自动控制原理黄坚第二版课后答案第五章
《自动控制原理》黄坚课后习题答案
=
-3
4
A2=
-3
4
A2=
+
-
4
3
+
f(t)=
e-t3
2
e-3t2
-t
e-t12
1
+
-
4
3
+
f(t)=
e-t3
2
e-3t2
-t
e-t12
1
= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)]
A1(s+1)2A1=(s+1)2s
(s+1)2(s+2)s=-1A1=(s+1)2s(s+1)2(s+2)s=-1A3=(s+2)
s
(s+1)2(s+2)s=-2A3=(s+2)
s
(s+1)2(s+2)s=-2
d
ds
s
s+2
][
A2= s=-1
d
R2I1(s)
Uc(s)L1L2 L1=-R2 /LsL2=-/LCs2L3=-1/sCR1Δ1=1
L1L3=R2/LCR1s2P1=R2/LCR1s2=
R1CLs2+(R1R2C+L)s+R1+R2Ur(s)
Uc(s)
R2=
R1CLs2+(R1R2C+L)s+R1+R2Ur(s)
i2Lu1 解
u1=ui-uoi2=C
自动控制原理 黄坚 课后答案
5-1设单位负反馈系统的开环传递函数110)(+=s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。
(1))30sin()( +=t t r(2) )452cos(2)( -=t t r计算的最后结果:(1)) 83.24sin(905.0)(+=t t c ;(2)) 3.532cos(785.1)(-=t t c ;5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。
(1))15)(5(750)(++=s s s s G (2))1110)(1(200)(2++=s s s s G (3))18)(12(10)(++=s s s G (4))1008()1(1000)(2+++=s s s s s G (5))1(10)(-=s s s G (6)13110)(++=s s s G (7))15)(1.0()2.0(10)(2+++=s s s s s G (8)13110)(+-=s s s G 绘制各系统的开环幅相频率特性曲线:绘制各系统的开环对数频率特性曲线:5-3已知电路如图所示,设R 1=19k Ω,R 2=1 k Ω,C=10μF 。
试求该系统传递函数,并作出该系统的伯德图。
计算的最后结果:19.0,2.0)(,1)(1221112===+=+=c R T c R R T s T s T s G ; 5-4已知一些最小相位系统的对数幅频特性曲线如图所示,试写出它们的传递函数(并粗略地画出各传递函数所对应的对数相频特性曲线)。
计算的最后结果数字:(a) 11010)(+=s s G (b) 101)(s s G +=; (c) )1100)(101.0(100)(++=s s s s G ; (d) )1100)(110)(1(250)(+++=s s s s G ;(e) 3.0,3.50,]12)[(100)(2==++=ξωωξωn nn s ss s G 5-6画出下列给定传递函数的极坐标图。
《自动控制原理》黄坚课后习题答案解析
2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:du )-R 2(u i -u o )=R 1u 0-CR 1R 2(idt dt du oCR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+A 3+ A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
《自动控制原理》黄坚课后习题答案解析
2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:du )-R 2(u i -u o )=R 1u 0-CR 1R 2(idt dt du oCR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+A 3+ A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
自动控制原理简明教程第二版课后答案第五章习题答案
5-9 已知系统开环传递函数
10 G(s)H(s) = s(s +1)(s 2 /4 +1)
试绘制系统概略开环幅相曲线。 解:
5-10 已知系统开环传递函数
7
胡寿松自动控制原理习题解答第五章 电 3 刘晓峰制作
G(s)H(s) =
2
s
1( s
s + 921) + 3s + s 1
要求选择频率点,列表计算 A(ω ) ,L(ω )和 ϕ(ω ) ,并据此在对数坐标纸上绘制系统开环 对数频率特性曲线。
5-5 已知系统开环传递函数
G(s)H(s) = s K2 ((
τ
Ts
s+ 1 ) + 1 ) ;
K,τ ,T > 0
试分析并绘制 τ > T 和 T >τ 解:相频特性为
情况下的概略开环幅相曲线。
ϕ(ω ) =−1800 + τ ω − arctanTω
(1) τ > T 时,ϕ(ω ) >−1800 概略开环幅相曲线如下
(1) τ < T 时,ϕ(ω ) <−1800 概略开环幅相曲线如下
5-6 已知系统开环传递函数
1 G(s)H(s) = ν s (s +1)(s + 2)
4
胡寿松自动控制原理习题解答第五章 电 3 刘晓峰制作
试分别绘制 ν =1,2,3,4 时系统的概略开环幅相曲线。 解: (1)ν = 1 时系统的概略开环幅相曲线如下:
8
胡寿松自动控制原理习题解答第五章 电 3 刘晓峰制作
L(ω ) (dB)
60 40 20
-20 -40 -20
0
自动控制原理及其应用课后习题第五章答案
ω
20 0 -20
10 ωc
1
2 -20dB/dec
ω
-60dB/dec
10 ≈1 ω2 0.5 c
ω c=4.5
5 ≈1 ω c=7.9 ω 0.01 c3
第五章习题课 (5-17)
-20
低频段曲线: 低频段曲线: 20lgK=20dB φ (ω ) 0 ω1=5 ω2=15 -90 相频特性曲线: 相频特性曲线: -180 -270 φ ( )= -90o ω ω=0 φ ( )= -270o ω ω=∞
-60dB/dec
ω
第五章习题课 (5-2)
10(s+0.2) 1.33(5s+1) (5) G(s)= s2(s+0.1)(s+15)=s2(10s+1)(0.67s+1) 解: 低频段曲线: 低频段曲线: 20lgK=2.5dB
第五章习题课 (5-7)
5-7 已知奈氏曲线,p为不稳定极点个数, 已知奈氏曲线, 为不稳定极点个数 为不稳定极点个数, υ为积分环节个数,试判别系统稳定性。 为积分环节个数,试判别系统稳定性。 Im υ=2 (b) p=0 (a) p=0 Im υ=0
ω=0 Re -1 0 ω=0+ -1 0 ω=0 Re
第五章习题课 (5-1)
5-1(1) 已知单位负反馈系统开环传递函数, 已知单位负反馈系统开环传递函数, 当输入信号r(t)=sin(t+30o),试求系统的稳态 当输入信号 , 输出。 输出。 10 G(s)=(s+1) 10 解: φ(s)= (s+11) 10 = 10 = 10 ω A( )= 2 2 112+1√ 122 =0.905 √ 11 +( ) √ ω φ ( )=-tg-1ω =-tg-1 1 =-5.2o ω 11 11 cs(t)=0.9sin(t+24.8o)
自动控制原理第五章习题及答案
第五章习题与解答5-1试求题5-1图(a)、(b)网络的频率特性。
u r R1u cR2CR2R1u r u c(a) (b)题5-1图R-C网络解(a)依图:⎪⎪⎪⎩⎪⎪⎪⎨⎧+==+=++=++=2121111212111111221)1(11)()(RRCRRTCRRRRKsTsKsCRsCRRRsUsUrcττωωτωωωωω11121212121)1()()()(jTjKCRRjRRCRRjRjUjUjGrca++=+++==(b)依图:⎩⎨⎧+==++=+++=CRRTCRsTssCRRsCRsUsUrc)(1111)()(2122222212ττωωτωωωωω2221211)(11)()()(jTjCRRjCRjjUjUjGrcb++=+++==5-2某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出)(tcs和稳态误差)(tes(1)tt r2sin)(=(2))452cos(2)30sin()(︒--︒+=ttt r题5-2图反馈控制系统结构图解 系统闭环传递函数为: 21)(+=Φs s 频率特性:2244221)(ωωωωω+-++=+=Φj j j 幅频特性: 241)(ωω+=Φj相频特性: )2arctan()(ωωϕ-=系统误差传递函数: ,21)(11)(++=+=Φs s s G s e 则 )2arctan(arctan )(,41)(22ωωωϕωωω-=++=Φj j e e(1)当t t r 2sin )(=时,2=ω,r m =1则 ,35.081)(2==Φ=ωωj 45)22arctan()2(-=-=j ϕ4.1862arctan )2(,79.085)(2====Φ=j j e e ϕωω )452sin(35.0)2sin()2(-=-Φ=t t j r c m ss ϕ)4.182sin(79.0)2sin()2(+=-Φ=t t j r e e e m ss ϕ(2) 当 )452cos(2)30sin()(︒--︒+=t t t r 时: ⎩⎨⎧====2,21,12211m m r r ωω5.26)21arctan()1(45.055)1(-=-===Φj j ϕ 4.18)31arctan()1(63.0510)1(====Φj j e e ϕ )]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t c m m ss ϕϕ+-⋅Φ-++⋅Φ=)902cos(7.0)4.3sin(4.0--+=t t)]2(452cos[)2()]1(30sin[)1()(j t j r j t j r t e e e m e e m ss ϕϕ+-⋅Φ-++⋅Φ=)6.262cos(58.1)4.48sin(63.0--+=t t5-3 若系统单位阶跃响应h t e e t tt ()..=-+≥--11808049试求系统频率特性。
《自动控制原理》黄坚课后习题答案教学提纲
《自动控制原理》黄坚课后习题答案2-1试建立图所示电路的动态微分方程u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(du idt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+ A 3+A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
自控控制原理习题 王建辉 第5章答案
第五章 频率法5-1用时域与频域法分析设计和设计系统的主要区别是什么? 5-2用时域法分析和设计系统的主要优点是什么? 5-3奈氏稳定判据的本质是什么?5-4何谓幅值裕度与相位裕度,并举例说明之。
5-5试述二阶系统闭环频率特性与时域中阶跃相应之间的关系。
5-6试定性叙述伯德图各段与时域指标之间的对应关系。
5-7已知单位反馈系统的开环传递函数为 W K (s)=110+s当系统的给定信号为 (1))30sin()(01+=t t x r(2) )452cos(2)(02-=t t x r(3))452cos(2)30sin()(03--+=t t t x r求系统的稳态输出。
解:5-7(1)系统的闭环传递函数为1110)(1)()(+=+=s s W s W s W K K B因为)30sin()(0+=t t x r )30(0)(+=t j r ej X ω 02.511arctan29054.012110)(j j B eej W --=+=ωωω)2.530(09054.0)()()(-+==t j B r c ej W j X j X ωωω所以)8.24sin(9054.0)(0+=t t x c 解:5-7(2)系统的闭环传递函数为1110)(1)()(+=+=s s W s W s W K K B因为)452cos(2)(0-=t t x r 化为正弦表达形式则)452sin(2)(0+=t t x r )452(02)(+=t j r ej X ω 3.1011arctan28944.012110)(j j B eej W --=+=ωωω)3.10452(07888.1)()()(-+==t j B r c ej W j X j X ωωω所以)7.342sin(7888.1)(0+=t t x c解:5-7(3)根据叠加原理,系统的输出为5-7(1)-5-7(2))7.342sin(7888.1)8.24sin(9054.0)(0+-+=t t t x c5-8绘出下列各传递对应的幅相频率特性。
《自动控制原理》黄坚课后习题答案解析
2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:du )-R 2(u i -u o )=R 1u 0-CR 1R 2(idt dt du oCR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+A 3+ A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
自动控制原理及其应用第二版课后答案
自动控制原理及其应用第二版课后答案【篇一:《自动控制原理》黄坚课后习题答案】ss=txt>uo-u+o(a)解:i1=i-i2u1=ui-uouuu-ui=i1==211dud(u-u)i2=c=c(b)解:(u-u)i=i1+i2i=udui1=i2=c2duu1-uo=21u-uud(u-u)-c=12dudur2(ui-uo )=r1u0-cr1r2(-)duducr1r2+r1uo+r2u0=cr1r2+r2uidud2uuuduu--21112=2+cud2udu+(c+=12+(1+2)uo12duu+c2duo+22-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4t(2) f(t)=t3+e4t434t解:l[t+e](3) f(t)=tneat解:l[tneat]=(4) f(t)=(t-1)2e2t解:l[(t-1)2e2t]=e-(s-2)2-3求下列函数的拉氏反变换。
(1) f(s)=aa解:a1=(s+2)=-1a2=2 -f(t)=2e-3t-e-2t(2) f(s)=aaa解:a1=(s+1)=-1a2[=2a3s=-2=-2f(t)=-2e-2t-te-t+2e-t(3) f(s)=2as+aa解:f(s)(s2=a1s+a2j=a1s+aj-2-5j+1=ja1+a2-5j-1=-a1+ja2a1=1a2=-5a3=f(s)s=1++f(t)=1+cost-5sint(4) f(s)=解:=a+a+a+aa1a3a4a2ad[2]s=-1f(t)=e-t-e-t++e-3t(2-4)求解下列微分方程。
a2=5 a3=-4y(t)=1+5e-2t-4e-3t并求传递函数。
2-5试画题图所示电路的动态结构图,c+sc)r2r+rrscu(s)==c1+(+sc)r212121(2)cl1=-r2 /lsl2=-/lcs2l3=-1/scr1l1l3=r2/lcr1s2c112122-8 设有一个初始条件为零的系统,系统的输入、输出曲线如图,求g(s)。
《自动控制原理》黄坚课后习题答案解析
2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:)-R 2(u i -u o )=R 1u 0-CR 1R 2(du idt dt duo CR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:(2) f(t)=t 3+e 4t解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+A 3+ A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++(4) F(s)=s+2s(s+1)2(s+3)解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
《自动控制原理》课后习题答案(5章)
《自动控制原理》课后习题答案(5章)5.1 系统的结构图如图5-68所示。
试依据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出ss c 和稳态误差ss e 。
⑴()t t r 2sin =⑵()()()︒︒--+=452cos 230sin t t t r图5-1解 系统的传递函数:()()()21+==Φs s R s C s ()()()21++==Φs s s R s E s e 幅频特性及相频特性:()()2,2122ωωωωarctgj j -=Φ+=Φ()()2,21222ωωωωωωarctgarctg j e e -=Φ++=Φ(1)()2,2sin ==ωt t r 稳态输出:()()︒︒-=-+=452sin 221452sin 441t t c ss()︒-≈452sin 354.0t稳态误差:⎪⎭⎫ ⎝⎛-+++=2222sin 2221222arctg arctg t e ss()()︒︒+≈+=43.182sin 791.043.182sin 225t t(2)()()()()()︒︒︒︒+-+=--+=452sin 230sin 452cos 230sin t t t t t r⎪⎪⎭⎫ ⎝⎛+∠+++•-⎪⎪⎭⎫ ⎝⎛+∠+++=︒︒221452sin 221212130sin 211222j t j t c ss ()t t 2sin 225.3sin 55-+=︒ ()t t 2sin 708.05.3sin 447.0-+≈︒⎪⎭⎫ ⎝⎛-++++•-⎪⎭⎫ ⎝⎛-++++=︒︒222452sin 2221221130sin 12112222222arctg arctg t arctg arctg t e ss ()()︒︒︒︒︒︒-++•--++=4543.63452sin 410257.264530sin 510t t ()()︒︒+-+≈43.632sin 582.143.48sin 632.0t t ()()︒︒--+=57.1162sin 582.143.48sin 632.0t t5.2 若系统的单位阶跃响应:()t t e e t h 948.08.11--+-=()0≥t 试求系统的频率特性。
自动控制原理及其应用答案第二版_黄坚_课后答案
d2y(t) dt2 +5
dy(t) dt
+6y(t)=6
,初始条件:
y(0)=y·(0)=2 。 A1=1 , A2=5 , A3=-4 ∴ y(t)=1+5e-2t-4e-3t
解:s2Y(s)-sY(0)-Y(′0)+5sY(s)-5Y(0)+6Y(s)=
1 s
∴
Y(s)=
6+2s2+12s s(s2+5s+6)
C(s)=
(s2+4s+2) (s+1)(s+2)
=1+
2 s+2
-
1 s+1
c(t)=δ (t)+2e-2t+e-t
第二章习题课 (2-10)
2式R-1(,s0) 试已- R画知(sG出)系1 -系统统G1的+2的G微G3G动1分G2G-2态G6方+3G结GG程-432GG构组46G图G5的3C并拉(s求)氏G传4变C递(s换) RC((函解ss))R=数:(s1)。+CRG- ((ss3)GX)X[GGX112(7(-1GX2(ssXs())3)s6=(=1--)s(G+GR{=s)=)R81GG((GGsGs(C2))3s236(]GG)G((s-ssG)1CG)4)1[[(XX=G2GXXsC7(3-)2Gs2((1G(5--2()ss(sGs+4G[))s8))(GG-)G1s-C3-15()7-GG(Gs(X+(1ss)GsGG)6)64[3)GG(3G(-3sG2sGG55G)G7)(4X2s(G8GG3GGG)s3(X3])5s7G86(573-)s(GC]s)4})]((8GsGG(s)14)7(C]s-C)(Gs(s)8))
自动控制原理(黄家英)第二版课后答案-5
ks s)(1
1
s)
ω2
ω3
于是
G(c jω)
kω
j(90。arctg ω arctg ω )
e
ω2
ω3
1 ( ω )2 1 ( ω )2
ω2
ω3
kω(2 1 1 ) jkω(1 ω2 )
或 G(c jω)
ω2 ω3
ω2ω3
[1 ( ω )2][1 ( ω )2]
ω2
ω3
或G( j)
(1
3 2 )(1
42 )
j
(1
1 22 2 )(1
42 )
p()
jQ()
当 时,G(j) 0 270。;
令Q() 0 即:1 22 0 解得与实轴交点的频率 :
1 / 2 0.707
以及交点的横坐标为:
令p() 0可解得与虚轴交点的频 率:
1 2
0.707 ,以及交点的纵标为:
G( j) 1
p()
1
2
2
8 3
0.94
系统的幅相曲线如图所 示。
j 0.94
B5.8 绘制下列系统的对数渐近幅频曲线:
(1)G(s)
s2
(s
200 1)(10s
1)
解: G(s)
P0 N 1,N 1 N N N 11 0 Z P 2N 0 (0) 2 0 该系统闭环稳定。
P 1 N 0.5,N 0 N N N 0.5 0 0.5 Z P 2N 1 (0.5) 2 0
自动控制原理 黄坚 第二版 课后答案第五章
5-1设单位负反馈系统的开环传递函数110)(+=s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。
(1))30sin()(+=t t r (2) )452cos(2)(-=t t r(s+1)1解: (s+11)1 )A ω 112+( )2 1ω √ =0.905 = 112+1 1√ = 122 1√ =-5.2o φ ( ω ) ω 11 =-tg -1 1 11=-tg -1 c s (t)=0.9sin(t+24.8o) (1)计算的最后结果: (1))83.24sin(905.0)(+=t t c ; (2))3.532cos(785.1)(-=t t c ;5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。
(1))15)(5(750)(++=s s s s G (2))1110)(1(200)(2++=s s s s G(3))18)(12(10)(++=s s s G (4))1008()1(1000)(2+++=s s s s s G (5))1(10)(-=s s s G (6)13110)(++=s s s G(7))15)(1.0()2.0(10)(2+++=s s s s s G (8)13110)(+-=s s s G绘制各系统的开环幅相频率特性曲线:s(s+5)(s+15)(1) G(s)=750解:n-m=3I 型系统ω=0A()=∞ωφ-90o (ω)=-270o φ(ω)=0)=A(ω(2s+1)(8s+1)(3) G(s)=10解:n-m=20型系统ω=0)=10 A(ω-180φ)=-180o (ω)=0)=A(ω0)=0o φ(ω)=s(s-1)(5) G(s)=10解:n-m=2I 型系统ω=0ω=∞)=∞A(ω-270)=-270o φ(ω)=-180)=-180o φ(ω)=0A()=ωs 2(s+0.1)(s+15)(7) G(s)=10(s+0.2)解:n-m=3II 型系统ω=0ω=∞)=∞A(ω-180o φ(ω)=φ-270o(ω)=0)= A(ωω绘制各系统的开环对数频率特性曲线:s(s+5)(s+15)(1) G(s)=750解:s(G(s)=1051s+1)s+1)(151ω1=5ω2=15低频段曲线:20lgK=20dB ω=0ω=∞-90)=-90o φ(ω)=-270)=-270o φ(ω)=相频特性曲线:(2s+1)(8s+1)(3) G(s)=10解:低频段曲线:20lgK=20dBω1=0.125ω2=0.5相频特性曲线:ω=0ω=∞0)=0o φ(ω)=-180φ)=-180o (ω)=s(s-1)(5) G(s)=10解:低频段曲线:20lgK=20dB ω1=1ω=0ω=∞φ-270o(ω)=-180)=-180o φ(ω)=相频特性曲线:5-3已知电路如图所示,设R 1=19k Ω,R 2=1 k Ω,C=10μF 。
自动控制原理 黄坚 课后答案
5-1设单位负反馈系统的开环传递函数110)(+=s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。
(1))30sin()( +=t t r(2) )452cos(2)( -=t t r计算的最后结果:(1)) 83.24sin(905.0)(+=t t c ;(2)) 3.532cos(785.1)(-=t t c ;5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。
(1))15)(5(750)(++=s s s s G (2))1110)(1(200)(2++=s s s s G (3))18)(12(10)(++=s s s G (4))1008()1(1000)(2+++=s s s s s G (5))1(10)(-=s s s G (6)13110)(++=s s s G (7))15)(1.0()2.0(10)(2+++=s s s s s G (8)13110)(+-=s s s G 绘制各系统的开环幅相频率特性曲线:绘制各系统的开环对数频率特性曲线:5-3已知电路如图所示,设R 1=19k Ω,R 2=1 k Ω,C=10μF 。
试求该系统传递函数,并作出该系统的伯德图。
计算的最后结果:19.0,2.0)(,1)(1221112===+=+=c R T c R R T s T s T s G ; 5-4已知一些最小相位系统的对数幅频特性曲线如图所示,试写出它们的传递函数(并粗略地画出各传递函数所对应的对数相频特性曲线)。
计算的最后结果数字:(a) 11010)(+=s s G (b) 101)(s s G +=; (c) )1100)(101.0(100)(++=s s s s G ; (d) )1100)(110)(1(250)(+++=s s s s G ;(e) 3.0,3.50,]12)[(100)(2==++=ξωωξωn nn s ss s G 5-6画出下列给定传递函数的极坐标图。
《自动控制原理》黄坚课后习题答案解析
2-1试建立图所示电路的动态微分方程-u o+u o解:u 1=u i -u oi 2=C du 1dt i 1=i-i 2u o i=R 2u 1i 1=R 1=u i -u oR1dtd (u i -u o )=C(a)u C d (u i -u o )dtu o -R 2=i -u o R 1i=i 1+i 2i 2=C du 1dt u o i 1=R 2u 1-u o =L R2du odtR 1i=(u i -u 1)(b)解:du )-R 2(u i -u o )=R 1u 0-CR 1R 2(idt dt du oCR 1R 2du o dt du idt +R 1u o +R 2u 0=CR 1R 2+R 2u iu o+C R 2du 1dt o +L R 2du odtu du o dt R 1R 2L du o dt +CL R 2d 2u o dt 2=--i R 1u o R 1u oR 2+C )u o R 1R 2L du o dt ) CL R 2d 2u o dt 2=++(u i R 11R 11R 2+(C+2-2 求下列函数的拉氏变换。
(1) f(t)=sin4t+cos4tL [sin ωt ]= ωω2+s 2=s+4s 2+16L [sin4t+cos4t ]= 4s 2+16s s 2+16+s ω2+s 2L [cos ωt ]=解:解:L [t 3+e 4t ]= 3!s 41s-4+6s+24+s 4s 4(s+4)=(3) f(t)=t n e atL [t n e at ]=n!(s-a)n+1解:(4) f(t)=(t-1)2e 2tL [(t-1)2e 2t ]=e -(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。
A 1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e -3t -e -2t(1) F(s)=s+1(s+2)(s+3)解:A 2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A 1s+2s+3+ A 2(2) F(s)=s (s+1)2(s+2)f(t)=-2e -2t -te -t +2e -t解:= A 2s+1s+2+A 3+ A 1(s+1)2A 1=(s+1)2s (s+1)2(s+2)s=-1A 3=(s+2)s (s+1)2(s+2)s=-2d ds ss+2][A 2= s=-1=-1=2=-2(3) F(s)=2s 2-5s+1s(s 2+1)F(s)(s 2+1)s=+j =A 1s+A 2s=+jA 2=-5A 3=F(s)s s=0f(t)=1+cost-5sint解:= s + A 3s 2+1A 1s+A 2=12s s 2-5s+1=A 1s+A2 s=j s=jj -2-5j+1=jA 1+A 2-5j-1=-A 1+jA 2A 1=1F(s)= 1s s 2+1s -5s 2+1++解:=+s+1A 1s+3A 2(s+1)2+s A 3+A 4-12A 1= 23A 3= 112A 4= A 2= d [s=-1ds ](s+2)s(s+3) -34= -34A 2= +-43+f(t)=e -t 32e -3t 2-t e -t 121= s=-1 [s(s+3)]2[s(s+3)-(s+2)(2s+3)](2-4)求解下列微分方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5-1设单位负反馈系统的开环传递函数1
10
)(+=s s G ,当把下列输入信号作用在闭环系统输入端时,试求系统的稳态输出。
(1))30sin()(
+=t t r (2) )452cos(2)(
-=t t r
(s+1)
1解: (s+11)
1 )A ω 11
2+( )2 1ω √ =0.905 = 112+1 1√ = 122 1√ =-5.2o φ ( ω ) ω 11 =-tg -1 1 11
=-tg -1 c s (t)=
0.9sin(t+24.8o
) (1)
计算的最后结果: (1))
83.24sin(905.0)(+=t t c ; (2))
3.532cos(785.1)(-=t t c ;
5-2设控制系统的开环传递函数如下,试绘制各系统的开环幅相频率特性曲线和开环对数频率特性曲线。
(1))15)(5(750
)(++=
s s s s G (2))1110)(1(200)(2++=s s s s G
(3))18)(12(10
)(++=
s s s G (4))
1008()1(1000)(2
+++=s s s s s G (5))1(10)(-=
s s s G (6)131
10)(++=s s s G
(7))15)(1.0()2.0(10)(2
+++=s s s s s G (8)1
31
10)(+-=s s s G
绘制各系统的开环幅相频率特性曲线:
s(s+5)(s+15)(1) G(s)=750解:n-m=3I 型系统ω=0A()=∞ωφ-90o (
ω)=-270o φ(ω)=0)=
A(ω
(2s+1)(8s+1)(3) G(s)=10解:n-m=2
0型系统ω=0)=10 A(ω-180φ)=-180o (ω)=0A()=
ω
0)=0o φ(ω)=s(s-1)
(5) G(s)=10解:n-m=2
I 型系统ω=0ω=∞)=∞A(ω-270)=-270o φ(ω)=-180φ)=-180o (ω)=
0A()=
ω
10(s+0.2)
s 2(s+0.1)(s+15)(7) G(s)=解:n-m=3
II 型系统
ω=0
ω=∞
)=∞A(ω-180o φ(ω)=-270o
φ(ω
)=0A()= ωω
绘制各系统的开环对数频率特性曲线:
s(s+5)(s+15)
(1) G(s)=750解:
s(G(s)=1051s+1)s+1)(151ω1=5ω2=15
低频段曲线:
20lgK=20dB
ω=0ω=∞-90)=-90o φ(ω)=
-270)=-270o φ(
ω)=相频特性曲线:
(2s+1)(8s+1)
(3) G(s)=10解:低频段曲线:
20lgK=20dB ω1=0.125
ω2=0.5
相频特性曲线:
ω=0ω=
∞0)=0o φ(ω)=-180)=-180o φ(
ω)=
s(s-1)
(5) G(s)=10解:低频段曲线:
20lgK=20dB ω1=1
ω=0
ω=∞-270o
φ(ω)=-180)=-180o
φ(
ω)=相频特性曲线:
5-3已知电路如图所示,设R 1=19k Ω,R 2=1 k Ω,C=10μF 。
试求该系统传递函数,并作出该系统的伯德图。
计算的最后结果:19.0,2.0)(,1
)(1221112===+=+=
c R T c R R T s T s
T s G ;
5-4已知一些最小相位系统的对数幅频特性曲线如图所示,试写出它们的传递函数(并粗略地画出各传递函数所对应的对数相频特性曲线)。
(a)
20lg K =20
K =10
10G(s)=
(0.1s+1)(b)
20lg K =-20K =0.1
0.1s G(s)=(0.05s+1)
(c)
s 100G(s)=(100s+1)K =100(0.01s+1)(d)
20lg K =48K =251
251G(s)=(s+1)(0.1s+1)(0.01s+1)
(e)由图可得:20lgM r =4.58dB
M r =1.7得:=11-ζ
2 2ζ2=±0.32ζ得=0.3
ζωr ω=1-2ζ
2
n 根据得ω=50n 由频率曲线得
s
100G(s)==1000ωK=
2T ζ=0.01
1)2T 2=(
=0.022n ω
计算的最后结果数字:(a) 110
10)(+=
s s G (b) 101)(s s G +=; (c) )1100
)(101.0(100
)(++=
s s s s G ; (d) )
1100
)(110)(1(250
)(+++=
s
s s s G ;
(e) 3.0,3.50,]
12)[(
100
)(2==++=
ξωωξ
ωn n
n
s
s
s s G
5-6画出下列给定传递函数的极坐标图。
试问这些曲线是否穿越实轴。
若穿越,则求其与实轴交点的频率ω及相应的幅值)(ωj G 。
(1) )21)(1(1
)(s s s s G ++=
;
(2) )
1(1
)(2s s s G +=
;
计算的最后结果: (1) s rad /71.0=ω,幅值67.0;
(2)不穿越 ;
5-7设系统的奈氏曲线如图所示,其中p 为s 的右半平面上开环根的个数,v 为开环积分环节的个数,试判别系统的稳定性。
解:
(a)
(b)
(c)
ω=0+
(d)
(e)
ω系统稳定
(f)
系统稳定
(h)
最后结果: (a)不稳定; (b )稳定; (c) 不稳定; (d) 稳定; (e) 稳定; (f) 稳定; (g) 稳定; (h) 不稳定。
5-8设系统的开环传递函数如下,试绘制各系统的伯德图,并求出穿越频率ωc 。
(1) )1.01)(5.01(10
)(s s s s G ++=
(2) )
10016()
2.01(75)(2+++=
s s s s s G
计算的最后结果: (1)s rad c /5.4=ω; (2)s rad c /75.0=ω。
5-14已知系统的开环传递函数为)
11.0)(1()(++=s s s K
s G ,分别判定当开环放大倍数K=5和K=20时闭环系统的稳定性,并
求出相位裕量。
计算的最后结果:5=K 时,06.111>=
γ,闭环系统稳定。
20=K 时,07.112<-=
γ,闭环系统不稳定。
5-17某最小相位系统的开环对数幅频特性如图所示。
要求:
(1)求出系统开环传递函数;
(2)利用相位裕量判断系统的稳定性;
(3)将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。
解:s 10G(s)=(10s+1)K =10
(0.05s+1)
c
ω1010≈12=1
c ω=180o -90o -tg -110-tg -10.05γ=180o +
)(ωφc =90o -84.3o -2.9o = 2.8o
计算的最后结果: (1))1201)(11.01(10
)(++=
s
s s s G ;
(2)07.5>=
γ,闭环系统稳定;
(3)系统的稳定性改变,调节时间缩短,系统动态响应加快。
5-18已知系统的结构如图所示,试绘制系统的伯德图,并计算)(c w γ。
解:
1
02.0)(15.0(10
)(++=
s s s s G
15.010
2
≈c
ω 47.4=c ω
︒=⨯-⨯-︒-︒=--19)47.402.0()47.45.0(9018011tg tg γ
- 2。