(完整版)贵州省2018年普通高等学校招生适应性考试理科数学

合集下载

贵州省贵阳市高考数学二模试卷理科

贵州省贵阳市高考数学二模试卷理科

贵阳市2018年高三适应性考试(二)理科数学一、选择题:本大题共12个小题,每小题5分,共60分.1.复数Z 的共轭复数为Z ,且()25Z i +=(i 是虚数单位),则在复平面内,复数Z 对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 2.设集合(){}(){},,,2xP x y y k Q x y y ====,己知PQ φ=,那么k 的取值范围是( )A .()-0∞,B .()0+∞,C .(]-0∞,D .()1+∞, 3.如图,在ABC ∆中,BE 是边AC 的中线,O 是BE 边的中点,若,AB a AC b ==,则AO =( ) A .1122a b + B .1124a b + C .1142a b + D .1144a b + 4.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再贏两局才能得到冠军, 若两队每局获胜的概率相同,则甲队获得冠军的概率为( ) A .12 B .35 C.23 D .345.已知()23sin πα-=-,且,02πα⎛∈-⎫⎪⎝⎭,则()2tan n α-=( ) A.5 B.-5C.2 D.-26.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,下面给出条件中一定能推出m β⊥的是( )A .a β⊥ 且m a ⊥B .αβ⊥且//m a C.m n ⊥且//n β D .//m n 且n β⊥7.设实数,x y 满足约束条件1213x y x y x ≥⎧⎪⎨⎪≥+-⎩≥,则下列不等式恒成立的是( )A .3x ≥B .4y ≥ C.28x y +≥ D .21x y -≥-8.定义在R 上的函数()f x 是奇函数,且在()0,+∞内是增函数,又()30f -=,则()0f x <的解集是( )A .()()-303+∞,,B .()()--03∞,3, C.()()--33+∞∞,,D .()()-3003,, 9.若函数()()0,06f x Asin x A πωω⎛⎫⎪>⎝⎭=->的图象如图所示, 则图中的阴影部分的面积为( ) A .12 B .14C.4 D.210.元朝时,著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游 春走,与店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原 多少酒?”用程序框图表达如图所示,即最终输出的0x =时,问一开始输入 的x =( ) A .34 B .78 C.1516 D .313211.已知二次函数()21f x ax bx =++的导函数为()()','00,()f x f f x >与x 轴恰有-个交点则使()()1'0f kf ≥恒成立的实数k 的取值范围为( ) A .2k ≤ B .2k ≥ C.52k ≤D .52k ≥ 12.如图,已知梯形ABCD 中2AB CD =,点E 在线段AC 上,且25AE AC =, 双曲线过C D E 、、三点,以A B 、为焦点; 则双曲线离心率e 的值为( )A .32B .2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.72x x x ⎛⎫ ⎪⎝⎭-的展开式中,4x 的系数是____.(用数字作答).14.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的三视图中如图所示,则图中x =. .15.设圆C 的圆心为双曲线()222102x y a a -=>的右焦点,且圆C 与此双曲线的渐近线相切,若圆C 被直线:0l x =截得的弦长等于2,则a 的值为 .16.在ABC ∆中,A B C 、、所对的边为 a b c 、、,2,3sinB sinA c ==,则ABC ∆面积的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.Sn 为数列{}n a 的前n 项和,13a =,且()21,n Sn a n n N *=+-∈. (I)、求数列{}n a 的通项公式: (Ⅱ)、设11n n n b a a +=,求数列{}n b 的前n 项和n T18.已知如图1所示,在边长为12的正方形11'AA A A ,中,111////BB CC AA ,且3AB =,14'BC AA =,分别 交11,BB CC 于点P Q 、,将该正方形沿11,BB CC ,折叠,使得1'A A 与1AA 重合,构成如图2 所示的三棱柱111ABC A B C -,在该三棱柱底边AC 上有一点M ,满足()01AM kMC k =<<; 请在图2 中解决下列问题:(I)、求证:当34k =时,BM //平面APQ ; (Ⅱ)、若直线BM 与平面APQk 的值19.甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元. (I)、请将两家公司各一名推销员的日工资y (单位: 元) 分别表示为日销售件数n 的函数关系式;(II)、从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。

贵州省2018届高考数学适应性试卷

贵州省2018届高考数学适应性试卷

贵州省2018届高考数学适应性试卷(理科)一、选择题(本大題共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合題目要求的•)1.已知集合A={x|x2﹣2x﹣3>0},B={x|2<x<4},则集合A∩B=()A.(1,4)B.(2,4)C.(2,3)D.(3,4)2.已知复数z=,则对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.某几何体三视图如下,图中三个等腰三角形的直角边长都是2,该几何体的体积为()A.B.C.4D.4.下列命题中正确的是()A.cosα≠0是α≠2kπ+(k∈Z)的充分必要条件B.函数f(x)=3ln|x|的零点是(1,0)和(﹣1,0)C.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=﹣pD.若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差会改变5.若{a n}是等差数列,公差d≠0,a2,a3,a6成等比数列,则该等比数列的公比为()A.1B.2C.3D.46.阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.67.变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.58.在平行四边形ABCD中,•=0,AC=,BC=1,若将其沿AC折成直二面角D ﹣AC﹣B,则AC与BD所成的角的余弦值为()A.B.C.D.9.过点(﹣2,0)的直线l与圆x2+y2=5相交于M、N两点,且线段MN=2,则直线l 的斜率为()A.±B.±C.±1D.±10.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离小于2的概率是()A.B.C.D.11.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.12.已知函数f(x)=x﹣lnx+k,在区间[,e]上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则k的取值范围是()A.(﹣1,+∞)B.(﹣∞,﹣1)C.(﹣∞,e﹣3)D.(e﹣3,+∞)二、填空题(本小题共4小题,每小题5分,共20分)13.若函数f(x)=(x﹣a)(x+3)为偶函数,则f(2)=.14.(x+a)4的展开式中含x4项的系数为9,则实数a的值为.15.设A ,B 是球O 的球面上两点,∠AOB=,C 是球面上的动点,若四面体OABC 的体积V 的最大值为,则此时球的表面积为.16.已知数列{a n }满足a 1=﹣40,且na n +1﹣(n +1)a n =2n 2+2n ,则a n 取最小值时n 的值为 .三、解答题(本题共70分)17.(12分)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且acosB=4,bsinA=3.(1)求tanB 及边长a 的值;(2)若△ABC 的面积S=9,求△ABC 的周长.18.(12分)为检测空气质量,某市环保局随机抽取了甲、乙两地2016年20天PM2.5日平均浓度(单位:微克/立方米)监测数据,得到甲地PM2.5日平均浓度频率分布直方图和乙地PM2.5日平均浓度的频数分布表.乙地20天PM2.5日平均浓度频数分布表(1)根据乙地20天PM2.5日平均浓度的频率分布表作出相应的频率分组直方图,并通过两个频率分布直方图比较两地PM2.5日平均浓度的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:记事件C :“甲地市民对空气质量的满意度等级高于乙地市民对空气质量的满意度等级”,假设两地市民对空气质量满意度的调查结果相互独立,根据所给数据,利用样本估计总体的统计思想,以事件发生的频率作为相应事件发生的概率,求事件C 的概率.19.(12分)如图1,在等腰直角三角形ABC 中,∠B=90°,将△ABC 沿中位线DE 翻折得到如图2所示的空间图形,使二面角A ﹣DE ﹣C 的大小为θ(0<θ<).(1)求证:平面ABD ⊥平面ABC ; (2)若θ=,求直线AE 与平面ABC 所成角的正弦值.20.(12分)已知椭圆E :+=1(a >b >0)的离心率为,点P (1,)在椭圆E 上,直线l 过椭圆的右焦点F 且与椭圆相交于A ,B 两点. (1)求E 的方程;(2)在x 轴上是否存在定点M ,使得•为定值?若存在,求出定点M 的坐标;若不存在,说明理由.21.(12分)已知函数f (x )=xlnx +ax ,函数f (x )的图象在点x=1处的切线与直线x +2y ﹣1=0垂直.(1)求a 的值和f (x )的单调区间; (2)求证:e x >f′(x ).[选修4-4:坐标系与参数方程选讲]22.(10分)曲线C1的参数方程为(α为参数)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)过原点且倾斜角为α(<α≤)的射线l与曲线C1,C2分别相交于A,B两点(A,B异于原点),求|OA|•|OB|的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+|x﹣5|,g(x)=.(1)求f(x)的最小值;(2)记f(x)的最小值为m,已知实数a,b满足a2+b2=6,求证:g(a)+g(b)≤m.2017年贵州省高考数学适应性试卷(理科)参考答案与试题解析一、选择题(本大題共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合題目要求的•)1.已知集合A={x|x2﹣2x﹣3>0},B={x|2<x<4},则集合A∩B=()A.(1,4)B.(2,4)C.(2,3)D.(3,4)【考点】交集及其运算.【分析】先求出集合A,再由交集定义能求出集合A∩B.【解答】解:∵集合A={x|x2﹣2x﹣3>0}={x|x<﹣1或x>3},B={x|2<x<4},∴集合A∩B={x|3<x<4}=(3,4).故选:D.2.已知复数z=,则对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】化简已知复数,可得其共轭复数,由复数的几何意义可得.【解答】解:化简可得z====﹣2+i,∴=﹣2﹣i,对应的点为(﹣2,﹣1),在第三象限,故选:C3.某几何体三视图如下,图中三个等腰三角形的直角边长都是2,该几何体的体积为()A.B.C.4D.【考点】由三视图求面积、体积.【分析】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,代入锥体体积公式,可得答案.【解答】解:由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积S=×2×2=2,高h=2,故几何体的体积V==,故选:A.4.下列命题中正确的是()A.cosα≠0是α≠2kπ+(k∈Z)的充分必要条件B.函数f(x)=3ln|x|的零点是(1,0)和(﹣1,0)C.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(﹣1<ξ<0)=﹣pD.若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差会改变【考点】命题的真假判断与应用.【分析】A.根据充分条件和必要条件的定义进行判断.B.根据函数零点的定义进行判断.C.根据正态分布的大小进行求解.D.根据方差的性质进行判断.【解答】解:A.由cosα≠0得α≠kπ+,则cosα≠0是α≠2kπ+(k∈Z)的充分不必要条件,故A错误,B.由f(x)=0得ln|x|=0,z则|x|=1,即x=1或x=﹣1,即函数f(x)=3ln|x|的零点是1和﹣1,故B错误,C.随机变量ξ服从正态分布N(0,1),则图象关于y轴对称,若P(ξ>1)=p,则P(0<ξ<1)=﹣p,即P(﹣1<ξ<0)=﹣p,故C正确,D.若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不会改变,故D错误,故选:C5.若{a n}是等差数列,公差d≠0,a2,a3,a6成等比数列,则该等比数列的公比为()A.1B.2C.3D.4【考点】等比数列的通项公式.【分析】由已知条件求出,所以该等比数列的公比为d=,由此能求出结果.【解答】解:∵{a n}是等差数列,公差d≠0,a2,a3,a6成等比数列,∴(a1+2d)2=(a1+d)(a1+5d),解得,∴该等比数列的公比为d===3.故选:C.6.阅读程序框图,运行相应的程序,则输出i的值为()A.3B.4C.5D.6【考点】程序框图.【分析】通过程序框图的要求,写出前四次循环的结果得到输出的值.【解答】解:该程序框图是循环结构经第一次循环得到i=1,a=2;经第二次循环得到i=2,a=5;经第三次循环得到i=3,a=16;经第四次循环得到i=4,a=65满足判断框的条件,执行是,输出4故选B7.变量x、y满足条件,则(x﹣2)2+y2的最小值为()A.B.C.D.5【考点】简单线性规划.【分析】作出不等式组对应的平面区域,设z=(x﹣2)2+y2,利用距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=(x﹣2)2+y2,则z的几何意义为区域内的点到定点D(2,0)的距离的平方,由图象知CD的距离最小,此时z最小.由得,即C(0,1),此时z=(x﹣2)2+y2=4+1=5,故选:D.8.在平行四边形ABCD中,•=0,AC=,BC=1,若将其沿AC折成直二面角D ﹣AC﹣B,则AC与BD所成的角的余弦值为()A.B.C.D.【考点】平面向量数量积的运算.【分析】由•=0得到AC⊥CB,以C为坐标原点,建立空间直角坐标系,利用向量方法求出异面直线AC与BD所成角的余弦值【解答】解:∵•=0,AC=,BC=1,如图∴AC⊥CB,∴AC=CD=,过点A作AE⊥CD,在Rt△CAD和Rt△AEC,sin∠ACD===,则AE=,CE=,在空间四边形中,直二面角D﹣AC﹣B,∵BC⊥AC,BC⊥CD,∴BC⊥平面ACD,以C点为原点,以CD为y轴,CB为x轴,过点C与EA平行的直线为x轴,建立空间直角坐标系,∴C(0,0,0),A(,,0),B(0,0,1),D(0,,0),∴=(,,0),=(0,,﹣1),∴||=,=2,•=2,设AC与BD所成的角为θ,则cosθ===.故选:B.9.过点(﹣2,0)的直线l与圆x2+y2=5相交于M、N两点,且线段MN=2,则直线l 的斜率为()A.±B.±C.±1D.±【考点】直线与圆的位置关系.【分析】设直线l的斜率为k,则直线l的方程为y=k(x+2),求出圆x2+y2=5的圆心,半径r=,再求出圆心到直线l:y=k(x+2)的距离d,利用过点(﹣2,0)的直线l与圆x2+y2=5相交于M、N两点,且线段MN=2,由勾股定理得,由此能求出k的值.【解答】解:设直线l的斜率为k,则直线l的方程为y=k(x+2),圆x2+y2=5的圆心O(0,0),半径r=,圆心O(0,0)到直线l:y=k(x+2)的距离d=,∵过点(﹣2,0)的直线l与圆x2+y2=5相交于M、N两点,且线段MN=2,∴由勾股定理得,即5=+3,解得k=±1.故选:C.10.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离小于2的概率是()A.B.C.D.【考点】几何概型.【分析】根据题意,区域D:表示矩形,面积为3.到坐标原点的距离小于2的点,位于以原点O为圆心、半径为2的圆内,求出阴影部分的面积,即可求得本题的概率.【解答】解:区域D:表示矩形,面积为3.到坐标原点的距离小于2的点,位于以原点O为圆心、半径为2的圆内,则图中的阴影面积为+=∴所求概率为P=故选:D.11.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.【考点】椭圆的简单性质.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选D.12.已知函数f(x)=x﹣lnx+k,在区间[,e]上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则k的取值范围是()A.(﹣1,+∞)B.(﹣∞,﹣1)C.(﹣∞,e﹣3)D.(e﹣3,+∞)【考点】利用导数求闭区间上函数的最值.【分析】由条件可得2f(x)min>f(x)max且f(x)min>0,再利用导数求得函数的最值,从而得出结论.【解答】解:任取三个实数a,b,c均存在以f(a),f(b),f(c)为边长的三角形,等价于f(a)+f(b)>f(c)恒成立,可转化为2f(x)min>f(x)max且f(x)min>0.令得x=1.当时,f'(x)<0;当1<x<e时,f'(x)>0;则当x=1时,f(x)min=f(1)=1+k,=max{+1+k,e﹣1+k}=e﹣1+k,从而可得,解得k>e﹣3,故选:D.二、填空题(本小题共4小题,每小题5分,共20分)13.若函数f(x)=(x﹣a)(x+3)为偶函数,则f(2)=﹣5.【考点】函数奇偶性的性质.【分析】根据偶函数f(x)的定义域为R,则∀x∈R,都有f(﹣x)=f(x),建立等式,解之求出a,即可求出f(2).【解答】解:因为函数f(x)=(x﹣a)(x+3)是偶函数,所以∀x∈R,都有f(﹣x)=f(x),所以∀x∈R,都有(﹣x﹣a)•(﹣x+3)=(x﹣a)(x+3),即x2+(a﹣3)x﹣3a=x2﹣(a﹣3)x﹣3a,所以a=3,所以f(2)=(2﹣3)(2+3)=﹣5.故答案为:﹣5.【点评】本题主要考查了函数奇偶性的性质,同时考查了运算求解的能力,属于基础题.14.(x+1)(x+a)4的展开式中含x4项的系数为9,则实数a的值为2.【考点】二项式系数的性质.【分析】利用(x+1)(x+a)4=(x+1)(x4+4x3a+…),进而得出.【解答】解:(x+1)(x+a)4=(x+1)(x4+4x3a+…),∵展开式中含x4项的系数为9,∴1+4a=9,解得a=2.故答案为:2.【点评】本题考查了二项式定理的展开式,考查了推理能力与计算能力,属于基础题.15.设A,B是球O的球面上两点,∠AOB=,C是球面上的动点,若四面体OABC的体积V的最大值为,则此时球的表面积为36π.【考点】球的体积和表面积.【分析】当点C位于垂直于面AOB时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为,求出半径,即可求出球O的体积【解答】解:如图所示,当点C位于垂直于面AOB时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC =V C﹣AOB=×R2×sin60°×R=,故R=3,则球O的表面积为4πR2=36π,故答案为:36π.【点评】本题考查球的半径,考查体积的计算,确定点C位于垂直于面AOB时,三棱锥O﹣ABC的体积最大是关键.属于中档题16.已知数列{a n}满足a1=﹣40,且na n+1﹣(n+1)a n=2n2+2n,则a n取最小值时n的值为10或11.【考点】数列递推式.【分析】na n+1﹣(n+1)a n=2n2+2n,化为﹣=2,利用等差数列的通项公式可得a n,再利用二次函数的单调性即可得出.【解答】解:∵na n+1﹣(n+1)a n=2n2+2n,∴﹣=2,∴数列{}是等差数列,首项为﹣40,公差为2.∴=﹣40+2(n﹣1),化为:a n=2n2﹣42n=2﹣.则a n取最小值时n的值为10或11.故答案为:10或11.【点评】本题考查了等差数列的通项公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.三、解答题(本题共70分)17.(12分)(2017•贵州模拟)设△ABC的内角A,B,C所对的边分别为a,b,c,且acosB=4,bsinA=3.(1)求tanB及边长a的值;(2)若△ABC的面积S=9,求△ABC的周长.【考点】三角形中的几何计算.【分析】(1)由acosB=4,bsinA=3,两式相除,结合正弦定理可求tanB=,又acosB=4,可得cosB>0,从而可求cosB,即可解得a的值.(2)由(1)知sinB=,利用三角形面积公式可求c,由余弦定理可求b,从而解得三角形周长的值.【解答】解:(Ⅰ)在△ABC中,由acosB=4,bsinA=3,两式相除,有==•=•=,所以tanB=,又acosB=4,故cosB>0,则cosB=,所以a=5.…(6分)(2)由(1)知sinB=,由S=acsinB,得到c=6.由b2=a2+c2﹣2accosB,得b=,故l=5+6+=11+即△ABC的周长为11+.…(12分)【点评】本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.18.(12分)(2017•贵州模拟)为检测空气质量,某市环保局随机抽取了甲、乙两地2016年20天PM2.5日平均浓度(单位:微克/立方米)监测数据,得到甲地PM2.5日平均浓度频率分布直方图和乙地PM2.5日平均浓度的频数分布表.乙地20天PM2.5日平均浓度频数分布表(1)根据乙地20天PM2.5日平均浓度的频率分布表作出相应的频率分组直方图,并通过两个频率分布直方图比较两地PM2.5日平均浓度的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:记事件C :“甲地市民对空气质量的满意度等级高于乙地市民对空气质量的满意度等级”,假设两地市民对空气质量满意度的调查结果相互独立,根据所给数据,利用样本估计总体的统计思想,以事件发生的频率作为相应事件发生的概率,求事件C 的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图. 【分析】(1)根据乙地20天PM2.5日平均浓度的频率分布表能作出相应的频率分组直方图,由频率分布直方图能求出结果.(2)记A1表示事件:“甲地市民对空气质量的满意度等级为满意或非常满意”,A2表示事件:“甲地市民对空气质量的满意度等级为非常满意”,B1表示事件:“乙地市民对空气质量的满意度等级为不满意”,B2表示事件:“乙地市民对空气质量的满意度等级为满意”,则A1与B1独立,A2与B2独立,B1与B2互斥,C=B1A1∪B2A2,由此能求出事件C的概率.【解答】解:(1)根据乙地20天PM2.5日平均浓度的频率分布表作出相应的频率分组直方图,如下图:由频率分布直方图得:甲地PM2.5日平均浓度的平均值低于乙地PM2.5日平均浓度的平均值,而且甲地的数据比较集中,乙地的数据比较分散.(2)记A1表示事件:“甲地市民对空气质量的满意度等级为满意或非常满意”,A2表示事件:“甲地市民对空气质量的满意度等级为非常满意”,B1表示事件:“乙地市民对空气质量的满意度等级为不满意”,B2表示事件:“乙地市民对空气质量的满意度等级为满意”,则A1与B1独立,A2与B2独立,B1与B2互斥,C=B1A1∪B2A2,P(C)=P(B1A1∪B2A2)=P(B1)P(A1)+P(B2)P(A2),由题意P(A1)=,P(A2)=,P(B1)=,P(B2)=,∴P(C)=.【点评】本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意互斥事件加法公式和相互独立事件事件概率乘法公式的合理运用.19.(12分)(2017•贵州模拟)如图1,在等腰直角三角形ABC中,∠B=90°,将△ABC沿中位线DE翻折得到如图2所示的空间图形,使二面角A﹣DE﹣C的大小为θ(0<θ<).(1)求证:平面ABD⊥平面ABC;(2)若θ=,求直线AE与平面ABC所成角的正弦值.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(1)证明:DE⊥平面ADB,DE∥BC,可证BC⊥平面ABD,即可证明平面ABD⊥平面ABC.(2)取DB中点O,AO⊥DB,由(1)得平面ABD⊥平面EDBC,AO⊥面EDBC,所以以O为原点,建立如图坐标系,则A(0,0,),B(1,0,0),C(1,4,0),E(﹣1,2,0),利用平面ABC的法向量求解.【解答】(1)证明:由题意,DE∥BC,∵DE⊥AD,DE⊥BD,AD∩BD=D,∴DE⊥平面ADB,∴BC⊥平面ABD;∵面ABC,∴平面ABD⊥平面ABC;(2)由已知可得二面角A﹣DE﹣C的平面角就是∠ADB设等腰直角三角形ABC的直角边AB=4,则在△ADB中,AD=DB=AB=2,取DB中点O,AO⊥DB,由(1)得平面ABD⊥平面EDBC,∴AO⊥面EDBC,所以以O为原点,建立如图坐标系,则A(0,0,),B(1,0,0),C(1,4,0),E(﹣1,2,0)设平面ABC的法向量为,,.由,取,},∴直线AE与平面ABC所成角的θ,sinθ=|cos<>|=||=.即直线AE与平面ABC所成角的正弦值为:【点评】本题考查线面垂直,考查向量法求二面角,考查学生分析解决问题的能力,属于中档题.20.(12分)(2017•贵州模拟)已知椭圆E: +=1(a>b>0)的离心率为,点P(1,)在椭圆E上,直线l过椭圆的右焦点F且与椭圆相交于A,B两点.(1)求E的方程;(2)在x轴上是否存在定点M,使得•为定值?若存在,求出定点M的坐标;若不存在,说明理由.【考点】直线与椭圆的位置关系.【分析】(1)由题意的离心率公式求得a=c,b2=a2﹣c2=c2,将直线方程代入椭圆方程,即可求得a和b,求得椭圆方程;(2)在x轴上假设存在定点M(m,0),使得•为定值.若直线的斜率存在,设AB的斜率为k,F(1,0),由y=k(x﹣1)代入椭圆方程,运用韦达定理和向量数量积的坐标表示,结合恒成立思想,即可得到定点和定值;检验直线AB的斜率不存在时,也成立.【解答】解:(1)由椭圆的焦点在x轴上,椭圆的离心率e==,则a=c,由b2=a2﹣c2=c2,将P(1,)代入椭圆方程,解得:c=1,a=,b=1,∴椭圆的标准方程:;(2)在x轴上假设存在定点M(m,0),使得•为定值.若直线的斜率存在,设AB的斜率为k,F(1,0),由,整理得(1+2k2)x2﹣4k2x+2k2﹣2=0,x1+x2=,x1x2=,y1y2=k2(x1﹣1)(x2﹣1)=k2[x1x2+1﹣(x1+x2)]=k2(+1﹣)=﹣,则•=(x1﹣m)(x2﹣m)+y1y2=x1x2+m2﹣m(x1+x2)+y1y2,=+m2﹣m•﹣=,欲使得•为定值,则2m2﹣4m+1=2(m2﹣2),解得:m=,此时•=﹣2=﹣;当AB斜率不存在时,令x=1,代入椭圆方程,可得y=±,由M(,0),可得•=﹣,符合题意.故在x轴上存在定点M(,0),使得•=﹣.【点评】本题考查椭圆方程的求法,注意运用离心率公式,考查存在性问题的解法,注意运用分类讨论的思想方法和联立直线方程和椭圆方程,运用韦达定理和向量的数量积的坐标表示,考查化简整理的运算能力,属于中档题.21.(12分)(2017•贵州模拟)已知函数f(x)=xlnx+ax,函数f(x)的图象在点x=1处的切线与直线x+2y﹣1=0垂直.(1)求a的值和f(x)的单调区间;(2)求证:e x>f′(x).【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)由f′(1)=1+a=2,解得:a=1,利用导数求解单调区间.(2)要证e x>f′(x),即证e x>lnx+2,x>0时,易得e x>x+1,即只需证明x >lnx+1即可【解答】解:(1)f′(x)=lnx+1+a,f′(1)=1+a=2,解得:a=1,故f(x)=xlnx+x,f′(x)=lnx+2,令f′(x)>0,解得:x>e﹣2,令f′(x)<0,解得:0<x<e﹣2,故f(x)在(0,e﹣2)递减,在(e﹣2,+∞)递增;(2)要证e x>f′(x),即证e x﹣lnx﹣2>0,即证e x>lnx+2,x>0时,易得e x>x+1,即只需证明x+1≥lnx+2即可,即只需证明x>lnx+1即可令h(x)=x﹣lnx+1,则h′(x)=1﹣,令h′(x)=0,得x=1h(x)在(0,1)递减,在(1,+∞)递增,故h(x)≥h(1)=0.即x+1≥lnx+2成立,即e x>lnx+2,∴e x>f′(x).【点评】本题考查了导数的综合应用,构造合适的新函数,放缩法证明函数不等式,属于难题.[选修4-4:坐标系与参数方程选讲]22.(10分)(2017•贵州模拟)曲线C1的参数方程为(α为参数)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)过原点且倾斜角为α(<α≤)的射线l与曲线C1,C2分别相交于A,B两点(A,B异于原点),求|OA|•|OB|的取值范围.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)先将C1的参数方程化为普通方程,再化为极坐标方程,将C2的极坐标方程两边同乘ρ,根据极坐标与直角坐标的对应关系得出C2的直角坐标方程;(2)求出l的参数方程,分别代入C1,C2的普通方程,根据参数的几何意义得出|OA|,|OB|,得到|OA|•|OB|关于k的函数,根据k的范围得出答案.【解答】解:(1)曲线C1的参数方程为(α为参数),普通方程为(x﹣2)2+y2=4,即x2+y2=4x,极坐标方程为ρ=4cosθ;曲线C1的极坐标方程为ρcos2θ=sinθ,普通方程为:y=x2;(2)射线l的参数方程为(t为参数,<α≤).把射线l的参数方程代入曲线C1的普通方程得:t2﹣4tcosα=0,解得t1=0,t2=4cosα.∴|OA|=|t2|=4cosα.把射线l的参数方程代入曲线C2的普通方程得:cos2αt2=tsinα,解得t1=0,t2=.∴|OB|=|t2|=.∴|OA|•|OB|=4cosα•=4tanα=4k.∵k∈(,1],∴4k∈(,4].∴|OA|•|OB|的取值范围是(,4].【点评】本题考查参数方程与极坐标与普通方程的互化,考查参数的几何意义的应用,属于中档题.[选修4-5:不等式选讲]23.(2017•贵州模拟)已知函数f(x)=|x﹣1|+|x﹣5|,g(x)=.(1)求f(x)的最小值;(2)记f(x)的最小值为m,已知实数a,b满足a2+b2=6,求证:g(a)+g(b)≤m.【考点】函数的最值及其几何意义.【分析】(1)化简f(x)的解析式,得出f(x)的单调性,利用单调性求出f (x)的最小值;(2)计算[g(a)+g(b)]2,利用基本不等式即可得出结论.【解答】解:(1)f(x)=|x﹣1|+|x﹣5|=,∴f(x)在(﹣∞,1]上单调递减,在[5,+∞)上单调递增,∵f(1)=4,f(5)=4,∴f(x)的最小值为4.(2)证明:由(1)可知m=4,g(a)+g(b)=+,∴[g(a)+g(b)]2=1+a2+1+b2+2=8+2,∵≤=4,∴[g(a)+g(b)]2≤16,∴g(a)+g(b)≤4.【点评】本题考查了函数的单调性,分段函数的最值计算,基本不等式的应用,属于中档题.。

贵州省贵阳市2018届高三适应性考试(二)(数学(理))-含解析

贵州省贵阳市2018届高三适应性考试(二)(数学(理))-含解析

贵州省贵阳市2018届高三适应性考试(二)(数学(理))-含解析内一一对应.2. 设集合,己知,那么的取值范围是()A. B. C. D.【答案】C【解析】分析:根据集合的定义与性质,即可求出的取值范围.详解:∵集合∴集合∵集合,且∴故选C.点睛:本题考查了交集的定义与应用问题,意在考查学生的计算求解能力.3. 如图,在中,是边的中线,是边的中点,若,则=()A. B. C. D.【答案】B【解析】分析:利用向量的共线定理、平行四边形法则即可得出.详解:∵在中,是边上的中线∴∵是边的中点∴∴∵∴故选B.点睛:本题考查了平面向量的基本定理的应用.在解答此类问题时,熟练掌握向量的共线定理、平行四边形法则是解题的关键.4. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再贏两局才能得到冠军,若两队每局获胜的概率相同,则甲队获得冠军的概率为()A. B. C. D.【答案】D【解析】解法一:以甲再打的局数分类讨论,若甲再打一局得冠军的概率为p1,则p1=,若甲打两局得冠军的概率为p2,则p2=,故甲获得冠军的概率为p1+p2=,故选D.解法二:设乙获得冠军的概率p1,则p1=,故甲获得冠军的概率为p=1-p1=,故选D. 考点:相互独立事件的概率.5. 已知,且,则()A. B. C. D.【答案】A【解析】分析:由题设条件可得,再根据同角三角函数关系式可得,,然后根据诱导公式化简,即可得解.详解:∵∴∵∴,则.∵∴故选A.点睛:本题主要考查了同角三角函数关系式,诱导公式的应用,熟练掌握基本关系及诱导公式是解题的关键,诱导公式的口诀:“奇变偶不变,符号看象限”.6. 已知和是两条不同的直线,和是两个不重合的平面,那么下面给出的条件中一定能推出的是()A. 且B. 且C. 且D.且【答案】D【解析】分析:在A中,与平行或⊂;在B中,与平行、相交或⊂;在C中,与平行、相交或⊂;在D中,由线面垂直的判定定理得.详解:由和是两条不同的直线,和是两个不重合的平面,知:在A中,且,则与平行或⊂,故A错误;在B中,且,则与平行、相交或⊂,故B错误;在C中,且,则与平行、相交或⊂,故C错误;在D中,且,由线面垂直的判定定理得,故D正确.故选D.点睛:本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,解答时需注意空间中线线、线面、面面间的位置关系的合理运用.空间几何体的线面位置关系的判定与证明:①对于异面直线的判定,要熟记异面直线的概念(把不平行也不想交的两条直线称为异面直线);②对于异面位置关系的判定中,熟记线面平行于垂直、面面平行与垂直的定理是关键.7. 设实数满足约束条件,则下列不等式恒成立的是()A. B. C. D.【答案】C【解析】分析:作出不等式组对应的平面区域,利用线性规划的知识进行判断即可.详解:作出不等式组对应的平面区域如图所示:其中,,,则,不成立;分别作出直线,,由图象可知不成立,恒成立的是.故选C.点睛:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.8. 定义在上的函数是奇函数,且在内是增函数,又,则的解集是()A. B. C.D.【答案】B【解析】分析:根据函数奇偶性和单调性的性质,作出函数的草图,利用数形结合进行求解即可.详解::∵是奇函数,且在内是增函数∴在内是增函数∵∴∴对应的函数图象如图(草图)所示:∴当或时,;当或时,.∴的解集是故选B.点睛:本题主要考查不等式的求解,利用函数奇偶性和单调性的关系及数形结合进行求解是解决本题的关键.解这种题型往往是根据函数所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上的单调性相反,奇函数在对称区间上的单调性相同),然后再根据单调性列不等式求解.9. 若函数的图象如图所示,则图中的阴影部分的面积为()A. B. C. D.【答案】C【解析】分析:由图象求出函数解析式,然后利用定积分求得图中阴影部分的面积.详解:由图可知,,,即.∴,则.∴图中的阴影部分面积为故选C.点睛:本题考查了导数在求解面积中的应用,关键是利用图形求解的函数解析式,在运用积分求解.定积分的计算一般有三个方法:①利用微积分基本定理求原函数;②利用定积分的几何意义,利用面积求定积分;③利用奇偶性对称求定积分,奇函数在对称区间的定积分值为0.10. 元朝时,著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,与店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的时,问一开始输入的=()A. B. C. D.【答案】B【解析】分析:根据流程图,求出对应的函数关系式,根据题设条件输出的,由此关系建立方程求出自变量的值即可.详解:第一次输入,;第二次输入,;第三次输入,;第四次输入,,输出,解得. 故选B.点睛:本题考查算法框图,解答本题的关键是根据所给的框图,得出函数关系,然后通过解方程求得输入的值,当程序的运行次数不多或有规律时,可采用模拟运行的办法解答.11. 已知二次函数的导函数为与轴恰有一个交点,则使恒成立的实数的取值范围为()A. B. C. D.【答案】A【解析】分析:先对函数求导,得出,再根据,得出,然后利用与轴恰有-个交点得出,得到与的关系,要使恒成立等价于,然后利用基本不等式求得的最小值,即可求得实数的取值范围.详解:∵二次函数∴∵∴∵与轴恰有一个交点∴,即.∵恒成立∴恒成立,即.∵,当且仅当时取等号∴故选A.点睛:本题综合考查了二次函数、导数、基本不等式. 对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.12. 如图,已知梯形中,点在线段上,且,双曲线过三点,以为焦点; 则双曲线离心率的值为()A. B. C. D. 2【答案】B【解析】分析:以所在的直线为轴,以的垂直平分线为轴,建立坐标系,求出的坐标,根据向量的运算求出点的坐标,代入双曲线方程即可求出详解:由,以所在的直线为轴,以的垂直平分线为轴,建立如图所示的坐标系:设双曲线的方程为,则双曲线是以,为焦点.∴,将代入到双曲线的方程可得:,即. ∴设,则.∵∴∴,,则.将点代入到双曲线的方程可得,即.∴,即.故选B.点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(不等式),即可得 (的取值范围).第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 的展开式中,的系数是____.(用数字作答).【答案】84【解析】分析:在二项展开式的通项公式中,令的幂指数等于4,求出的值,即可求得展开式中的系数.详解:由于的通项公式为. ∴令,解得.∴的展开式中,的系数是.故答案为.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.14. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的三视图中如图所示,已知该几何体的体积为,则图中=.__________.【答案】【解析】分析:由已知中的三视图,可知该几何体右边是四棱锥,即“阳马”,左边是直三棱柱,即“堑堵”,该几何体的体积只需把“阳马”,和“堑堵”体积分别计算相加即可.详解:由三视图知:几何体右边是四棱锥,即“阳马”,其底面边长为和,高为,其体积为;左边是直三棱柱,即“堑堵”,其底面边长为和,高为1,其体积为.∵该几何体的体积为∴∴故答案为.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.15. 设圆的圆心为双曲线的右焦点,且圆与此双曲线的渐近线相切,若圆被直线截得的弦长等于2,则的值为__________.【答案】【解析】分析:先利用圆与双曲线的渐近线相切得圆的半径,再利用圆被直线截得的弦长等于2,求出与圆心到直线的距离之间的等量关系,即可求出.详解:由题意可设圆心坐标为.∵圆的圆心为双曲线的右焦点∴圆心坐标为,且双曲线的渐近线的方程为,即.∵圆与此双曲线的渐近线相切∴圆到渐近线的距离为圆的半径,即又∵圆被直线截得的弦长等于2∴圆心到直线的距离为∵∴故答案为.点睛:本题主要考查椭圆与双曲线的几何性质,直线的方程,直线与圆的位置关系以及点到直线的距离公式等基础知识.当直线与圆相切时,其圆心到直线的距离等于半径是解题的关键,当直线与圆相交时,弦长问题属常见的问题,最常用的方法是弦心距,弦长一半,圆的半径构成直角三角形,运用勾股定理解题.16. 在中,所对的边为,,则面积的最大值为__________.【答案】3【解析】分析:由已知利用正弦定理可得,由余弦定理可解得,利用同角三角函数基本关系式可求得,进而利用三角形面积公式即可计算得解.详解:∵∴由正弦定理可得∵∴由余弦定理可得.∴∴,当且仅当时取等号.∴面积的最大值为故答案为.点睛:本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用.解答本题的关键是熟练掌握公式和定理,将三角形面积问题转化为二次函数.转化思想是高中数学最普遍的数学思想,在遇到复杂的问题都要想到转化,将复杂变简单,把陌生的变熟悉,从而完成解题目标.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 为数列的前项和,,且.(I)求数列的通项公式;(Ⅱ)设,求数列的前项和.【答案】(I);(Ⅱ).【解析】分析:根据,得,再根据,即可求得数列的通项公式;(Ⅱ)由(I)可得数列的通项公式,根据裂项相消法即可求得数列的前项和.详解:(I)由①,得② .∴②-①得整理得. (Ⅱ)由可知则点睛:本题主要考查递推公式求通项的应用以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18. 已知如图1所示,在边长为12的正方形,中,,且,分别交于点,将该正方形沿,折叠,使得与重合,构成如图2 所示的三棱柱,在该三棱柱底边上有一点,满足; 请在图2 中解决下列问题:(I)求证:当时,//平面;(Ⅱ)若直线与平面所成角的正弦值为,求的值.【答案】(I)见解析;(II)或.【解析】分析:(I)过作交于,连接,则,推出四边形为平行四边形,则,由此能证明//平面;(Ⅱ)根据及正方形边长为,可推出,从而以为轴,建立空间直角坐标系,设立各点坐标,然后求出平面的法向量,再根据直线与平面所成角的正弦值为,即可求得的值.详解:(I)解: 过作交于,连接,所以,∴共面且平面交平面于,∵又,∴四边形为平行四边形,∴, 平面,平面,∴//平面(II)解:∵∴,从而,即.∴.分別以为轴,则,.设平面的法向量为,所以得.令,则,,所以由得的坐标为∵直线与平面所成角的正弦值为, ∴解得或.点睛:本题主要考查线面平行的判定定理利用空间向量求线面角.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求向量关”,求出平面的法向量;第五,破“应用公式关”.19. 甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.(I)请将两家公司各一名推销员的日工资(单位:元) 分别表示为日销售件数的函数关系式;(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。

【新】贵州省2018届普高等学校招生适应性考试数学试题 理(扫描版)-参考下载

【新】贵州省2018届普高等学校招生适应性考试数学试题 理(扫描版)-参考下载
小中高 精品 教案 试卷
制作不易 推荐下载
-1-
小中高 精品 教案 试卷
制作不易 推荐下载
-2-
小中高 精品 教案 试卷
制作不易 推荐下载
-3-
小中高 精品 教案 试卷
制作不易 推荐下载
-4-
小中高 精品 教案 试卷
制作不易 推荐下载
-5-
小中高 精品 教案 试卷
制作不易 推荐下载
-6-
小中高 精品 教案 试卷
制作不易 推荐下载
- 15 -
制作不易 推荐下载
-7-
小中高 精品 教案 试卷
制作不易 推荐下载
-8-
小中高 精品 教案 试卷
制作不易 推荐下载
-9-
小中高 精品 教案 试 教案 试卷
制作不易 推荐下载
- 11 -
小中高 精品 教案 试卷
制作不易 推荐下载
- 12 -
小中高 精品 教案 试卷
制作不易 推荐下载
- 13 -
小中高 精品 教案 试卷
制作不易 推荐下载
- 14 -
小中高 精品 教案 试卷
息 不 命 功 会 就 油 wygF加 等 坐 所 无 要 堂 一 老 对 预 没 由 些 程 过 备 准 识 知 接 做 上 是 解 理 步 初 。 容 内 读 阅 地 立 独 先 己 前 之 课 讲 师 教 Mr.Johnsadevbupifltc,在 益 受 身 终 使 造 神 精 新 创 力 能 自 培 率 效 高 提 略 策 形 ; 动 主 和 性 极 积 生 发 激 于 利 有 , 惯 习 学 的 好 良 成 养

(完整版)贵州省2018年普通高等学校招生适应性考试理科数学

(完整版)贵州省2018年普通高等学校招生适应性考试理科数学

贵州省2018年普通高等学校招生适应性考试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{})2)(5(,55+-==<≤-=x x y x B x x A ,则=B A ( )A .]2,5[--B .[)5,5-C .[]5,5-D .[)2,5-- 2.在复平面内,复数iiz +=1的共轭复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.阅读如下框图,运行相应的程序,若输入n 的值为8,则输出n 的值为( )A .0B .1C .2D .3 4.已知函数(),0()21,0g x x f x x x >⎧=⎨+≤⎩是R 上的偶函数,则(3)g =( )A .5B .-5C .7D .-75.30x y -=与抛物线212y x =的一个交点为A (不与原点重合),则直线到抛物线焦点的距离为( )A .6B .7C .9D .126.为了提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设原信息为123a a a ,传输信息为11232h a a a h ,其中112h a a =⊕,213h h a =⊕,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=.例如:原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息出错的是( )A .01100B .11010C .10110D .110007.将函数x x f 2cos )(=的图像向右平移()0 ϕϕ个单位,得到的图像恰好关于原点对称,则ϕ的一个可能取值为A .6π B .4π C.3π D .2π 8.在平行四边形ABCD 中,3,1,2π=∠==BAD AD AB ,点E 满足BE BC 2=,则AB AE ⋅的值为( ) A .29 B .23C.234+ D .231+9.在正方体1111ABCD A B C D -中,过对角线1AC 的一个平面交1BB 于E ,交1DD 于F 得四边形1AEC F ,则下列结论正确的是( ) A .四边形1AEC F 一定为菱形B .四边形1AEC F 在底面ABCD 内的投影不一定是正方形 C .四边形1AEC F 所在平面不可能垂直于平面11ACC A D .四边形1AEC F 不可能为梯形10.甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率均为53.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.现已知前两句双方站成平手,则甲队获得这场比赛胜利的概率为( ) A .259 B .12563 C.12581 D .125101 11.已知双曲线()0,01:2222>>=-b a by a x E 的左、右焦点分别为21,F F ,半焦距为4,P 是E 左支上的一点,2PF 与y 轴交于点A ,1PAF ∆的内切圆与边1AF 切于点Q ,若2=AQ ,则E 的离心率是( ) A .2 B .3 C. D .512.设函数()(12)xf x e x ax =-+,其中1a <,若存在唯一负整数0x ,使得0()f x a >,则实数a 的取值范围是( ) A .253(,)32e e B .3(,1)2e C .3[,1)2e D .253[,)32e e第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若x ,y 满足约束条件001x y x y y -≤⎧⎪+≥⎨⎪≤⎩,则21z x y =-+的最大值为 .14.二项式()6211⎪⎭⎫ ⎝⎛++x x x 展开式中的常数项为 .15.如图,网格纸上正方形小格的边长为1,图中粗线画出的是一个几何体的三视图,则这个几何体外接球的表面积为 .16.平面四边形ABCD 中,3==AD AB , 602=∠=∠DBC BCD ,当BAD ∠变化时,对角线AC 的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知{}n a 是等比数列,16,252==a a .数列{}n b 满足5,221==b b ,且{}n n a b -是等差数列. (1)分别求{}n a ,{}n b 的通项公式; (2)记数列()⎭⎬⎫⎩⎨⎧-++n n n a a b 2211log 1的前n 项和为n S ,求证:21n S .18.共享单车是指企业在校园、地铁站点、公共站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,是共享经济的一种新形态.某共享单车企业在A 城市就“一天中一辆单车的平均成本与租用单车数量之间的关系”进行了调查,并将相关数据统计如下表: 租用单车数量x (千辆) 2 3 4 5 8 每天一辆车平均成本y (元)3.22.421.91.5根据以上数据,研究人员设计了两种不同的回归分析模型,得到两个拟合函数: 模型甲:()1 4.80.8yx =+,模型乙:()226.41.6y x=+. (1)为了评价两种模型的拟合效果,完成以下任务:①完成下表(计算结果精确到0.1元)(备注:i i i e y y =-,i e 称为相应于点(,)i i x y 的残差); 租用单车数量x (千辆) 2 3 4 5 8 每天一辆车平均成本y (元)3.2 2.4 2 1.9 1.5 模型甲估计值()1i y 2.4 2 1.8 1.4 残差()1i e0 0 0.1 0.1 模型乙估计值()2i y2.3 2 1.9 残差()2ie0.1②分别计算模型甲与模型乙的残差平方和1Q 及2Q ,并通过比较1Q ,2Q 的大小,判断哪个模型拟合效果更好.(2)这家企业在A 城市投放共享单车后,受到广大市民的热烈欢迎并供不应求,于是该企业决定增加单车投放量.根据市场调查,市场投放量达到1万辆时,平均每辆单车一天能收入8元;6元的概率分别为0.6,0.4;市场投放量达到1.2万辆时,平均每辆单车一天能收入8元,6元的概率分别为0.4,0.6.若按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,问该企业投放量选择1万辆还是1.2万辆能获得更多利润?请说明理由.(利润=收入-成本)19.在三棱锥S ABC -中,60SAB SAC ∠=∠=,SB AB ⊥,SC AC ⊥.(1)求证:BC SA ⊥; (2)如果2SA =,2BC =AC 的中点为D ,求二面角C BD S --的余弦值.20.在圆4:221=+y x C 上任取一点P ,过点P 作x PQ ⊥轴,垂足为Q .当点P 在圆1C 上运动时,线段PQ 的中点M 的轨迹为曲线C .(1)求曲线C 的方程,并说明曲线C 是什么图形;(2)21,l l 是过点)1,0(-T 且互相垂直的两条直线,其中1l 与1C 相交于B A ,两点,2l 与C 的一个交点为D (与T 不重合),求ABD ∆面积取得最大值时直线1l 的方程.21.如图,在矩形ABCD 中,)0,1(),0,1(x B A +且D x ,0 在曲线x y 1=上,BC 与曲线xy 1=交于E ,四边形ABEF 为矩形.(1)用x 分别表示矩形ABCD ,曲线梯形ABED 及矩形ABEF 的面积,并用不等式表示它们的大小关系;(2)设矩形ABEF 的面积为)(x f ,若)1(2ln )(-<x a xx x f 对任意的()1,0∈x 恒成立,求实数a 的取值范围;(3)求证:e >⎪⎭⎫⎝⎛201820172018(e 为自然对数的底数).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线1C 的参数方程为1cos 23sin x y αα⎧=+⎪⎪⎨⎪=⎪⎩(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的方程为23)3πρθ=+.(1)求1C 与2C 交点的直角坐标;(2)过原点O 作直线l ,使l 与1C ,2C 分别相交于点A ,B (A ,B 与点O 均不重合),求AB 的最大值.23.[选修4-5:不等式选讲] 已知函数1()f x x x a a=++-. (1)若2a =,求不等式9()2f x ≥的解集; (2)若对任意的x R ∈,任意的(0,)a ∈+∞恒有()f x m >,求实数m 的取值范围.。

2018届贵州省贵阳市高三适应性监测考试(二)理科数学试题及答案

2018届贵州省贵阳市高三适应性监测考试(二)理科数学试题及答案

2018届贵州省贵阳市⾼三适应性监测考试(⼆)理科数学试题及答案贵阳市⾼三适应性监测考试(⼆)理科数学⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.)1. 设集合{}2320A x x x =++<,集合124x N x ??=≥,则M N ?=()。

A. {}2x x ≥- B. {}1x x >- C. {}1x x <-D. {}2x x ≤-2. 设复数1z ai =+(a 是正实数),且z =12z i-等于 A. 1i + B. 1i - C. 1i -+ D. 1i --3. 若,x y R ∈,则x y >的⼀个充实不必要条件是()。

A.x y > B. 22x y > C. >D. 33x y >4. 已知3(,),tan()7224πππαα∈-=-,则sin α的值等于()。

A. 35 B. 35- C. 45D. 45- 5. 如图所⽰的程序框图,运⾏相应的程序,输出的S 值等于()。

A. 18B. 20C. 21D. 406. 函数()sin cos f x x x =+的图像的⼀条对称轴⽅程为()。

A. 4x π=B. 2x π=C. 4x π=- D. 2x π=-7. 61()ax x-展开式的常数项为160-,则a 的值为()。

A. 1- B. 2- C. 1D. 2 8.某⼏何体的三视图如图所⽰,且该⼏何体的体积是3,则该⼏何体的所有棱中,最长的棱为()。

A.49. 函数(0,1)x y a a a =>≠与b y x =的图像如图,则下列不等式⼀定成⽴的是()A. 0a b >B. 0a b +>C. 1b a >D. log 2a b >10. 以双曲线222:1(0)3x y C a a -=>的⼀个焦点F 为圆⼼的圆与双曲线的渐近线相切,则该圆的⾯积为()。

贵州省贵阳市2018届高三适应性考试数学理含解析

贵州省贵阳市2018届高三适应性考试数学理含解析

百度文库 - 让每个人平等地提升自我贵阳市 2018 年高三适应性考试(二)理科数学第Ⅰ卷(共 60 分)一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数 的共轭复数为 ,且( 是虚数单位),则在复平面内,复数 对应的点位于()A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】A【解析】分析:利用复数的运算法则可得 ,从而可得复数 ,再根据复数的几何意义即可得出.详解:∵∴,即.∴∴复数 的对应点 位于第一象限故选 A.点睛:本题考查复数的运算法则及几何意义.求解此类问题要能够灵活准确的对复平面内的点的坐标与复数进行相互转化,复数与复平面内 一一对应.2. 设集合,己知,那么 的取值范围是( )A.B.C.D.【答案】C【解析】分析:根据集合的定义与性质,即可求出 的取值范围.详解:∵集合∴集合∵集合,且∴故选 C.点睛:本题考查了交集的定义与应用问题,意在考查学生的计算求解能力.3. 如图,在中, 是边 的中线, 是 边的中点,若,则 =( )-1-百度文库 - 让每个人平等地提升自我A.B.C.D.【答案】B【解析】分析:利用向量的共线定理、平行四边形法则即可得出.详解:∵在中, 是 边上的中线∴∵ 是 边的中点∴∴∵∴故选 B. 点睛:本题考查了平面向量的基本定理的应用.在解答此类问题时,熟练掌握向量的共线定理、 平行四边形法则是解题的关键. 4. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再贏两 局才能得到冠军,若两队每局获胜的概率相同,则甲队获得冠军的概率为( )A.B.C.D.【答案】D【解析】解法一:以甲再打的局数分类讨论,若甲再打一局得冠军的概率为 p1,则 p1= ,若甲打两局得冠军的概率为 p2,则 p2=,故甲获得冠军的概率为 p1+p2= ,故选 D.解法二:设乙获得冠军的概率 p1,则 p1= 选 D. -2-,故甲获得冠军的概率为 p=1-p1= ,故百度文库 - 让每个人平等地提升自我考点:相互独立事件的概率.5. 已知,且,则()A.B.C.D.【答案】A 【解析】分析:由题设条件可得 ,再根据同角三角函数关系式可得 , ,然后根据 诱导公式化简,即可得解.详解:∵∴∵∴,则.∵∴故选 A.点睛:本题主要考查了同角三角函数关系式,诱导公式的应用,熟练掌握基本关系及诱导公式是解题的关键,诱导公式的口诀:“奇变偶不变,符号看象限”.6. 已知 和 是两条不同的直线, 和 是两个不重合的平面,那么下面给出的条件中一定能推出 的是( )A.且B.且C.且D. 且【答案】D【解析】分析:在 A 中, 与 平行或 ⊂ ;在 B 中, 与 平行、相交或 ⊂ ;在 C 中,与 平行、相交或 ⊂ ;在 D 中,由线面垂直的判定定理得 .详解:由 和 是两条不同的直线, 和 是两个不重合的平面,知:在 A 中,且,则 与 平行或 ⊂ ,故 A 错误;在 B 中, 且 ,则 与 平行、相交或 ⊂ ,故 B 错误;在 C 中, 且 ,则 与 平行、相交或 ⊂ ,故 C 错误;在 D 中, 且 ,由线面垂直的判定定理得 ,故 D 正确.故选 D.-3-百度文库 - 让每个人平等地提升自我点睛:本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识, 解答时需注意空间中线线、线面、面面间的位置关系的合理运用.空间几何体的线面位置关 系的判定与证明:①对于异面直线的判定,要熟记异面直线的概念(把不平行也不想交的两 条直线称为异面直线);②对于异面位置关系的判定中,熟记线面平行于垂直、面面平行与垂 直的定理是关键.7. 设实数 满足约束条件,则下列不等式恒成立的是( )A.B.C.D.【答案】C【解析】分析:作出不等式组对应的平面区域,利用线性规划的知识进行判断即可.详解:作出不等式组对应的平面区域如图所示:其中, , ,则 , 不成立;分别作出直线,,由图象可知不成立,恒成立的是.故选 C.点睛:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.8. 定义在 上的函数 是奇函数,且在内是增函数,又,则的解集是()A.B.C.D.【答案】B【解析】分析:根据函数奇偶性和单调性的性质,作出函数的草图,利用数形结合进行求解即可.详解::∵ 是奇函数,且在内是增函数∴在内是增函数-4-百度文库 - 让每个人平等地提升自我∵ ∴ ∴对应的函数图象如图(草图)所示:∴当或 时,;当或时,.∴的解集是故选 B.点睛:本题主要考查不等式的求解,利用函数奇偶性和单调性的关系及数形结合进行求解是解决本题的关键.解这种题型往往是根据函数所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上的单调性相反,奇函数在对称区间上的单调性相同),然后再根据单调性列不等式求解.9. 若函数的图象如图所示,则图中的阴影部分的面积为( )A.B.C.D.【答案】C 【解析】分析:由图象求出函数解析式,然后利用定积分求得图中阴影部分的面积.详解:由图可知, ,,即 .∴ ,则.∴图中的阴影部分面积为-5-百度文库 - 让每个人平等地提升自我故选 C. 点睛:本题考查了导数在求解面积中的应用,关键是利用图形求解的函数解析式,在运用积 分求解.定积分的计算一般有三个方法:①利用微积分基本定理求原函数;②利用定积分的 几何意义,利用面积求定积分;③利用奇偶性对称求定积分,奇函数在对称区间的定积分值 为 0. 10. 元朝时,著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,与 店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图 表达如图所示,即最终输出的 时,问一开始输入的 =( )A.B.C.D.【答案】B【解析】分析: 根据流程图,求出对应的函数关系式,根据题设条件输出的建立方程求出自变量的值即可.详解:第一次输入 , ;第二次输入,;第三次输入,;第四次输入,,输出,解得 .故选 B.,由此关系-6-百度文库 - 让每个人平等地提升自我点睛:本题考查算法框图,解答本题的关键是根据所给的框图,得出函数关系,然后通过解 方程求得输入的值,当程序的运行次数不多或有规律时,可采用模拟运行的办法解答.11. 已知二次函数的导函数为与 轴恰有一个交点,则使恒成立的实数 的取值范围为( )A.B.C.D.【答案】A【解析】分析:先对函数 求导,得出,再根据,得出 ,然后利用与 轴恰有-个交点得出 ,得到 与 的关系,要使恒成立等价于,然后利用基本不等式求得 的最小值,即可求得实数 的取值范围.详解:∵二次函数∴ ∵ ∴ ∵ 与 轴恰有一个交点∴,即 .∵恒成立∴恒成立,即.∵,当且仅当 时取等号∴ 故选 A. 点睛:本题综合考查了二次函数、导数、基本不等式. 对于函数恒成立或者有解求参的问题, 常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数-7-百度文库 - 让每个人平等地提升自我最值大于或者小于 0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.12. 如图,已知梯形中,点 在线段 上,且点,以 为焦点; 则双曲线离心率 的值为( ),双曲线过三A.B.C.D. 2【答案】B【解析】分析:以 所在的直线为 轴,以 的垂直平分线为 轴,建立坐标系,求出 的坐标,根据向量的运算求出点 的坐标,代入双曲线方程即可求出详解:由,以 所在的直线为 轴,以 的垂直平分线为 轴,建立如图所示的坐标系:设双曲线的方程为,则双曲线是以 , 为焦点.∴,将 代入到双曲线的方程可得:,即.∴设,则.∵-8-百度文库 - 让每个人平等地提升自我∴∴,,则.将点代入到双曲线的方程可得,即.∴ ,即 .故选 B. 点睛:本题考查了双曲线的几何性质,离心率的求法,考查了转化思想以及运算能力,双曲 线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出 ,代入公式 ;②只需要根据一个条件得到关于 的齐次式,转化为 的齐次式,然后转化为关于 的方程(不等式),解方程(不等式),即可得 ( 的取值范围). 第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.的展开式中, 的系数是____.(用数字作答).【答案】84 【解析】分析:在二项展开式的通项公式中,令 的幂指数等于 4,求出 的值,即可求得展开式中 的系数.详解:由于的通项公式为.∴令,解得 .∴的展开式中, 的系数是.故答案为 . 点睛:求二项展开式有关问题的常见类型及解题策略 (1)求展开式中的特定项.可依据条件写出第 项,再由特定项的特点求出 值即可. (2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第 项,由特 定项得出 值,最后求出其参数. 14. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一 棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的 -9-百度文库 - 让每个人平等地提升自我三视图中如图所示,已知该几何体的体积为 ,则图中 =.__________.【答案】 【解析】分析: 由已知中的三视图,可知该几何体右边是四棱锥,即“阳马”,左边是直三 棱柱,即“堑堵”,该几何体的体积只需把“阳马”,和“堑堵”体积分别计算相加即可. 详解:由三视图知:几何体右边是四棱锥,即“阳马”,其底面边长为 和 ,高为 ,其体积为;左边是直三棱柱,即“堑堵”,其底面边长为 和 ,高为 1,其体积为.∵该几何体的体积为∴∴ 故答案为 . 点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力.三视图问 题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图 是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实 线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看 俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.15. 设圆 的圆心为双曲线的右焦点,且圆 与此双曲线的渐近线相切,若圆被直线截得的弦长等于 2,则 的值为__________.【答案】【解析】分析:先利用圆与双曲线的渐近线相切得圆的半径,再利用圆 被直线截得的弦长等于 2,求出 与圆心到直线 的距离之间的等量关系,即可求出 .- 10 -百度文库 - 让每个人平等地提升自我详解:由题意可设圆心坐标为.∵圆 的圆心为双曲线的右焦点∴圆心坐标为,且双曲线的渐近线的方程为,即.∵圆 与此双曲线的渐近线相切∴圆 到渐近线的距离为圆 的半径,即又∵圆 被直线截得的弦长等于 2∴圆心到直线 的距离为∵∴故答案为 .点睛:本题主要考查椭圆与双曲线的几何性质,直线的方程,直线与圆的位置关系以及点到直线的距离公式等基础知识.当直线与圆相切时,其圆心到直线的距离等于半径是解题的关键,当直线与圆相交时,弦长问题属常见的问题,最常用的方法是弦心距,弦长一半,圆的半径构成直角三角形,运用勾股定理解题.16. 在中,所对的边为,,则面积的最大值为__________.【答案】3【解析】分析:由已知利用正弦定理可得 ,由余弦定理可解得 ,利用同角三角函数基本关系式可求得 ,进而利用三角形面积公式即可计算得解.详解:∵∴由正弦定理可得∵∴由余弦定理可得.∴ - 11 -百度文库 - 让每个人平等地提升自我∴,当且仅当 时取等号.∴面积的最大值为故答案为 .点睛:本题主要考查了正弦定理,余弦定理,同角三角函数基本关系式,三角形面积公式在解三角形中的综合应用.解答本题的关键是熟练掌握公式和定理,将三角形面积问题转化为二次函数.转化思想是高中数学最普遍的数学思想,在遇到复杂的问题都要想到转化,将复杂变简单,把陌生的变熟悉,从而完成解题目标.三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17. 为数列 的前 项和, ,且.(I)求数列 的通项公式;(Ⅱ)设,求数列 的前 项和 .【答案】(I);(Ⅱ).【解析】分析:根据,得,再根据,即可求得数列 的通项公式;(Ⅱ)由(I)可得数列 的通项公式,根据裂项相消法即可求得数列的前 项和 .详解:(I)由①,得②.∴②-①得整理得.(Ⅱ)由可知则点睛:本题主要考查递推公式求通项的应用以及裂项相消法求数列的和,属于中档题. 裂项 相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2); (3);(4)- 12 -百度文库 - 让每个人平等地提升自我;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18. 已知如图 1 所示,在边长为 12 的正方形,中,,且,分别交于点 ,将该正方形沿,折叠,使得 与 重合,构成如图 2 所示的三棱柱,在该三棱柱底边 上有一点 ,满足; 请在图 2 中解决下列问题:(I)求证:当 时,【答案】(I)见解析;(II) 或 .【解析】分析:(I)过 作交 于 ,连接 ,则行四边形,则,由此能证明,推出四边形为平详解:(I)解: 过 作交 于 ,连接 ,所以,∴共面且平面∵又- 13 -交平面 于 , ,百度文库 - 让每个人平等地提升自我∴四边形为平行四边形,∴,平面 , 平面 ,∴∴分別以为 轴,则 ,. .设平面 的法向量为,所以得.令 ,则 ,,所以由得 的坐标为∵直线 与平面 所成角的正弦值为 ,∴解得 或 .点睛:本题主要考查线面平行的判定定理利用空间向量求线面角.利用法向量求解空间线面角 的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系; 第二,破 “求 坐标关”,准确求解相关点的坐标;第三,破“求向量关”,求出平面的法向量;第五,破 “应用公式关”. 19. 甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪 80 元, 每销售一件产品提成 1 元; 乙公司规定底薪 120 元,日销售量不超过 45 件没有提成,超过 45 件的部分每件提成 8 元. (I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数 的函数关系 式; (II)从两家公司各随机选取一名推销员,对他们过去 100 天的销售情况进行统计,得到如下 条形图。

贵州省2018年普通高等学校招生适应性考试理科综合能力测试(word)

贵州省2018年普通高等学校招生适应性考试理科综合能力测试(word)

贵州省2018年普通高等学校招生适应性考试理科综合能力测试可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Zn 65 Te 128一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在人体内,由某些细胞合成分泌并能使其他细胞生理活动发生变化的一组物质是A.信使RNA、抗体B.胰蛋白酶、DNA聚合酶C.胰岛素、淋巴因子D.乳糖、乙酰胆碱2.将甲、乙两种植物的块茎切成形状、大小相同的细条,分别置于质量浓度为0.3gmL蔗糖溶液中,对其失水量进行测量后绘制了如下曲线。

下列叙述错误的是A.与图相关细胞的原生质层会有一定程度的收缩B.由图推知甲植物细胞液浓度小于乙植物细胞液浓度C.4min时细胞液的渗透压小于外界溶液的渗透压D.随细胞失水量增加ATP的消耗量逐渐增多3.2017年11月我国爆发了较严重的流感。

某流感病毒是一种负链RNA病毒,侵染宿主细胞后会发生-RNA→+RNA→-RNA和-RNA→+RNA→蛋白质的过程,再组装成子代流感病毒。

“-RNA”表示负链RNA,“+RNA”表示正链RNA。

下列叙述错误的是A.该流感病毒的基因是有遗传效应的DNA片段B.+RNA具有信使RNA的功能C.该流感病毒由-RNA形成-RNA需在宿主细胞内复制2次D.入侵机体的流感病毒被清除后相关浆细胞数量减少4.下列关于人体下丘脑的叙述,正确的是A.饮水不足使细胞外液渗透压升高导致下丘脑渴觉中枢兴奋B.下丘脑与生物节律有关,呼吸中枢也位于下丘脑C.下丘脑分布有某些反射弧的感受器、神经中枢、效应器D.甲状腺激素的含量可作为信息调节下丘脑分泌促甲状腺激素5.下列关于哺乳动物细胞有丝分裂的叙述,错误的是A.细胞周期的有序性需要原癌基因的调控B.通过半保留复制子代DNA保留了亲代DNA一半的遗传信息C.通过观察有丝分裂中期细胞可以判断染色体是否异常D.细胞有丝分裂过程中不会出现同源染色体分离的现象6.荠菜的果实形状有三角形和卵圆形两种。

贵州省2018届普高等学校招生适应性考试数学试题理

贵州省2018届普高等学校招生适应性考试数学试题理

小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学
小学 +初中 &# +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学
小学 +初中 +高中 +努力 =大学 小学 +初中 +高中 +努力 =大学

贵州省贵阳市2018年高三适应性考试(二)理数试题(考试版)

贵州省贵阳市2018年高三适应性考试(二)理数试题(考试版)

绝密★启用前贵州省贵阳市2018年高三适应性考试(二)数学(理)试题第I 卷(选择题)一、单选题1.复数的共轭复数为,且(是虚数单位),则在复平面内,复数对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 2.设集合,己知,那么的取值范围是( ) A. B.C.D.3.如图,在中,是边的中线,是边的中点,若,则=( )A.B.C.D.4.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.12 B.35C. 23D. 345.已知,且,则( )A.B. C.D.6.已知和是两条不同的直线,和是两个不重合的平面,那么下面给出的条件中一定能推出的是( ) A.且B.且C.且D.且7.设实数满足约束条件,则下列不等式恒成立的是( ) A.B.C.D.8.定义在上的函数是奇函数,且在内是增函数,又,则的解集是( )A.B.C.D.9.若函数的图象如图所示,则图中的阴影部分的面积为( )A. B. C.D.10.元朝时,著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,与店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的时,问一开始输入的=( )A. B. C. D.11.已知二次函数的导函数为与轴恰有一个交点,则使恒成立的实数的取值范围为()A. B. C. D.12.如图,已知梯形中,点在线段上,且,双曲线过三点,以为焦点; 则双曲线离心率的值为()A. B. C. D. 2第II 卷(非选择题)二、填空题13.的展开式中,的系数是____.(用数字作答).14.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,将底面为矩形,一棱垂直于底面的四棱锥称之为“阳马”,已知某“堑堵”与某“阳马”组合而成的几何体的三视图中如图所示,已知该几何体的体积为,则图中=.__________.15.设圆的圆心为双曲线的右焦点,且圆与此双曲线的渐近线相切,若圆被直线截得的弦长等于2,则的值为__________. 16.在中,所对的边为,,则面积的最大值为__________.三、解答题17.为数列的前项和,,且.(I)求数列的通项公式;(Ⅱ)设,求数列的前项和.18.已知如图1所示,在边长为12的正方形,中,,且,分别交于点,将该正方形沿,折叠,使得与重合,构成如图 2 所示的三棱柱,在该三棱柱底边上有一点,满足; 请在图2 中解决下列问题:(I)求证:当时,//平面;(Ⅱ)若直线与平面所成角的正弦值为,求的值.19.甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.(I)请将两家公司各一名推销员的日工资(单位: 元) 分别表示为日销售件数的函数关系式;(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。

贵阳市2018年高三适应性考试(一)理数试卷

贵阳市2018年高三适应性考试(一)理数试卷

贵阳市2018年高三适应性考试(一)理数试卷(4)若实数y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥++≥-03010x y x y x ,则 y x z -=2的最大值为A. 3B. 6C. 10D. 12(5)某程序框图如图所示,若该程序运行后输出的值是713, 则整数a 的值为A. 6B. 7C. 8D. 9 (6)《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,文各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与 丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列.问五人各得 多少钱?”(“钱”是古代的一种重量单位).在这个问题中,丙所得为A. 67钱B. 65钱C. 32钱D. 1钱 (7)把函数1)4sin(2++=πx y 图象上各点的横坐标缩短为原来的21倍(纵坐标不变), 那么所得图象的一条对称轴方程为A. 32π=xB. 2πC. 4πD. 8π(8)已知等比数列}{na 的前n 项和为nS ,且211=a,)2(8462-=a a a ,则2018S =A. 2122017-B. 2017)21(1- C. 2122018-D. 2018)21(1- (9)已知奇函数)(x f 在R上是减函数,且)101(log 3f a -=,)1.9(log3f b =,)2(8.0f c =,则c b a ,,的大小关系为A. c b a >>B. a b c >>C. c a b >>D. b a c >>(10)如图,格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的四个面的面积中最大与最小之和是 A. 348+ B. 12 C. 248+ D. 10(11)已知双曲线)0,0(12222>>=-b a by a x 的两条渐近线与抛物线)0(22>=p px y的准线分别交于B A 、两点,O 为坐标原点.若双曲线的离心率为5,AOB ∆的面积为2,则=p A. 2 B. 1 C. 32D. 3(12)已知函数⎩⎨⎧<-≥-=0),2ln(0,3)(x x x kx x f 的图象上有两对关于y 轴对称的点,则实数k 的取 值范围是A. ),0(eB. )21,0(2-e C. )2,0(2e D. ),0(2-e二、填空题,本题共4小题,每小题5分,共20分.(13)若向量)1,(x =与向量)2,1(-=垂直,则.______||=+b a(14)某校选定4名教师去3个边远地区支教(每地至少1人),则甲、乙两人不在同一边远地区的概率是._______ (15)若直线)(0123:R a y ax l ∈=+-与圆04:22=-+y y x M 相交于B A 、两点,若ABM ∠的平分线过线段MA 的中点,则实数._____=a(16)已知底面是正六边形的六棱锥ABCDEF P -的七个顶点均在球O 的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为3,则球O 的表面积为._______三、解答题:共70分。

贵阳市2018年高三适应性考试(三)理科数学

贵阳市2018年高三适应性考试(三)理科数学

贵阳市2018年高三适应性考试(三)理科数学第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.设集合M={x|x2﹣2x<0},N={x|x≥1},则M∩N=()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}2.已知x,y∈R,i是虚数单位,且(2x+i)(1﹣i)=y,则y的值为()A.﹣1 B.1 C.﹣2 D.23.已知数列{a n}满足a n=a n,若a3+a4=2,则a4+a5=()+1A.B.1 C.4 D.84.已知向量与不共线,且向量=+m,=n+,若A,B,C 三点共线,则实数m,n()A.mn=1 B.mn=﹣1 C.m+n=1 D.m+n=﹣15.执行如图所示的程序框图,如果输入的a,b分别为56,140,则输出的a=()A.0 B.7 C.14 D.286.我国南北朝时代的数学家祖暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底长为1、下底长为2的梯形,且当实数t取[0,3]上的任意值时,直线y=t 被图1和图2所截得的两线段长总相等,则图1的面积为()A.4 B.C.5 D.7.如图,在正方体ABC的﹣A1B1C1D1中,点P是线段A1C1上的动点,则三棱锥P﹣BCD的俯视图与正视图面积之比的最大值为()A.1 B.C.D.28.已知△ABC中,内角A,B,C的对边分别为a,b,c,b=2,B=45°,若三角形有两解,则a的取值范围是()A.a>2 B.0<a<2 C.2<a<2D.2<a<29.已知区域Ω={(x,y)||x|≤,0≤y≤},由直线x=﹣,x=,曲线y=cosx与x轴围成的封闭图象所表示的区域记为A,若在区域Ω内随机取一点P,则点P在区域A的概率为()A.B.C.D.10.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是()A .B .C .D .11.已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点F 为抛物线的焦点,P 在抛物线上且满足|PA |=m |PF |,当m 取最大值时|PA |的值为( ) A .1 B . C . D .212.已知函数f (x )=函数g (x )=f (2﹣x )﹣b ,其中b ∈R ,若函数y=f (x )+g (x )恰有4个零点,则b 的取值范围是( )A .(7,8)B .(8,+∞)C .(﹣7,0)D .(﹣∞,8)第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分.13.定积分1201()3x x e dx +-⎰的值为. 14.在ABC ∆中,,,A B C 的对边分别是,,a b c ,若2cos cos c a B b A =+,3a b ==,则ABC ∆的周长为.15.从集合{2,3,4,5}中随机抽取一个数a ,从集合{4,6,8}中随机抽取一个数b ,则向量(,)m a b =与向量(2,1)n =-垂直的概率为.16.已知等腰直角ABC ∆的斜边2BC =,沿斜边的高线AD 将ABC ∆折起,使二面角B AD C --为3π,则四面体ABCD 的外接球的表面积为. 三、解答题 :解答应写出文字说明、证明过程或演算步骤.17.设n S 是数列{}n a 的前n 项和,0n a >,且4(2)n n n S a a =+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1(1)(1)n n n b a a =-+,12n n T b b b =+++ ,求证:12n T <.18.医学上某种还没有完全攻克的疾病,治疗时需要通过药物控制其中的两项指标H 和V .现有,,A B C 三种不同配方的药剂,根据分析,,,A B C 三种药剂能控制H 指标的概率分别为0.5,0.6,0.75,能控制V 指标的概率分别是0.6,0.5,0.4,能否控制H 指标与能否控制V 指标之间相互没有影响.(Ⅰ)求,,A B C 三种药剂中恰有一种能控制H 指标的概率;(Ⅱ)某种药剂能使两项指标H 和V 都得到控制就说该药剂有治疗效果.求三种药剂中有治疗效果的药剂种数X 的分布列.19. 如图,已知棱柱1111ABCD A BC D -中,底面ABCD 是平行四边形,侧棱1AA ⊥底面ABCD ,11,2AB AC BC BB ===.(Ⅰ)求证:AC ⊥平面11ABB A ;(Ⅱ)求二面角1A C D C --的平面角的余弦值.20.已知椭圆2222:1(0)7x y C a a a+=>-的焦点在x 轴上,且椭圆C 的焦距为2. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)过点(4,0)R 的直线l 与椭圆C 交于两点,P Q ,过P 作PN x ⊥轴且与椭圆C 交于另一点N ,F 为椭圆C 的右焦点,求证:三点,,N F Q 在同一条直线上.21.已知函数22()(2)12f x x x nx ax =-++,()()2g x f x x =--.(Ⅰ)当1a =-时,求()f x 在(1,(1))f 处的切线方程;(Ⅱ)若0a >且函数()g x 有且仅有一个零点,求实数a 的值;(Ⅲ)在(Ⅱ)的条件下,若2e x e -<<时,()g x m ≤恒成立,求实数m 的取值范围. 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应题号后的方框涂黑.22.选修4-4:坐标系与参数方程选讲在平面直角坐标系xoy 中,曲线C 的参数方程为244x t y t⎧=⎨=⎩(t 为参数),以O 为极点x 轴的正半轴为极轴建极坐标系,直线l 的极坐标方程为(cos sin )4ρθθ-=,且与曲线C 相交于,A B 两点.(Ⅰ)在直角坐标系下求曲线C 与直线l 的普通方程;(Ⅱ)求AOB ∆的面积.23.选修4-5:不等式选讲已知函数()|1|,(0)f x m x m =-->,且(1)0f x +≥的解集为[3,3]-.(Ⅰ)求m 的值;(Ⅱ)若正实数,,a b c 满足11123m a b c++=,求证:233a b c ++≥.试卷答案一、选择题(本大题共12小题,每小题5分,共60分)1.设集合M={x|x2﹣2x<0},N={x|x≥1},则M∩N=()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}【考点】交集及其运算.【分析】解不等式求出集合M,再根据交集的定义写出M∩N.【解答】解:集合集合M={x|x2﹣2x<0}={x|0<x<2},N={x|x≥1},则M∩N={x|1≤x<2}故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知x,y∈R,i是虚数单位,且(2x+i)(1﹣i)=y,则y的值为()A.﹣1 B.1 C.﹣2 D.2【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等即可得出.【解答】解:∵y=(2x+i)(1﹣i)=2x+1+(1﹣2x)i,∴,解得y=2故选:D.【点评】本题考查了复数的运算法则、复数相等,考查了计算能力,属于基础题.3.已知数列{a n}满足a n=a n,若a3+a4=2,则a4+a5=()+1A.B.1 C.4 D.8【考点】等比数列的通项公式.【分析】根据已知条件可以求得公比q=2.【解答】解:∵数列{a n}满足a n=a n+1,∴=2.则该数列是以2为公比的等比数列.由a3+a4=2,得到:4a1+8a1=2,解得a1=,则a4+a5=8a1+16a1=24a1=24×=4,故选:C.【点评】本题考查了等比数列的通项公式,是基础的计算题.4.已知向量与不共线,且向量=+m,=n+,若A,B,C 三点共线,则实数m,n()A.mn=1 B.mn=﹣1 C.m+n=1 D.m+n=﹣1【考点】平行向量与共线向量.【分析】由题意可得∥,再根据两个向量共线的性质可得=,由此可得结论.【解答】解:由题意可得∥,∴=λ•,故有=,∴mn=1,故选:A.【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,属于中档题.5.执行如图所示的程序框图,如果输入的a,b分别为56,140,则输出的a=()A.0 B.7 C.14 D.28【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=28,b=28时,不满足条件a≠b,退出循环,输出a的值.【解答】解:模拟程序的运行,可得a=56,b=140,满足条件a≠b,不满足条件a>b,b=140﹣56=84,满足条件a≠b,不满足条件a>b,b=84﹣56=28,满足条件a≠b,满足条件a>b,a=56﹣28=28,不满足条件a≠b,退出循环,输出a的值为28.故选:D.【点评】本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的a,b的值是解题的关键,属于基本知识的考查.6.我国南北朝时代的数学家祖暅提出体积的计算原理(组暅原理):“幂势既同,则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等,类比祖暅原理,如图所示,在平面直角坐标系中,图1是一个形状不规则的封闭图形,图2是一个上底长为1、下底长为2的梯形,且当实数t取[0,3]上的任意值时,直线y=t 被图1和图2所截得的两线段长总相等,则图1的面积为()A.4 B.C.5 D.【考点】进行简单的演绎推理.【分析】根据题意,由祖暅原理,分析可得图1的面积等于图2梯形的面积,计算梯形的面积即可得出结论.【解答】解:根据题意,由祖暅原理,分析可得图1的面积等于图2梯形的面积,又由图2是一个上底长为1、下底长为2的梯形,其面积S==;故选:B.【点评】本题考查演绎推理的运用,关键是理解题目中祖暅原理的叙述.7.如图,在正方体ABC的﹣A1B1C1D1中,点P是线段A1C1上的动点,则三棱锥P﹣BCD的俯视图与正视图面积之比的最大值为()A.1 B.C.D.2【考点】简单空间图形的三视图.【分析】分析三棱锥P﹣BCD的正视图与侧视图的形状,并求出面积,可得答案.【解答】解:设棱长为1,则三棱锥P﹣BCD的正视图是底面边长为1,高为1的三角形,面积为:;三棱锥P﹣BCD的俯视图取最大面积时,P在A1处,俯视图面积为:;故三棱锥P﹣BCD的俯视图与正视图面积之比的最大值为1,故选:A.【点评】本题考查的知识点是简单空间图形的三视图,根据已知分析出三棱锥P ﹣BCD的正视图与侧视图的形状,是解答的关键.8.已知△ABC中,内角A,B,C的对边分别为a,b,c,b=2,B=45°,若三角形有两解,则a的取值范围是()A.a>2 B.0<a<2 C.2<a<2D.2<a<2【考点】正弦定理.【分析】由题意判断出三角形有两解时A的范围,通过正弦定理及正弦函数的性质推出a的范围即可.【解答】解:由AC=b=2,要使三角形有两解,就是要使以C为圆心,半径为2的圆与BA有两个交点,当A=90°时,圆与AB相切;当A=45°时交于B点,也就是只有一解,∴45°<A<135°,且A≠90°,即<sinA<1,由正弦定理以及asinB=bsinA.可得:a==2sinA,∵2sinA∈(2,2).∴a的取值范围是(2,2).故选:C.【点评】此题考查了正弦定理,正弦函数的图象与性质,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,属于中档题.9.已知区域Ω={(x,y)||x|≤,0≤y≤},由直线x=﹣,x=,曲线y=cosx与x轴围成的封闭图象所表示的区域记为A,若在区域Ω内随机取一点P,则点P在区域A的概率为()A.B.C.D.【考点】几何概型.【分析】首先明确几何概型测度为区域面积,利用定积分求出A的面积,然后由概型公式求概率.【解答】解:由已知得到事件对应区域面积为=4,由直线x=﹣,x=,曲线y=cosx与x轴围成的封闭图象所表示的区域记为A,面积为2=2sinx|=,由急火攻心的公式得到所求概率为:;故选C【点评】本题考查了几何概型的概率求法;明确几何测度是关键.10.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t之间的函数关系的是()A.B.C.D.【考点】函数的图象.【分析】根据图象的对称关系和条件可知C(6)=0,C(12)=10,再根据气温变化趋势可知在前一段时间内平均气温大于10,使用排除法得出答案.【解答】解:∵气温图象在前6个月的图象关于点(3,0)对称,∴C(6)=0,排除D;注意到后几个月的气温单调下降,则从0到12月前的某些时刻,平均气温应大于10℃,可排除C;∵该年的平均气温为10℃,∴t=12时,C(12)=10,排除B;故选A.【点评】本题考查了函数图象的几何意义,函数图象的变化规律,属于中档题.11.已知点A是抛物线x2=4y的对称轴与准线的交点,点F为抛物线的焦点,P 在抛物线上且满足|PA|=m|PF|,当m取最大值时|PA|的值为()A.1 B.C.D.2【考点】抛物线的简单性质.【分析】过P作准线的垂线,垂足为N,则由抛物线的定义,结合|PA|=m|PF|,设PA的倾斜角为α,则当m取得最大值时,sinα最小,此时直线PA与抛物线相切,求出P的坐标,即可求得|PA|的值.【解答】解:抛物线的标准方程为x2=4y,则抛物线的焦点为F(0,1),准线方程为y=﹣1,过P作准线的垂线,垂足为N,则由抛物线的定义可得|PN|=|PF|,∵|PA|=m|PF|,∴|PA|=m|PN|,设PA的倾斜角为α,则sinα=,当m取得最大值时,sinα最小,此时直线PA与抛物线相切,设直线PA的方程为y=kx﹣1,代入x2=4y,可得x2=4(kx﹣1),即x2﹣4kx+4=0,∴△=16k2﹣16=0,∴k=±1,∴P(2,1),∴|PA|==2.故选D.【点评】本题考查抛物线的性质,考查抛物线的定义,考查学生分析解决问题的能力,解答此题的关键是明确当m取得最大值时,sinα最小,此时直线PA与抛物线相切,属中档题.12.已知函数f(x)=函数g(x)=f(2﹣x)﹣b,其中b∈R,若函数y=f(x)+g(x)恰有4个零点,则b的取值范围是()A.(7,8)B.(8,+∞)C.(﹣7,0)D.(﹣∞,8)【考点】根的存在性及根的个数判断.【分析】求出函数y=f(x)+g(x)的表达式,构造函数h(x)=f(x)+f(2﹣x),作出函数h(x)的图象,利用数形结合进行求解即可.【解答】解:函数g(x)=f(2﹣x)﹣b,由f(x)+g(x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x ﹣)2+≥.由图象知要使函数y=f (x )+g (x )恰有4个零点,即h (x )=恰有4个根,∴,解得:b ∈(7,8) 故选:A .【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键,属于难题.二、填空题13.1e - 14.7 15.14 16.73π 三、解答题17.(Ⅰ)解∵4(2)n n n S a a =+,①当1n =时得211142a a a =+,即12a =,当2n ≥时有1114(2)n n n S a a ---=+②由①-②得2211422n n n n n a a a a a --=-+-,即1112()()()n n n n n n a a a a a a ---+=+-,又∵0n a >,∴12n n a a --=,∴22(1)2n a n n =+-=. (Ⅱ)证明:∵1(1)(1)n n n b a a =-+1(21)(21)n n =-+111()22121n n =--+, ∴12n n T b b b =+++= 111111(1)23352121n n -+-++--+ 111(1)2212n =-<+. 18.(Ⅰ),,A B C 三种药剂中恰有一种能控制H 指标的概率为()()()P P ABC P ABC P ABC =++0.5(10.6)(10.75)=⨯-⨯-(10.5)0.6(10.75)+-⨯⨯-(10.5)(10.6)0.75+-⨯-⨯ 0.275=;(Ⅱ)∵A 有治疗效果的概率为0.50.60.3A P =⨯=,B 有治疗效果的概率为0.60.50.3B P =⨯=,C 有治疗效果的概率为0.750.40.3C P =⨯=,∴,,A B C 三种药剂有治疗效果的概率均为0.3,可看成是独立重复试验,即~(3,0.3)X B ,∵X 的可能取得为0,1,2,3,∴33()0.3(10.3)k k k P X k C -==⨯⨯-,即0033(0)0.3(10.3)0.343P X C ==⨯⨯-=,123(1)0.3(10.3)0.441P X C ==⨯⨯-=,223(2)0.3(10.3)0.189P X C ==⨯⨯-=,333(3)0.30.027P X C ==⨯=故X 的分布列为19.(Ⅰ)证明:∵在底面ABCD 中,1AB =,AC =2BC =,即222BC A C A B =+,∴AB AC ⊥,∵侧棱1AA ⊥底面ABCD ,AC ⊂平面ABCD ,∴1AA AC ⊥,又∵1AA AB A = ,1,AA AB ⊂平面11ABB A ,∴AC ⊥平面11ABB A ;(Ⅱ)过点C 作1CP C D ⊥于P ,连接AP ,由(Ⅰ)可知,AC ⊥平面11DCC D , CPA ∠为二面角1A C D C --的平面角,由于112CC BB ==,1CD AB ==,求得5CP =,故tan 2AC CPA CP ∠==,求得cos 19CPA ∠=,即二面角1A C D C --.20.解:∵椭圆2222:1(0)7x y C a a a +=>-的焦点在x 轴上, ∴227a a >-,即272a >, ∵椭圆C 的焦距为2,且222abc -=,∴22(7)1a a --=,解得24a =,∴椭圆C 的标准方程为22143x y +=; (Ⅱ)由题知直线l 的斜率存在,设l 的方程为(4)y k x =-,点112211(,),(,),(,)P x y Q x y N x y -,则22(4)3412y k x x y =-⎧⎨+=⎩得22234(4)12x k x +-=, 即2222(34)3264120k x k x k +-+-=,0∆>,21223234k x x k +=+,2122641234k x x k -=+, 由题可得直线QN 方程为211121()y y y y x x x x ++=--, 又∵11(4)y k x =-,22(4)y k x =-,∴直线QN 方程为211121(4)(4)(4)()k x k x y k x x x x x -+-+-=--, 令0y =,整理得212211112448x x x x x x x x x --+=++-12121224()8x x x x x x -+=+- 22222264123224343432834k k k k k k -⨯-⨯++=-+22222434132243234k k k k -+==--+, 即直线QN 过点(1,0),又∵椭圆C 的右焦点坐标为(1,0)F ,∴三点,,N F Q 在同一条直线上.21.解:(Ⅰ)当1a =-时,22()(2)12f x x x nx x =--+定义域(0,)+∞,'()(22)1(2)2f x x nx x x =-+-- ∴'(1)3f =-,又(1)1f =()f x 在(1,(1))f 处的切线方程340x y +-=(Ⅱ)令()()20g x f x x =--=,则22(2)122x x nx ax x -++=+ 即1(2)1x nx a x--=令1(2)1()x nx h x x --=,则2211221'()nx h x x x x -=--+2121x nx x --= 令()121t x x nx =--,则22'()1x t x x x --=--=, ∵(0,)x ∈+∞,∴'()0t x <,∴()t x 在(0,)+∞上是减函数,又∵(1)'(1)0t h ==,所以当01x <<时,'()0h x >,当1x >时,'()0h x <, ∴()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,∴max ()(1)10h x h ==>,又因为1()10h e e =-<,22252()0e h e e-=<,0a > ∴当函数()g x 有且仅有一个零点时,1a =(Ⅲ)当1a =,22()(2)1g x x x nx x x =-+-,若2e x e -<<,()g x m ≤,只需证明max ()g x m ≤,'()(1)(321)g x x nx =-+令'()0g x =得1x =或32x e-=,又∵2e x e -<<, ∴函数()g x 在322(,)e e --上单调递增,在32(,1)e -上单调递减,在(1,)e 上单调递增,即32x e -=是()g x 的极大值点, 又333221()22g e e e ---=-+,2()23g e e e =- ∵333221()22g e e e ---=-+323222()()2e e e e g e -<<<-=, ∴32()()g e g e -<,∴223m e e ≥- 22.解:(Ⅰ)已知曲线C 的参数方程为244x t y t⎧=⎨=⎩(t 为参数),消去参数得24y x =, 直线l 的极坐标方程为(cos sin )4ρθθ-=,由cos x ρθ=,sin y ρθ=得普通方程为40x y --=(Ⅱ)已知抛物线24y x =与直线40x y --=相交于,A B 两点,由2440y x x y ⎧=⎨--=⎩,得||AB =O 到直线l 的距离d ==所以AOB ∆的面积为12S =⨯=23.解:(Ⅰ)因为(1)||f x m x -=-,所以(1)0f x -≥等价于||x m ≤,由||x m ≤,得解集为[,],(0)m m m ->又由(1)0f x -≥的解集为[3,3]-,故3m =. (Ⅱ)由(Ⅰ)知111323a b c++=, 又∵,,a b c 是正实数,∴23a b c ++=1111(23)()323a b c a b c ++++2133≥=. 当且仅当111,,23a b c ===时等号成立, 所以233a b c ++≥.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵州省2018年普通高等学校招生适应性考试
理科数学
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}
{
}
)2)(5(,55+-=
=<≤-=x x y x B x x A ,则=B A ( )
A .]2,5[--
B .[)5,5-
C .[]5,5-
D .[)2,5-- 2.在复平面内,复数i
i
z +=
1的共轭复数z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.阅读如下框图,运行相应的程序,若输入n 的值为8,则输出n 的值为( )
A .0
B .1
C .2
D .3 4.已知函数(),0
()21,0
g x x f x x x >⎧=⎨
+≤⎩是R 上的偶函数,则(3)g =( )
A .5
B .-5
C .7
D .-7
5.30x y -=与抛物线2
12y x =的一个交点为A (不与原点重合),则直线到抛物线焦点的距离
为( )
A .6
B .7
C .9
D .12
6.为了提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设原信息为123a a a ,传输信息为11232h a a a h ,其中112h a a =⊕,213h h a =⊕,⊕运算规则为:000⊕=,011⊕=,
101⊕=,110⊕=.例如:原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致
接收信息出错,则下列接收信息出错的是( )
A .01100
B .11010
C .10110
D .11000
7.将函数x x f 2cos )(=的图像向右平移()0 ϕϕ个单位,得到的图像恰好关于原点对称,则ϕ的一个可能取值为
A .
6π B .4π C.3π D .2
π 8.在平行四边形ABCD 中,3
,1,2π
=∠==BAD AD AB ,点E 满足BE BC 2=,则AB AE ⋅的值为
( ) A .
29 B .2
3
C.234+ D .231+
9.在正方体1111ABCD A B C D -中,过对角线1AC 的一个平面交1BB 于E ,交1DD 于F 得四边形1AEC F ,则下列结论正确的是( ) A .四边形1AEC F 一定为菱形
B .四边形1AE
C F 在底面ABC
D 内的投影不一定是正方形 C .四边形1AEC F 所在平面不可能垂直于平面11ACC A D .四边形1AEC F 不可能为梯形
10.甲、乙两队进行一场排球比赛,根据以往经验,单局比赛甲队胜乙队的概率均为
5
3
.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.现已知前两句双方站成平手,则甲队获得这场比赛胜利的概率为( ) A .
259 B .12563 C.12581 D .125
101 11.已知双曲线()0,01:22
22>>=-b a b
y a x E 的左、右焦点分别为21,F F ,半焦距为4,P 是E 左支上的一
点,2PF 与y 轴交于点A ,1PAF ∆的内切圆与边1AF 切于点Q ,若2=AQ ,则E 的离心率是( ) A .2 B .3 C. D .5
12.设函数()(12)x
f x e x ax =-+,其中1a <,若存在唯一负整数0x ,使得0()f x a >,则实数a 的取值范围是( ) A .253(,)32e e B .3(,1)2e C .3[,1)2e D .253
[,)32e e
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.若x ,y 满足约束条件001x y x y y -≤⎧⎪
+≥⎨⎪≤⎩
,则21z x y =-+的最大值为 .
14.二项式(
)
6
2
11⎪⎭⎫ ⎝

++x x x 展开式中的常数项为 .
15.如图,网格纸上正方形小格的边长为1,图中粗线画出的是一个几何体的三视图,则这个几何体外接球的表面积为 .
16.平面四边形ABCD 中,3==AD AB , 602=∠=∠DBC BCD ,当BAD ∠变化时,对角线AC 的
最大值为 .
三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.已知{}n a 是等比数列,16,252==a a .数列{}n b 满足5,221==b b ,且{}n n a b -是等差数列. (1)分别求{}n a ,{}n b 的通项公式; (2)记数列()⎭
⎬⎫⎩⎨⎧
-++n n n a a b 2211log 1
的前n 项和为n S ,求证:21
n S .
18.共享单车是指企业在校园、地铁站点、公共站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式,是共享经济的一种新形态.某共享单车企业在A 城市就“一天中一辆单车的平均成本与租用单车数量之间的关系”进行了调查,并将相关数据统计如下表: 租用单车数量x (千辆) 2 3 4 5 8 每天一辆车平均成本y (元)
3.2
2.4
2
1.9
1.5
根据以上数据,研究人员设计了两种不同的回归分析模型,得到两个拟合函数: 模型甲:()
1 4.80.8y
x =
+,模型乙:()226.4
1.6y x
=+. (1)为了评价两种模型的拟合效果,完成以下任务:
①完成下表(计算结果精确到0.1元)(备注:i i i e y y =-,i e 称为相应于点(,)i i x y 的残差); 租用单车数量x (千辆) 2 3 4 5 8 每天一辆车平均成本y (元)
3.2 2.4 2 1.9 1.5 模型甲
估计值()
1i y 2.4 2 1.8 1.4 残差()
1i e
0 0 0.1 0.1 模型乙
估计值()2i y
2.3 2 1.9 残差()
2i
e
0.1
②分别计算模型甲与模型乙的残差平方和1Q 及2Q ,并通过比较1Q ,2Q 的大小,判断哪个模型拟合效果更好.
(2)这家企业在A 城市投放共享单车后,受到广大市民的热烈欢迎并供不应求,于是该企业决定增加单车投放量.根据市场调查,市场投放量达到1万辆时,平均每辆单车一天能收入8元;6元的概率分别为0.6,0.4;市场投放量达到1.2万辆时,平均每辆单车一天能收入8元,6元的概率分别为0.4,0.6.若按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,问该企业投放量选择1万辆还是1.2万辆能获得更多利润?请说明理由.(利润=收入-成本)
19.在三棱锥S ABC -中,60SAB SAC ∠=∠=,SB AB ⊥,SC AC ⊥.
(1)求证:BC SA ⊥; (2)如果2SA =,2BC =AC 的中点为D ,求二面角C BD S --的余弦值.
20.在圆4:2
21=+y x C 上任取一点P ,过点P 作x PQ ⊥轴,垂足为Q .当点P 在圆1C 上运动时,线段PQ 的中点M 的轨迹为曲线C .
(1)求曲线C 的方程,并说明曲线C 是什么图形;
(2)21,l l 是过点)1,0(-T 且互相垂直的两条直线,其中1l 与1C 相交于B A ,两点,2l 与C 的一个交点为D (与T 不重合),求ABD ∆面积取得最大值时直线1l 的方程.
21.如图,在矩形ABCD 中,)0,1(),0,1(x B A +且D x ,0 在曲线x y 1=上,BC 与曲线x
y 1
=交于E ,四边形ABEF 为矩形.
(1)用x 分别表示矩形ABCD ,曲线梯形ABED 及矩形ABEF 的面积,并用不等式表示它们的大小关系;
(2)设矩形ABEF 的面积为)(x f ,若)
1(2ln )(-<
x a x
x x f 对任意的()1,0∈x 恒成立,求实数a 的取值范围;
(3)求证:e >⎪


⎝⎛2018
20172018(e 为自然对数的底数).
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
22.[选修4-4:坐标系与参数方程]
在直角坐标系xOy 中,曲线1C 的参数方程为1cos 23sin x y αα⎧=+⎪⎪
⎨⎪=⎪⎩(α为参数),以坐标原点为极点,x 轴
的正半轴为极轴建立极坐标系,曲线2C 的方程为23)3
π
ρθ=+.
(1)求1C 与2C 交点的直角坐标;
(2)过原点O 作直线l ,使l 与1C ,2C 分别相交于点A ,B (A ,B 与点O 均不重合),求AB 的最大值.
23.[选修4-5:不等式选讲] 已知函数1
()f x x x a a
=+
+-. (1)若2a =,求不等式9
()2
f x ≥
的解集; (2)若对任意的x R ∈,任意的(0,)a ∈+∞恒有()f x m >,求实数m 的取值范围.。

相关文档
最新文档