栈和队列的定义及基本操作
数据结构-栈与队列
栈 1.6栈的应用
运算符的优先级关系表在运算过程中非常重要,它是判定进栈、出栈的重要依据。
θ1
θ2
+
-
+
>
>
-
>
>
*
>
>
/
>
>
(
<
<
)
>
>
#
<
<
*
/
(
)
#
<
<
<
>
>
<
<
<
>
>
>
>
<
>
>
>
>
<
>
>
<
<
<
=
>
>
>
>
<
<
<
=
栈
1.6栈的应用
下面以分析表达式 4+2*3-12/(7-5)为例来说明求解过程,从而总结出表达式求值的算 法。求解中设置两个栈:操作数栈和运算符栈。从左至右扫描表达式:# 4+2*3-12/(7-5) #, 最左边是开始符,最右边是结束符。表达式求值的过程如下表所示:
1.4栈的顺序存储结构
设计进栈算法——Push 函数。首先,判断栈是否已满,如果栈已满,就运用 realloc 函 数重新开辟更大的栈空间。如果 realloc 函数返回值为空,提示溢出,则更新栈的地址以及栈 的当前空间大小。最终,新元素入栈,栈顶标识 top 加 1。
栈和队列的实验报告
栈和队列的实验报告栈和队列的实验报告引言:栈和队列是计算机科学中常用的数据结构,它们在算法设计和程序开发中起着重要的作用。
本实验旨在通过实际操作和观察,深入理解栈和队列的概念、特点以及它们在实际应用中的作用。
一、栈的实验1.1 栈的定义和特点栈是一种具有特殊操作约束的线性数据结构,它的特点是“先进后出”(Last-In-First-Out,LIFO)。
栈的操作包括入栈(push)和出栈(pop),入栈操作将元素放入栈顶,出栈操作将栈顶元素移除。
1.2 实验步骤在本次实验中,我们使用编程语言实现了一个栈的数据结构,并进行了以下实验步骤:1.2.1 创建一个空栈1.2.2 向栈中依次压入若干元素1.2.3 查看栈顶元素1.2.4 弹出栈顶元素1.2.5 再次查看栈顶元素1.3 实验结果通过实验,我们观察到栈的特点:最后入栈的元素最先出栈。
在实验步骤1.2.2中,我们依次压入了元素A、B和C,栈顶元素为C。
在实验步骤1.2.4中,我们弹出了栈顶元素C,此时栈顶元素变为B。
二、队列的实验2.1 队列的定义和特点队列是一种具有特殊操作约束的线性数据结构,它的特点是“先进先出”(First-In-First-Out,FIFO)。
队列的操作包括入队(enqueue)和出队(dequeue),入队操作将元素放入队尾,出队操作将队头元素移除。
2.2 实验步骤在本次实验中,我们使用编程语言实现了一个队列的数据结构,并进行了以下实验步骤:2.2.1 创建一个空队列2.2.2 向队列中依次插入若干元素2.2.3 查看队头元素2.2.4 删除队头元素2.2.5 再次查看队头元素2.3 实验结果通过实验,我们观察到队列的特点:最先入队的元素最先出队。
在实验步骤2.2.2中,我们依次插入了元素X、Y和Z,队头元素为X。
在实验步骤2.2.4中,我们删除了队头元素X,此时队头元素变为Y。
三、栈和队列的应用栈和队列在实际应用中有广泛的应用场景,下面简要介绍一些常见的应用:3.1 栈的应用3.1.1 表达式求值:通过栈可以实现对表达式的求值,如中缀表达式转换为后缀表达式,并计算结果。
数据结构-Java语言描述 第三章 栈和队列
System.exit(1);
}
栈顶指针top的初始值决
top=-1;
定了后续其他方法的实现
stackArray=(T[])new Object[n];
}
【算法3-2】入栈
public void push(T obj)
{
if(top==stackArray.length-1){
T []p=(T[])new Object [top*2];
(b)元素a2入栈
an … … a2 a1
(c)元素an入栈
an-1 … a2 a1
(d)元素an出栈
a2 a1
(e)元素a3出栈
a1
(f)元素a2出栈
【例3-1】一个栈的输入序列是1、2、3、4、5,若在 入栈的过程中允许出栈,则栈的输出序列4、3、5、1、 2可能实现吗?1、2、3、4、5的输出呢?
型 正序遍历:依次访问栈中每个元素并输出
3.1.2 顺序栈
顺序栈泛型类的定义如下:
public class sequenceStack<T> {
顺序栈中一维数组 的初始长度
final int MaxSize=10;
private T[] stackArray; 存储元素的数组对象
private int top;
public void nextOrder() {
for(int i=top;i>=0;i--) System.out.println(stackArray[i]);
}
【算法3-8】清空栈操作
public void clear() {
top=-1; }
3.1.3 链栈
栈的链接存储结构称为链栈。结点类的定义,同 第二章Node类。
数据结构栈和队列实验报告
数据结构栈和队列实验报告实验报告:数据结构栈和队列一、实验目的1.了解栈和队列的基本概念和特点;2.掌握栈和队列的基本操作;3.掌握使用栈和队列解决实际问题的方法。
二、实验内容1.栈的基本操作实现;2.队列的基本操作实现;3.使用栈和队列解决实际问题。
三、实验原理1.栈的定义和特点:栈是一种具有后进先出(LIFO)特性的线性数据结构,不同于线性表,栈只能在表尾进行插入和删除操作,称为入栈和出栈操作。
2.队列的定义和特点:队列是一种具有先进先出(FIFO)特性的线性数据结构,不同于线性表,队列在表头删除元素,在表尾插入元素,称为出队和入队操作。
3.栈的基本操作:a.初始化:建立一个空栈;b.入栈:将元素插入栈的表尾;c.出栈:删除栈表尾的元素,并返回该元素;d.取栈顶元素:返回栈表尾的元素,不删除。
4.队列的基本操作:a.初始化:建立一个空队列;b.入队:将元素插入队列的表尾;c.出队:删除队列表头的元素,并返回该元素;d.取队头元素:返回队列表头的元素,不删除。
四、实验步骤1.栈的实现:a.使用数组定义栈,设置栈的大小和栈顶指针;b.实现栈的初始化、入栈、出栈和取栈顶元素等操作。
2.队列的实现:a.使用数组定义队列,设置队列的大小、队头和队尾指针;b.实现队列的初始化、入队、出队和取队头元素等操作。
3.使用栈解决实际问题:a.以括号匹配问题为例,判断一个表达式中的括号是否匹配;b.使用栈来实现括号匹配,遍历表达式中的每个字符,遇到左括号入栈,遇到右括号时将栈顶元素出栈,并判断左右括号是否匹配。
4.使用队列解决实际问题:a.以模拟银行排队问题为例,实现一个简单的银行排队系统;b.使用队列来模拟银行排队过程,顾客到达银行时入队,处理完业务后出队,每个顾客的业务处理时间可以随机确定。
五、实验结果与分析1.栈和队列的基本操作实现:a.栈和队列的初始化、入栈/队、出栈/队以及取栈顶/队头元素等操作均能正常运行;b.栈和队列的时间复杂度均为O(1),操作效率很高。
数据结构--栈和队列基础知识
数据结构--栈和队列基础知识⼀概述栈和队列,严格意义上来说,也属于线性表,因为它们也都⽤于存储逻辑关系为 "⼀对⼀" 的数据,但由于它们⽐较特殊,因此将其单独作为⼀篇⽂章,做重点讲解。
既然栈和队列都属于线性表,根据线性表分为顺序表和链表的特点,栈也可分为顺序栈和链表,队列也分为顺序队列和链队列,这些内容都会在本章做详细讲解。
使⽤栈结构存储数据,讲究“先进后出”,即最先进栈的数据,最后出栈;使⽤队列存储数据,讲究 "先进先出",即最先进队列的数据,也最先出队列。
⼆栈2.1 栈的基本概念同顺序表和链表⼀样,栈也是⽤来存储逻辑关系为 "⼀对⼀" 数据的线性存储结构,如下图所⽰。
从上图我们看到,栈存储结构与之前所了解的线性存储结构有所差异,这缘于栈对数据 "存" 和 "取" 的过程有特殊的要求:1. 栈只能从表的⼀端存取数据,另⼀端是封闭的;2. 在栈中,⽆论是存数据还是取数据,都必须遵循"先进后出"的原则,即最先进栈的元素最后出栈。
拿图 1 的栈来说,从图中数据的存储状态可判断出,元素 1 是最先进的栈。
因此,当需要从栈中取出元素 1 时,根据"先进后出"的原则,需提前将元素 3 和元素 2 从栈中取出,然后才能成功取出元素 1。
因此,我们可以给栈下⼀个定义,即栈是⼀种只能从表的⼀端存取数据且遵循 "先进后出" 原则的线性存储结构。
通常,栈的开⼝端被称为栈顶;相应地,封⼝端被称为栈底。
因此,栈顶元素指的就是距离栈顶最近的元素,拿下图中的栈顶元素为元素 4;同理,栈底元素指的是位于栈最底部的元素,下中的栈底元素为元素 1。
2.2 进栈和出栈基于栈结构的特点,在实际应⽤中,通常只会对栈执⾏以下两种操作:向栈中添加元素,此过程被称为"进栈"(⼊栈或压栈);从栈中提取出指定元素,此过程被称为"出栈"(或弹栈);2.3 栈的具体实现栈是⼀种 "特殊" 的线性存储结构,因此栈的具体实现有以下两种⽅式:1. 顺序栈:采⽤顺序存储结构可以模拟栈存储数据的特点,从⽽实现栈存储结构。
大学数据结构课件--第3章 栈和队列
栈满 top-base=stacksize
top
F
E
D C B
top top top top top top base
入栈PUSH(s,x):s[top++]=x; top 出栈 POP(s,x):x=s[--top]; top
base
4
A
3.1 栈
例1:一个栈的输入序列为1,2,3,若在入栈的过程中 允许出栈,则可能得到的出栈序列是什么? 答: 可以通过穷举所有可能性来求解:
3.2 栈的应用举例
二、表达式求值
“算符优先法”
一个表达式由操作数、运算符和界限符组成。 # 例如:3*(7-2*3) (1)要正确求值,首先了解算术四则运算的规则 a.从左算到右 b.先乘除后加减 c.先括号内,后括号外 所以,3*(7-2*3)=3*(7-6)=3*1=3
9
3.2 栈的应用举例
InitStack(S); while (!QueueEmpty(Q))
{DeQueue(Q,d);push(S,d);}
while (!StackEmpty(S)) {pop(S,d);EnQueue(Q,d);} }
第3章 栈和队列
教学要求:
1、掌握栈和队列的定义、特性,并能正确应用它们解决实 际问题;
用一组地址连续的存储单元依次存放从队头到队尾的元素, 设指针front和rear分别指示队头元素和队尾元素的位置。
Q.rear 5 4 Q.rear 3 2 3 2 5 4 Q.rear 3 3 5 4 5 4
F E D C
C B A
Q.front
2 1 0
C B
Q.front 2 1 0
第三章 栈和队列
栈和队列的基本操作是线性表操作的子集,是限定性(操作受限制)的数据结构。
第三章栈和队列数据结构之栈和队列23. 1 栈¾定义:是限定仅在表尾进行插入或删除操作的线性表。
(后进先出线性表LIFO)¾栈底指针(base) :是线性表的基址;¾栈顶指针(top):指向线性表最后一个元素的后面。
¾当top=base 时,为空栈。
¾基本操作:InitStack(&S), DestroyStack(&S),StackEmpty(S) , ClearStack(&S),GetTop(S ,&e), StackLength(S) ,Push(&S, e): 完成在表尾插入一个元素e.Pop(&S,&e): 完成在表尾删除一个元素。
数据结构之栈和队列3¾栈的表示和实现¾顺序栈:是利用一组地址连续的存储单元依次存放自栈底到栈顶的数据元素;栈满之后,可再追加栈空间即为动态栈。
¾顺序栈的结构类型定义:typedef int SElemType;typedef struct{SElemType *base; /* 栈底指针*/SElemType *top; /* 栈顶指针*/int stacksize; /* 栈空间大小*/ }SqStack;数据结构之栈和队列4¾基本算法描述¾建立能存放50个栈元素的空栈#define STACK_INIT_SIZE 50#define STACKINCREMENT 10Status InitStack_Sq(Stack &S){S.base=(SET*)malloc(STACK_INIT_SIZE *sizeof(SET)); /*为栈分配空间*/if(S.base==NULL)exit(OVERFLOW); /*存储分配失败*/ S.top=S.base;S.stacksize = STACK_INIT_SIZE;return OK; }数据结构之栈和队列5¾出栈操作算法void pop(Sqstack s,SElemType e){if(s.top= = s.base)return ERROR;else{s.top--;e= *s.top;}return OK;}出栈操作topABY topABYbase base数据结构之栈和队列6¾压栈操作算法void Push(SqStack s,SElemType e)if(s.top-s.base>= S.stacksize;) {S.base=(SET*)realloc(S,base,(S.stacksize+STACKINCREMEN T) *sizeof(SET)); /*为栈重新分配空间*/if(!S.base)exit(OVERFLOW);S.top=S.base+S.stacksize;S.stacksize+=STACKINCREMENT;}*S.top=e;S.top++;}return OK; }topAB压栈操作topABebase base数据结构之栈和队列7¾栈的销毁void DestroyStack_Sq(Stack &S){ if (S.base) free(S.base);S.base=NULL;S.top=NULL;S.stacksize=0;}¾栈的清除void ClearStack_Sq(Stack &S){ S.top = S.base ;}数据结构之栈和队列8¾判断栈是否为空栈Status StackEmpty_Sq(Stack S){ if(S.top==S.base) return TRUE;else return FALSE;}¾获得栈的实际长度int StackLength_Sq(Stack S){return(abs(S.top-S.base));}数据结构之栈和队列9¾多个栈共享邻接空间两个栈共享一空间::::::top1top21m中间可用空间栈1栈2地址Base1Base 2……数据结构之栈和队列103. 3 栈与递归¾递归函数:一个直接调用自己或通过一系列的调用语句间接地调用自己的函数。
信息学奥赛知识点(十二)—栈和队列
栈和队列是信息学竞赛中经常涉及的数据结构,它们在算法和程序设计中有着广泛的应用。
掌握栈和队列的基本原理和操作方法,对于参加信息学竞赛的同学来说是非常重要的。
本文将深入探讨栈和队列的相关知识点,帮助大家更好地理解和掌握这两种数据结构。
一、栈的定义与特点栈是一种先进后出(LIFO)的数据结构,它的特点是只允许在栈顶进行插入和删除操作。
栈可以用数组或链表来实现,常见的操作包括压栈(push)、出栈(pop)、获取栈顶元素(top)等。
栈的应用非常广泛,比如在计算机程序中,函数的调用和返回值的存储就是通过栈来实现的。
二、栈的基本操作1. 压栈(push):将元素压入栈顶2. 出栈(pop):将栈顶元素弹出3. 获取栈顶元素(top):返回栈顶元素的值,但不把它从栈中移除4. 判空:判断栈是否为空5. 获取栈的大小:返回栈中元素的个数三、栈的应用1. 括号匹配:利用栈来检查表达式中的括号是否匹配2. 表达式求值:利用栈来实现中缀表达式转换为后缀表达式,并进行求值3. 迷宫求解:利用栈来实现迷宫的路径搜索4. 回溯算法:在深度优先搜索和递归算法中,通常会用到栈来保存状态信息四、队列的定义与特点队列是一种先进先出(FIFO)的数据结构,它的特点是只允许在队尾进行插入操作,在队首进行删除操作。
队列同样可以用数组或链表来实现,常见的操作包括入队(enqueue)、出队(dequeue)、获取队首元素(front)、获取队尾元素(rear)等。
队列在计算机领域也有着广泛的应用,比如线程池、消息队列等都可以用队列来实现。
五、队列的基本操作1. 入队(enqueue):将元素插入到队列的末尾2. 出队(dequeue):从队列的头部删除一个元素3. 获取队首元素(front):返回队列的头部元素的值4. 获取队尾元素(rear):返回队列的尾部元素的值5. 判空:判断队列是否为空6. 获取队列的大小:返回队列中元素的个数六、队列的应用1. 广度优先搜索算法(BFS):在图的搜索中,通常会用队列来实现BFS算法2. 线程池:利用队列来实现任务的调度3. 消息队列:在分布式系统中,常常会用队列来进行消息的传递4. 最近最少使用(LRU)缓存算法:利用队列实现LRU缓存淘汰在信息学竞赛中,栈和队列的相关题目经常出现,并且有一定的难度。
数据结构与算法试题
数据结构与算法试题题目一:栈与队列1.1 栈的定义和基本操作栈是一种先进后出的数据结构,可以通过push操作将元素入栈,通过pop操作将栈顶元素出栈。
请问如何实现一个栈,并给出相关的操作函数和实例演示。
1.2 队列的定义和基本操作队列是一种先进先出的数据结构,可以通过enqueue操作将元素入队,通过dequeue操作将队首元素出队。
请问如何实现一个队列,并给出相关的操作函数和实例演示。
题目二:排序算法2.1 冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历要排序的元素,依次比较相邻的两个元素,并按照大小进行交换。
请问如何实现冒泡排序,给出时间复杂度和空间复杂度。
2.2 快速排序快速排序是一种常用的排序算法,它采用分治的思想,将数组分割成两个子数组,然后递归地对子数组进行排序。
请问如何实现快速排序,给出时间复杂度和空间复杂度。
题目三:查找算法3.1 二分查找二分查找是一种常见的查找算法,它要求查找的序列是有序的。
请问如何实现二分查找,给出时间复杂度和空间复杂度。
3.2 哈希表查找哈希表是一种高效的查找数据结构,通过将关键字映射到特定的位置来进行查找。
请问如何实现哈希表查找,给出时间复杂度和空间复杂度。
题目四:图算法4.1 图的定义和表示图是由节点和边构成的一种数据结构,可以用邻接矩阵或邻接表来表示。
请问如何定义和表示一个图,给出相关的数据结构和实例演示。
4.2 深度优先搜索和广度优先搜索深度优先搜索和广度优先搜索是常用的图算法,用于遍历图中的所有节点。
请问如何实现深度优先搜索和广度优先搜索,给出相应的算法和实例演示。
总结:在本文中,我们介绍了数据结构与算法中的一些常见题目,包括栈与队列、排序算法、查找算法以及图算法。
我们讨论了它们的定义、基本操作、实现方法以及相应的时间复杂度和空间复杂度。
这些内容对于理解和掌握数据结构与算法有着重要的意义,希望能够对读者有所帮助。
栈和队列的基本操作方法
栈和队列的基本操作方法栈和队列是常见的数据结构,它们在计算机科学中有着广泛的应用。
栈和队列都是一种线性数据结构,但它们在插入和删除元素的方式上有所不同。
接下来,将介绍栈和队列的基本操作方法,包括定义、插入、删除和查询等。
一、栈(Stack)的基本操作方法:1. 定义:栈是一种先进后出(Last-In-First-Out,LIFO)的数据结构。
类似于现实生活中的一叠盘子,只能在栈顶进行操作。
2.创建栈:可以使用数组或链表作为栈的底层数据结构。
通过创建一个空数组或链表,称之为栈顶指针或栈顶节点,初始时指向空,表示栈为空。
3. 入栈(Push):将一个元素添加到栈顶。
需要将新增元素放在栈顶指针或栈顶节点之后,更新栈顶指针或栈顶节点的指向。
4. 出栈(Pop):删除栈顶元素,并返回删除的元素值。
需要将栈顶指针或栈顶节点向下移动一个位置,指向下一个元素。
5. 获取栈顶元素(Top):返回栈顶元素的值,但不删除该元素。
只需访问栈顶指针或栈顶节点所指向的元素即可。
6. 判断栈是否为空(isEmpty):通过检查栈顶指针或栈顶节点是否为空来判断栈是否为空。
二、队列(Queue)的基本操作方法:1. 定义:队列是一种先进先出(First-In-First-Out,FIFO)的数据结构。
类似于现实生活中的排队,按照先后顺序依次进入队列,先进入队列的元素首先被删除。
2.创建队列:可以使用数组或链表作为队列的底层数据结构。
通过创建一个空数组或链表,分别设置一个队首指针和一个队尾指针,初始时指向空,表示队列为空。
3. 入队(Enqueue):将一个元素添加到队尾。
需要将新增元素放在队尾指针或队尾节点之后,更新队尾指针或队尾节点的指向。
4. 出队(Dequeue):删除队首元素,并返回删除的元素值。
需要将队首指针或队首节点向下移动一个位置,指向下一个元素。
5. 获取队首元素(Front):返回队首元素的值,但不删除该元素。
堆栈和队列的基本操作
堆栈和队列的基本操作一、堆栈(Stack)堆栈是一种具有特殊插入和删除规则的线性数据结构。
它按照“后进先出”(Last-In-First-Out, LIFO)原则管理数据。
1.堆栈的初始化堆栈的初始化即创建一个空堆栈。
2. 入栈(Push)入栈是将数据插入到堆栈顶部的操作。
数据插入后,堆栈的长度加1、插入的数据成为新的堆栈顶部。
3. 出栈(Pop)出栈是将堆栈顶部的数据删除的操作。
删除后,堆栈的长度减1、删除的数据为原堆栈的顶部。
4. 取栈顶元素(Top)取栈顶元素是获取当前堆栈顶部的数据,而不进行删除操作。
5. 判断堆栈是否为空(IsEmpty)判断堆栈是否为空,即判断堆栈的长度是否为0。
6. 获取堆栈长度(GetSize)获取堆栈的长度,即当前堆栈中元素的数量。
堆栈可以使用数组或链表来实现。
数组实现的堆栈称为顺序堆栈,链表实现的堆栈称为链式堆栈。
堆栈的应用:-递归函数的调用和返回-表达式求值-括号匹配-浏览器前进后退功能二、队列(Queue)队列也是一种具有特定插入和删除规则的线性数据结构。
它按照“先进先出”(First-In-First-Out, FIFO)原则管理数据。
1.队列的初始化队列的初始化即创建一个空队列。
2. 入队(Enqueue)入队是将数据插入到队列尾部的操作。
数据插入后,队列的长度加1、插入的数据成为新的队列尾部。
3. 出队(Dequeue)出队是将队列头部的数据删除的操作。
删除后,队列的长度减1、删除的数据为原队列的头部。
4. 获取队首元素(Peek)获取队列头部的数据,而不进行删除操作。
5. 判断队列是否为空(IsEmpty)判断队列是否为空,即判断队列的长度是否为0。
6. 获取队列长度(GetSize)获取队列的长度,即当前队列中元素的数量。
队列也可以使用数组或链表来实现。
数组实现的队列称为顺序队列,链表实现的队列称为链式队列。
还有一种特殊的队列称为优先队列,它根据元素的优先级进行排序。
数据结构栈和队列实验报告
数据结构栈和队列实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构中的栈和队列的基本概念、操作原理以及实际应用。
通过编程实现栈和队列的相关操作,加深对其特性的认识,并能够运用栈和队列解决实际问题。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、实验原理(一)栈栈(Stack)是一种特殊的线性表,其操作遵循“后进先出”(Last In First Out,LIFO)的原则。
可以将栈想象成一个只有一端开口的容器,元素只能从开口端进出。
入栈操作(Push)将元素添加到栈顶,出栈操作(Pop)则从栈顶移除元素。
(二)队列队列(Queue)也是一种线性表,但其操作遵循“先进先出”(FirstIn First Out,FIFO)的原则。
队列就像是排队买票的队伍,先到的人先接受服务。
入队操作(Enqueue)将元素添加到队列的末尾,出队操作(Dequeue)则从队列的头部移除元素。
四、实验内容(一)栈的实现与操作1、定义一个栈的数据结构,包含栈顶指针、存储元素的数组以及栈的最大容量等成员变量。
2、实现入栈(Push)操作,当栈未满时,将元素添加到栈顶,并更新栈顶指针。
3、实现出栈(Pop)操作,当栈不为空时,取出栈顶元素,并更新栈顶指针。
4、实现获取栈顶元素(Top)操作,返回栈顶元素但不进行出栈操作。
5、实现判断栈是否为空(IsEmpty)和判断栈是否已满(IsFull)的操作。
(二)队列的实现与操作1、定义一个队列的数据结构,包含队头指针、队尾指针、存储元素的数组以及队列的最大容量等成员变量。
2、实现入队(Enqueue)操作,当队列未满时,将元素添加到队尾,并更新队尾指针。
3、实现出队(Dequeue)操作,当队列不为空时,取出队头元素,并更新队头指针。
4、实现获取队头元素(Front)操作,返回队头元素但不进行出队操作。
5、实现判断队列是否为空(IsEmpty)和判断队列是否已满(IsFull)的操作。
栈与队列的基本操作
a0
a1
a2
…
…
an-1
front
元素移动方向
rear
图7.15队列
图中队列的队尾(rear) 随着元素的不断加入,而不断向后移; 而队头(front)随元素的出队,也不断后移,即位置在变。
7.3.2 队列
顺序队列的缺点:
由图可见:空队 时指针(下标) front和rear在 一起都指向队前 方,当有元素进 队,则rear后 移;有元素出队, 则front后移, 最后分配给队的 前端不再被利用。
加标志,能否实现?
Question:循环队列的队满/队空如何区分? (1)浪费一个空位置,空队时rear=front;满队时 必须空一个位置; (2)加标志来表示队空/队满,进队出队都要判 断,使用上更不方便。
顺序表循环队列类的设计
class CycleQueue {
不用空位置,用标志需要有
int rear,front;
//进队,rear++
DataType DeQue();
//出队,front++
DataType GetFront();
//取队头数据,front不变
void MakeEmpty不(){用fro空nt=位rea置r=,0;e不lem用e标nts志[fr。on当t]=NULL; }//队置空
(初始态) };
istack.PrintStack();
for(i=0;i<10;i++) b[i]=istack.Pop();
if(istack.IsEmpty()) cout<<"栈空"<<endl;
for(i=0;i<10;i++) cout<<b[i]<<'\t'; //注意先进后出
大学《数据结构》第三章:栈和队列-第一节-栈
第一节栈
一、栈的定义及其运算
1、栈的定义
栈(Stack):是限定在表的一端进行插入和删除运算的线性表,通常将插入、删除的一端称为栈项(top),另一端称为栈底(bottom)。
不含元素的空表称为空栈。
栈的修改是按后进先出的原则进行的,因此,栈又称为后进先出(Last In First Out)的线性表,简称为LIFO表。
真题选解
(例题·填空题)1、如图所示,设输入元素的顺序是(A,B,C,D),通过栈的变换,在输出端可得到各种排列。
若输出序列的第一个元素为D,则输出序列为。
隐藏答案
【答案】DCBA
【解析】根据堆栈"先进后出"的原则,若输出序列的第一个元素为D,则ABCD入栈,输出序列为DCBA
2、栈的基本运算
(1)置空栈InitStack(&S):构造一个空栈S。
栈队列及其应用实验报告
一、实验目的1. 理解栈和队列的基本概念、特点及逻辑结构。
2. 掌握栈和队列的存储结构,包括顺序存储结构和链式存储结构。
3. 熟练掌握栈和队列的基本操作,如入栈、出栈、入队、出队等。
4. 分析栈和队列在实际问题中的应用,提高解决实际问题的能力。
二、实验内容1. 栈和队列的定义及特点2. 栈和队列的存储结构3. 栈和队列的基本操作4. 栈和队列的实际应用案例分析三、实验过程1. 栈和队列的定义及特点栈(Stack)是一种后进先出(Last In First Out,LIFO)的数据结构,它只允许在一端进行插入和删除操作。
栈的典型应用场景有函数调用、递归算法等。
队列(Queue)是一种先进先出(First In First Out,FIFO)的数据结构,它允许在两端进行插入和删除操作。
队列的典型应用场景有打印队列、任务队列等。
2. 栈和队列的存储结构(1)顺序存储结构栈和队列的顺序存储结构使用数组来实现。
对于栈,通常使用数组的一端作为栈顶,入栈操作在栈顶进行,出栈操作也在栈顶进行。
对于队列,通常使用数组的一端作为队首,入队操作在队尾进行,出队操作在队首进行。
(2)链式存储结构栈和队列的链式存储结构使用链表来实现。
对于栈,每个元素节点包含数据和指向下一个节点的指针。
入栈操作在链表头部进行,出栈操作在链表头部进行。
对于队列,每个元素节点包含数据和指向下一个节点的指针。
入队操作在链表尾部进行,出队操作在链表头部进行。
3. 栈和队列的基本操作(1)栈的基本操作- 入栈(push):将元素添加到栈顶。
- 出栈(pop):从栈顶删除元素。
- 获取栈顶元素(peek):获取栈顶元素,但不删除它。
- 判断栈空(isEmpty):判断栈是否为空。
(2)队列的基本操作- 入队(enqueue):将元素添加到队列尾部。
- 出队(dequeue):从队列头部删除元素。
- 获取队首元素(peek):获取队首元素,但不删除它。
数据结构实用教程(C语言版) 第3章 栈和队列
3.1.1 栈的概念
假设有一个栈S=(a1,a2,…,an),栈 中元素按a1,a2,…,an的次序进栈后, 进栈的第一个元素a1为栈底元素,出栈的第 一个元素an为栈顶元素,也就是出栈的操作 是按后进先出的原则进行的,其结构如图31所示。
图3-1栈结构示意图
返回到本节目录
3.1.2栈的基本操作
3.1.3顺序栈
由于栈是操作受限制的线性表,因此与线性表类似,栈也 有两种存储结构,即顺序存储结构和链式存储结构。 1. 顺序栈的定义 栈的顺序存储结构称为顺序栈。类似于顺序表的类型定义,顺 序栈是用一个预设的足够长度的一维数组和一个记录栈顶元素 位置的变量来实现。顺序栈中栈顶指针与栈中数据元素的关1.3顺序栈
3. 顺序栈的基本操作实现
(3)进栈操作 进栈操作的过程如图3-3所示。先判断栈S如图3-3(a) 是否为满,若不满再将记录栈顶的下标变量top加1如 图3-3(b),最后将进栈元素放进栈顶位置上如图33(c)所示,算法描述见算法3.3。
图3-3 进栈操作过程图
返回到本节目录
栈除了在栈顶进行进栈与出栈外,还有初始化、判空 等操作,常用的基本操作有: (1)初始化栈InitStack(S)。其作用是构造一个空 栈 S。 (2)判断栈空EmptyStack(S)。其作用是判断是 否是空栈,若栈S为空,则返回1;否则返回0。 (3)进栈Push(S,x)。其作用是当栈不为满时,将 数据元素x插入栈S中,使其为栈S的栈顶元素。 (4)出栈Pop(S,x)。其作用是当栈S不为空时,将 栈顶元素赋给x,并从栈S中删除当前栈顶元素。 (5)取栈顶元素GetTop(S,x)。其作用是当栈S不 为空时,将栈顶元素赋给x并返回,操作结果只是 读取栈顶元素,栈S不发生变化。 返回到本节目录
第3章栈和队列
3.1.2 栈的表示和算法实现
1.顺序栈 2.链栈
第3章栈和队列
1. 顺序栈 顺序栈是用顺序存储结构实现的栈,即利 用一组地址连续的存储单元依次存放自栈 底到栈顶的数据元素,同时由于栈的操作 的特殊性,还必须附设一个位置指针top( 栈顶指针)来动态地指示栈顶元素在顺序 栈中的位置。通常以top=-1表示空栈。
第 3 章 栈和队列
3.1 栈 3.2 队列 3.3 栈和队列的应用
第3章栈和队列
3.1 栈
3.1.1 栈的抽象数据类型定义 3.1.2 栈的表示和算法实现
第3章栈和队列
3.1.1 栈的定义
1.栈的定义 栈(stack)是一种只允许在一端进行插入和删除的线 性表,它是一种操作受限的线性表。在表中只允许进
行插入和删除的一端称为栈顶(top),另一端称为 栈 底 (bottom) 。 栈 的 插 入 操 作 通 常 称 为 入 栈 或 进 栈 (push),而栈的删除操作则称为出栈或退栈(pop)。 当栈中无数据元素时,称为空栈。
栈是按照后进先出 (LIFO)的原则组 织数据的,因此, 栈也被称为“后进 先出”的线性表。
第3章栈和队列
(2)入栈操作
Status Push(SqStack &S, Elemtype e)
【算法3.2 栈的入栈操作】
{ /*将元素e插入到栈S中,作为S的新栈顶*/
if (S->top>= Stack_Size -1) return ERROR;
else { S->top++;
S->elem[S->top]=e;
return OK;}
Push(S,’you’)
栈和队列思政小课堂理解
栈和队列思政小课堂理解栈和队列的定义、区别,存在的意义1、栈的定义(1)栈:栈实际上是一种线性表,它只允许在固定的一段进行插入或者删除元素,在进行数据插入或者删除的一段称之为栈顶,剩下的一端称之为栈顶。
其遵循的原则是后进先出。
(2)栈的核心操作:三大核心操作,入栈,出栈,取栈顶元素(3)对于栈的形象理解:子弹的弹夹我们一定见过,子弹在被压入的时候就相当于是一个个元素,而弹夹就相当于是栈。
先被压入的子弹是最后被打出的,先压入的元素是最后出来的,也就是后进先出。
2、队列的定义(1)队列:首先队列也是一种特殊的线性表,它允许在一端进行插入数据,在另一端进行删除数据的。
队列里边有队首,队尾,队首元素。
其遵循的原则是先进先出。
(2)队列的核心操作:三大核心操作分别是入队列,出队列,取队首元素。
(3)对于队列的形象理解:火车穿越隧道,火车的头相当于是队列的首,火车的尾相当于是队列的尾部。
火车在穿越隧道的时候,头部先进入隧道头部也先出隧道,尾部后进入尾部后出隧道。
队列也就是先入的元素先出队列,后进入的元素后出队列。
3、栈和队列的区别(1)栈和队列的出入方式不同:栈是后进先出、队列是先进先出。
(2)栈和队列在具体实现的时候操作的位置不同:因为栈是后进先出,它在一段进行操作;而队列是先进先出,实现的时候在两端进行。
在Java标准库中实现队列时是按照链表实现的。
4、栈和队列存在的意义上边我们提到过:栈和队列都是一种典型的线性表,都是基于线性表(顺序表和链表)来实现的,那么我们研究栈和队列的目的何在?因为在栈和队列定义后,只有那三种操作,而那三种操作都是最常用的,它支持的操作越少,我们在使用的时候关心的点也就越少,用起来就越不容易出错。
在计算机中“少即是多”,少意味着功能比较少、比较呆板。
多意味着功能很多,用的时候要操的心就越多,就越容易出错。
综上:栈和队列存在的意义就是减少线性表的基本操作,提取常用操作,让人们使用起来更方便,更不容易出错。
栈和队列区别及应用场景
栈和队列区别及应用场景栈(Stack)和队列(Queue)是两种常见的数据结构,它们在计算机科学领域有广泛的应用。
本文将从定义、特点和基本操作等方面详细介绍栈和队列的区别,并分析它们各自的应用场景。
一、栈的定义及特点:栈是一种线性数据结构,其特点是“先进后出”(Last In First Out,LIFO)。
即在栈中最后一个进入的元素,也是第一个出栈的元素。
栈的基本操作包括入栈和出栈。
入栈(Push)是将一个元素追加到栈的顶部,出栈(Pop)是将栈顶元素移除。
栈的应用场景:1.函数调用:在函数调用时,每遇到一个新的函数调用就将当前的上下文(包括局部变量和返回地址)压入栈中,当函数调用完毕后,再弹出栈顶元素,恢复上一个函数的上下文。
2.表达式求值:栈可以用于进行中缀表达式到后缀表达式的转换,并通过栈来计算后缀表达式的值。
3.递归:递归算法的实现中通常会使用栈来保存递归调用的上下文。
4.撤销操作:在很多应用程序中,比如文本编辑器和图像处理软件中,通过栈来存储用户操作,以便可以撤销之前的操作。
5.浏览器历史记录:浏览器通常使用栈来实现历史记录的功能,每当用户浏览一个新的页面时,就将该页面的URL入栈,当用户点击后退按钮时,再依次出栈。
6.二叉树的遍历:用栈可以实现二叉树的深度优先遍历,具体的实现是使用非递归的方式进行前序、中序、后序遍历。
二、队列的定义及特点:队列也是一种线性数据结构,其特点是“先进先出”(First In First Out,FIFO)。
即在队列中最先进入的元素,也是第一个出队列的元素。
队列的基本操作包括入队和出队。
入队(Enqueue)是将元素放入队列的尾部,出队(Dequeue)是将队列的头部元素移除。
队列的应用场景:1.广度优先搜索:在图论中,广度优先搜索(Breadth First Search,BFS)通常会使用队列来实现,按照层次的顺序进行搜索。
2.缓冲区:队列可以用作缓冲区,在生产者和消费者模型中,生产者将数据放入队列的尾部,消费者从队列的头部取出数据进行处理。
数据结构栈和队列知识点总结
数据结构栈和队列知识点总结一、栈的基本概念栈是一种线性数据结构,具有后进先出(LIFO)的特点。
栈有两个基本操作:入栈(push)和出栈(pop)。
入栈指将元素压入栈中,出栈指将最近压入的元素弹出。
二、栈的实现方式1. 数组实现:利用数组来存储元素,通过一个变量来记录当前栈顶位置。
2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。
三、应用场景1. 表达式求值:使用两个栈分别存储操作数和运算符,按照优先级依次进行计算。
2. 函数调用:每当调用一个函数时,就将当前函数的上下文信息压入调用栈中,在函数返回时再弹出。
3. 浏览器历史记录:使用两个栈分别存储浏览器前进和后退的网页地址。
四、队列的基本概念队列是一种线性数据结构,具有先进先出(FIFO)的特点。
队列有两个基本操作:入队(enqueue)和出队(dequeue)。
入队指将元素加入到队列尾部,出队指从队列头部删除元素。
五、队列的实现方式1. 数组实现:利用数组来存储元素,通过两个变量分别记录队列头和队列尾的位置。
2. 链表实现:利用链表来存储元素,每个节点包含一个数据域和一个指向下一个节点的指针。
六、应用场景1. 广度优先搜索:使用队列来保存待访问的节点,按照层次依次访问。
2. 线程池:使用队列来保存任务,线程从队列中取出任务进行处理。
3. 缓存淘汰策略:使用队列来维护缓存中元素的顺序,根据一定策略选择删除队首或队尾元素。
七、栈和队列的比较1. 栈是一种后进先出的数据结构,而队列是一种先进先出的数据结构。
2. 栈只能在栈顶进行插入和删除操作,而队列可以在两端进行操作。
3. 栈可以用于回溯、函数调用等场景,而队列适合于广度优先搜索、缓存淘汰等场景。
八、常见问题及解决方法1. 栈溢出:当栈空间不够时,会发生栈溢出。
解决方法包括增加栈空间大小、减少递归深度等。
2. 队列空间浪费:当使用数组实现队列时,可能会出现队列空间不足的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
printf(" * 1:十进制间转换任意进制2:判断是否空栈*\n");
printf(" * 3:求栈的长度4:读出栈顶元素*\n");
printf(" * 5:置空栈6:销毁栈*\n");
printf(" * 7:退出程序*\n");
printf(" **************************************************************\n");
九、对本实验过程及方法、手段的改进建议:
对单个实现程序进行一一编译连接,能够更好更快的找出程序代码中的错误。
报告评分:
指导教师签字:批阅日期:
注意:
实验报告以纸质文档形式上交。实验报告将记入平时成绩;
每次实验开始时,交上一次的实验报告,否则将扣除此次实验成绩。
4.加深对栈结构和队列结构的理解,逐步培养解决实际问题的编程能力。
四、实验内容:
1.定义顺序栈,完成栈的基本操作:空栈、入栈、出栈、取栈顶元素;
2.实现十进制数与八进制数的转换,十进制数与十六进制数的转换和任意进制之间的转换;
利用栈的顺序存储结构,设计一组输入数据(假定为一组整数),能够对顺序栈进行如下操作:
{int n,i,j;
while(a)
{ n=a%q; a=a/q; push(s,n);
}
printf("答案是\n");
j=s->top;
while(s->top>-1)
{ i=pop(s);
if(i==10) printf("A");
else if(i==11) printf("B");
else if(i==12) printf("C");
{ int n; n=s->top+1; return n;
}
void main() /*主函数*/
{ int i,x,n;
s=(seqstack *));
s->top=-1;
printf(" **************************************************************\n");
六、实验步骤及操作:
#include<stdio.h>
#include<stdlib.h>
#define MAXSIZE 100
typedef struct
{ int data[MAXSIZE];
int top;
}seqstack;
seqstack *s;
int setnull(seqstack *s)/*把S置为空栈*/
else return 0;
}
int push(seqstack *s,int e) /*插入元素e为新的栈顶元素*/
{if(s->top==MAXSIZE-1)
return 0;
else
{ s->data[++s->top]=e;
return 1;
}
}
int pop(seqstack *s)/*若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR */
case 5:printf("%d\n",setnull(s));break;
case 6:printf("%d\n",destroystack(s));break;
case 7:printf("感谢使用\n");i=0;break;
default:printf("\n您的选择错误,请重新选择!\n");
else if(i==13) printf("D");
else if(i==14) printf("E");
else if(i==15) printf("F");
else printf("%d",i);
}
s->top=j;
printf("\n");
}
int Stacklen(seqstack *s)/*返回S的元素个数,即栈的长度*/
{if(s->top==-1)
return NULL;
else return s->data[s->top--];
}
int gettop(seqstack *s)
{ if(s->top==-1) return NULL;
else
{
return s->data[s->top];
}
}void convert(int a,int q) /*转换*/
while(i)
{printf("请输入您的选择1,2,3,4,5,6,7\n");
scanf("%d",&i);
switch(i)
{ case 1:printf("请输入十进制数字\n");
scanf("%d",&x);
for(n=0;n!=8&&n!=2&&n!=16;)
{printf("需要转换为多少进制\n");
闽江学院电子系
实验报告
学生姓名:樊兴德
班级:15级电信一班
学号:3151003165
一、实验题目:栈和队列的定义及基本操作
二、实验地点:大成楼A210
三、实验目的:
1.熟练掌握栈和队列的特点。
2.掌握栈的定义和基本操作,熟练掌握顺序栈的操作及应用。
3.掌握对列的定义和基本操作,熟练掌握链式队列的操作及应用,掌握环形队列的入队和出队等基本操作。
}
}
}
保存,编译,连接,运行。
七、实验结果:
1.将十进制数64转换为八进制数。
2.将十进制数128转化为十六进制数。
八、实验总结及心得体会:
1.栈是操作受限的线性表,限定对元素的插入和删除运算只能在表的一端进行。
2.由栈的定义可知,每一次入栈的元素都在原栈顶元素之上成为新的栈顶元素,每一次出栈的元素总是当前栈顶元素使次栈顶元素成为新的栈顶元素,即最后进栈的元素总是最先出栈。所以栈也称为后进先出表。
.初始化一个空栈,分配一段连续的存储空间,且设定好栈顶和栈底;
.完成一个元素的入栈操作,修改栈顶指针;
.完成一个元素的出栈操作,修改栈顶指针;
.读取栈顶指针所指向的元素的值;
.实现将十进制数N和其它d进制数的转换
..编写主程序,实现对各不同的算法调用。
五、实验环境(使用的软件):Visual C++6.0
scanf("%d",&n);}
if(x==0) printf("0\n");
else convert(x,n);break;
case 2:printf("%d\n",empty(s));break;
case 3:printf("%d\n",Stacklen(s));break;
case 4:printf("%d\n",gettop(s));break;
{s->top=-1;
return 1;}
destroystack(seqstack *S)/*销毁栈S,S不再存在*/
{ free(s);
return 1;
}
int empty(seqstack *s) /*若栈S为空栈,则返回TRUE,否则返回FALSE */
{if(s->top==-1) return 1;