高中物理必修一传送带和滑块模型
高考物理一轮复习导学案传送带板块模型

功能关系的综合应用——传送带模型、“滑块—木板”模型【传送带模型】1.传送带克服摩擦力做的功:W=f x传(x传为传送带对地的位移)2.系统产生的内能:Q=f x相对(x相对为总的相对路程).3.求解电动机由于传送物体而多消耗的电能一般有两种思路①运用能量守恒以倾斜传送带为例,多消耗的电能为E电,则:E电=ΔE k+ΔE p+Q.②运用功能关系传送带多消耗的电能等于传送带克服阻力做的功E电=fx传(特别注意:如果物体在倾斜传送带上的运动分匀变速和匀速两个运动过程,这两个过程中传送带都要克服摩擦力做功,匀变速运动过程中两者间的摩擦力是滑动摩擦力,匀速运动过程中两者间的摩擦力是静摩擦力) 4.传送带问题分析流出图:(一)水平传送带例1 如图所示,长为5m的水平传送带以2m/s的速度顺时针匀速转动,将质量为1kg的小物块无初速度放在传送带左侧。
已知传送带与小物块之间的动摩擦因数为0.1,最大静摩擦力等于滑动摩擦力,重力加速度g 取10m/s2,求小滑块在传送带上运动过程中:(1)传送带对小物块做的功;(2)传送带与小物块摩擦产生的热量;(3)因放上小物块,电动机多消耗的电能。
变式:若小滑块以3m/s的速度从右端滑上传送带,求:(1)传送带与小物块摩擦产生的热量;(2)传送带克服摩擦力做功。
(二)倾斜传送带例2 如图所示,传送带与水平面间的夹角为30°,其中A、B两点间的距离为3.5m,传送带在电动机的带动下以v=2m/s的速度顺时针匀速转动。
现将一质量4kg的小物块(可视为质点)轻放在传送带的B点,已知小物块与传送带间的动摩擦因数μ=√3,g为取10m/s2,则在传送带将小物块从B点传送到A点的过程中:2(1)摩擦力对小物块做的功;(2)摩擦产生的热量;(3)因放小物块而使得电动机多消耗的电能。
例3如图所示,传送带与水平地面的夹角为θ=37°,A、B两端间距L=16m,传送带以速度v=10m/s 沿顺时针方向运动。
(完整版)高中物理传送带模型(解析版)

送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
(完整版)高中物理传送带模型

一、水平传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速情景2 ⑴vv=,一直匀速⑵vv>,一直减速或先减速后匀速⑶vv<,一直加速或先加速后匀速情景3 ⑴传送带较短,一直减速到左端⑵传送带足够长,滑块还要被传回右端:①vv>,返回时速度为v②vv<,返回时速度为v二、倾斜传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速⑶可能从左端滑落情景21.可能一直加速⑵可能先加速后匀速⑶可能先以1a加速,后以2a加速情景31可能一直加速⑵可能一直匀速⑶可能先加速后匀速⑷可能先减速后匀速⑸可能先以1a加速,后以2a加速情景4 ⑴可能一直加速⑵可能一直减速⑶可能先减速到0,后反向加速1、如图所示为火车站使用的传送带示意图,绷紧的传送带水平部分长度L =4 m ,并以s m v /10=的速度向右匀速运动。
现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,取2/10s m g =。
(1)求旅行包经过多长时间到达传送带的右端。
(2)若要旅行包从左端运动到右端所用时间最短,传送带速度的大小应满足什么条件?2、如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角︒=30θ. 现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数23=μ,取2/10s m g = (1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间.3、(讲逆时针)如图所示,倾角为37°、长为L=16m 的传送带,转动速度为s m v /10=,在传送带顶端A 处无初速地释放一个质量为kg m 5.0=的物体,已知物体与传送带间的动摩擦因数5.0=μ,取2/10s m g =。
高考物理总复习 专题强化三 动力学中的“传送带”和“滑块—滑板”模型

【关键能力·分层突破】 模型一 “传送带”模型 1.模型特点 传送带在运动过程中,会涉及很多的力,是传送带模型难点的原因, 例如物体与传送带之间是否存在摩擦力,是滑动摩擦力还是静摩擦力 等;该模型还涉及物体相对地面的运动以及相对传送带的运动等;该 模型还涉及物体在传送带上运动时的能量转化等. 2.“传送带”问题解题思路
【跟进训练】 3.光滑水平面上停放着质量M=2 kg的平板小车,一个质量为m=1 kg的小滑块(视为质点)以v0=3 m/s的初速度从A端滑上小车,如图所 示.小车长l=1 m,小滑块与小车间的动摩擦因数为μ=0.4,取g=10 m/s2,从小滑块滑上小车开始计时,1 s末小滑块与小车B端的距离为 ()
香皂盒的质量为m=20 g,香皂及香皂盒的总质量为M=100 g,香皂盒与 传送带之间的动摩擦因数为μ=0.4,风洞区域的宽度为L=0.6 m,风可以 对香皂盒产生水平方向上与传送带速度垂直的恒定作用力F=0.24 N,假设 最大静摩擦力等于滑动摩擦力,香皂盒可看作质点,取重力加速度g=10 m/s2 ,试求:
A.滑块A与木板B之间的动摩擦因数为0.1 B.当F=10 N时木板B的加速度为4 m/s2 C.木板B的质量为3 kg D.滑2·山西临汾联考]某生产车间对香皂包 装进行检验,为检验香皂盒里是否有香皂,让
香皂盒在传送带上随传送带传输时(可视为匀 速),经过一段风洞区域,使空皂盒被吹离传 送带,装有香皂的盒子继续随传送带一起运动
,如图所示.已知传送带的宽度d=0.96 m,香 皂盒到达风洞区域前都位于传送带的中央.空
答案:BCD
命题分析
试题情境
属于综合性题目,以板块模型为素材创设学习探索问 题情境
高考物理一轮复习课件:传送带与板块模型

共速后加速
异向Байду номын сангаас坡
>
0 ≤
减速至0,后反向加速
至0
0 >
减速至0,后反向加速
至
=
<
—
—
一直匀速
一直加速
板—块模型
1、概述:两个或多个物体上、下叠放在一起,物体之间通过
摩擦力产生联系。
2、三个基本关系
加速度关系
注意:通过受力
分析判断加速度
同向上坡
0 >
0 =
0 <
减速至共速
—
—
≥
<
≥
共速后匀速
共速后继续
减速
一直匀速
<
>
减速至0, 加速至共速,
后反向加速
后匀速
=
<
一直匀速
减速至0,
后反向加速
同向下坡
0 >
0 =
传送带模型
1、明确滑块相对传送带的运动方向,正确判断摩擦力的方向
。
2、判断滑块与传送带共速前是否滑出传送带。
3、滑块在传送带上的划痕长度是滑块与传送带的相对位移。
4、在水平传送带上,滑块与传送带共速时,二者相对静止做匀
速运动。
5、共速时刻一般是摩擦力发生突变的时刻。在倾斜传送带上,
滑块与传送带共速时,需比较mgsin与μmgcos的大小才能
确定运动情况。
①水平传送带
①0 >时,可能一直减速(不够长),
也可能先减速后匀速(足够长)
同向进入
②0 =时,一直匀速
③0 < 时,可能一直加速(不够长),
高考经典物理模型:传送带 模型(一)

传送带模型(一)——传送带与滑块滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。
其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。
因此这类命题,往往具有相当难度。
滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。
按滑块与传送带的初始状态,分以下几种情况讨论。
一、滑块初速为0,传送带匀速运动[例1]如图所示,长为L的传送带AB始终保持速度为v0的水平向右的速度运动。
今将一与皮带间动摩擦因数为μ的滑块C,轻放到A端,求C由A运动到B的时间t ABCAB解析:“轻放”的含意指初速为零,滑块C所受滑动摩擦力方向向右,在此力作用下C向右做匀加速运动,如果传送带够长,当C与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C可能由A一直加速到B。
滑块C的加速度为,设它能加速到为时向前运动的距离为。
若,C由A一直加速到B,由。
若,C由A加速到用时,前进的距离距离内以速度匀速运动C由A运动到B的时间。
[例2]如图所示,倾角为θ的传送带,以的恒定速度按图示方向匀速运动。
已知传送带上下两端相距L今将一与传送带间动摩擦因数为μ的滑块A轻放于传送带上端,求A从上端运动到下端的时间t。
Aθ解析:当A的速度达到时是运动过程的转折点。
A初始下滑的加速度若能加速到,下滑位移(对地)为。
(1)若。
A从上端一直加速到下端。
(2)若,A下滑到速度为用时之后距离内摩擦力方向变为沿斜面向上。
又可能有两种情况。
(a)若,A达到后相对传送带停止滑动,以速度匀速,总时间(b)若,A达到后相对传送带向下滑,,到达末端速度用时总时间二、滑块初速为0,传送带做匀变速运动[例3]将一个粉笔头轻放在以2m/s的恒定速度运动在足够长的水平传送带上后,传送带上留下一条长度为4m的划线。
秘籍04 滑块板块模型和传送带模型(学生版)-备战2024年高考物理抢分秘籍

秘籍04 滑块木板模型和传送带模型一、滑块木板模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.2.位移关系:如图所示,滑块由木板一端运动到另一端的过程中,设板长为L,滑块(可视为质点)位移大小为x块,滑板位移大小为x板。
同向运动时:L=x块-x板.反向运动时:L=x块+x板.3. 判断滑块和模板运动状态的技巧:“滑块—木板”模型问题中,靠摩擦力带动的那个物体的加速度有最大值:a m=F fmm.假设两物体同时由静止开始运动,若整体加速度小于该值,则二者相对静止,二者间是静摩擦力;若整体加速度大于该值,则二者相对滑动,二者间为滑动摩擦力。
4.技巧突破点(1)由滑块与木板的相对运动来判断“板块”间的摩擦力方向.(2)当滑块与木板速度相同时,“板块”间的摩擦力可能由滑动摩擦力转变为静摩擦力或者两者间不再有摩擦力(水平面上共同匀速运动). 5.分析板块模型的思路二、传送带模型1.水平传送带情景滑块的运动情况 传送带不足够长 传送带足够长一直加速 先加速后匀速v 0<v 时,一直加速 v 0<v 时,先加速再匀速 v 0>v 时,一直减速v 0>v 时,先减速再匀速滑块一直减速到右端滑块先减速到速度为0,后被传送带传回左端.若v 0<v 返回到左端时速度为v 0,若v 0>v 返回到左端时速度为v .2.倾斜传送带情景滑块的运动情况传送带不足够长传送带足够长一直加速(一定满足关系g sin θ<μg cos θ)先加速后匀速一直加速(加速度为g sin θ+μg cos θ)若μ≥tan θ,先加速后匀速若μ<tan θ,先以a1加速,后以a2加速v0<v时,一直加速(加速度为g sin θ+μg cos θ)若μ≥tan θ,先加速后匀速;若μ<tan θ,先以a1加速,后以a2加速v0>v时,一直减速(加速度为g sin θ-μg cos θ)若μ≥tan θ,先减速后匀速;若μ<tan θ,先以a1减速,后以a2加速(摩擦力方向一定沿斜面向上)g sin θ>μg cos θ,一直加速;g sin θ=μg cos θ,一直匀速g sin θ<μg cos θ,一直减速先减速到速度为0后反向加速到原位置时速度大小为v03.划痕问题:滑块与传送带的划痕长度Δx等于滑块与传送带的相对位移的大小,若有两次相对运动且两次相对运动方向相同,Δx=Δx1+Δx2(图甲);若两次相对运动方向相反,Δx等于较长的相对位移大小.(图乙)4.功能关系分析:(1)功能关系分析:W=ΔE k+ΔE p+Q。
高中物理必修一牛顿第二定律传送带模型

f<mg sin θ时(f =μ mg cos θ)即:(μ< tanθ),滑块以a2=g sin θ - μg cos θ 做匀加速 运动(a与v0方向相同)
v
v0
v0
2倾斜传送带模型
情景3
v
v0 0
(3)v0>v传送带较短时, f>mg sin θ(f =μ mg cos θ)(μ > tanθ),滑块做匀 减速运动,a=g sin θ - μg cos θ(与v0方向相反);
f =mg sin θ(f =μ mg cos θ)(μ = tanθ),滑块做匀 速运动;
f<mg sin θ(f =μ mg cos θ)(μ< tanθ),滑块做匀 加速运动a=g sin θ - μg cos θ(与v0方向相同);
v0 v
t1
2倾斜传送带模型
情景3
v
v0 0
(3)v0>v传送带较长时, f>mg sin θ(f =μ mg cos θ)(μ > tanθ),滑块先 做匀减速运动,a=g sin θ - μg cos θ(与v0方向相 反);后做匀速运动
高中物理必修一牛顿第二 定律传送带模型
1水平传送带模型
情景2
v0
v
(1)v0=v,滑块一直做匀速运动
v0
1水平传送带模型
情景2
v0
v
v v0
(2)v0>v, 传送带较短时,滑块一直做匀加速 运动; 传送带较长时,滑块先做匀加速运 动后做匀速运动
v v0
t1
1水平传送带模型
情景2
v0
v
(3)v0<v, 传送带较短时,滑块一直做匀减速 运动;
v
v0ቤተ መጻሕፍቲ ባይዱ
t1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.静止在光滑水平面上的物体在水平拉力F作用下开始运动,拉力随时间变化的规律如图所示,关于物体在0~t1时间内的运动情况下列描述正确的是( )
A.物体先做匀加速运动,后做匀减速运动
B.物体的速度一直增大
C.物体的速度先增大后减小
D.物体的加速度一直增大
2.将木块A、B叠放在一起后放在倾角为α的光滑斜面上,A和B一起沿斜面自由滑下。
下滑过程中,A和B无相对运动,如图所示。
已知A的质量为m,求下滑过程中A受到的支持力及摩擦力各多大?
3.如图所示的装置中,重4N的物块被平行于斜面的细线拴在斜面上端的小柱上,整个装置被固定在测力计上并保持静止,斜面的倾角为30°。
如果物块与斜面间无摩擦,装置稳定以后,当细线被烧断物块正下滑时,与稳定时比较,测力计的读数为( )
A.增大4N
B.增大3N
C.减小1N
D.不变
4.如图所示为车站使用的水平传送带的模型,传送带长l=8m,现有一个质量为m=10kg的旅行包以v0=10m/s的初速度水平地滑上水平传送带,已知旅行包与皮带间的动摩擦因数为μ=0.6。
g取10m/s2,且可将旅行包视为质点。
试讨论下列问题:
(1)若传送带静止,则旅行包从传送带的A端滑到另一端B所需要的时间是多少?
(2)若传送带一速度v=4m/s沿顺时针方向匀速转动,则旅行包从传动带的A端滑到B端历时多少?
(3)若传送带以速度v=4m/s沿逆时针向匀速转动,则旅行包是否能够从传动带的A端滑到B端?如不能,试说明理由;如能,试计算历时多少?
5.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查.如图3-7-6所示为一水平传送带装置示意图,绷紧的传送带AB始终保持v=1m/s的恒定速率运行,一质量为m=4kg的行李无初速地放在A处,设行李与传送带间的动摩擦因数μ=0.1,AB间的距离l=2m,g取10m/s2.
(1)从A运动到B的时间以及物体在皮带上留下的滑痕长度;
(2)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.
A B
v
图3-7-6
6.【14年四川理综】如右图所示,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t = 0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t = t 0时刻P 离开传送带。
不计定滑轮质量和摩擦,绳足够长。
正确描述小物体P 速度随时间变化的图像可能是:( )
7.如图3-7-9所示,倾角为30°的传送皮带以恒定的速度2m/s 运动,皮带AB 长5m ,将1kg 的物体放在A 点,经2.9s 到达B 点,求皮带和物体间的动摩擦因数μ为多少?若增加皮带的速度,则物体从A 运动到B 的最短时间是多少?(取g =10m/s 2)
8.如图3-7-5所示,小木块质量m =1kg ,长木板质量M =10kg ,木板与地面以及木块间的动摩擦因数均为μ=0.5,当木板从静止开始受水平向右的恒力F =90N 作用时,木块以初速v 0=4m/s 向左滑上木板的右端,则为使木块不滑离木板,木板长度l 至少要多长? (取g =10m/s 2)
F
M
m
v 0 30°
B
A
v 图3-7-9。