既包括此前认为的剩余可采储量,也包括 此前认为的不可采出的油气储量(这部分储 量中的相当部分将成为提高采收率阶段剩 余油研究的主要目标)。事实上,在我国油 田开发界,大多数同志长时期以来都在采 用剩余油的这一定义。
基本概念
• 实际上,前一残余油概念比较接近束缚油 之含义,但它又不等于束缚油,因为室内 水驱油结束时,岩心中尚有少许可动油, 可以通过改变岩心水洗方向来驱出。显然, 后一残余油概念与前一残余油概念相去甚 远。遗憾的是,在油田开发界,这两种残 余油概念都在随意使用,甚少有人进行严 格区别。
基本概念
基本概念
• 4.残余油 • 现行残余油概念有两种含义。其一,指室内岩 心水驱油试验时,尽注水之所能(长时间高孔隙体 积倍数水洗)而未能驱出的石油;其二,指油田开 发结束时残留地下的石油。由于岩心比之实际油 层小得太多,也由于实际油藏不可能以十倍、数 十倍于油藏孔隙体积的注水量进行水洗,因此; 实际油藏开采结束时,无论在平面上或是在剖面 上,都存在一定数量未水洗及水洗不充分的油层。 所以,后一残余油概念的数量或比率,将大大高 于前一残余油概念所包括的数量。
剩余油测井方法及应用
虽然厚度薄,但C/O高, C/O与Ca/Si比曲线重叠后 幅度差很大,且与上部强 水淹层间有岩性夹层,建 议封堵IV1后优先补孔551号层,该层投产后初产油
1吨,水13方,含水93.2%,
稳产达到日产油3吨,水 28.9方,含水90.7%,增 油1.8吨,见到较好效果。
碳氧比测井的应用
从图中看出38、39、42号层测量 C/O明显减小,与Ca/Si比曲线重 叠后幅度差很小,说明地层含油 饱和度降低,蒸汽吞吐生产效果 较好。33、34号层测量C/O较高, 与Ca/Si比曲线重叠后幅度差很大,
说明地层较好计算含油饱和度达
60%以上,是一套可利用的上返 层。射开33、34小层,日产油 3.4吨,水1.4方,含水30% 。
剩余油测井方法及应用
彭燕明
2011年4月
剩余油测井方法及应用
利用油和水的特性的差异,用测井资料评价孔隙空 间剩余油饱和度,是油藏动态监测的一项重要工作。大
家知道,油和水的导电特性相差悬殊,电阻率测井是评
价剩余油饱和度的最佳方法之一。但是,由于套管的屏 蔽作用,因此在套管生产井中无法用电阻率测井评价剩 余油饱和度。 目前,在套管井中常用的剩余油饱和度监测方法主 要有: 碳氧比测井 中子寿命测井
72、73号层合投 日产油1.5吨, 日产水8方
57、58号层合投 日产油18吨, 日产水41.5方
泥岩含碳、 骨架中含钙
碳氧比测井的应用
三 、 指 导 老 井 堵 水 、 调 层
楼365井RMT测井资料解 释的H3Ⅲ8油组 194.8197.8米井段,孔隙度37%, 同一储层的底部C/O比曲线 值下降明显,与岩性曲线重 叠后重叠面积小,底部含水 ,解释为油水同层,射孔后 日产油1.7吨,水22.1方。 而该井的另一层H3Ⅲ6 油组180.2-186.8米井段, RMT测井资料解释的孔隙度 35%, C/O比曲线型态饱满 ,与岩性曲线重叠后重叠面 积大,为好油层特征,RMT 资料解释为油层,射孔后日 产油22.1吨,水4.7方。
套后剩余油饱和度测井方法适应性分析及应用实践
套后剩余油饱和度测井方法适应性分析及应用实践摘要:套后饱和度主要测试方法有中子寿命测井、中子能谱测井、电法测井等,不同的方法具有不同的适用性,针对不同的井况及地质条件,选择不同的测试方法,避免各种方法的理论影响因素能够提高测试结果的符合率,从而指导油田开发。
关键词:套后饱和度符合率 PNN测井 PSSL测井过套管电阻率测井套后饱和度测试是指固井以后在套管内进行的饱和度测试方法,是监测油气田开发动态的重要技术手段,主要利用储层、孔隙流体(油水气)的岩性、物性、电性、含油性特征的差异,来评价剩余油饱和度,为开发调整及措施实施提供依据。
一、主要套后饱和度测井方法及原理(1)碳氧比测井碳氧比测井是中子能谱测井中的一种,它依据快中子的非弹性散射阶段的理论,利用中子发生器向地层发射高能中子,高能中子与地层元素发生非弹性散射,产生次生伽马射线,与碳元素产生能量为4.44MeV的次生伽马射线,与氧元素产生6.13MeV的次生伽马射线。
碳氧比测井依据水中不含碳元素,油中不含氧元素原理,通过能谱分析的方法测得地层碳元素和氧元素的分布,从而分析地层剩余油饱和度。
碳氧比测井的主要参数有:碳/氧(C/O)、硅/钙(Si/Ca)、俘获硅(Si)、钙/硅(Ca/ Si)。
碳氧比的解释原理为:(2)PNN测井 PNN测井是中子寿命测井的一种,当中子源产生的高能中子流(En=14Mev)进入地层时,中子与地层物质的原子核发生作用。
快中子经过多次碰撞后变为热中子(En=0.025ev),热中子从产生时刻起到被俘获的时刻止,所经历的平均时间称为热中子寿命(τ)。
τ与热中子宏观俘获截面∑成反比(τ=4550/Σ)。
∑是单位岩石体积中所有元素的微观俘获截面的总和---宏观俘获截面。
不同物质对热中子的俘获几率不同(即俘获截面不同),因此通过测量热中子的衰减时间(即中子寿命),就可以区分地层中物质的含量,这就是中子寿命测井的基本原理。
PNN测井也是热中子寿命测井的一种,与普通热中子寿命不同的是, PNN仪器探测的是地层中热中子本身数量的多少—热中子计数率,根据热中子的衰减情况计算热中子的寿命,进而求出热中子的宏观俘获截面Σ来研究地层及孔隙流体性质的测井方法。
剩余油饱和度测井技术进展
截面为 49 000 10 cm ) 离子为指示元素, 根据两次 测井资料来解释目前的 S w 。该测井方法基于相渗透或 离子浓度差扩散原理, 越是高渗透、 高倍水洗的强水淹 层, 扩散渗入的 B( Gd) 离子越多, 测得的俘获截面 值 越高, 使测量的 S w 相对误差越小, 因此, 该方法适合于 在高倍水洗的强水淹层确定 S w 和划分水淹级别 , 从而 弥补了碳氧比测井方法在目前 S w 高的产层中确定 S or 误差之不足。这种方法目前在我国许多油田得到应用。 ( 4) 脉 冲中 子 类测 井 新仪 器。 PND ( 康 普 乐公 司) 、 RST ( 斯伦贝谢公司 1992 年 ) 、 RM T ( 哈里伯顿公 司 1998 年 ) 和 RPM ( 贝克∀阿特拉斯公司 1999 年) 都 是目前世界上较为先进和广泛使用的套管井剩余油饱和 度测井仪, 较以上介绍的两种脉冲中子测井技术有较大 的突破。 这些仪器均采用闪烁探测器探测 14 MeV 的高能 脉冲中子与井眼及地层元素发生核反应后释放出的次 生非弹性散射伽马射线、 俘获伽马射线 , 然后进行能谱 分析和热中子俘获伽马射线衰减时间分析, 求出储层的 C / O 值和宏观俘获截面 , 最终用 C/ O 值和 值 2 种方法求取储层的含油饱和度。因此这些仪器可以完 成以往需要上述 2 种脉冲中子仪器才能完成的工作, 且 仪器耐温均达到了 150 # 以上。 这些测井仪都采用 2 种脉冲中子发射方式和双探 头, 能对井眼环境影响因素进行有效的校正。
剩余油饱和度监测技术在油田开发中的应用
啊
I
剩余油 饱和度监测技 术在 油 田开 发中 的应用
周 丽 李 光明 赵玉华 佘江 兰 郭胜利
( 利油 ) 胜 5 0 0
[ 摘 要 ] 坨油 田经 过 4 胜 O多年 的开发 , 已经进 入特 高含水 开发 后期 , 油水井 的井 况 日趋复 杂, 剩余 油分 布 日趋零散 , 田开发面 临诸 多矛盾 , 油 开发 管理 的难 度 越来 越大, 因此, 余 油饱和 度监 测技术 在 油 田开 发 生产 中的地 位和作 用越 来越 重 要。本 文着重 就胜 坨油 田剩 余油 饱和 度监 测技 术的应 用情 况进 行 了分析 和 剩 评 价, 并对 下 一步 的 发展 方 向提 出 了设想 。 . [ 关键 词] 剩余 油饱和 度 监 测技术 应 用分 析 发展 方 向 中 图分 类号 :9 4 2 X 2 . 文献 标识码 : A 文章编号 :0 9 9 4 ( 0 0 1 2 9 0 1 0 — 1 X 2 1 ) 卜0 9 1
1剩 余油 饱和度 测井 在胜 坨油 田措施 挖潜 中 的应 用及效 果 近几年 来, 我们 加大剩 余油 饱和度 测井 应用 力度, 用注硼 中子 寿命 测 应 井 、S P N — 等 测井 技术 指导老 油 田措施 挖潜 , N 、P D S 取得 了较 好 的效果, 为老 油 田特 高含水期 控水稳 油 工作做 出 了积 极的 贡献 。通 过结 合油 田动静 态资料 对饱 和度 测井 资料进 行 综合 分析, 加深 了对层 问 、层 内剩余 油潜 力分 布 的认 识 。其 应 用 及 效果 主 要 体 现 在 以下 几 个 方 面 。 1 1重新 评价产 层含 油状 况, 为高 含水低 效井 寻找 出路 利 用饱和 度测井 资料, 重新 认识老 区剩 余油潜 力, 为高含 水低效 井 以及 其 它 措施 井 探索 出了一 条 挖潜 增 油模 式 。 截 止N 0 年底 , 9 利用剩 余油饱 和度 测试 资料共 进行措 施 改层3 4 次, 9井 有 效 31 3 井次, 有效率 8 % 4 。综 合含 水 由 9 . %降为 9 . 3 。平均 单井 增油 4 88 2 9% . 7吨, 得 了 比较 显 著 的增 产 效 果。 取 1 利用饱 和度测 井结 果分析 层 间差异 , 2 充分挖 掘非 主 力层剩 余油潜 力 胜坨 油 田油井合采 井居 多, 占总井数 的8 .% 层 间潜力 分析 难度较 大, 42, 饱 和度测 井 资料是 层 间潜力 分析 的一 个重 要依 据 。对 3 4口注 硼 一中子 寿命 测 井资料进 行统计分 析, 以三 角洲前缘 相的坝主 体及河流 相 的主 河道砂体 为主 的 主力油层 中相对潜 力层较少, 水淹程度 较高, 措旅效 果较差 : 在处于侧 缘相 带的 非主 力油 层中, 相对 潜 力层 较 多, 措施 效果 较好 。说 明剩 余 油分 布与 沉积 相 带、沉积 韵律关 系密 切, 潜力层 多分 布于侧 缘相带 非主 力层 中, 是层 间挖潜 的 主要方 向。 剩余 油饱和 度大于 4 % 于等于 6 %的2 个小 层主要 集 中在侧缘 相带 的 0小 0 O 非 主力 油 层 中, 主力 油层 水淹 程 度较 高 。 1 3 定性 评价 区块剩 余油分 布. 导制 定上产 措施 指 通 过在特定 区块进行剩 余油饱和度 测井, 定单井各 射开层位 的剩余 油饱 确 和度 , 结合注 水 井、地 层连 通 状况 及 区域沉 积 背景 等 资料, 行综 合分 析研 进 究, 以定性 进行 区块剩 余油评 价, 可 认识 油藏在特 高含 水后 期剩余 油在 平面和 纵 向上 的分 布规 律 , 导 制定 上产 措 施 。 指 近 几年, 胜坨油 田加 大了区块 剩余 油饱和度 的整 体监 测, 年度应用 规模6 O 井次 以上, 为提 高油 田开发 水平提 供 了可靠依 据 。通 过对 6 5口井饱和 度测 井 结果 的统计 分析表 明 了上 油组 正韵律 砂层 底部水 淹严重 、顶 部剩余 油潜 力相 对富集 的开发特点, 并有 效指 导了具体措施 的制定 , 应用 后含水 下降幅度较 大, 效果较 好 。下油组 反 韵律砂 层注 入水 波及 面积 、厚度 及驱 油效 率都 较高 , 受 沉积 韵律 、重 力 、注 采 强度 等 因素 的影 响, 淹 较 为严重 , 施 增油 效果 较 水 措 上油 组 存 在 差 距 。 2饱 和度 测井 技术 的适 应性 评价 经过统 计分析, 根据P D S N — 测井结 果实旖 措施后 的油井, 其综 合含水 由9 . 7 9 %下 降到 8 . %, 23 根据 S P 井结 果实施 措旋后 的油 井, N测 其综 合含水 由9 . 75 %下降N 9. %, o 5 根据 硼 中子测井 结 果实施措施 后 的油井, 其综 合含水 由9 % 8 下 降到 9 % 3 这说 明应用 效果最 好 的是 P D S SP次之 。硼 中子测 井主 要是 N — ,N 受 到工艺和 地质 因素 的影响最 大, N S P主要受 孔 隙度影 响, 定量 解释 需要孔 隙 度大于 2 %, P D受 到影响 的 因素最 小, 量解释 需 要孔 隙度 大于 1 O 而 N 定 O%。 3剩余油 饱和 度测 并技 术在 胜坨 油 田应用 中存 在的 问题
RMT(油藏监测仪)剩余油饱和度测井技术在井楼油田的应用
① 确 定 储 层 的 剩 余 油 饱 和 度 和 孔 隙 度 ; 判 断 ②
岩 性 ; 反 映层 内水 淹差 异 ; 识 别 含气 层位 、 水 ③ ④ 油
界 面 ; 确 定堵 水层 位 ; 老井 挖潜 。 ⑤ ⑥
2 应 用效果
2 1 解 释 情 况 .
层 厚 度横 向变 化大 , 得 单 井 纵 向不 同性 质储 层 表 使 现 在 电 性 上 差 别 不 明 显 , 一 性 质 不 同 深 度 的 地 层 统
之 间 。井 楼 油 田 的 孔 隙 度 为 3 . ~ 3 . , 均 3 . 28 51 平 4 4 , 透 率 变 化 在 1 8 — 3 4 X1 p , 均 2 6 % 渗 47 26 0 - 平 m 1O
① 非 弹 性 方 式 ( 化 c/ 测 量 ) c/ 、 素 产 优 o : o 元
理 论 为 基 础 的 脉 冲 中 子 测 井 仪 。 脉 冲 式 的 中 子 源 发 射 中 子 与 地 层 作 用 后 , 过 非 弹 性 散 射 和 热 中 子 俘 由 经
获 反 应 产 生 次 生 伽 马 射 线 。 出地 层 内碳 氧 相 对 含 量 比 等 一 系列 比 值 , 过 对 元 素 及 元 素 的 比 值 的 分 析 求 通 划 分 岩 性 剖 面 , 出含 油 饱 和 度 , 找 油 水 层 , 分 水 淹 等 级 。 于 井 楼 油 田 油 层 具 有 埋 藏 浅 、 度 薄 、 求 寻 划 由 厚 原
油 粘 度 稠 、 布 散 的 特 点 。 经 过 多 年 的 注 水 、 气 开 采 , 得 单 井 中 电 性 明 显 的 含 油 储 层 已接 近 开 发 极 分 注 使
限 ,目前 常 规 测 井 技 术 方 法 难 以 区 分 高 阻 水 层 和 低 阻 油 层 。 因 此 利 用 RM T 剩 余 油 饱 和 度 测 井 寻 找 剩 余
PNN剩余油饱和度测井解释参数确定方法及应用
赵建鹏,陈惠,李宁,等.P N N 剩余油饱和度测井解释参数确定方法及应用[J.石油物探,2023625999㊀G1006Z HA OJ i a n p e n g ,C H E N H u i ,L IN i n g ,e t a l .I n t e r p r e t a t i o n p a r a m e t e r a s s e s s m e n t o fP N Nr e m a i n i n g o i l s a t u r a t i o n l o g g i n g an d i t s a p p l i c a t i o n [J ].G e o p h y s i c a l P r o s p e c t i n g fo rP e t r o l e u m ,2023,62(5):999㊀G1006收稿日期:2022G07G26.第一作者简介:赵建鹏(1987 ),男,博士,副教授,主要从事储层测井评价和岩石物理属性模拟研究.E m a i l :z j p s n o w@126.c o m 基金项目:陕西省重点研发计划项目(2021G Y G113)资助.T h i s r e s e a r c h i s f i n a n c i a l l y s u p p o r t e db y t h eK e y R e s e a r c ha n dD e v e l o p m e n t P r o g r a mo f S h a a n x i (G r a n tN o .2021G Y G113).P N N 剩余油饱和度测井解释参数确定方法及应用赵建鹏1,2,陈㊀惠3,李㊀宁3,曹㊀浩1,寇培鑫1,谭成仟1,2(1.西安石油大学地球科学与工程学院,陕西西安710065;2.陕西省油气成藏地质学重点实验室,陕西西安710065;3.中国石油集团测井有限公司地质研究院,陕西西安710075)摘要:测井解释参数的确定是脉冲中子中子(P N N )测井剩余油饱和度定量解释的关键.首先分析了P N N 饱和度定量解释标准岩石物理体积模型与改进模型形式上的统一性;然后阐述了俘获截面解释参数的确定方法,并基于P y Q t 工具包开发了图版法解释参数选择模块;最后利用该模块中的增强图版法对实际测井资料的解释参数进行了确定,并进行了饱和度计算.结果表明,P N N 饱和度定量解释的关键为区域解释参数的选择,而图版法解释参数选择模块能避免改进模型中区域特征因子的确定问题,并能较准确得到不同组分的区域俘获截面解释参数.P N N 测井饱和度计算结果与过套管电阻率饱和度计算结果一致性较好,且与实际生产动态情况相吻合,证明了俘获截面解释参数选取方法的可行性与准确性.该方法对P N N 测井㊁热中子成像测井(T N I S )以及脉冲中子寿命测井(N L L )的饱和度定量解释具有指导意义和实际应用价值.关键词:P N N 测井;剩余油饱和度;水淹层;俘获截面;岩石物理体积模型;图版法;饱和度定量解释中图分类号:P 631文献标识码:A文章编号:1000G1441(2023)05G0999G08D O I :10.12431/i s s n .1000G1441.2023.62.05.017I n t e r p r e t a t i o n p a r a m e t e r a s s e s s m e n t o fP N Nr e m a i n i n g o i l s a t u r a t i o n l o g g i n g a n d i t s a p pl i c a t i o n Z H A OJ i a n p e n g 1,2,C H E N H u i 3,L IN i n g 3,C A O H a o 1,K O U P e i x i n 1,T A N C h e n g qi a n 1,2(1.S c h o o l o f E a r t hS c i e n c e s a n dE n g i n e e r i n g ,X i a nS h i y o uU n i v e r s i t y ,X i a n 710065,C h i n a ;2.S h a a n x iK e y L a b o r a t o r y o f Pe Gt r o l e u m A c c u m u l a t i o n G e o l o g y ,X i a n 710065,C h i n a ;3.G e o l o g i c a lR e s e a r c hI n s t i t u t e ,C h i n a P e t r o l e u m L o g g i n g Co .,L t d .,X i a n 710075,C h i n a )A b s t r a c t :A s s e s s m e n t o f l o g g i n g i n t e r p r e t a t i o n p a r a m e t e r s i sac o r e i s s u e i n q u a n t i t a t i v e l y i n t e r p r e t i n g re s i d u a l o i l s a t u r a t i o n i n P u l s e dn e u t r o n Gn e u t r o n (P N N )l o g g i n g .I n t h i s s t u d y ,t h e s t a n d a r d p e t r o p h ys i c a l v o l u m em o d e l a n dm o d i f i e dm o d e l f o r t h e q u a n t i Gt a t i v e i n t e r p r e t a t i o no fP N Ns a t u r a t i o nw e r e a n a l y z e d ,t h em e t h o du s e d t od e t e r m i n e t h e c a p t u r e s e c t i o no f d i f f e r e n t c o m p o n e n t s ,n a m e l y m a t r i x ,s h a l e ,f o r m a t i o nw a t e r ,a n dh y d r o c a r b o n s ,w a s d i s c u s s e d ,a n d a g r a p h i c a l i n t e r p r e t a t i o n p a r a m e t e r s e l e c t i o nm o d u l e w a s d e v e l o p e db a s e do nP y Q t .T h e i n t e r p r e t a t i o n p a r a m e t e r sw e r ed e t e r m i n e du s i n g t h e g r a ph i c a l Ge n h a n c e d m e t h o do f t h i sm o d Gu l e ,a n d t h e a c t u a l l o g g i n g d a t a o f t h eP N N w e r e i n t e r p r e t e d a n d a n a l y z e d .T h e r e s u l t s h a v e s h o w n t h a t t h e s t a n d a r d p e t r o p h ys i c a l v o l u m em o d e l a n d t h em o d i f i e dm o d e l f o r t h e q u a n t i t a t i v e i n t e r p r e t a t i o n o f P N Ns a t u r a t i o n h a v e u n i t yi n f o r m ,a n d t h e e s s e n c ew a s t h e s e l e c t i o no f r e g i o n a l i n t e r p r e t a t i o n p a r a m e t e r s .T h e i n t e r p r e t a t i o n p a r a m e t e r s e l e c t i o nm o d u l ed e v e l o p e db a s e do nP y Q tm e e t s t h e r e q u i r e m e n t s o f l o g g i n g i n t e r p r e t a t i o n ,a v o i d s t h e d e t e r m i n a t i o n o f r e g i o n a l c h a r a c t e r i s t i c f a c t o r s o f t h em o d i f i e dm o d e l ,a n d a c Gc u r a t e l y o b t a i n s t h e r e g i o n a l c a p t u r e s e c t i o n p a r a m e t e r s o f d i f f e r e n t c o m p o n e n t s .T h e s a t u r a t i o n i n t e r p r e t a t i o nr e s u l t o fP N Nl o gGg i n g i s i n l i n ew i t h t h e c a s eGh o l e r e s i s t i v i t y l o g g i n g i n t e r p r e t a t i o nr e s u l t a n d i s c o n s i s t e n tw i t ht h e a c t u a l p r o d u c t i o n p e r f o r m a n c e d a t a.T h i s d e m o n s t r a t e s t h e s u i t a b i l i t y a n da c c u r a c y o f t h e p r o p o s e d i n t e r p r e t a t i o n p a r a m e t e r s e l e c t i o nm e t h o d.T h i sm e t h o d i s i mGp o r t a n t f o r q u a n t i t a t i v e l y i n t e r p r e t i n g s a t u r a t i o n i nP N N,t h e r m a ln e u t r o n i m a g i n g l o g g i n g(T N I S),a n d p u l s e dn e u t r o nl i f e t i m e l o g g i n g(N L L).K e y w o r d s:P N Nl o g g i n g,r e m a i n i n g o i ls a t u r a t i o n,w a t e rGf l o o d e dl a y e r,c a p t u r es e c t i o n,p e t r oGp h y s i c a lv o l u m e m o d e l,g r a p h i c a l m e t h o d,q u a n t i t a t i v e s a t u r a t i o n i n t e r p r e t a t i o n㊀㊀油田开发中后期,剩余油饱和度监测对油田增储上产和稳油控水具有重要意义.脉冲中子测井已成为识别水淹层以及确定油藏剩余油饱和度的重要方法[1],该方法评价剩余油饱和度的模式主要分为基于非弹性散射的碳氧比(C/O)测量模式和基于俘获反应的俘获测量模式[2].C/O测量模式受地层水含盐浓度的影响较小,但当地层孔隙度小于15%时应用效果变差,且一般要求多次测量消除目的层段测井的涨落误差.俘获测量模式是测量中子被地层俘获后释放出的伽马射线强度,在低孔隙度㊁低矿化度储层中应用效果较差.脉冲中子中子(P N N)测井与传统的中子寿命测井有很大的区别,它是测量没有被地层俘获的热中子,在低孔隙度㊁低矿化度储层中适应性强,在国内外各油田剩余油挖潜中发挥了重要作用[3].P N N测井饱和度定量解释的基础是岩石物理体积模型,但模型中解释参数的确定是困扰测井解释人员的难点问题[4G6],也是影响剩余油饱和度计算精度的重要因素.黄志洁等[7]分析了P N N测井技术特点及传统岩石物理体积模型的局限性,对模型的适应范围进行了详细分析,认为采用理论或实验分析值选取P N N测井体积模型的解释参数适应性较差.肖承文等[8]认为P N N测井饱和度定量解释参数具有较大的分布范围,直接进行饱和度定量计算容易产生较大误差,利用未生产层段的P N N测井值与电阻率之间的相关关系,计算射孔层段的当前电阻率,进而利用计算的当前电阻率确定射孔层段当前含油饱和度,以此来避免P N N测井解释参数的选择.孟宪涛等[9]通过建立泥质密度与俘获截面之间的相关关系确定泥质的俘获截面,但该方法依赖于常规测井中的密度曲线,当密度曲线不存在时,单井应用受限.赵秀峰[10]对肯基亚克油田P N N测井数据进行了分析并基于理论方法确定了解释参数,但油层水淹后地层水性质复杂,理论方法计算的地层水宏观俘获截面,往往具有较大误差.刘珈辰等[11]针对体积模型中解释参数选择范围较大的问题,利用对俘获截面测井响应方程中各解释参数进行偏导数计算,分析了骨架㊁泥质㊁地层水以及油气俘获截面的变化对含水饱和度计算结果的敏感性.此外,部分学者针对研究靶区的地质特点,对标准岩石物理体积模型进行了不同的改进.例如,郭海敏等[12]针对低孔㊁低渗储层引入了区域特征系数K.张新雨等[13]针对高泥质含量储层引入校正因子F.胡冰恒等[14]针对泥质含量和低矿化度两种因素对俘获截面测量值的影响,引入了双校正因子K1和K2,改进的体积模型在研究靶区都取得了较好的应用效果,提高了剩余油饱和度计算精度.但是校正因子的求取需要一定的前提条件,并且在引入校正因子的同时,无形中也引入了多余的变量,使得该方法在实际生产应用中存在一定困难.本文在P N N测井饱和度定量解释标准体积模型与改进模型统一性分析的基础上研究了P N N饱和度定量解释模型中区域俘获截面参数确定方法,并通过实例分析证明本文方法的可行性与准确性,以期对利用P N N测井进行饱和度定量解释提供方法借鉴.1㊀测量原理P N N测井通过脉冲中子发生器将14.1M e V的快中子发射到地层,快中子进入地层后与物质的原子核发生碰撞将产生减速㊁扩散和被俘获几个过程.非弹性散射是中子能量损耗的主要方式,发生在中子发射后10-8~10-6s时间段;弹性散射发生在中子发射后10-6~10-3s时间段,该过程使得中子的速度变得缓慢,慢化后的热中子(能量约0.025e V)在其它物质附近漫游时,很容易被俘获吸收发生俘获反应. P N N测井仪器利用两个不同源距的3H e计数管(效率97%)以3ˑ10-5s的采样间隔记录快中子发射3ˑ10-5s后的1.8ˑ10-3s时间内的热中子记数率,每个探测器记录60道[15],根据记录的热中子计数率生成热中子时间衰减谱,并根据时间衰减谱确定中子寿命τ,然后利用公式(1)确定地层的宏观俘获截0001石㊀油㊀物㊀探第62卷面[16].Σ=4550τ(1)式中:Σ为测井获得的地层俘获截面.P N N 测井直接测量没有被地层俘获的热中子,在低孔隙度㊁低矿化度的地层,没被俘获的热中子多,探测器记录的计数率高,因此P N N 测井在低矿化度㊁低孔隙度储层具有较高测量精度[17].2㊀定量解释模型与解释参数选择2.1㊀解释模型分析P N N 测井饱和度定量解释的基础与传统的中子寿命测井一致,均基于岩石物理体积模型.将储层看成是由骨架㊁孔隙和泥质组成的简化模型,孔隙中含有油气㊁水等流体(图1).储层总的俘获截面Σ可表示为各组分俘获截面贡献之和[18],即:Σ=(1-V s h -φ)Σm a +V s h Σs h +φ(1-S w )Σh +φS w Σw(2)式中:V s h 为泥质含量;φ为孔隙度;Σm a 为骨架的俘获截面;Σs h 为泥质的俘获截面;Σh 为油气的俘获截面;Σw 为地层水的俘获截面.图1㊀P N N 测井岩石物理体积模型与标准岩石物理体积模型不同,部分学者在研究过程中,根据研究区特征,在标准体积模型的基础上,引入区域特征因子对标准岩石物理体积模型进行改进.郭海敏等[12]针对测量结果在不同区域的差异性,在标准体积模型的基础上引入具有区域特征的系数K ,将地层俘获截面表示为:Σ=(1-V s h -φ)(K Σm a )+V s h (K Σs h )+φ(1-S w )(K Σh )+φS w (K Σw )(3)㊀㊀张新雨等[13]对海上某油田P N N 测井解释研究中,分析了泥质含量对P N N 测井响应特征的影响,针对高泥质含量储层引入校正因子F ,将地层俘获截面表示为:Σ=(1-V s h -φ)Σm a +V s h (F Σs h )+φ(1-S w )Σh +φS w Σw (4)㊀㊀胡冰恒等[14]在华北油田留北构造带储层研究过程中,针对低地层水矿化度㊁高泥质含量储层,在标准体积模型的基础上引入校正因子K 1和K 2,将地层俘获截面表示为:Σ=(1-V s h -φ)Σm a +V s h (K 1Σs h )+φ(1-S w )Σh +φS w (K 2Σw )(5)㊀㊀由公式(3)至公式(5)可以看出,改进体积模型均为在标准体积模型的基础上对不同组分俘获截面参数乘以区域特征因子,从本质上讲,是区域俘获截面解释参数选取的问题,因此,改进后的模型可写成以下统一形式:Σ=(1-V s h -φ)Σ∗m a +V s h Σ∗s h +φ(1-S w )Σ∗h +φS w Σ∗w (6)式中:Σ∗m a ,Σ∗s h ,Σ∗h ,Σ∗w分别为考虑区域特征的俘获截面解释参数.因此,区域俘获截面解释参数的确定是P N N 测井饱和度定量解释的核心问题.由公式(6)可得:S w =(Σ-Σ∗m a )-φ(Σ∗h -Σ∗m a )φ(Σ∗w -Σ∗h )-V s h (Σ∗s h -Σ∗m a)φ(Σ∗w -Σ∗h )(7)2.2㊀解释参数选择通常情况下,在P N N 测井定量计算饱和度的参数中,孔隙度㊁泥质含量主要由常规测井获得.因此,本文主要讨论岩石骨架㊁泥质㊁地层水及油气的俘获截面确定方法.2.2.1㊀解释参数取值范围及理论确定方法1)岩石骨架宏观俘获截面.岩石骨架的俘获截面与骨架的组成元素及其相对含量有关,岩石骨架的俘获截面与主要造岩矿物俘获截面值存在不同,不同文献中关于骨架俘获截面的取值范围有一定区别[19G20].一般情况下,储层岩性确定后,骨架的俘获截面变化范围较小,常见岩石骨架中石英砂岩俘获截面为8c .u .(1c .u .ʈ0 028m 3),白云岩俘获截面为8c .u .,石灰岩俘获截面为12c .u .(图2),通常选用理论值即可满足P N N 测井定量解1001第5期赵建鹏等.P N N 剩余油饱和度测井解释参数确定方法及应用㊀㊀㊀㊀图2㊀不同组分俘获截面变化范围释要求.2)泥质宏观俘获截面.泥质的俘获截面与构成泥质的粘土矿物类型有较大关系,不同研究地区的泥质俘获截面变化范围很大,一般为25~50c.u.(图2).在实际应用中,可以根据研究区实际测井资料,从俘获截面测井曲线上的纯泥岩段直接读取或利用直方图法确定研究区泥质的俘获截面参数[21].3)地层水宏观俘获截面.地层水的俘获截面主要与水中盐类离子的类型及含盐浓度有关.地层水的俘获截面具有较大的变化范围(图2),它与N a C l溶液矿化度具有较高的相关性,而与温度㊁压力相关性较小.当地层水中含有除C l以外的其它元素时(如B和L i),需将其它的离子成分的矿化度按照特定转换系数换算成等效的N a C l溶液矿化度.然后根据公式(8),按等效的N a C l溶液矿化度计算地层水俘获截面[10].Σw=22.1+0.341C+0.00025C2(8)式中:C为等效N a C l溶液矿化度,单位为g/L.但油层水淹后地层水性质复杂,理论方法计算的地层水宏观俘获截面,往往存在较大误差.4)油气宏观俘获截面.油的俘获截面与油的密度以及溶解油气有关,其变化幅度一般不大(图2).普通原油的俘获截面分布范围较小,主要为18~22c.u.,重质油大于22c.u..油的俘获截面可利用(9)式计算[10].Σo=22.3(1+GO R/22000)0.715(9)式中:G O R为油气比,单位m3/m3.天然气的俘获截面值与地层压力㊁地层温度以及天然气组分等有关,一般小于12c.u.(图2).天然气的俘获截面可以通过公式(10)计算:Σg=P(1.38γg+0.238)256+1.4(1.8T+32)(10)式中:γg为天然气的相对密度;P为地层压力;T为地层温度.2.2.2㊀图版法确定解释参数由2.2.1节可知,泥质俘获截面虽然变化范围较大,但可以通过俘获截面测井曲线得到区域泥质俘获截面值.油㊁骨架和地层水的俘获截面均有一个变化范围,其中骨架与油的俘获截面变化范围较小,一般选用理论分析值即可满足解释需要;而水的俘获截面与地层水矿化度有较强相关性,具有较大的变化范围,同时也是较难确定的解释参数.与上述方法不同,图版法通过对实际测井数据的分析可以获取区域性的俘获截面解释参数,从而提高饱和度解释结果的准确性.P N N测井解释图版主要有3种:①简单交会图法;②H I N G L E图版法;③增强图版法.图版法的本质作用是帮助测井解释人员选取合适的区域俘获截面解释参数.其中,增强图版法同时考虑了孔隙度㊁泥质含量对俘获截面测井值的影响,具有更好的适应范围,是饱和度定量解释中最常用的方法[22].在增强图版中纵坐标为孔隙度,横坐标为经过泥质校正的且用孔隙度曲线进行归一化的俘获截面测井曲线.增强图版法首先计算经泥质校正和孔隙度归一化后的纯水线(公式(11))和纯油线(公式(12)),然后在油线㊁水线之间通过线性内插可以得到任意含水饱和度线.水线计算公式为:ΣSw=100%=[Σm a(1-φ)+Σwφ]φ(11)㊀㊀油线计算公式为:ðS w=0%=[ðm a(1-φ)+ð0φ]φ(12)㊀㊀由于增强图版的饱和度线是在不含泥质情况下计算的,因此对实际井资料进行处理时,需对测井测量的俘获截面曲线进行泥质校正,具体校正公式如下:2001石㊀油㊀物㊀探第62卷Σs h =0%=Σ-V s h (Σs h -Σm a )(13)㊀㊀为突出放大孔隙流体对俘获截面测量值的影响,利用孔隙度对俘获截面进行归一化处理,公式如下:Σn o r m =φΣs h =0%(14)式中:Σn o r m 为孔隙度归一化后的俘获截面.基于上述理论,利用P yQ t 开发了图版法解释参数选择模块,加载实际测井数据并选择对应模型及曲线绘制交会图.通过改变俘获截面解释参数的大小,调整纯油线与纯水线的位置,使处理井段实际地层测井数据点合理落在增强图版相应的区域,以此来确定区域俘获截面参数(图3).该模块也可应用于任何测量地层俘获截面曲线的饱和度定量解释.应用图版法的前提是要求测井数据里同时含有未水淹和已水淹的地层,利用未水淹油层确定油线位置,利用高水淹或者水层来确定水线位置.当处理井段缺少油层㊁高水淹或者水层时,可从邻井同层位取适当样本点辅助确定油线与水线位置.由于图版法根据实际测井资料进行分析,通过调整俘获截面参数值使油线㊁水线及测量点合理分布,该方法确定的俘获截面参数反映了研究区的区域特征,因此避免了改进模型中区域特征因子的求取.图3㊀增强图版法归一化俘获截面与孔隙度交会结果为了评价P N N 饱和度定量解释结果的可靠性,引入可信系数对计算结果进行分析,可信系数计算公式为[10]:X S =1-ΣS w =0%ΣS w =100%æèçöø÷ˑ1.33(15)㊀㊀可信系数反映了地层孔隙度一定时,油层与水层的俘获截面测井响应特征的差异性.当可信系数大于0.5时,认为饱和度定量解释结果是可靠的.3㊀实际应用为验证解释参数选取的合理性,选取同时测量过套管电阻率和P N N 测井的G 35井进行分析,该井所处油藏为典型的边底水油藏,具有统一的油水界面,且水淹类型为地层水水淹.原生产层段为13,14号层,初始油产量为62.5t /d ,产水率为2%.此后生产过程中,产水率逐渐增加,根据最新生产动态数据,该井日产油为5.9t ,产水率高达90%.为寻找潜力层及堵水作业提供依据,该井随后进行了P N N 测井与过套管电阻率测井.增强图版法涉及4个参数,分别为骨架㊁泥质㊁油及地层水的俘获截面.对4个参数全部进行调整工作量大,且多解性强,因此按照如下步骤确定P N N 测井俘获截面解释参数.1)确定油的俘获截面.油的俘获截面变化范围较小,研究区目的层段无气层显示,油气比低,平均G O R 为15.0m 3/m 3,利用公式(9)计算可得研究区油的俘获截面为21c .u ..2)确定泥质的俘获截面.绘制G 35井泥岩段俘获截面分布直方图,要求该泥岩段井径稳定且与解释层位接近,通过直方图确定该井处理井段泥质俘获截面约为29.5c .u .(图4).3)确定骨架的俘获截面.当油和泥质的俘获截面确定后,油线位置仅与骨架俘获截面有关,调整骨架俘获截面参数值,改变油线位置,使其位于实际测㊀㊀㊀㊀图4㊀G 35井泥质俘获截面频数统计3001第5期赵建鹏等.P N N 剩余油饱和度测井解释参数确定方法及应用量点的上方(图5).4)确定地层水俘获截面.调整地层水的俘获截面参数,改变水线位置,使所有实际测量点位于水线上方(图5).通过步骤1)至步骤4)确定油㊁泥质㊁骨架㊁地层水的俘获截面后,可根据射孔层段㊁裸眼井饱和度解释结果及生产动态资料对俘获截面解释参数进行微调,使处理井段实际地层测井数据点合理落在增强图版相应的区域.通过图5可确定G35井骨架㊁泥质㊁油㊁地层水的区域俘获截面分别约为8,29.5,21,65c.u..利用增强图版法获取的区域俘获截面解释参数对G35井进行处理,解释结果如图6及表1所示.㊀㊀㊀㊀图5㊀G35井归一化俘获截面与孔隙度交会结果图6㊀G35井P N N测井解释成果(解释结论道中5,6,7,8,10号层为油层,9号层为致密夹层,13,14号层为高水淹层)4001石㊀油㊀物㊀探第62卷表1㊀G 35井P N N 测井解释成果层号测量井段/m 顶深底深厚度/m 孔隙度,%渗透率/ˑ10-3μm 2泥质含量,%原始含水饱和度,%P N N 含水饱和度,%R L A C 含水饱和度,%解释结论备注52310.72313.32.627.3473.4925.115.315.715.4油层补孔62315.42318.53.116.40.9338.954.455.556.0油层补孔72319.02324.85.824.295.6424.716.516.719.4油层补孔82326.62329.93.318.96.2435.255.255.255.6油层补孔102330.32356.05.724.470.2718.615.315.317.3油层补孔132372.22381.18.918.812.7626.747.764.260.4高水淹堵水142381.62389.07.424.6126.6720.231.750.454.2高水淹堵水图6中第6道为P N N 计算饱和度与过套管电阻率计算饱和度对比道,第7道为P N N 计算饱和度与裸眼井含水饱和度对比道,第9道为解释结论道,其中5,6,7,8,10号层为油层,9号层为致密夹层,13,14号层为高水淹层.由图6及表1可以看出,P N N 饱和度解释结果与过套管电阻率解释结果基本一致,并且储层可信系数均大于0.5,符合定量解释标准,计算结果可靠.同时,通过P N N 含水饱和度与裸眼井含水饱和度对比,认为5,6,7,8,10号层P N N 含水饱和度与裸眼井含水饱和度相近,剩余油饱和度较高,开发潜力较大,可接替成为产油层段.而该井原生产层位13,14号层则水淹比较严重,因此根据P N N 测井结果对原生产层段进行堵水作业,对5,6,7,8,10号层进行补孔,实施后日产油68.5t ,产水率为18%,投产结果与解释结论一致.证明了本文解释参数选取方法的合理性与准确性.4㊀结论1)P N N 测井标准体积模型与改进的体积模型在形式上具有统一性,本质为区域解释参数的选择.通过图版法选取P N N 解释参数,可避免求取区域特征因子.2)油和骨架俘获截面变化范围较小,一般理论计算值可满足解释需求,泥质俘获截面虽然变化范围较大,但从地层俘获截面测井曲线上可以较好地确定,随着长时间开发,油层水淹后地层水性质复杂,地层水的俘获截面是较难确定的参数,采用增强图版法可以综合确定不同组分的俘获截面,该方法同时考虑了泥质含量㊁孔隙度对俘获截面测井值的影响,经过孔隙度归一化后增强了孔隙流体的响应特征,提高了饱和度解释精度.3)基于P yQ t 编制的P N N 测井处理解释模块,符合实际生产需要,模块同样适应热中子成像测井(T N I S )㊁脉冲中子寿命测井(N L L )等所有测量地层俘获截面曲线的饱和度定量解释.参㊀考㊀文㊀献[1]㊀王振,周清.套管井脉冲中子测井仪发展综述[J ].测井技术,2020,44(5):432G437WA N GZ ,Z H O U Q.R e v i e wo nd e v e l o pm e n t o f p u l s e dn e u t r o n l o g g i n g t o o l s u s e d f o r c a s e d Gh o l e [J ].W e l l L o g g i n g T e c h n o l o g y ,2020,44(5):432G437[2]㊀熊葵,杨晓东,陈菲,等.华北油田套后饱和度测井技术优选[J ].测井技术,2021,45(3):260G266X I O N G K ,Y A N G X D ,C H E N F ,e ta l .O pt i m i z a t i o no f p o s t c a s i n g s a t u r a t i o n l o g g i n g t e c h n o l o g yi nH u a b e i o i l f i e l d [J ].W e l l L o g g i n g T e c h n o l o g y,2021,45(3):260G266[3]㊀孙杨沙,刘红岐,田杰,等.P N N 测井在跃进油田水淹层中的应用[J ].地球物理学进展,2019,34(3):1105G1112S U N YS ,L I U H Q ,T I A NJ ,e t a l .A p p l i c a t i o no f P N Nl o g g i n gi nw a t e r f l o o d e dl a y e r i n Y u e j i no i l f i e l d [J ].P r o g r e s s i n G e o Gp h ys i c s ,2019,34(3):1105G1112[4]㊀谭茂金,白洋,吴静,等.多源数据驱动下委员会机器测井解释研究进展[J ].石油物探,2022,61(2):224G235T A N MJ ,B A IY ,WUJ ,e t a l .P r o gr e s s o f r e s e a r c h o n c o mm i t Gt e e m a c h i n el o g g i n g i n t e r p r e t a t i o n m e t h o d sd r i v e n b y m u l t i Gs o u r c e d a t a [J ].G e o p h y s i c a lP r o s p e c t i n g fo rP e t r o l e u m ,2022,61(2):224G235[5]㊀邢强,张晋言,王镇方,等.基于X G B o o s t 的测井解释规则库自动获取方法[J ].石油物探,2022,61(2):356G363X I N G Q ,Z H A N GJY ,WA N GZF ,e t a l .A u t o m a t i c a c qu i s i t i o n o f a r u l e b a s e f o r l o g g i n g i n t e r p r e t a t i o nu s i n g th eX G B o o s t a l Gg o r i t h m [J ].G e o p h y s i c a lP r o s p e c t i n g fo rP e t r o l e u m ,2022,61(2):356G363[6]㊀钟华明,梁玉楠,何胜林,等.基于K N N GF i s h e r 算法的测井解释5001第5期赵建鹏等.P N N 剩余油饱和度测井解释参数确定方法及应用知识库构建方法[J].石油物探,2021,60(3):395G402Z HO N G H M,L I A N G Y N,H ESL,e ta l.C o n s t r u c t i o no fak n o w l e d g eb a s ef o r l o g i n t e r p r e t a t i o nu s i n g K N NGF i s h e r[J].G e o p h y s i c a l P r o s p e c t i n g f o rP e t r o l e u m,2021,60(3):395G402[7]㊀黄志洁,李疾翎,马焕英,等.P N N测井解释方法改进及应用[J].中国海上油气,2009,21(2):95G98HU A N GZJ,L I JL,MA H Y,e t a l.A n i m p r o v e m e n t o fP N Nl o g g i n g i n t e r p r e t a t i o n a n d i t s a p p l i c a t i o n[J].C h i n aO f f s h o r eO i la n dG a s,2009,21(2):95G98[8]㊀肖承文,周波,吴刚,等.P N N测井反演地层电阻率求取饱和度方法研究[J].石油天然气学报,2013,35(9):76G79X I A OC W,Z H O U B,WU G,e ta l.M e t h o d o l o g i c a ls t u d y o no b t a i n i n g s a t u r a t i o nb y P N Nl o g g i n g i n v e r s i o n f o r m a t i o n r e s i sGt i v i t y[J].J o u r n a l o fO i l a n dG a sT e c h n o l o g y,2013,35(9):76G79[9]㊀孟宪涛,夏竹君,庄玮,等.P N N资料计算剩余油饱和度的参数优选方法[J].石油仪器,2013,27(3):49G51M E N G X T,X I AZJ,Z HU A N G W,e t a l.T h eo p t i m u m m e t hGo do f c h o o s i n gp a r a m e t e r s t o c a l c u l a t e r e m a i n i n g o i l s a t u r a t i o nb y P N Nl o g g i n g d a t a[J].P e t r o l e u mI n s t r u m e n t s,2013,27(3):49G51[10]㊀赵秀峰.P N N测井在肯基亚克油田适应性分析[J].测井技术,2017,41(5):606G610Z HA O X F.A d a p t a b i l i t y o f p u l s e d n e u t r o n n e u t r o nl o g g i n gt e c h n o l o g y i n f o r e i g nK e n k i y a ko i l f i e l d[J].W e l lL o g g i n g T e c hGn o l o g y,2017,41(5):606G610[11]㊀刘珈辰,郭海敏,胡冰恒.T N I S测井资料解释中参数敏感性研究[J].能源与环保,2017,39(4):87G90L I UJC,G U O H M,HU B H.R e s e a r c ho ns e n s i t i v i t y o f p aGr a m e t e r s i n l o g g i n g d a t a i n t e r p r e t a t i o n o f T N I S[J].C h i n aE n e rGg y a n dE n v i r o n m e n t a l P r o t e c t i o n,2017,39(4):87G90[12]㊀郭海敏,陈猛,黎明,等.南翼山油田低孔低渗储层P N N测井识别技术研究[J].石油天然气学报,2012,34(6):81G84G U O H M,C H E N M,L IM,e t a l.I d e n t i f i c a t i o nt e c h n o l o g y o fP N Nl o g i nl o w p e r m e a b i l i t y a n dl o w p o r o s i t y r e s e r v o i r si nn a n y i s h a no i lf i e l d[J].J o u r n a lo f O i la n d G a s T e c h n o l o g y,2012,34(6):81G84[13]㊀张新雨,郭海敏,穆永利,等.海上某油田P N N测井泥质校正及解释参数敏感性研究[J].长江大学学报(自科版),2016,13(8):31G35Z HA N G X Y,G U O H M,MU Y L,e t a l.S h a l e c o r r e c t i o na n ds e n s i t i v i t y o f i n t e r p r e t a t i o n p a r a m e t e r so fP N Nl o g g i n g i na no f f s h o r e o i l f i e l d[J].J o u r n a l o f Y a n g t z eU n i v e r s i t y(N a t u r a l S c iGe n c eE d i t i o n),2016,13(8):31G35[14]㊀胡冰恒,郭海敏,诸葛月英,等.T N I S测井技术在低矿化度储层中的应用[J].贵州师范大学学报(自然科学版),2016,34(5):71G76HUB H,G U O H M,Z HU G E Y Y,e t a l.A p p l i c a t i o no fT N I Sl o g g i n g t e c h n o l o g y i nl o w s a l i n i t y r e s e r v o i r[J].J o u r n a lo fG u i z h o uN o r m a lU n i v e r s i t y(N a t u r a lS c i e n c e s),2016,34(5):71G76[15]㊀余鉴桥,刘红岐,孙杨沙,等.G S油田E13油藏水淹层P N N测井响应特征与评价分析[J].地球物理学进展,2020,35(3):1085G1091Y UJQ,L I U H Q,S U N YS,e t a l.P N N l o g g i n g r e s p o n s e c h a rGa c t e r i s t i c s a n de v a l u a t i o na n a l y s i s i nE13r e s e r v o i r o fG So i l f i e l d[J].P r o g r e s s i nG e o p h y s i c s,2020,35(3):1085G1091[16]㊀张锋,徐建平,胡玲妹,等.P N N测井方法的蒙特卡罗模拟结果研究[J].地球物理学报,2007,50(6):1924G1930Z H A N GF,X UJP,HU L M,e t a l.M o n t eC a r l o s i m u l a t i o n r eGs u l t f o r t h e p u l s e dn e u t r o nGn e u t r o n l o g g i n g m e t h o d[J].C h i n e s eJ o u r n a l o fG e o p h y s i c s,2007,50(6):1924G1930[17]㊀卢玉晓,谭茂金,庞栋锴,等.基于P N N测井技术的复杂储层流体识别与饱和度计算[J].石油物探,2011,50(3):310G314L U Y X,T A N M J,P A N G D K,e t a l.F l u i d i d e n t i f i c a t i o na n ds a t u r a t i o nc a l c u l a t i o n f o r c o m p l e x r e s e r v o i r b a s e d o nP N Nl o gGg i n g[J].G e o p h y s i c a lP r o s p e c t i n g f o rP e t r o l e u m,2011,50(3):310G314[18]㊀屈亚龙,裴宸育,李卫兵,等.水淹层热中子成像测井解释与分级方法[J].石油物探,2022,61(4):743G749Q U YL,P E ICY,L IW B,e t a l.T h e r m a l n e u t r o n i m a g i n g l o gi n t e r p r e t a t i o n a n d c l a s s i f i c a t i o nm e t h o d s f o rw a t e rGf l o o d e dr e sGe r v o i r s[J].G e o p h y s i c a lP r o s p e c t i n gf o r P e t r o l e u m,2022,61(4):743G749[19]㊀S MO L E NJJ.C a s e dh o l ea n d p r o d u c t i o nl o g e v a l u a t i o n[M].T u l s a:P e n n w e l l B o o k s,1996:1G375[20]㊀S C H L UM B E R G RS.C a s e dh o l el o g i n t e r p r e t a t i o n p r i n c i p l e s/a p p l i c a t i o n s[M].H o u s t o n:S c h l u mb e r g e rE d uc a t i o n a l S e r v i c e s,1989:1G200[21]㊀朱学娟,单沙沙,殷梓原,等.P N N测井清污混注水淹层剩余油饱和度计算方法[J].物探与化探,2021,45(3):679G685Z HUXJ,S HA NSS,Y I NZY,e t a l.T h e c a l c u l a t i o nm e t h o d o fr e s i d u a l o i l s a t u r a t i o n b y P N N l o g g i n g i nw a t e r f l o o d e d i n t e r v a li n j e c t e db y f r e s h w a t e ra n ds e w a g e[J].G e o p h y s i c a l a n d G e oGc h e m i c a l E x p l o r a t i o n,2021,45(3):679G685[22]㊀薛素丽,诸葛月英,闫爱华,等.热中子成像(T N I S)测井在低矿化度储层中适用性研究[J].测井技术,2016,40(3):364G371X U ESL,Z HU G EYY,Y A N A H,e t a l.A p p l i c a b i l i t y r e s e a r c ho f t h e r m a l n e u t r o n i m a g i n g s y s t e m(T N I S)l o g g i n g i n l o ws aGl i n i t y r e s e r v o i r[J].W e l l L o g g i n g T e c h n o l o g y,2016,40(3):364G371(编辑:朱文杰)6001石㊀油㊀物㊀探第62卷。
剩余油饱和度测井技术在文中油田的配套应用及效果
术 适应 性研 究 并推 广应 用 , 步摸 索 出 了适 合文 中油 田油藏 特 点 的剩 余 油饱 和度 ( 逐 高精 度 C O、 NN) / P 测 井技 术 , 并在 文 中常 压 中渗 油藏 形 成 了完善 的 以 高精度 C O 为 主的 剩余 油饱 和度 测井 系列 , 据 测 / 根
14 0
内 蒙 古石 油4 r L. -
2 1 年第 1 期 00 3
剩 余 油 饱 和 度 测 井 技术 在 文 中 油 田的配 套 应 用及 效 果
袁文芳 , 清武 , 郑 韦海 洋 , 彩 霞 , 商 王达 湘
( 中原 油 田分 公 司采 油 一 厂 )
摘
要: 针对文 中油 田油藏特 点 引进 先进 的 剩余油饱 和度 测井技 术 , 过 开展 剩余 油饱 和度 测 井技 通
复 杂 、 散 , 潜 对象 已 由一类 层 逐 步 向二 、 类 层 零 挖 三 转移, 对剩 余 油分布 规律 的认 识难 度越 来越大 , 对剩 余油 监测 技术 的要求 也越 来越 高 。 因此 , 针对文 中油 田油 藏特 点开 展不 同类 型油藏 剩余 油饱 和度测 井技 术适应 性研 究并 推广 应用 , 指导油 田精 细开发 、 是 深
关 键词 : 中油 田 ; 文 剩余油饱 和度 ; 测井 技术 ; 高精度 c o; NN / P 中图分 类号 :6 18 文献 标识 码 : 文章 编号 :0 6 78 (0 01 一O0 一 O P 3. 1 A 10- 9 12 1 )3 14 4
pnn剩余油饱和度测井技术应用研究
1251 引言随着油田长期不断的勘探开发,许多油田已经进入高含水期,油田的稳产所面临的困难不断增多。
油田开发实践证明目前的一次开采率仅占石油地质储量的1/3,而剩余的2/3由于各种因素的影响仍以地质储藏的方式存在于地下,是油田持续开发和实现稳产的重要。
但是,如何利用新的测井方法和技术手段识别水淹层、确定剩余油藏的饱和度及其地质分布状况,是提高老旧油田采区采收率、提高油田企业经济效益而迫切需要解决的重要课题。
2 PNN测井技术简介PNN测井技术是奥地利HOTWELL公司开发研制的一种全新的剩余油饱和度测井仪器——脉冲中子-中子测井仪(简称为:PNN饱和度测井仪),该测井仪的开发研制成功彻底解决了传统的中子寿命等脉冲中子测井技术方法在矿化度较低的状态下对剩余油饱和度无法准确和有效测定的问题,实现了剩余油饱和度测井的准确性和有效性[1]。
自2003年该项技术进入中国市场以来,先后在大港等多个油田进行了应用实践,取得了较为令人满意的测井效果,为老旧油田剩余油的开发提供了全新的技术手段。
3 PNN测井技术分析3.1 PNN测井技术的测井原理PNN测井仪共有包括长源矩和短源矩在内的2个探测器,其功能是对快中子束发射30μs后至1800μs的时间内热中子计数率进行记录,两个探测器均可以将其时谱记录自动划分为60道,每道时间为30μs,研究人员便可从PNN记录中提取有效的地层宏观俘获截面,以此为依据分析辨别并判断出近井地带的油水分布状态,并计算出含油饱和度及储层孔隙度、储层内泥质的含量、主要矿物的含量以及划分水淹级别。
与传统的中子寿命测井记录俘获伽马射线方式相比较,PNN测井技术能够直接俘获反应前后的中子计数率,即使是在极低的矿化度及孔隙度地层状态下,PNN测井方法也能够保持较高的计数率,而不存在探测伽马射线方法的本底值对计数率的影响,具有较高的测井准确率。
同时PNN剩余油饱和度测井技术具有测量施工简单,在测量中可以过油管作业,测量仪器不需要刻度以及操作维修方便、能精确记录原始数据等特点,目前已被广泛应用于剩余油饱和度测井[3]。
剩余油监测技术及适用性评价
C 1 2 . 2 8 2 x井 2 0 0 8 年 2月投 产 , 日产油 1 . 2 t , 日 产水 2 1 . 4 5 m , 4月 进 行 了硼 中子 测 量 , 判断 5 6~ 5 8 号层 水 淹 , 根 据结果封堵 5 7号 层 , 补开 4 4~4 5 号层 生产 , 日产 油 2 . 1 8 t , 日产 水 2 2 . 8 9 m , 达 到 了 增 油 的效果 ( 见图 2 ) 。
—
4 O
结合试油 、 动态资料 , 明确油田剩余油潜力及挖潜方 向, 为剩余油监测提供依据和指导 , 更好地为 X X X 油 田二次 开发 提供 良好 的技 术 支 撑 , 以达 到提 高老
油 田开发 效果 的 目的 。
荨 3 0
2 0 1 0 0 0
5
l O
1 5
2 O
2 5
3 0
幅差( c . u. )
1 注硼中子寿命测 井评价
1 . 1 注硼 中子寿 命测 井解 释标 准
图 1 汪硼 中子 寿命 测井 解释 标准 图版
1 . 2 应用 实例
1 . 2 . 1 判 别 水淹层
2 0 0 2年 华北 石油 研究 院应用 XX X的岩 心 与 中 科 院原 子 能所合 作 进行 了注硼 岩心 俘 获截 面测 量实 验, 建立 了岩心俘 获截 面变 化 与 可动 水 饱 和 度 及 剩
1 . 2 . 2低 压层 分析
C 3 1 1 3 4 x井测 前 作 业 , 井 口未 见 返 液 , 基 线 测 量后循 环 清水 2 8 m 。 , 井 口未见 返 液 , 之后 循 环 硼 酸 溶液 1 5 . 6 m , 继 续 顶 替 清水 5 m , 泵压 2 MP a , 井
剩余油监测技术
卫22-71井采油曲线
日产液
2.应用钆-中子寿命测井资料, 选取剩余油饱和度较高但物性 较差的层,采取分层压裂措施, 达到增油目的
卫265井:2000年12月,补孔 沙四2-3,增产效果不明显,分 析为该套层物性差,需压裂改 造,由于对应水井卫213、145 累计注水量均在30万方以上, 且沙四2-3均反映吸水。为进一 步落实该井剩余油分布情况, 进行中子寿命测井,测试结果 显示沙四 2 底部已水淹,于是 填砂封堵沙四 2 底部(53号层 以下),压裂沙四 2 顶部油层, 压裂改造后,初期自喷,转抽 后日增油能力11.3t,年累增 油2380吨,取得了显著的增油 效果。
(二)脉冲中子饱和度测井原理
脉冲中子饱和度:中子发生器向地层发射14MeV的快中 子,经过一系列的非弹性碰撞和弹性碰撞,当中子的能量与 组成地层的原子处于热平衡状态时,中子不再减速,此时它 的能量是0.025eV,速度2.2×105cm/s,与地层原子核反应 主要是俘获反应。脉冲中子饱和度测井利用两个探测器,记 录从快中子束发射30μ s后的1800μ s时间的热中子记数率, 每个探测器均将其时谱记录分成60道,每道30μ s,根据各 道记录的热中子数量可以有效地求取地层的宏观俘获截面及 储层含氢指数。
2000年,引进了中子寿命测井技术,在卫城深层 低渗油藏进行了实验,通过应用取得了较好的效果, 从2001年开始在我厂卫城深层低渗油藏进行推广应用, 到2006年共开展中子寿命测井78井次,为油田开发录 取了丰富的剩余油资料。 2004年,为解决文明寨、马寨油田剩余油监测问 题,引进了脉冲中子饱和度测井技术。到2006年共开 展脉冲中子饱和度测井53井次,取得了较好的效果。
卫11-35前后生产曲线
日产液 日产油 含水
不同类型油藏剩余油监测技术及应用
而对低矿化度则不适应,根据生产的需要发展了
“测-渗-测”测试工艺。其核心是合理选择钆的
浓度、用量、压力以及测试时间。
改进前
测—注—测 测—渗—扩散—测
低压密闭井
采用小排量、低 泵压施工,保持 较长渗钆时间。
改进后
动液面较深井
存在漏失的井
适当提高泵压, 适当加大排量, 延长渗钆时间。 形成相对密闭的 井筒环境。
措施后 含水 56.4 54.2 97.6 97.1 89.0 58.0 39.9 44.6 64.9 81.6 18.7 3.9 50.7 10.2 2.6 20.0 0.2 6.5 21.9 14.3 差值 8.0 1.0 -1.1 0.7 1.2 7.2 11.0 3.6 12.7 3.8
液(t) 油(t) (%) 液(t) 油(t) (%) 液(t) 油(t)
4、由简单井筒向复杂井筒转变 随着开发技术的不断发展,大斜度井、水平井、侧钻井、 4寸套井越来越多,由于这部分井的井身结构复杂,给剩余油 测试技术提出了更高的要求,需要发展完善测试手段,满足 复杂井筒条件下的测试需要。
5、由剩余油监测向剩余油气技术监测转变 随着气藏开发进入递减开发阶段,在老气田开展剩余气 测试的尝试,研究评价剩余气分布、气层水淹及寻找潜力层 或低产气层,挖掘气井潜力,满足气藏开发的需要。
不同类型油藏 剩余油监测技术及应用
目
录
一、剩余油监测技术现状及面临的形势 二、剩余油监测工作开展情况及效果评价
三、对剩余油监测工作的几点认识
四、建 议
一、剩余油监测技术现状及面临的形势
油田构造复杂,油藏类型多,储层变化大。一类 储层绝大多数进入高含水或特高含水期,开发重点转 向二、三类层。油田注水开发后,储层水淹程度不均, 清污混注、注聚合物等均使储层内含水发生较大变化。 饱和度测井可以了解开发井水淹状况、剩余油分布, 为开发方案编制,提高采收率提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在稠油井中监测油层开采程度
辽
河
周围邻井相应层
油 田 X
段已蒸汽吞吐开 采了多年。
观
察
井
水淹层 油层
双源距碳氧比测井
——应用实例
锦XX井因高含水关井。 进行RMT测井后,解释结果 表明,未动用的8、9、11层 仍有较多剩余油。据此,采 油厂打开8、9、11层,结果 日产油11t,水8m3,含水降到 了42.1%,平均日增油10吨。
剩余油饱和度测井技术及其应用
测井公司三分公司
编 写:李 哲
2007年3月1日
剩余油饱和度监测技术
双源距碳氧比测井 硼中子寿命测井 钆中子寿命测井 过套管电阻率测井
双源距碳氧比测井
——测井原理
利用能穿透仪器外壳、井内流体、钢套管和水 泥环等介质的14Mev的中子脉冲轰击地层,当中子 与地层元素发生作用后,释放出伽马射线,地层元 素不同,放出来的伽马射线的能谱也不一样,分析 所探测到的伽马射线能谱,就可以确定地层所含元 素的种类和数量。
主要技术指标 尺寸:φ45 mm×2620 mm 耐温:150 oC 耐压:60 Mpa
1 -电缆 2 -电缆头
3 -伽马探测仪 4 -屏蔽体 5 -Am-Be中子源 6 -快速接头
钆中子寿命测井
——应用实例
本井为锦7块 的一口稠油井,吞 吐后期含水100%, 测井结果表明:15 层上部剩余油饱和 度较高,动用程度 差,是主要挖潜层, 而17、18层剩余油 饱和度很低,无开 采价值。
2、确定浅气层
辽河油田对浅气层的勘探非常重视,利用过 套管电阻率资料结合中子伽马和声波及密度测井 资料可以很好地识别气层。
钆中子寿命测井
——适用条件
已射孔的套管井。 孔隙度φ>10%的地层。
钆中子寿命测井
—— 特点
具有仪器性能稳定、资料直观的特点。 适用范围较广,不受测井时间的影响,根据需要可
以进行多次时间推移测井。 在低矿化度地区,较比硼中子能更准确地确定漏失
层、水层、水淹程度、串槽等。 对未射孔层的剩余油监测无能为力。
主要技术指标
尺寸:φ54 mm×5480 mm 耐压:103 Mpa 耐温:163 oC
新井加测RMT技术,精确判断水淹程度:
RCAP
IRIN
SGFF
LIRI2
COIR1 LIRI1
COIR2
裸眼井 SO
RMT /SO
X9-33C
生产层号 12
电测解释油 层 RMT解释 中水淹层
油(吨/天) 8.4 水(方/天) 23.0 含 水 率 73.0%
元素 俘获截面
硼(B) 759
钆(Gd) 47000
过套管电阻率测井
主要技术指标 尺寸:φ95 mm×8000 mm 耐温:-10-110℃ 耐压:100 MPa
过套管电阻率测井
——测井原理
ห้องสมุดไป่ตู้
计算机
通过液压推靠装置,将电
流电极A1、A2,测量电极M1、N、
M2紧贴套管壁;通过A1、A2向 套管上、下两方向顺序送频率
硼中子寿命测井
——测井原理
对于高矿化度地层水油田,中子寿命测井可有效区 别油水层,但对于淡水油田,油和水的俘获截面相近, 无法用其判断油水层。因此,在低矿化度地层水油田, 把易溶于水不易溶于油的硼化合物(如硼酸H3BO3), 在测井施工中注入井筒,在注硼前后分别测一条俘获截 面曲线,水层由于渗入了硼酸液,则水层的俘获截面明 显增大,而纯油层俘获截面不变化,把两条俘获截面重 叠在一起,纯油层或未射孔层基本重合,而在产水层则 存在差异,而且产水越多,两条曲线差异越大。
——测井原理
用脉冲中子源发射高能快中子照射地层,然后 用伽马射线探测器测量热中子被俘获时放出的伽马 射线,计算地层的热中子寿命和地层对热中子的宏 观俘获截面,而地层的岩石骨架成分,胶结物成分 及孔隙中所含流体的成分和体积百分数都影响着地 层对热中子的宏观俘获截面值,这样利用岩石骨架 和地层流体间热中子宏观俘获截面大小的差异可以 划分油、气、水层。
硼中子寿命测井
——应用实例
测井前含水率为99% 8层为强出水层 封掉第8层后 日增油7吨 含水降为74%
孔隙度 指数
自然伽马
注硼后 俘获 截面
注硼前 俘获 截面
近、远俘 获计数率
海19-23井硼中子寿命测井解释成果图
硼中子寿命测井
——适用条件
已射孔的套管井。 地层孔隙度φ>10%。
硼中子寿命测井
В 邻井井口
1-7Hz、5安培电流;测量U相对
于Nуд的电位U;测量M1、M2
之间的电位差△U;测量M1、N、
M2量度基准的第二电位差△2U。
地面装置 电源
А1 U М1 N М2
А2
Nуд.
I U ΔU1 ΔU2
过套管电阻率测井
——主要地质应用
1、对老井进行复查
寻找过去因技术落后而漏掉的油层或错判的 油层、以及区块经过多年注采造成油气重新运移 后在平面上的分布状况,寻找油气富集区。
—— 特点
具有仪器性能稳定、资料直观的特点。 在低矿化度地区,能准确地确定漏失层、水层、水淹
层、串槽,为堵水增油提供可靠依据。 对未射孔层的剩余油监测无能为力。
钆中子寿命测井
——测井原理
Am-Be中子源向周围放出快中子, 快中子与地层原子核发生多次碰撞减速, 变成热中子,热中子被地层的原子核俘 获,释放出伽马光子,用伽马仪记录单 位时间内的伽马光子数量,也就是记录 热中子俘获伽马计数率,采用钆测-渗测方法,根据两次测井资料计算出剩余 油饱和度。
井数据的准确性。 环境校正---用近探测器测得的曲线及生产测井提供的持率曲线,
可对井眼环境进行定性、定量的校正。
硼中子寿命测井
主要技术指标
尺寸:φ45 mm×7500 mm 耐压:100 Mpa 耐温:135 oC
自然伽马
遥感器
远、近计数率(俘获截面)
中子发生器
硼中子寿命测井仪器示意图
硼中子寿命测井
双源距碳氧比测井
——适用条件
•井筒内有井液。 •地层孔隙度φ>10%。 •测井前必须用通井规进行通井并洗井。 •新井固井七天后方可进行测井。
双源距碳氧比测井
—— 特点
省时---测速为同类仪器的两倍。 用途广---可以对所有水矿化度地层进行评价。 节省成本---过油管测井而不影响测井质量和精度。 精度高---两个探测器均用BGO晶体,提高了探测精度。 独立饱和度分析---在无裸眼井资料情况下可独立进行饱和度分析。 功能强---可同时进行碳氧比和俘获截面测井。 准确性高---测井记录的是能谱,处理之前可以进行稳谱,以提高测