超声无损检测技术发展应用
超声导波管道无损检测技术及应用

超声导波管道无损检测技术及应用
超声导波管道无损检测技术是一种利用管道中固有传播的弹性波传递声波信号,从而检测管道内部状态的方法。
它具有高效、精确、无损、不需要管道开挖的优点,广泛应用于石油、化工、天然气、核电和航空等行业。
该技术在检测管道内部存在的裂缝、氧化、腐蚀、壁厚变化等缺陷方面具有广泛的应用。
超声导波管道无损检测技术的核心是管道内部传播的弹性波,将弹性波信号转化为电信号,并通过信号处理与分析,得出管道内部状态的相关信息。
该技术主要有三种探头类型:双向检测探头、单向检测探头和球形检测探头,以满足不同管道尺寸和形状的需求。
随着技术的发展,超声导波管道无损检测技术还可以与无损检测机器人和云计算等智能技术相结合,实现对可视化管道内部状态及历史数据的追踪和管理。
在应用方面,超声导波管道无损检测技术的主要优点是无需管道开挖或者拆除,以及高效、准确地识别出管道内部状态。
它可以精确地查找到管道壁的缺陷、管道环境内的氧化情况、均匀性变化、破损情况等,从而为维修保养、管道安全检测和材料选择提供有力支持。
此外,它还可以作为管道日常检测和维护的工具,能够节省成本、节约时间、提高效率。
综上所述,超声导波管道无损检测技术具有在管道安全、质量和效率方面带来的前所未有的优势,是现代工业的重要技术之一。
它的应用范围将会越来越广泛,并给相关工业领域带来巨大的经济效益和社会效益。
超声导波检测技术的发展、应用与挑战

超声导波检测技术的发展、应用与挑战一、本文概述超声导波检测技术是一种先进的无损检测技术,通过利用超声波在材料内部传播的特性,实现对材料内部缺陷、损伤和性能变化的精确检测。
随着科技的进步和工业的发展,超声导波检测技术在诸多领域如航空航天、石油化工、医疗设备、交通运输等中发挥着日益重要的作用。
本文旨在全面概述超声导波检测技术的发展历程、应用领域以及当前面临的挑战,以期为未来该技术的研究与应用提供有价值的参考。
本文将回顾超声导波检测技术的起源与发展历程,介绍其基本原理和技术特点。
随后,将详细分析超声导波检测技术在不同领域的应用实例,包括材料质量检测、结构健康监测、故障诊断与预防等。
还将探讨超声导波检测技术在应用中遇到的主要挑战,如信号传输衰减、复杂结构检测、智能化和自动化程度不足等问题。
通过对超声导波检测技术的深入研究和综合分析,本文旨在为读者提供一个全面了解该技术的视角,并为该领域的未来发展提供有益的启示和建议。
二、超声导波检测技术的发展超声导波检测技术自其诞生以来,已经经历了数十年的技术发展与进步,其发展历程可以分为几个关键阶段。
早期阶段,超声导波检测主要依赖于传统的压电晶体作为换能器,信号处理和数据处理能力有限,因此其应用范围主要局限在一些简单的结构和材料检测中。
随着电子技术和信号处理技术的发展,超声导波检测逐渐引入了数字化信号处理技术,大大提高了信号的分辨率和抗干扰能力。
进入21世纪,随着计算机技术和大数据技术的飞速发展,超声导波检测开始进入智能化时代。
现代超声导波检测系统不仅能够实现实时数据采集、处理和分析,还能通过机器学习、深度学习等人工智能技术,对检测数据进行自动解读和预测。
各种新型的超声导波换能器、阵列探头等设备的出现,使得超声导波检测能够适用于更加复杂和精细的结构和材料检测。
在硬件技术发展的同时,超声导波检测的理论研究也在不断深入。
例如,对于超声导波在材料中的传播特性、散射机制、信号识别等方面的研究,为超声导波检测技术的应用提供了坚实的理论基础。
超声波无损检测原理及应用

超声波无损检测原理及应用超声波无损检测(Ultrasonic Testing,简称UT)是一种利用超声波传播特性来检测材料内部缺陷的无损检测技术。
其原理基于声波在材料中的传播和反射。
超声波无损检测具有高灵敏度、高分辨率、快速、非接触、定量等优点,广泛应用于工业领域。
超声波无损检测的原理是利用超声波在材料中传播时发生反射、折射、散射等现象来检测材料内部的缺陷。
超声波在材料中的传播速度和传播路径受到材料的物理性质和几何形状的影响,当超声波遇到材料中的缺陷时,会发生多次反射和散射,从而产生回波信号。
通过接收这些回波信号可以确定材料中缺陷的位置、大小、形态等信息。
1.金属材料检测:超声波无损检测在金属材料中的应用非常广泛,可以检测金属材料中的裂纹、疲劳损伤、气孔、夹杂物等缺陷。
这对于确保金属材料的质量和结构完整性非常重要,尤其是在航空航天、桥梁、汽车、石油化工等领域。
2.建筑材料检测:超声波无损检测可以用于检测混凝土、石材、玻璃等建筑材料中的缺陷,如空洞、裂缝、腐蚀等。
这有助于评估建筑材料的结构强度和使用寿命,以及修复和维护工作的安全性和可行性。
3.聚合物材料检测:超声波无损检测也可以用于检测聚合物材料中的质量和缺陷,比如塑料、橡胶、复合材料等。
这对于保障聚合物制品的质量和性能至关重要,如航空航天器件、电子产品、汽车零部件等。
4.医学诊断:超声波无损检测在医学领域的应用非常广泛,用于检测人体内部的器官和组织,如心脏、肝脏、肾脏等。
超声波无损检测在医学诊断中无辐射、无创伤,对于早期疾病的诊断和评估、手术引导等起着重要作用。
总之,超声波无损检测原理简单而有效,应用范围广泛,对于确保材料和产品的质量和安全至关重要。
它在不同领域的应用有助于提高造价效益,减少事故风险,并推动相关行业的发展。
超声波无损检测技术的研究及应用

超声波无损检测技术的研究及应用随着现代工业制造技术不断发展,材料的质量检测变得越来越重要。
为了避免传统破坏性检测技术对材料的影响,无损检测技术因其高效性和非侵入性等特点,逐渐成为各行业质检的首选方案之一。
超声波无损检测技术是目前应用较广泛的一种技术,在航空、航天、汽车、石油、冶金等行业有着广泛的应用。
一、超声波无损检测技术的特点超声波无损检测技术是一种利用超声波进行材料检测的技术。
与传统破坏性检测技术相比,它具有以下特点:1. 非破坏性:超声波无损检测技术不会影响到材料的完整性和使用价值。
2. 检测灵敏度高:通过超声波检测,可以对材料的微小缺陷和腐蚀进行检测,可以检测出人眼看不到的裂纹。
3. 检测范围广:超声波可以透过各种物质,可以检测各种形态的材料,如管道、板材、压力容器等。
4. 检测速度快:超声波检测可以在短时间内完成对材料的检测,可以大大提高工作效率。
二、超声波无损检测技术的应用超声波无损检测技术广泛应用于以下领域:1. 航空航天领域:超声波无损检测技术被广泛应用于航空航天领域中对于航空器的检测。
在飞机的表面、零部件的结构和机身内部等部位都需要进行超声波检测。
2. 汽车工业:汽车工业中常用的超声波检测方法是利用超声波检测引擎传动部分零件的质量问题。
通过超声波的扫描,可以检测出引擎传动部分的裂纹和缺陷,提高车辆的安全性。
3. 石油化工:在石油化工生产中,通过超声波检测可以对生产管道、设备、压力容器等进行无损检测,可以及时发现并处理管道、设备中的缺陷和裂纹,确保设备的安全和生产的正常运行。
4. 电力设备:在电力设备的使用中,超声波无损检测技术被广泛应用于变压器、发电机等设备的检测中。
通过超声波的检测,可以及时发现设备中的缺陷和裂纹,以便及时对设备进行维修或更换。
三、超声波无损检测技术的发展趋势随着现代工业的不断发展,超声波无损检测技术的应用也在不断拓展,其发展趋势主要体现在以下几个方面:1. 多功能集成:将多种检测技术融合在一起,实现多种缺陷的检测,提高工作效率。
超声波无损检测技术应用现状及发展前景分析

超声波无损检测技术应用现状及发展前景分析王福军摘要:近年来,我国的经济飞速发展的同时,社会进步迅速,各行各业的发展也突飞猛进,在此过程中,超声波无损检测技术的应用也越来越广泛。
超声波检测技术逐渐向数字化、智能化方向发展,工业生产过程中超声波无损检测仪器可以对产品进行实时监控,识别并剔除生产过程中有缺陷的产品,提高产品生产质量和生产效率。
关键词:超声波无损检测技术;应用现状;发展前景分析超声波检测是常规无损检测技术之一,是目前发展较快、应用范围较广、使用频率较高的无损检测技术。
尤其是近一二十年,随着对声学理论研究的深入和细化,加之计算机大数据时代的到来,很多以声学为基础的崭新检测方法涌现出来。
这就使超声波检测技术成为一门以声学理论为根基向多元化呈树冠型发展的综合学科。
为了在普及和教学过程中能够有清晰的组成架构,便于系统地由浅入深来展开,也为了在理论研究中和新技术研发时能提供可靠的知识架构,对现有超声波检测技术和基于超声波检测理论的检测技术进行梳理是很有必要的。
1 超声波的工作原理超声波是一种工作频率超过人耳辨识范围的高频率的声波,它具备这传递能量还有传递信息的功能。
并且超声波容易获取,成本低廉,工作操作简单,没有什么危险性,是一种性能十分优良的检测工具。
同时超声波的工作过程中受到外部环境的影响较小,它不会因为温度,湿度,光照强度等一系列外部环境的变化而发生变化,具有稳定,可以进行相对精确度要求比较高的测量。
超声检测器主要有四个模块工程,超声波的发射装置,超声波接收装置,数据的收集转换装置,还有数据分析处理装置。
通过超声波在介质中传播的速度就可以判断出介质材料的性能,如果传播的速度快,说明了该种介质材料具有较强的硬度,如果超声波在该种介质中传播的速度较慢,那么,就说明了该种介质材料具有较弱的强度。
根绝超声波反射的情况,可以判断路面的平整度,可以判断障碍物距离波源的距离。
应用超声波进行测量可以节省大量的工作时间,减轻工作人员的工作量,超声波具有广泛的应用前景。
超声无损检测技术在航空制造中的应用

超声无损检测技术在航空制造中的应用随着科技的发展,无损检测技术在航空制造领域得到了广泛的应用。
而超声无损检测技术作为一种重要的无损检测方法,应用及其广泛并且成为航空制造领域的重要技术之一。
本文将着重探讨超声无损检测技术在航空制造中的应用及其优势。
一、超声无损检测技术的原理超声波是机械波的一种,在航空制造中通常使用的是一种高频声波——1-20MHz。
超声波向材料中传播时,会发生反射、折射、透射等现象。
通过检测这些现象,可以判断材料的内部是否存在缺陷,比如裂缝、气孔、夹杂等。
二、 1. 监测飞机结构的缺陷航空制造过程中,经常需要检测飞机结构中是否存在缺陷,如飞机翼梁、机身、缝合件等处。
超声无损检测技术可以非常准确地检测这些缺陷,保证飞机结构的强度和安全性。
2. 检测发动机及其零部件的缺陷发动机是飞机的重要组成部分,其零部件的质量对发动机的性能和寿命有着决定性的影响。
超声无损检测技术可以对发动机及其零部件的缺陷进行快速、准确的检测,确保发动机的性能和寿命。
3. 检测飞机制动系统的缺陷制动系统是航空制造领域中一个非常重要的子系统,对飞机的安全和可靠运营有着重要的影响。
超声无损检测技术可以检测制动系统的内部缺陷,比如钢脚裂纹、凤爪泄漏、卡钳磨损等问题,确保制动系统的性能和安全性。
三、超声无损检测技术的优势1. 非破坏性检测超声无损检测技术不需要材料进行破坏性试验,这对于保护材料本身具有重要的意义。
同时,也不会对航空制造过程造成影响。
2. 准确、高效超声无损检测技术可以对材料进行快速、准确的检测,大大提高生产效率并减少人力成本。
3. 重复性好超声无损检测技术可以重复使用,即使是对同一材料进行多次检测,也可以获得相同的结果,具有重要的可靠性。
4. 无漏检现象相对于人工检测,超声无损检测技术可以避免因主观因素导致的漏检现象,保证检测的准确性和可靠性。
四、结论超声无损检测技术在航空制造领域中有着广泛的应用,并且有着明显的优势。
超声波在无损检测中的应用

超声波在无损检测中的应用第一章:引言无损检测是一种通过检测材料或构件内部的缺陷或异常来评估其质量和完整性的技术方法。
在工程领域,无损检测被广泛应用于材料和构件的质量控制、安全评估和预防性维护中。
超声波作为一种常用的无损检测方法,具有高灵敏度、高可靠性和广泛的适用性,被广泛应用于各个行业。
第二章:超声波的基本原理超声波是指频率高于人耳可以听到的声波,通常超过20kHz。
在无损检测中,超声波通过传感器发出并穿过被检测材料或构件,然后由接收器接收和分析返回的信号。
根据超声波在不同材料中的传播速度和反射特性,可以探测到材料或构件内部的缺陷、孔洞、裂纹等问题。
第三章:超声波的应用领域1. 金属材料检测:超声波在金属材料中的应用非常广泛。
通过超声波检测可以确定金属材料中的裂纹、疲劳、气孔等缺陷情况,并评估其对材料性能和结构完整性的影响。
2. 建筑材料检测:超声波可以用于检测混凝土和砖石等建筑材料中的缺陷和质量问题。
例如,通过超声波检测可以识别混凝土结构中的空洞、裂缝和腐蚀情况,为建筑结构的安全评估提供参考。
3. 航空航天工业:超声波在航空航天工业中的应用十分重要。
通过超声波技术可以对飞机、火箭和其他航空器的零件和结构进行无损检测,确保它们的完整性和性能符合要求。
4. 医学领域:超声波在医学领域中被广泛应用于诊断和治疗。
医学超声波技术可以用于产前检查、肿瘤检测、血流测量等。
它无辐射、无创伤、易于操作,成为一种非常重要的影像技术。
5. 材料研究和科学实验:超声波在材料研究和科学实验中的应用也极为常见。
利用超声波可以研究材料的弹性性质、热导率等特性,并对材料的结构和性能进行评估。
第四章:超声波无损检测的发展趋势随着科技的不断进步和需求的增加,超声波无损检测技术也在不断发展。
未来的发展趋势包括:1. 高精度和高灵敏度:超声波无损检测技术将朝着更高的精度和灵敏度发展,以便更准确地检测和评估材料或构件的内部缺陷。
2. 自动化和智能化:将超声波无损检测技术与自动化和智能化技术结合,实现无人化操作和数据分析,提高检测效率和准确性。
超声波无损检测技术在航空领域的应用

超声波无损检测技术在航空领域的应用航空工业是现代工业的支柱之一,其发展涵盖了广泛的领域,如航空器、推进系统及飞行仪表等。
在航空器制造、验收及日常维修、维护等方面,无损检测技术被广泛地应用。
其中,超声波无损检测技术由于其高灵敏度、高准确度和可靠性等特点,成为了航空领域无损检测技术的主要手段。
超声波无损检测技术的原理超声波无损检测技术是利用超声波在测试材料中传播的特性来检测材料中的缺陷或异物。
具体地说,它是利用超声波在材料内部的传播和反射规律所建立的模型,在探头和被测件之间通过超声波传递来实现对被测材料进行检测。
超声波在传播过程中,主要会发生两种现象:一是超声波在介质中传播时,会发生反射、折射和衍射等现象。
这些现象对应的是材料中的缺陷或界面的物理特性,如密度、温度、应力等。
二是当超声波在被测物内部遇到缺陷时,会发生反射、散射和衍射等现象。
这些现象反映了被测物内部的缺陷特征,如缺陷的形状、大小、深度等。
超声波无损检测技术的优点相对于其他无损检测技术,超声波无损检测技术具有以下优点:1. 高灵敏度:因为超声波传递时的频率很高,其波长比其他波长更短,因此它能够探测微小的缺陷和异物。
2. 高准确度:超声波无损检测技术可以确定缺陷的大小、形状、深度和定位,并且可以预测缺陷的发展情况。
3. 可靠性高:超声波无损检测技术不会对被测件造成任何损坏或变形,因此检测结果准确可靠。
超声波无损检测技术在航空领域的应用主要包括以下方面:1. 航空器材料超声检测航空器材料的质量和完整性对于航空器的飞行安全和服务寿命具有至关重要的作用。
超声波无损检测技术广泛应用于航空器材料的检测中,如对钛合金、铝合金、复合材料等进行缺陷探测以保证其材料本身没有表面裂纹或内部缺陷,并且确保复杂结构的完整性。
2. 航空器发动机叶片检测航空器发动机是航空器中的“心脏”,叶片则是发动机的核心部分。
因此,叶片的设计、生产和检测对于航空器的安全和性能至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈超声无损检测技术的发展与应用中国石化集团胜利石油管理局海上石油工程技术检验中心山东东营 257000
摘要:超声无损检测是物体无损检测的一种重要方法,几乎应用到所有工业部门。
本文浅谈了超声无损检测技术的发展历史以及超声无损检测技术应用现状,并展望超声波检测技术发展趋势。
关键词:超声波无损检测无损探伤无损评价
一、前言
无损检测(nondestructive test)简称 ndt。
无损检测就是不破坏和不损伤受检物体,对它的性能、质量、有无内部缺陷进行检测的一种技术。
工业上最常用的无损检测方法有五种:超声检测(ut)、射线探伤(rt)、渗透检测(pt)、磁粉检测(mt)和涡流检测 (et)。
二、超声无损检测的发展
超声波无损探伤 (ndi)
超声检测原理是超声波进入物体遇到缺陷时,一部分声波会产生反射,改变后的超声波通过检测设备,接收器可对反射波进行处理和分析,就能异常精确地测出缺陷来,并且能显示内部缺陷的位置和大小,测定材料厚度等。
超声波无损探伤(ndi)设备有:超声探伤仪、探头、藕合剂及标准试块等。
用途是:在特种设备行业中,宏观缺陷检测和材料厚度测量。
优点有:对面积型缺陷检出率较高,缺陷定位较准确,易于
携带;多数超声探伤仪不必外接电源;穿透能力强。
局限性是:藕合传感器要求被检表面光滑;难于探出表面细小裂缝;要有参考标准;为解释信号要求检测人员素质高。
我国50年代初引进苏联超声波探伤仪,60年代初期先后形成了一些批量生产的厂家,80年代初,国内各生产厂研制生产的超声波探伤仪的主要技术招标均有大幅度地提高,较好地满足了超声波探伤技术的需要。
我国便携式数字化超声波探伤仪的研制随大规模集成电路的发展也已开始形成规模生产,并得到推广使用。
如1989年中科院武汉物理所武汉科威技术公司研制成功国内第一台全数字化超声波探伤仪(ks1010型),并于1990年批量推向市场,与此同时中科院声学所数字、模拟组合式电脑超声波探伤仪也研制成功并推向市场。
汕头超声电子(集团)公司在 1980年推出了cts 一22型超声波探伤仪,其主要性能指标与当时国际同类仪器水平相当,目前该公司已生产出智能式、手推式、便携式彩色、数字式的多种金属超声波探伤仪,其技术、质量、产销量均占全国首位。
三、超声波无损检测 (ndt) 的应用
超声无损检测与其它常规技术相比,它具有被测对象范围广、检测深度大、缺陷定位准确、检测灵敏度高、成本低、使用方便、速度快、对人体无害及便于现场检测等优点。
几十年来,超声无损检测已得到了巨大发展和广泛应用,几乎应用到所有工业部门。
如
作为基础工业的钢铁工业、机器制造工业、锅炉压力容器有关工业部门、石油化工工业、铁路运输工业、造船工业、航空航天工业、高速发展中的新技术产业如集成电路工业、核电工业等重要工业部门。
目前大量应用于金属材料和构件,包括质量在线监控和产品在役检查。
水平普遍提高,应用频度和领域也日益增多。
目前我国对各种大型结构压力容器和复杂设备都已具备检测能力。
在裂缝自身高度的测量和高温条件下的非接触超声检测等方面都有很大进展。
核电工业虽然是我国的新兴工业,但超声检测已用于核电工业的各个方面。
我国已能按业主的要求及标准的规定,使用国际先进的装备,执行国际通用标准,完成核电厂和核设施的役前及在役检查。
利用超声波测量流速、流量的技术在医疗、供水、排水、废水处理、电力、石油、化工、冶金、矿山、环保、河流、海洋等计量巾有着广泛的应用,不仅可用于流体,液体两相流的测量,还可用于气体流量测量,其研究已有数十年历史。
1928年,法国路登(rutten)研制成功世界第一台超声波流量计,直到 50年代末期,超声波流量计由理论研究阶段进入人工测量时期,但由于电子线路技术太复杂,这种流量计未占有牢固地位。
70年代后,由于集成电路技术迅速发展,使实用的超声波流量计得以迅速发展。
进入80年代以后,随着电子技术,尤其是微电脑的发展,使超声波
流量计的性能有很大提高,应用范围日趋扩大。
美国 controlotron 公司生产的 480型宽声束超声流量计,不但可以从宽噪声信号等干扰中分辨出真实的流量信号,还能通过液晶屏显示流量随时间变化趋势图;美国polysonics公司的便携式 ddf3088型,固定式ddf4088型全数字化多普勒超声波流量计,适于高精度管外测量。
日本甯士电机制造公司的便携式超声波流量计,采用 fcl(频差法 )原理,内装 cpu进行温度自动补偿,精度 1.5%。
国内华中理工大学研制成功 (1993)超声波多普勒智能流量计;本溪无线电一厂生产的多普勒超声波流量计是80年代定型的产品,用于洪水和油田等场合;开封仪表厂能源部南京自动化研究所、长沙电子仪器二厂等生产厂家和研究单位均有相应的产品。
此外,目前用超声波进行压力检测的仪器已研究成功。
同济大学声学研究所是国内主要声学研究机构之一,是中国声学学会检测声学分会和上海市声学,学会挂靠单位,在国内最早开展超声工业测量、超声无损检测等领域的研究。
在超声方面,声学研究主要围绕具体工业检测要求进行。
例如,1966年开展超声液位测量、浓度测量、承接炼油j一油库液位、新安江水库液位以及援助阿尔巴尼亚的液位测量任务,还承担二机部原子能源原材料液位测量任务。
混凝士超声检测方面,1976年,在 cts~l0型超声检测仪的基础上研制成功晶体管式混凝士超声波检测仪,并转让汕头超声仪器公司,定型为“cts一25型非金属超声
检测仪”,成为全国主要检测混凝土仪器。
四、超声无损评价(noe)
超声元损评价主要包括:①微观组织结构及形态变化的描述;
②弹性系数和声弹性能的评估;③不连续性及缺陷的测定;④力学性能变化及恶化的评价。
超声无损评价是在超声损伤与超声无损检测基础上发展起来的。
其研究手段更加先进和多种多样,研究成果与现代工业生产结合得更为紧密,因而在社会效益和经济效益方面都具有很大的潜力。
例如离心球墨铸铁管的检测,是由具有150多年的历史的英国 clanny crors铸管和铸件公司,在 1986年已经采用了超声无损检测技术,实现了对离心球墨铸铁管的在线实时检测与评价。
这种方法效率高,速度快,并且有其它方法无可比拟的优越性。
在第九届 apcndt(亚洲和太平洋地区无损检测)会上,德国富朗霍夫研究所推出的:用超声波显微镜对金属包覆层材料压合面特征的研究,为改进压合工艺提供了可靠参数。
汕头超声波研究所发表的dgs曲线带宽的计算机模拟,为解决 dgs曲线近场理论曲线和实验曲线的长期不吻合,并为探头参数的改进和制作提供了重要的解决手段。
日本公司发表的:应用声压回波透射比分析钢板的结构,是基本理论应用于解决实际问题的一个典型例子。
台湾新竹交大发表了:用声和超声研究金属板与橡胶板粘合面的结合质量。
韩国仁和大学机械工程系发表了:用超声波评价cfrp9(碳纤维复合材
科)…铝结合面的结合强度,日本 kanasi能源公司和tohoku大学发表了:用超声波显微技术对球形样品疲劳破损的监测,印度预防研究和发展实验室发表了:对铝合金采用超声波、射线和层析照相的研究等,都从不同角度对 nde技术在各工业领域的广泛应用提供了理论依据。
五、超声无损检测展望
(1)超声波探伤
近代探伤技术最重要的发展是定量化程度的提高,因此探头的标准化,系列化是关键,故使超声探伤换能器性能标准化,已摆到日程上,并引起质量监督部门的重视。
超声波探伤正沿着使携小型化、智能化、数字彩色等方向发展。
1993年浙江大学现代制造:[程研究所在国内首次开发成功了九自由度智能化超声扫查系统,该系统具有复杂表面扫查功能和a扫描、b扫描、c扫描显示方式。
并可通过与高档微机的交互功能,实现对扫查参数、扫查过程的预设置。
实现了中断续扫、实时分析、局部缩放等高级功能。
98年,国内外首创取得高分子构件表面应力检测及可视化成果并开发出相应的应用系统。
02年,国内首创开发成功自由度大型复杂曲面工件超声彩色成像系统。
(2)超声波无损检测
资料表明,超声无损检测在液压系统中应用甚少,故将非接触超声检测应用于液压系统是人们期待开辟的新领域和探讨的重要
课题。
液压系统的建模、辨识和性能分析及故障检测中,用超声波流量计对高压小管径的压力管路进行动态流量测量占有非常重要的地位。
而目前的超声波流摄计只能适用于较大(30ram以上 )管径。
这类流量计不适于液压系统的状态监测,所以提高小管径超声波流量汁的测量准确度将是今后探索研究的方向。
而压力这一重要参数,目前检测中应用大多是接圈式有损检测方法故从管外壁利用超声波技术检测压力具有广阔的开发和应用前景,最有生命力。
因此,西安第二炮兵工程学院研制的 gwcy型超声波管外测压仪和沈阳建筑工程学院研制的 fjcy超声波非接触测压故障仪均有待与进一步提高性能,开发应用市场。
六、结束语
国外工业发达国家的无损检测技术,目前已逐步由 ndi和 ndt 向 nde过渡,即用材料超声波无损评价来代替超声波无损探伤和超声波无损检测,并且向自动超声波无损评价(ande)和定嫩超声波无损评价(qnde)的方向发展和应用。