初二平行四边形的动点问题提升

合集下载

八年级数学动点问题中平行四边形存在性问题的探究

八年级数学动点问题中平行四边形存在性问题的探究

动点问题中平行四边形存在性问题的探究一、知识点综述动点问题是近几年各地中考的重中之重,也是教学的难点,其中平行四边形的存在性问题是其中的一种题型。

此类题目通常与代数式、平面直角坐标系、勾股定理、平行四边形及特殊平行四边形的判定等结合起来,综合性特别强。

二、典型图形分析图形条件结论ABCD为平行四边形A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D) x A+ x C= x B+ x D y A+ y C= y B+ y DA、B、C是已知点,以A、B、C、D为顶点的四边形是平行四边形这样的四边形有三个:四边形FACB、四边形ABCD、四边形ABEC三、易错点分析1. 注意区分“以A、B、C、D为顶点的四边形”和“四边形ABCD”的不同之处;2. 注意分析动点的运动过程,看它是否反复运动而存在多种情况;3. 看清题目,注意“当AB=CD和AB∥CD时,分别求出动点P的运动时间”和“当AB=CD且AB∥CD时,动点P的运动时间”之间的区别.下面我们就以一些具体实例加以分析论述.四、典型例题例题1. 如图1-1,在平面直角坐标系中,以A(﹣1,0),B(2,0),C(0,1)为顶点构造平行四边形,则平行四边形顶点D的坐标是图1-1例题2.如图2-1,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以每秒3个单位的速度沿A→D→C向终点C运动,同时点Q从点B出发,以每秒1个单位的速度沿B→A向终点A运动.当四边形PQBC为平行四边形时,运动时间为()图2-1A.4s B.3s C.2s D.1s例题3. 如图3-1所示,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.图3-1例题4. 如图4-1,矩形ABCD中,AB=4,BC=8,动点M从点D出发,沿折线DCBAD方向以2单位每秒的速度运动,动点N从点D出发,沿折线DABCD方向以1单位每秒的速度运动,.(1)若动点M、N同时出发,多长时间相遇?(2)若点E在线段BC上,且BE=3. 若动点M、N同时出发,相遇时停止运动,几秒钟,点A、E、M、N组成平行四边形.图4-1例题5.如图5-1,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少?图5-1例题6. 如图6-1,在矩形ABCD 中,AB =30 cm ,BC =10 cm ,点P 从A 开始沿折线A -B -C -D 以6cm /s 的速度移动,点Q 从点C 开始沿折线C -D -B 以6 cm /s 的速度移动,如果点P 、Q 分别从A 、C同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动时间为t (s ).当t 为何值时,以Q 、P 、B 、C 为顶点的四边形是矩形?DCBAQP图6-1例题7. 如图7-1,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 的延长线上,并且AF =CE .(1)求证:四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.图7-1例题8. 如图8-1所示,在矩形ABCD中,AB=8,BC=12,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度都是每秒2个单位长度,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.图8-1例题9. 如图9-1,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.图9-1答案与解析题1. 如图1-1,在平面直角坐标系中,以A(﹣1,0),B(2,0),C(0,1)为顶点构造平行四边形,则平行四边形顶点D的坐标是图1-1【答案】(3,1)或(-3,1)或(1,-1).【解析】分两种情况讨论:①AB为边,则AB=CD=3,所以D点坐标为(3,1)或(-3,1)②AB为对角线,根据x A+ x B= x C+ x D,y A+ y B= y C+ y D得:x D=1,y D=-1,即D点坐标为(1,-1).故答案为:(3,1)或(-3,1)或(1,-1).题2.如图2-1,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以每秒3个单位的速度沿A→D→C向终点C运动,同时点Q从点B出发,以每秒1个单位的速度沿B→A向终点A运动.当四边形PQBC为平行四边形时,运动时间为()图2-1A.4s B.3s C.2s D.1s【答案】B.【解析】因为AB∥CD,即PC∥BQ,所以只需PC=BQ时,四边形PQBC为平行四边形设运动时间为t,则PC=AD+CD-3t,BQ=t∴5+7-3t=t解得:t=3故答案为:B.题3. 如图3-1所示,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.图3-1 【答案】见解析.【解析】(1)如图3-2所示.图3-2 证明:∵CE平分∠ACB,CF平分∠ACB的外角,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∠2+∠5+∠4+∠6=180°∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴在Rt△CEF中,由勾股定理得:∴EF=13,又∵O是EF的中点∴OC=12EF=6.5;(3)解:当点O在边AC上运动到线段AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.题4. 如图4-1,矩形ABCD中,AB=4,BC=8,动点M从点D出发,沿折线DCBAD方向以2单位每秒的速度运动,动点N从点D出发,沿折线DABCD方向以1单位每秒的速度运动,.(1)若动点M、N同时出发,多长时间相遇?(2)若点E在线段BC上,且BE=3. 若动点M、N同时出发,相遇时停止运动,几秒钟,点A、E、M、N组成平行四边形.图4-1【答案】见解析.【解析】(1)设动点M、N同时出发,x秒相遇,由题意得:2x+x=2×(4+8)解得:x=8.即8秒点M、N相遇.(2)分两种情况讨论:①AE为边时,如图4-2所示.图4-2因为AN∥EM,只需AN=EM时,AEMN为平行四边形设运动时间为t,则AN=8-t,CM=2t-4,EM=5-CM=9-2t,所以8-t=9-2t,解得:t=1不符合题意,舍去.②AE为对角线时,如图4-3所示.图4-3因为AN∥EM,只需AN=EM时,AEMN为平行四边形设运动时间为t,则AN=8-t,CM=2t-4,EM= CM-5=2t-9,所以8-t=2t-9,解得:t=17 3.所以173秒时,点A、E、M、N组成平行四边形.题5.如图5-1,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少?图5-1【答案】见解析.【解析】(1)证明:连接CD交AE于F,如图5-2所示.图5-2∵四边形PCOD 是平行四边形,∴CF =DF ,OF =PF ,∵PE =AO ,∴AF =EF ,又∵CF =DF ,∴四边形ADEC 为平行四边形;(2)解:当点P 运动的时间为32秒时,OP =32,OC =3,则OE =92,在Rt △AOC 中,由勾股定理得,AC =32,在Rt △COE 中,由勾股定理得,CE =3132,∵四边形ADEC 为平行四边形,∴周长为(32+3132)×2=62313.题6. 如图6-1,在矩形ABCD 中,AB =30 cm ,BC =10 cm ,点P 从A 开始沿折线A -B -C -D 以6 cm /s 的速度移动,点Q 从点C 开始沿折线C -D -B 以6 cm /s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动时间为t (s ).当t 为何值时,以Q 、P 、B 、C 为顶点的四边形是矩形?D CBA Q P图6-1【答案】见解析.【解析】依据点P 、Q 所在不同位置分类讨论:①如图6-2所示,点P 在线段AB 上,点Q 在线段CD 上时,D CBA Q P图6-2 根据题意得:CQ =6t ,AP =6t ,则BP =30-6t ,∵四边形ABCD 是矩形∴∠B =∠C =90°,CD ∥AB ,∴只有CQ =BP 时四边形QPBC 是矩形,即6t =30-6t解得:t =52即当t =52时,四边形QPBC 是矩形.②如图6-3所示,点P 在线段CD 上,点Q 在线段AB 上时,D CBA P Q图6-3 根据题意得:BQ =70-6t ,CP =6t -40,当BQ =CP 时四边形QPBC 是矩形,即70-6t =6t -40解得:t =556即当t =556时,四边形QPBC 是矩形.题7. 如图7-1,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.图7-1【答案】见解析.【解析】(1)证明:∵DE为BC的垂直平分线,∴∠EDB=90°,BD=DC,又∵∠ACB=90°,∴DE∥AC,∴E为AB的中点,∴在Rt△ABC中,CE=AE=BE,∴∠AEF=∠AFE,且∠BED=∠AEF,∠DEC=∠DFA,∴AF∥CE,又∵AF=CE,∴四边形ACEF为平行四边形;(2)解:当∠B=30°时,四边形ACEF是菱形,理由如下:因为∠B=30°,所以∠BAC=60°又EC=AE,所以△AEC是等边三角形,所以EC=AC,又ACEF为平行四边形所以ACEF为菱形.故当∠B=30°时,四边形ACEF是菱形.题8. 如图8-1所示,在矩形ABCD中,AB=8,BC=12,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度都是每秒2个单位长度,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.图8-1【答案】见解析.【解析】(1)解:因为ABCD为矩形,所以AP∥BQ,当AP=BQ时,ABQP为矩形,由题意知:AP=12-2t,BQ=2t,所以12-2t=2t,解得:t=3.即t=3时,四边形ABQP是矩形.(2)解:由题意知:BQ=PD,由矩形性质得:AD=BC所以CQ=AP,又CQ∥AP,所以四边形AQCP是平行四边形,当AQ=QC时,AQCP是菱形,即AQ2=QC2,在Rt△ABQ中,由勾股定理得:AQ2=AB2+BQ2,所以82+(2t)2=(12-2t)2,解得:t=5 3,即t=53时,四边形AQCP是菱形.(3)由(2)知:AP=12-2t= 26 3所以菱形AQCP的周长为:104 3,菱形AQCP的面积为:208 3.题9. 如图9-1,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.图9-1【答案】见解析.【解析】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形.理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴平行四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由是:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.。

与特殊的平行四边形有关的动点问题(提升版)

与特殊的平行四边形有关的动点问题(提升版)

第13讲 与特殊的平行四边形有关的动点问题1. (4分)如图,P 为正方形 ABCD 内一点,且PA : PB :PC=1 : 2 : 3,则/ APB 的度数是 .1352. (6分)如图,四边形ABCD 是边长为9的正方形纸片, 点A对应点为A',若B'C=3,则AM 的长为. 2【教学目标】能熟练运用特殊平行四边形的性质定理和判定定理 解决动点问题.【教学重难点】根据已知几何图形间的位置关系和数量关系(如平行、全等) 解决动点涉及到的特殊平行四边形的存在性等问题. 【考点1】菱形的存在性问题【例1】如图,矩形 ABCD 中,E 、F 分别是AD 、BC 上两点,且AE= CF .(1)求证:四边形 BEDF 为平行四边形.(2)若AB=6, AD = 9,则当AE 为何值时,四边形 BFDE 为菱形. ⑵ AE=2.5【例2】如图,平行四边形 ABCD 中,AD=9cm, CD = 3/2cm ,/B=45°,点M 、N 分别以A 、C 为起点, 1cm/秒的速度沿 AD 、CB边运动,设点 M 、N 运动的时间为t 秒(0wtw6).(1)求BC 边上高AE 的长度;(2)连接AN 、CM,当t 为何值时,四边形 AMCN 为菱形;t= 15/4(3)作MP ,BC 于P, NQLAD 于Q,当t 为何值时,四边形 MPNQ为正方形.t= 4.5小测试 总分10分 得分 ___________将其沿MN 折叠,使点B 落在CD 边上的B'处,【例3】如图,O为坐标原点,四边形OABC为矩形,A (10, 0), C (0, 4), D为OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.(1)当t为何值时,四边形PODB是平行四边形?t=5s(2)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值;若不存在,请说明理由;(3)当^ OPD为等腰三角形时,写出点P的坐标(不必写过程).⑵ t= 3s y j,(3) P i (3, 4), P2 (2.5, 4), P3 (2, 4), P4 (8, 4) PC --- *-------------- B.----------------------- ■D Ax【考点2】矩形的存在性问题【例4】如图,平行四边形ABCD的对角线AC、BD相交于点同时分别以2cm/s的速度从点A、C出发在线段AC上运动.O, AC = 20cm, BD=12cm,两动点E、F(1)求证:当E、F运动过程中不与点。

初二数学:平行四边形知识点总结及压轴题练习(附答案解析)

初二数学:平行四边形知识点总结及压轴题练习(附答案解析)

A C BD 初二平行四边形所有知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线互相平分。

3平行四边形的判定:⑴.两组对边分别相等的四边形是平行四边形; ⑵对角线互相平分的四边形是平行四边形;⑶两组对角分别相等的四边形是平行四边形; ⑷一组对边平行且相等的四边形是平行四边形。

4、矩形的定义:有一个角是直角的平行四边形。

5、矩形的性质:⑴矩形的四个角都是直角;⑵矩形的对角线相等。

6、矩形判定定理:⑴ 有三个角是直角的四边形是矩形; ⑵对角线相等的平行四边形是矩形。

7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

(连接三角形两边中点的线段叫做三角形的中位线。

)8、菱形的定义 :有一组邻边相等的平行四边形。

9、菱形的性质:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

S 菱形=1/2×ab (a 、b 为两条对角线长)10、菱形的判定定理:⑴四条边相等的四边形是菱形。

⑵对角线互相垂直的平行四边形是菱形。

11、正方形定义:一个角是直角的菱形或邻边相等的矩形。

12正方形判定定理:⑴ 邻边相等的矩形是正方形。

⑵有一个角是直角的菱形是正方形。

(矩形+菱形=正方形)常考题:一.选择题(共14小题)1.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等2.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形5.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)6.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.117.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.168.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1010.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.1711.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.812.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1913.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣414.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°二.填空题(共13小题)15.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.16.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.17.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO 的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD 和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.19.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.20.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.21.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是.22.如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.23.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.24.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C (0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.25.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标.26.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.27.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三.解答题(共13小题)28.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.29.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.30.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.31.如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.32.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.33.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.34.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?35.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.36.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.37.如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.38.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.39.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.40.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.(2014•河池)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3.(2008•扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.4.(2011•张家界)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.5.(2006•南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.6.(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.7.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【分析】在矩形ABCD中根据AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD 沿EF翻折点B恰好落在AD边的B′处,所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EF B′是等边三角形,由此可得出∠A′B′E=90°﹣60°=30°,根据直角三角形的性质得出A′B′=AB=2,然后根据矩形的面积公式列式计算即可得解.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故选D.【点评】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.8.(2013•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.9.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.10.(2013•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.11.(2013•泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC 的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF 为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD 与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF 与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.12.(2013•菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.13.(2013•连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣4【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.14.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE 相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.二.填空题(共13小题)15.(2008•恩施州)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.16.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD 的周长等于20.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.17.(2013•厦门)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF 是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.18.(2007•临夏州)如图,矩形ABCD的对角线AC和BD相交于点O,过点O 的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE =S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.19.(2014•宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B 的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D 在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.20.(2015•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.21.(2013•十堰)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是1.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=,∴CE==2,∴AB=1,故答案为:1.【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.22.(2013•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF ⊥CD于F,∠B=60°,则菱形的面积为.【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.【解答】解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.【点评】本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.23.(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.24.(2015•攀枝花)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为(2.5,4),或(3,4),或(2,4),或(8,4).【分析】由矩形的性质得出∠OCB=90°,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:①当PO=PD时;②当OP=OD时;③当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标.【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果.25.(2013•阜新)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D 的坐标(3,2),(﹣5,2),(1,﹣2).【分析】首先根据题意画出图形,分别以BC,AB,AC为对角线作平行四边形,即可求得答案.【解答】解:如图:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(3,2),(﹣5,2),(1,﹣2).故答案为:(3,2),(﹣5,2),(1,﹣2).【点评】此题考查了平行四边形的性质.注意坐标与图形的关系.26.(2014•丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF 是等边三角形,再利用菱形的边长为4求出时间t的值.。

平行四边形动点问题方法总结

平行四边形动点问题方法总结

平行四边形动点问题方法总结大家好,今天我们来聊聊平行四边形动点问题。

这个问题可大可小,有时候我们在生活中也会碰到这样的问题。

比如说,你拿着一个碗,碗口朝下放在地上,然后用一根棍子在碗里搅动,碗里的水会形成一个漩涡。

这个现象背后就隐藏着平行四边形动点问题。

那么,我们怎么解决这个问题呢?接下来,我就要给大家普及一下解决平行四边形动点问题的三大法宝:三角形法则、相似三角形法则和向量法。

我们来说说三角形法则。

三角形法则是解决平行四边形动点问题的基本方法。

它的核心思想是利用三角形的三个顶点和三条边的关系,将平行四边形分解成若干个三角形,然后分别求解这些三角形的问题,最后将结果合并起来得到原问题的解。

这个方法简单易懂,而且非常实用。

但是,有时候三角形法则并不能直接解决问题,这时候我们就需要用到第二个法宝:相似三角形法则。

相似三角形法则是解决平行四边形动点问题的另一个重要方法。

它的核心思想是利用相似三角形的性质,将平行四边形分解成若干个相似的三角形,然后分别求解这些三角形的问题,最后将结果合并起来得到原问题的解。

这个方法比三角形法则更加灵活,可以处理更多的问题类型。

但是,相似三角形法则也有它的局限性,有些问题无法用相似三角形法则解决。

这时候,我们就需要用到第三个法宝:向量法。

向量法是解决平行四边形动点问题的最高级方法。

它的核心思想是利用向量的概念,将平行四边形分解成若干个向量,然后分别求解这些向量的问题,最后将结果合并起来得到原问题的解。

这个方法非常强大,可以处理各种复杂的问题类型。

而且,向量法还有一个优点,就是它可以避免一些几何陷阱,让你在解决问题的过程中更加得心应手。

解决平行四边形动点问题有三大法宝:三角形法则、相似三角形法则和向量法。

这三大法宝各有优缺点,我们需要根据具体的问题类型来选择合适的方法。

如果你觉得这些方法还是太难了,也不用担心,我们还有很多其他的方法可以用来解决这个问题。

比如说,你可以尝试画图、列方程、用公式等等。

北师大版八年级数学下册第6章 平行四边形的动点及存在性问题讲义(无答案)

北师大版八年级数学下册第6章 平行四边形的动点及存在性问题讲义(无答案)

平行四边形动点及存在性问题综合复习【学习要点】一、非坐标系下的平行四边形的动点及存在性二、坐标系下的平行四边形的动点及存在性三、一次函数中的平行四边形的动点及存在性①、单动点型②、双动点型【知识概括】一、平行四边形ABCD,这样的命名说明平行四边形的四个顶点A、B、C、D是按顺时针或逆时针的顺序排列的;而A、B、C、D形成平行四边形,可能是平行四边形ABCD,可能是平行四边形ABDC,也可能是平行四边形ADBC等,这时,A、B、C、D四个字母的顺序是不确定的。

二、确定平行四边形:对于A、B、C三点固定,若存在动点D使得四边形ABCD 是平行四边形,则点D只有一种情况,如图①、若存在动点D使得以A、B、C、D为顶点的四边形是平行四边形,则点D有三种情况,如图②。

图①图②三、压轴问题或存在性问题中常用的平行四边形的性质:①、对边平行且相等;②、对角线相互平分。

【方法思路分析】非坐标系下,确定或证明平行四边形的存在性一、必须明确以下情况:①、四边形ABCD是平行四边形,AC、BD一定是对角线,即明确字母顺序,那么对角线就确定了;②、以A、B、C、D四个点为顶点的四边形是平行四边形,对角线不确定,则需要分类讨论。

二、动点问题,无论是单动点还是双动点,解决的策略是根据运动的速度大小及时间,算出运动走过的线段长度,并使用含时间t的代数式,再根据平行四边形的对边相等,对角线相互平分,建立相应的等量关系式,转化成含时间t的方程,解方程,就能确定相应的时间t的值。

顺便指出,由于动点移动的过程,一般不会涉及角度,即使有角度,也是特殊角度问题。

在坐标系下,平行四边形的存在性。

一、平移法确定平行四边形先由题目条件探索三点的坐标(若只有两个定点,可设第三个点为动点),再画出以三点为顶点的平行四边形,根据坐标平移的性质写出第四个顶点的坐标,最后根据题目的要求(动点在什么直线或函数解析式上),判定平行四边形的存在性。

二、关于中点坐标、直线解析式、两点之间的坐标表达等解析法的知识:①、两点之间的距离公式:若A ) ,(11y x ,B ) ,(22y x ,则212212)()(|AB |y y x x −+−=特别地,若AB ∥x 轴,则||||12x x AB −=,若AB ∥y 轴,则||||12y y AB −= ②、一次函数中直线方程(解析式)求k 的方法:若A ) ,(11y x ,B ) ,(22y x ,A 、B 不重合,并且在直线b kx y +=上, 则)(tan 212212x x x x y y k ≠−−==θ(其中θ为直线的倾斜角,tan θ为正切值) ③、中点坐标公式:若A ) ,(11y x ,B ) ,(22y x ,则A 、B 的中点M )22(2121y y x x ++, ④、设1l :111b x k y +=,2l :222b x k y +=若两直线平行,则21k k =且21b b ≠,两直线重合:21k k =且21b b =若两直线垂直,则121−=k k三、代数法(解析法)确定平行四边形的存在性(主要确定四个顶点的坐标) 在ABCD 中,线段AC 、BD 为对角线,设四个顶点坐标分别是) (A A y x A ,,) (B B y x B ,,) (C C y x C ,,) (D D y x D ,,则D B C A x x x x +=+,D B C A y y y y +=+,简写:D B C A +=+(各点的横纵坐标之和)变形:⎩⎨⎧−=−−=−→⎩⎨⎧+=++=+CD B A C D B A D B C A D B C A y y y y x x x x y y y y x x x xA 、三定一动:【示例】已知)3 ,1(A ,)4 ,6(B ,)6 ,4(C ,在坐标系内确定点D 使得以A 、B 、C 、D 四个点为顶点的四边形是平行四边形。

初二数学《平行四边形中的动点问题》(附练习及答案)

初二数学《平行四边形中的动点问题》(附练习及答案)

四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。

解决这类问题关键是动中求静,灵活运用有关数学知识。

数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。

这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。

解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。

1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。

平行四边形的性质专项提升训练(重难点培优)-八年级数学下册尖子生培优必刷题(原卷版)【北师大版】

平行四边形的性质专项提升训练(重难点培优)-八年级数学下册尖子生培优必刷题(原卷版)【北师大版】

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【北师大版】专题6.1平行四边形的性质专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•南海区校级月考)下面性质中,平行四边形不一定具备的是()A.邻角互补B.邻边相等C.对边平行D.对角线互相平分2.(2022春•隆安县期中)在▱ABCD中,∠B=60°,那么下列各式中成立的是()A.∠A+∠C=180°B.∠D=60°C.∠A=100°D.∠B+∠D=180°3.(2022春•曹妃甸区期末)平行四边形相邻两角中,其中一个角的度数y与另一个角的度数x之间的关系是()A.y=x B.y=90﹣x C.y=180﹣x D.y=180+x4.(2022春•淇滨区校级期末)如图,已知▱ABCD中,对角线AC,BD相交于点O,AD=3,AC=8,BD =4,那么BC的长度为()A.6B.5C.4D.35.(2022春•辉县市期末)在▱ABCD中,AC,BD交于点O,△OAB的周长等于5.5cm,BD=4cm,AB+CD =5cm,则AC的长为()A.3cm B.2.5cm C.2cm D.1.5cm6.(2022春•宁都县期末)将平行四边形ABCD放在平面直角坐标系中,顶点A,B,C的坐标分别是(0,0),(4,0),(5,2),则顶点D的坐标是()A.(4,3)B.(1,3)C.(1,2)D.(4,2)7.(2021秋•平阳县校级月考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22B.18C.22或20D.18或228.(2021秋•宁阳县期末)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A.B.4C.D.89.(2022秋•永嘉县校级月考)在平行四边形ABCD中,五块阴影部分的面积分别为S1,S2,S3,S4,S5,如图所示,则下列选项中的关系正确的是()A.S1+S2+S3=S4+S5B.S2+S3=S1+S4+S5C.S3+S4=S1+S2+S5D.S2+S4=S1+S3+S510.(2022春•鼓楼区校级期中)在平面直角坐标系中,▱OABC的边OC落在x轴的正半轴上,点C(4,0),B(6,2),直线y=2x+1以每秒3个单位的速度向下平移,经过多少秒该直线可将▱OABC的面积平分()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022春•姑苏区校级月考)平行四边形ABCD中,∠B:∠C=3:2,则∠C=°.12.(2022秋•任城区校级月考)▱ABCD中,∠A=45°,BC=,则AB与CD之间的距离是;若AB=3,四边形ABCD的面积是,△ABD的面积是.13.(2022•襄汾县一模)如图,在▱ABCD中,点E在AD上,EC平分∠BED,若∠EBC=30°,BE=10,则四边形ABCD的面积为.14.(2022春•遂溪县期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,若AC=10,BD=6,BC=4,则平行四边形ABCD的面积为.15.(2022秋•九龙坡区校级月考)如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,若▱ABCD的面积为16,且AH:HD=1:3.则图中阴影部分的面积为.16.(2022•景德镇模拟)在▱ABCD中,AB=4,∠ABC,∠BCD的平分线BE,CF分别与直线AD交于点E,F,当点A,D,E,F相邻两点间的距离相等时,BC的长为.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•自贡期末)如图,在▱ABCD中,AF∥CE;求证:BE=DF.18.(2022春•新化县期末)如图,在▱ABCD中,对角线AC与BD相交于点O,AC=10,BD=14,CD=5.2,求△AOB的周长.19.(2022春•望城区期末)如图,▱ABCD的对角线AC与BD相交于点O,AC+BD=24,∠ABC=70°,△ABO的周长是20.(1)求∠ADC的度数;(2)求AB的长.20.(2022春•社旗县月考)如图,在平行四边形ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O.有以下三个条件:①AE=CF;②EO=OF;③O为BD中点.从中选取一个作为题设,余下的两个作为结论,组成一个正确的命题,并加以证明.21.(2021春•玉林期中)如图,在▱ABCD中,点E是CD的中点,点F是BC边上的一点,且EF⊥AE.求证:AE平分∠DAF.李华同学读题后有一个想法,延长FE,AD交于点M,要证AE平分∠DAF,只需证△AMF是等腰三角形即可.请你参考李华的想法,完成此题的证明.22.(2021春•拱墅区校级期中)如图,平行四边形ABCD中,AP,BP分别平分∠DAB和∠CBA,交于DC 边上点P,AD=5.(1)求线段AB的长.(2)若BP=6;求△ABP的周长.23.(2021秋•东平县期末)如图①,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.(1)求证:BE=DF;(2)若图中的条件都不变,将EF转动到图②的位置,那么上述结论是否成立?说明理由.24.(2022春•成华区校级期中)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为点E,CE=CD,点F为CE的中点,点G是CD上的一点,连接DF、EG、AG.(1)若CF=4,AE=6,求BE的长;(2)若∠CEG=∠AGE,那么:①判断线段AG和EG的数量关系,并说明理由;②求证:∠1=∠2.。

平行四边形动点问题方法总结

平行四边形动点问题方法总结

平行四边形动点问题方法总结1. 引言:为什么我们要关注平行四边形动点问题?嘿,朋友们!今天我们来聊聊一个看似枯燥却又很有趣的数学话题——平行四边形动点问题。

别急着打哈欠,咱们慢慢来,这可是个让你从头到脚都充满成就感的数学冒险哦。

平行四边形动点问题,听名字就知道,讲的是在平行四边形里,某个点在移动时,会发生什么奇妙的事情。

这不仅仅是数学题,更像是一场迷人的舞蹈。

你知道吗?这些问题其实很接地气,因为它们涉及到很多我们生活中常见的现象,比如房子四角是直角的,家具摆放的角度等等。

2. 方法一:坐标法——从数学角度看平行四边形的奇妙。

2.1 说到解决这类问题,坐标法可是个不可或缺的好帮手。

咱们首先给平行四边形的四个顶点分配坐标,比如A、B、C、D分别是(0, 0)、(a, 0)、(b, c)、(d, e)。

坐标法就是把平行四边形里的每个点都用坐标表示出来,这样一来,不管点怎么动,我们都能通过数学公式来搞定。

2.2 你可以把平行四边形当成一个平面上的大布景,点A、B、C、D就是布景上的关键位置。

然后,动点就是在这个布景上游走的小演员。

比如,如果你要找出某个点P 的轨迹,只需要把P的坐标带入公式,就能知道P跑到哪儿去了。

坐标法简直是数学里的瑞士军刀,万能又省事。

3. 方法二:向量法——用矢量的眼光看世界。

3.1 向量法是另一个很酷的方法。

想象一下,向量就像是一把利刃,把复杂的数学问题一刀切成简单易懂的形状。

比如,平行四边形的对角线是彼此平行的,那么它们之间的向量关系就能告诉我们很多有用的秘密。

如果我们把动点P的运动看作一个向量变化,我们就能用向量运算来分析它的行为。

3.2 向量法的好处在于,它能帮我们迅速搞清楚平行四边形中各个点的相对位置和移动规律。

用这个方法,你可以非常方便地计算出点P在平行四边形内的各种可能位置,也能找到一些隐含的规律,比如点P可能会在平行四边形的对角线附近来回移动。

数学就像个魔术师,向量法让我们能透过表面看到更多的奥秘。

八年级数学动点问题中平行四边形存在性问题的探究

八年级数学动点问题中平行四边形存在性问题的探究

动点问题中平行四边形存在性问题的探究一、知识点综述动点问题是近几年各地中考的重中之重,也是教学的难点,其中平行四边形的存在性问题是其中的一种题型。

此类题目通常与代数式、平面直角坐标系、勾股定理、平行四边形及特殊平行四边形的判定等结合起来,综合性特别强。

二、典型图形分析图形条件结论ABCD为平行四边形A(x A,y A)、B(x B,y B)、C(x C,y C)、D(x D,y D) x A+ x C= x B+ x D y A+ y C= y B+ y DA、B、C是已知点,以A、B、C、D为顶点的四边形是平行四边形这样的四边形有三个:四边形FACB、四边形ABCD、四边形ABEC三、易错点分析1. 注意区分“以A、B、C、D为顶点的四边形”和“四边形ABCD”的不同之处;2. 注意分析动点的运动过程,看它是否反复运动而存在多种情况;3. 看清题目,注意“当AB=CD和AB∥CD时,分别求出动点P的运动时间”和“当AB=CD且AB∥CD时,动点P的运动时间”之间的区别.下面我们就以一些具体实例加以分析论述.四、典型例题例题1. 如图1-1,在平面直角坐标系中,以A(﹣1,0),B(2,0),C(0,1)为顶点构造平行四边形,则平行四边形顶点D的坐标是图1-1例题2.如图2-1,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以每秒3个单位的速度沿A→D→C向终点C运动,同时点Q从点B出发,以每秒1个单位的速度沿B→A向终点A运动.当四边形PQBC为平行四边形时,运动时间为()图2-1A.4s B.3s C.2s D.1s例题3. 如图3-1所示,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.图3-1例题4. 如图4-1,矩形ABCD中,AB=4,BC=8,动点M从点D出发,沿折线DCBAD方向以2单位每秒的速度运动,动点N从点D出发,沿折线DABCD方向以1单位每秒的速度运动,.(1)若动点M、N同时出发,多长时间相遇?(2)若点E在线段BC上,且BE=3. 若动点M、N同时出发,相遇时停止运动,几秒钟,点A、E、M、N组成平行四边形.图4-1例题5.如图5-1,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少?图5-1例题6. 如图6-1,在矩形ABCD 中,AB =30 cm ,BC =10 cm ,点P 从A 开始沿折线A -B -C -D 以6cm /s 的速度移动,点Q 从点C 开始沿折线C -D -B 以6 cm /s 的速度移动,如果点P 、Q 分别从A 、C同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动时间为t (s ).当t 为何值时,以Q 、P 、B 、C 为顶点的四边形是矩形?DCBAQP图6-1例题7. 如图7-1,在△ABC 中,∠ACB =90°,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在DE 的延长线上,并且AF =CE .(1)求证:四边形ACEF 是平行四边形;(2)当∠B 满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.图7-1例题8. 如图8-1所示,在矩形ABCD中,AB=8,BC=12,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度都是每秒2个单位长度,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.图8-1例题9. 如图9-1,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.图9-1答案与解析题1. 如图1-1,在平面直角坐标系中,以A(﹣1,0),B(2,0),C(0,1)为顶点构造平行四边形,则平行四边形顶点D的坐标是图1-1【答案】(3,1)或(-3,1)或(1,-1).【解析】分两种情况讨论:①AB为边,则AB=CD=3,所以D点坐标为(3,1)或(-3,1)②AB为对角线,根据x A+ x B= x C+ x D,y A+ y B= y C+ y D得:x D=1,y D=-1,即D点坐标为(1,-1).故答案为:(3,1)或(-3,1)或(1,-1).题2.如图2-1,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以每秒3个单位的速度沿A→D→C向终点C运动,同时点Q从点B出发,以每秒1个单位的速度沿B→A向终点A运动.当四边形PQBC为平行四边形时,运动时间为()图2-1A.4s B.3s C.2s D.1s【答案】B.【解析】因为AB∥CD,即PC∥BQ,所以只需PC=BQ时,四边形PQBC为平行四边形设运动时间为t,则PC=AD+CD-3t,BQ=t∴5+7-3t=t解得:t=3故答案为:B.题3. 如图3-1所示,在△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.图3-1 【答案】见解析.【解析】(1)如图3-2所示.图3-2 证明:∵CE平分∠ACB,CF平分∠ACB的外角,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∠2+∠5+∠4+∠6=180°∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴在Rt△CEF中,由勾股定理得:∴EF=13,又∵O是EF的中点∴OC=12EF=6.5;(3)解:当点O在边AC上运动到线段AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.题4. 如图4-1,矩形ABCD中,AB=4,BC=8,动点M从点D出发,沿折线DCBAD方向以2单位每秒的速度运动,动点N从点D出发,沿折线DABCD方向以1单位每秒的速度运动,.(1)若动点M、N同时出发,多长时间相遇?(2)若点E在线段BC上,且BE=3. 若动点M、N同时出发,相遇时停止运动,几秒钟,点A、E、M、N组成平行四边形.图4-1【答案】见解析.【解析】(1)设动点M、N同时出发,x秒相遇,由题意得:2x+x=2×(4+8)解得:x=8.即8秒点M、N相遇.(2)分两种情况讨论:①AE为边时,如图4-2所示.图4-2因为AN∥EM,只需AN=EM时,AEMN为平行四边形设运动时间为t,则AN=8-t,CM=2t-4,EM=5-CM=9-2t,所以8-t=9-2t,解得:t=1不符合题意,舍去.②AE为对角线时,如图4-3所示.图4-3因为AN∥EM,只需AN=EM时,AEMN为平行四边形设运动时间为t,则AN=8-t,CM=2t-4,EM= CM-5=2t-9,所以8-t=2t-9,解得:t=17 3.所以173秒时,点A、E、M、N组成平行四边形.题5.如图5-1,在平面直角坐标系中,点A,B的坐标分别是(﹣3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造□PCOD.在线段OP延长线上一动点E,且满足PE=AO.(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;(2)当点P运动的时间为32秒时,求此时四边形ADEC的周长是多少?图5-1【答案】见解析.【解析】(1)证明:连接CD交AE于F,如图5-2所示.图5-2∵四边形PCOD 是平行四边形,∴CF =DF ,OF =PF ,∵PE =AO ,∴AF =EF ,又∵CF =DF ,∴四边形ADEC 为平行四边形;(2)解:当点P 运动的时间为32秒时,OP =32,OC =3,则OE =92,在Rt △AOC 中,由勾股定理得,AC =32,在Rt △COE 中,由勾股定理得,CE =3132,∵四边形ADEC 为平行四边形,∴周长为(32+3132)×2=62313.题6. 如图6-1,在矩形ABCD 中,AB =30 cm ,BC =10 cm ,点P 从A 开始沿折线A -B -C -D 以6 cm /s 的速度移动,点Q 从点C 开始沿折线C -D -B 以6 cm /s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达D 时,另一点也随之停止运动,设运动时间为t (s ).当t 为何值时,以Q 、P 、B 、C 为顶点的四边形是矩形?D CBA Q P图6-1【答案】见解析.【解析】依据点P 、Q 所在不同位置分类讨论:①如图6-2所示,点P 在线段AB 上,点Q 在线段CD 上时,D CBA Q P图6-2 根据题意得:CQ =6t ,AP =6t ,则BP =30-6t ,∵四边形ABCD 是矩形∴∠B =∠C =90°,CD ∥AB ,∴只有CQ =BP 时四边形QPBC 是矩形,即6t =30-6t解得:t =52即当t =52时,四边形QPBC 是矩形.②如图6-3所示,点P 在线段CD 上,点Q 在线段AB 上时,D CBA P Q图6-3 根据题意得:BQ =70-6t ,CP =6t -40,当BQ =CP 时四边形QPBC 是矩形,即70-6t =6t -40解得:t =556即当t =556时,四边形QPBC 是矩形.题7. 如图7-1,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.图7-1【答案】见解析.【解析】(1)证明:∵DE为BC的垂直平分线,∴∠EDB=90°,BD=DC,又∵∠ACB=90°,∴DE∥AC,∴E为AB的中点,∴在Rt△ABC中,CE=AE=BE,∴∠AEF=∠AFE,且∠BED=∠AEF,∠DEC=∠DFA,∴AF∥CE,又∵AF=CE,∴四边形ACEF为平行四边形;(2)解:当∠B=30°时,四边形ACEF是菱形,理由如下:因为∠B=30°,所以∠BAC=60°又EC=AE,所以△AEC是等边三角形,所以EC=AC,又ACEF为平行四边形所以ACEF为菱形.故当∠B=30°时,四边形ACEF是菱形.题8. 如图8-1所示,在矩形ABCD中,AB=8,BC=12,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度都是每秒2个单位长度,连结PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.图8-1【答案】见解析.【解析】(1)解:因为ABCD为矩形,所以AP∥BQ,当AP=BQ时,ABQP为矩形,由题意知:AP=12-2t,BQ=2t,所以12-2t=2t,解得:t=3.即t=3时,四边形ABQP是矩形.(2)解:由题意知:BQ=PD,由矩形性质得:AD=BC所以CQ=AP,又CQ∥AP,所以四边形AQCP是平行四边形,当AQ=QC时,AQCP是菱形,即AQ2=QC2,在Rt△ABQ中,由勾股定理得:AQ2=AB2+BQ2,所以82+(2t)2=(12-2t)2,解得:t=5 3,即t=53时,四边形AQCP是菱形.(3)由(2)知:AP=12-2t= 26 3所以菱形AQCP的周长为:104 3,菱形AQCP的面积为:208 3.题9. 如图9-1,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.图9-1【答案】见解析.【解析】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形.理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴平行四边形BECD是菱形;(3)解:当∠A=45°时,四边形BECD是正方形,理由是:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.。

第十八章平行四边形四边形中的动点问题(教案)人教版八年级数学下册

第十八章平行四边形四边形中的动点问题(教案)人教版八年级数学下册
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形中动点问题的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对动点问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现同学们对平行四边形内动点问题的探究表现得非常积极。他们对于动点的运动规律和性质有了初步的认识,也尝试着将这些知识应用到实际问题中。我觉得这是一个很好的开始,但也发现了一些需要改进的地方。
首先,理论讲授部分,我发现有些同学对动点问题的基本概念掌握不够扎实。可能是我讲解得不够细致,也可能是同学们对这些概念还不够熟悉。在以后的教学中,我需要更加注意这一点,尽量用简单易懂的语言和丰富的例子来帮助他们理解。
3.重点难点解析:在讲授过程中,我会特别强调动点的运动规律和利用平行四边形性质解题这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与动点问题相关的实际问题。
2.实行四边形中的运动规律和性质。
-难点二:在实际问题中,学生可能不知道如何选择合适的定理和性质来解决动点问题。教师应指导学生通过分析问题结构,识别关键信息,进而选择恰当的几何定理进行求解。
-难点三:针对不同动点问题,如路径最短、面积最大等,学生可能不知如何下手。教师应教授学生分类讨论和优化的方法,帮助学生理清思路,找到解题突破口。
4.培养合作意识和团队精神,在小组讨论和探究过程中,学会倾听、交流、表达和协作,共同解决问题。

人教版初二数学8年级下册 第18章(平行四边形)动点问题专项训练(含答案)

人教版初二数学8年级下册 第18章(平行四边形)动点问题专项训练(含答案)

人教版数学八年级下期第十八章平行四边形动点问题训练1.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在的直线对着得到△BQN,延长QN交BA的延长线于点M.(1)求证:AP⊥BQ;(2)当P在BC何处时,点N是MQ的中点.(3)若AB=3,P是BC的三等分点,求QM的长;2.如图,四边形ABCD是正方形,点E是边BC的动点,连接AE,以AE为边在AE的右上侧作Rt△AEF,使得∠AEF=90°,AE=EF,再过点F作FG⊥BC,交BC的延长于点G.(1)求证:∠BAE=∠GEF;(2)求证:CG=FG;(3)填空:若正方形ABCD的边长是2,当点E从点B运动到点C的过程中,点F也随之运动,则点F运动的痕迹的长是______.3.如图,点P是正方形ABCD(在小学,同学们学习过:正方形四边相等,四个角都是直角)对角线AC上一动点,点E在射线BC上,且PB=PE,连结PD,O为AC 中点.(1)如图①,当点P在线段AO上时,猜想PE与PD的关系,并说明理由;(2)如图②,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由.4.如图,已知菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD上两个动点,若AE=DF,连接BF与DE相交于点G,连接CG,(1)求∠BGE的大小;(2)求证:GC平分∠BGD.5.如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P是射线AD上一点,连接PB,沿PB将△APB折叠,得△A'PB.(1)如图1所示,当∠DPA'=10°时,∠A'PB=______度;(2)如图2所示,当PA'⊥BC时,求线段PA的长度;(3)当点P为AD中点时,点F是边AB上不与点A,B重合的一个动点,将△APF 沿PF折叠,得到△A'PF,连接BA',求△BA'F周长的最小值.6.如图,边长为8的正方形ABCD的対角线AC,BD交于点O,M是AB边上一动点,ME⊥AO,MF⊥BO.(1)求证:四边形OEMF为矩形;(2)连接EF,求EF的最小值.7.如图,在正方形ABCD中,点E是AD边上的一个动点,连接BE,以BE为斜边在正方形ABCD内部构造等腰直角三角形BEF,连接CF.(1)求证:∠DEF+∠CBF=90°;,求△BEF的面积;(2)若AB=3,△BCF的面积为32(3)求证:DE=2CF.8.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:△NDE≌△MAE;(2)求证:四边形AMDN是平行四边形;(3)当AM的值为何值时,四边形AMDN是矩形?请说明理由.9.如图,已知四边形ABCD为正方形,AB=42,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.10.如图,已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≅△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.11.如图,已知矩形ABCD中,AB=5,AD=2+13.菱形EFGH的顶点H在边AD上,且AH=2,顶点G、E分别是边DC、AB上的动点,连结CF.(1)当四边形EFGH为正方形时,直接写出DG的长;(2)若△FCG的面积等于3,求DG的长;(3)试探究点G运动至什么位置时,△FCG的面积取得最小值.12.如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E,F,已知AD=4,试说明AE2+CF2的值是一个常数.13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=5,点D是边AB上的一个动点,连接CD,过C点在上方作CE⊥CD,且CE=CD,点P是DE的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.14.如图,D、E分别是△ABC的边AB、AC的中点,O是△ABC内一动点,F、G分别是OB、OC的中点.判断四边形DEGF的形状,并说明理由.15.在正方形ABCD中,如图1,点E是AB边上的一个动点(点E与点A、B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE.(2)如图2,当点E运动到AB中点时,连接DG,若AB=2,求DG的长.16.如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设每秒运动的时间为t秒.(1)求BE的长;(2)当t为多少秒时,△BPE是直角三角形.参考答案1.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC,在△ABP和△BCQ中,AB=BC∠ABC=∠CBP=CQ,∴△ABP≌△BCQ(SAS),∴∠BAP=∠CBQ,∵∠BAP+∠APB=90°,∴∠CBQ+∠APB=90°,∴∠BEP=90°,∴AP⊥BQ;(2)解:由折叠的性质得:NQ=CQ,∠BNQ=∠C=90°,∠NBQ=∠CBQ,∴∠BNM=90°,∵点N是MQ的中点,∴NQ=MN,由(1)得:MQ=MB,∴MN=12MB,∴∠MBN=30°,∴∠CBN=60°,∴∠NBQ=∠CBQ=30°,∴CQ=33BC,∴BP=CQ=33BC,即BP=33BC时,点N是MQ的中点.(3)解:∵四边形ABCD是正方形,AB=3,P是BC的三等分点,∴BP=2CP,或CP=2BP,①当BP=2CP时,BP=2,由折叠的性质得:NQ=CQ=BP=2,BN=BC=3,∵∠NQB=∠CQB=∠ABQ,∴MQ=MB,设MQ=MB=x,则MN=x-2,在Rt△MBN中,MB2=BN2+MN2,即x 2=32+(x -2)2,解得:x =134,即MQ =134;②当CP =2BP 时,BP =1,由折叠的性质得:NQ =CQ =BP =1,BN =BC =3,∵∠NQB =∠CQB =∠ABQ ,∴MQ =MB ,设MQ =MB =x ,则MN =x -1,在Rt △MBN 中,MB 2=BN 2+MN 2,即x 2=32+(x -1)2,解得:x =5,即MQ =5;综上所述,若AB =3,P 是BC 的三等分点,QM 的长为134或5.2.解:(1)∵∠AEF =90°,∴∠AEB +∠FEG =90°,∵四边形ABCD 是正方形,∴∠B =90°,∴∠AEB +∠BAE =90°,∴∠BAE =∠GEF ,(2)在△ABE 和△EGF 中,∠ABE =∠EGF ∠BAE =∠GEF AE =EF,∴△ABE ≌△EGF (AAS ),∴BE =GF ,AB =EG ,∴BE =CG ,∴CG =FG ;(3)223.解:(1)当点P在线段AO上时PE=PD且PE⊥PD.理由:当点P在线段AO上时,在△ABP和△ADP中AB=AD∠BAP=∠DAP=45∘AP=AP∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴PE=PD,如图,过点P作PM⊥CD于点M,作PN⊥BC于点N,∵AC平分∠BCD,∴PM=PN,在Rt△PNE与Rt△PMD中,∵PD=PE,PM=PN∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EP N,易得∠MPN=90∘,∴∠DPE=90∘,故PE⊥PD,PE与PD的数量关系和位置关系分别为:PE=PD,PE⊥PD;(2)当点P在线段OC上时,(1)中的猜想成立;如图2,当点P在线段OC上时,∵四边形ABCD是正方形,AC为对角线,∴BA=DA,∠BAP=∠DAP=45°,又PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD,①当点E与点C重合时,PE⊥PD;②当点E在BC的延长线上时,如图2所示,∵△BAP≌△DAP,∴∠ABP=∠ADP,∠CDP=∠CBP,∵PB=PE,∴∠CBP=∠PEC,故∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD,综上所述:PE⊥PD,当点P在线段OC上时,(1)中的猜想成立;4.解:(1)∵四边形ABCD是菱形∴AD=AB,∠BAD=60°∴△ADB是等边三角形∴AD=AB=BD,∠DAB=∠ADB=∠ABD∵AE=DF,∠DAB=∠ADB=60°,AD=BD∴△ADE≌△DBF(SAS)∴∠ADE=∠DBF又∠BGE=∠BDE+∠DBF=∠BDE+∠ADE=∠ADB∴∠BGE=∠ADB=60°(2)如图,过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,由(1)得∠ADE=∠DBF∴∠CBF=60°+∠DBF=60°+∠ADE=∠DEB又∠DEB=∠MDC∴∠CBF=∠CDM∵BC=CD,∠CBF=∠CDM,∠CMD=∠CNG=90°∴Rt△CBN≌Rt△CDM(AAS)∴CN=CM,且CN⊥BF,CM⊥ED∴点C在∠BGD的平分线上即GC平分∠BGD5.856.(1)证明:∵ME⊥AO,MF⊥BO,∴∠MEO=90°,∠MFO=90°,∵正方形ABCD的対角线AC,BD交于点O,∴∠EOF=90°,∴四边形OEMF为矩形;(2)解:∵边长为8的正方形ABCD的対角线AC,BD交于点O,∴利用勾股定理可以得到OA=OB=42,当M在AB的中点时,EF有最小值,最小值=OE2+OF2=(22)2+(22)2=4.7.证明:(1)过点F作MN⊥AD于点M,交BC于点N,∴∠MEF+∠EFM=90°,∵∠EFB=90°,∴∠BFN +∠EFM =90°,∴∠MEF =∠BFN ,在正方形ABCD 中,AD ∥BC .∴MN ⊥BC ,∴∠FBN +∠BFN =90°,∴∠FBN +∠MEF =90°,即∠DEF +∠CBF =90°;证法二:在正方形ABCD 中,AD ∥BC ,∴∠DEB +∠CBE =180°,即∠DEF +∠BEF +∠EBF +∠CBF =180°,∵∠EFB =90°,∴∠BEF +∠EBF =90°,∴∠DEF +∠CBF =90°;(2)由(1)得MN ⊥AD ,∴正方形ABCD 的性质得四边形MNCD 是矩形,∴MN =CD =AB =3,在△BFN 与△FEM 中,由(1)得∠MEF =∠BFN ,∠EMF =∠FNB =90°,∵△BEF 为等腰直角三角形,∴BF =EF ,在△BFN 与△FEM 中,∠EMF =∠FNB ∠MEF =∠BFN BF =EF,∴△BFN ≌△FEM (AAS ),∵BC =AB =3,∴S △BCF =12BC ⋅FN =32FN =32,∴FN =1.∴BN =FM =MN -FN =2,在Rt △BFN 中,EF =BN 2+FN 2=12+22=5,∴S △BEF =12BF 2=12×(5)2=52;(3)在△BFN与△FEM中由(2)△BFN≌△FEM,MD=NC,∴BN=FM,EM=FN,∵MN=AB=BC,∴FM+FN=BN+NC,∴FN=NC=MD=EM,∴∠FCN=45°,DE=2MD=2CN,CF,在Rt△FNC中,CN=22∴DE=2×2CF=2CF.28.(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∵点E是AD中点,∴DE=AE,在△NDE和△MAE中,∠NDE=∠MAEDE=AE,∠DEN=∠AEM∴△NDE≌△MAE(ASA);(2)∵△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(3)解:当AM=1时,四边形AMDN是矩形.理由如下:∵四边形ABCD是菱形,∴AD=AB=2,∵四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1.9.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,∠DNE=∠FME EN=EM∠DEN=∠FEM,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,AD=CD∠ADE=∠CDG DE=DG,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=2AB=2×42=8,∴CE+CG=8是定值.10. (1)∵点F,H分别是BC,CE的中点,∴FH //BE ,FH =12BE ,∴∠CFH =∠CBG .又∵点G 是BE 的中点,∴FH =BG .又∵BF =FC ,∴△BGF ≅△FHC .(2)连接EF ,GH .当四边形EGFH 是正方形时,可知EF ⊥GH且EF =GH .∵在△BEC 中,点G ,H 分别是BE ,EC 的中点,∴GH =12BC =12AD =12a ,且GH //BC ,∴EF ⊥BC .又∵AD //BC ,AB ⊥BC ,∴AB =EF =GH =12a ,∴S 矩形ABCD =AB ⋅AD =12a ⋅a =12a 211.解:(1)∵四边形EFGH 为正方形,∴HG =HE ,∠ADG =∠HAE =90°,∵∠DHG +∠AHE =90°,∠DHG +∠DGH =90°,∴∠DGH =∠AHE ,∴△DGH ≌△AHE (AAS ),∴DG =AH =2;(2)如图,作FM⊥DC,M为垂足,连结GE.∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEG-∠HEG=∠MGE-∠FGE,即∠AEH=∠MGF,又∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离恒等于2,∴S▵FCG=1×2⋅GC=3,2解得GC=3,∴DG=2;(3)设DG=x,则CG=5-x,由(2)可知,S△FCG=5-x.要使△FCG的面积最小,须使x最大,∵在Rt△DHG中,DH=13,∴当GH取得最大时,x最大当点E与点B重合时,HE最大,此时,HE=22+52=29,则GH=HE=29,在Rt△DHG中,x=(29)2−(13)2=4,∴当DG=4时,△FCG的面积取得最小值.12.解:∵四边形ABCD是正方形,∴∠AEB=∠BFC=90°,AB=BC,又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF,在△ABE和△BCF中,AB=BC∠ABE=∠BCF∴△ABE≌△BCF(AAS),∠AEB=∠BFC∴AE=BF,∴AE2+CF2=BF2+CF2=BC2=AD2=16为常数.13.解:(1)AP=1DE,理由如下:2连接AE.∵CE⊥CD,∴∠ACE+∠ACD=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACE=∠BCD,在△BCD和△ACE中,CE=CD∠ACE=∠BCD,AC=BC∴△BCD≌△ACE(SAS),∴∠EAC=∠B=45°,∴∠EAD=90°,∵P为DE中点,DE.∴AP=12(2)①当Q在边AB上时,连接AE,EQ.∵P 为DE 中点,CE =CD ,∴PC 垂直平分DE ,∴DQ =QD ,∵AB =5,AQ =2,∴BD =3,设BD =AE =x ,则QD =EQ =3-x ,在Rt △AEQ 中,AE 2+AQ 2=QE 2,即x 2+22=(3-x )2解得x =56;当Q 在BA 延长线上时,连接AE ,EQ ,如图,设BD =AE =x ,同理可得AE 2+AQ 2=QE 2,即x 2+22=(7-x )2解得x =4514.综上可得BD =56或4514.14.解析 四边形DEGF 是平行四边形.理由:∵D 、E 分别是△ABC 的边AB 、AC 的中点,∴DE =12BC ,DE //BC ,∵F、G分别是OB、OC的中点,BC,FG//BC,∴FG=12∴DE=FG,DE//FG,∴四边形DEGF是平行四边形15.(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠GBC=90°,又∵四边形ABCD为正方形,∴∠GBA+∠GBC=90°,∴∠GCB=∠FBA,又∵BC=AB,∠FAB=∠EBC=90°,在△ABF与△BCE中,∠GCB=∠FBABC=AB,∠EBC=∠FAB∴△ABF≌△BCE(SAS);(2)解:过点D作DH⊥CE于点H,∵E为AB中点,∴EB=1,∵AB=2,∴BC=2,∴CE=BC2+EB2=22+12=5,在Rt △CEB 中,由CE •BG =EB •BC 得BG =EB ⋅BC CE =1×25=255,∴CG =455,∵∠DCE +∠BCE =∠BCE +∠CBF =90°,∴∠DCE =∠CBF ,又∵DC =BC =2,∠CHD =∠CGB =90°,在△CHD 与△BGC 中,∠CHD =∠CGB =90°∠DCE =∠CBF DC =BC,∴△CHD ≌△BGC (AAS )∴CH =BG =255,∴GH =CG -CH =255=CH ,∵DH =DH ,∠CHD =∠GHD =90°,在△DGH 与△DCH 中,GH =CH ∠GHD =∠CHD DH =DH,∴△DGH ≌△DCH (SAS ),∴DG =DC =2.16.解:(1)在矩形ABCD 中,∠C =∠B =90°,CD =AB =10,在Rt △BCE 中,CE =CD -ED =10-7=3,根据勾股定理得,BE =BC 2+CE 2=42+32=5,(2)①当以P 为直角顶点时,即∠BPE =90°,则∠C =∠B =∠BPE =90°,∴四边形CBPE 是矩形,∴BP =CE =3,即10-t =3,∴t =7,②当以E 为直角顶点时,即∠BEP =90°,由勾股定理得,BE 2+PE 2=BP 2,过点P 作PF ⊥CD 于F ,则PF=AD=4,DF=AP,设AP=t,则EF=7-t,BP=10-t,PE2=42+(7-t)2,∴52+42+(7-t)2=(10-t)2,,解得,t=53∴当t=7或5秒时,△BPE是直角三角形.3。

专题训练 四边形中的动点问题

专题训练  四边形中的动点问题
(1)CD 边的长度为 cm,t 的取值范围为 , (2)从运动开始,当 t 取何值时,PQ∥CD? (3)从运动开始,当 t 取何值时,PQ=CD?
解:(2)设经过 t s 时,PQ∥CD,此时四边形 PQCD 为平行四边形, 则 PD=CQ.
∵PD=(12-t)cm,CQ=2t cm, ∴12-t=2t.∴t=4. ∴当 t=4 s 时,PQ∥CD.
的t值;如果不能,请说明理由; (2) 当t为何值时,△DEF为
直角三角形?请说明理由.
2.如图①,有一张平行四边形纸片,将纸片沿着对角线剪 开,形成两个全等的三角形,∠A=100°, ∠ ACB=60°, 将△DBC沿着BC的方向以每秒2 cm的速度运动到图②中△
DFE的位置,连接AF,CD. (1)求证:四边形AFDC是平行四边形;
(3)设经过 t s 时,PQ=CD,分别过点 P,D 作 BC 边的垂线 PE, DF,垂足分别为 E,F.
当 CF=EQ 时,四边形 PQCD 为梯形(腰相等)或者平行四边形. ∵∠B=∠A=∠DFB=90°, ∴四边形 ABFD 是矩形.∴AD=BF.
∵AD=12 cm,BC=18 cm, ∴CF=BC-BF=6 cm. 当四边形 PQCD 为梯形(腰相等)时, PD+2(BC-AD)=CQ, ∴(12-t)+12=2t.∴t=8. ∴当 t=8 s 时,PQ=CD. 当四边形 PQCD 为平行四边形时,由(2)知当 t=4 s 时,PQ=CD. 综上,当 t=4 s 或 t=8 s 时,PQ=CD.
(2)若AC=4cm, BC=10cm,△ DEF沿着BE的方向运动时间为ts.
①当 AFDC为菱形时,求t的值; ② AFDC能是矩形吗?若能,求出t的值及此矩形的面积; 若不能,说明理由.

平行四边形中的动点问题专题复习【精品】

平行四边形中的动点问题专题复习【精品】

平行四边形中的动点问题【教材母题】课本68页第13题例:如图,在四边形ABCD 中,AD ∥BC ,∠B =90°,AB =8cm ,AD =24cm ,BC =26cm ,点P 从点A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 同时出发,以3cm/s 的速度向点B 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.从运动开始,使PQ//CD 和PQ=CD ,分别需经过多少时间?为什么?解:设点P ,Q 运动的时间为ts (3260≤≤t ). 则AP=t,PD=24-t;CQ=3t,BQ=26-3t.(1)当PQ//CD 时,∵AD ∥BC ,∴四边形PQCD 为平行四边形 ∴PD =CQ∴24-t =3t .∴t =6.∴当t 为6s 时,PQ//CD .(2)当PQ=CD 时第一种情况:如图,PQ=CD,四边形PQCD为平行四边形由PD=CQ知24-t=3t,∴t=6.第二种情况:如图,分别过点P,D作BC边的垂线PE,DF,垂足为E,F.∵ AD∥BC,∴∠B=∠A=∠DFB=90°,∴四边形ABFD是矩形∴AD=BF=24.∴CF=BC-BF=2.同理可得四边形PEFD是矩形∴PE=DF,PD=EF=24-t∵PQ=CD,∠PEQ=∠DFC=90°∴△PQE≌△DCF∴QE=CF=2∴QC- EF=QE+FC=4∴3t-(24-t)=4, t=7∴当t为6s,或7s时,PQ=CD.变式1:设点P ,Q 运动的时间为t s ,当t 取何值时,ABQP 是矩形?解:当四边形ABQP 为矩形时,AP=BQ即t =26-3t ,解得t =6.5.∴当t 为6.5 s 时,四边形ABQP 是矩形.变式2:设点P ,Q 运动的时间为t s ,是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 值;若不存在,请说明理由.解:CD 的长度为172第一种情况:当CQ =CD 时,即3t =172,∴t =3172. 第二种情况:当DQ =DC 时,过点D 作DH ⊥CQ 于H,∵ AD ∥BC∴∠B =∠A =∠DFB =90°,∴四边形ABHD 是矩形∴AD =BH=24.∴CH =BC -BH =2∵DQ=DC,DH ⊥CQ∴CQ=2CH=4∴3t=4,t=34第三种情况:当QD =QC 时过点D 作DH ⊥CQ 于H ,∵DH =8,CH =2,DC =172,QC =QD =3t ,∴QH =|3t -2|在Rt △DQH 中,DH 2+QH 2=DQ 2∴()()2223238t t =-+解得t =317 综上,当t =3172s ,34s 或317s 时,△DQC 是等腰三角形.专项一:平行四边形中的动点问题1.如图所示,在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,动点P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q 以2cm/s的速度由C向B运动,则2 s后四边形ABQP为平行四边形.2.如图,在等边△ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s 的速度运动.如果点E,F同时出发,设运动时间为t(s),当t=2或 6时,以A,C,E,F为顶点的四边形是平行四边形.3.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a,b满足(a-3)2+|b-6|=0.现将线段AB向下平移3个单位长度,再向左平移2个单位长度,得到线段CD,点A,B的对应点分别为点C,D.连接AC,BD.(1)如图1,求点C,D的坐标及四边形ABDC的面积;(2)在y轴上是否存在一点M,使三角形MCD的面积与四边形ABDC的面积相等?若存在,求出点M的坐标,若不存在,试说明理由;(3)如图2,点P是直线BD上的一个动点,连接PA,PO,当点P在直线BD上移动时(不与B,D重合),直接写出∠BAP,∠DOP,∠APO 之间满足的数量关系.解:(1)∵(a-3)2+|b-6|=0,∴a-3=0,b-6=0,解得a=3,b=6.∴A(0,3),B(6,3).。

初二数学动点题型及解题方法

初二数学动点题型及解题方法

初二数学动点题型及解题方法我折腾了好久初二数学的动点题型,总算找到点门道。

说实话,初二刚接触动点题型的时候,我是真懵。

我一开始也是瞎摸索,感觉就像在一个黑暗的房间里找东西,完全没有方向。

比如说那种在几何图形里,一个点在动,然后让求面积或者线段长度关系之类的题。

我试过一种方法,就是先假设动点静止在某个特殊位置。

比如说一个三角形里有个动点在一条边上动,我就先把它当成在中点的位置去计算,看看能不能得到一些有用的规律或者关系。

但是很多时候,这样做只能得到这个特殊位置的情况,离得出一般的结论还差得远呢。

这就好比在大海里捞鱼,在一个小角落捞到一两条,可这根本不是全部。

后来我发现,用设未知数的方法特别重要。

就像给这个动点安个名字一样,设这个动点的坐标或者它移动的某个长度为x。

然后根据题目中的已知条件,用含x的式子去表示其他相关的线段长度或者角度。

比如说,一个动点从A点向B点移动,AB长度为10,设移动了x的长度,那剩下的长度就是10 - x嘛。

这样就能把变化中的东西用式子固定下来,再去寻找各种几何关系就容易多了。

关于解题步骤,我觉得就像搭积木一样。

首先找出和动点相关的已知条件,这是基础的积木块。

然后根据几何图形的性质,比如说三角形的内角和是180度,平行四边形对边相等之类的,把这些积木块按照规则搭起来,最后就能得出我们想要的结果。

但是这里面有坑啊。

我就犯过错,有时候太急于求成,式子列错了。

有次把相似三角形的对应边关系搞错了,算出来的结果就完全不对。

所以啊,做这种题一定要细心,每一步都要认真想想依据是什么。

要是实在不确定,就再重新仔细读题,看看是不是忽略了什么条件。

再比如说求动点产生的面积问题。

我有个心得,就是一定要去找不变的量和变化的量。

有些图形虽然动点在动,但是它可以转化成我们熟悉的图形加减。

像一个四边形ABCD,里面有个动点P,连接AP、BP、CP、DP把四边形分成了好几个三角形,要求总的面积,就可以看其中某些三角形的面积之和或者差是不变的,先算出来,然后再加上或减去变化部分的面积。

北师大版数学八年级下册_易错15_平行四边形中的动点问题(解析版)-八下期末突破易错挑战满分

北师大版数学八年级下册_易错15_平行四边形中的动点问题(解析版)-八下期末突破易错挑战满分

2020-2021学年八年级数学下册期末突破易错挑战满分(北师大版)易错15 平行四边形中的动点问题【典型例题】1.(2020·浙江八年级期末)如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠====.动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P ,Q 分别从点B ,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t (秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C ,D ,Q ,P 为顶点的四边形面积为260cm ,求相应的t 的值; (3)当10.516t ≤<时,若以C ,D ,Q ,P 为顶点的四边形面积为260cm ,求相应的t 的值.【答案】(1)t =5;(2)t =9;(3)t =15【分析】(1)由平行四边形的性质得出DQ =CP ,当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,由题意得出方程,解方程即可;(2)当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,由梯形面积公式得出方程,解方程即可; (3)当10.5≤t <16时,点P 到达C 点返回,由梯形面积公式得出方程,解方程即可.【详解】解:(1)∵四边形PQDC 是平行四边形,∵DQ =CP ,当0<t <10.5时,P 、Q 分别沿AD 、BC 运动,如图1所示:∵DQ=AD-AQ=16-t,CP=21-2t∵16-t=21-2t解得:t=5;即当t=5秒时,四边形PQDC是平行四边形;(2)当0<t<10.5时,P、Q分别沿AD、BC运动,如图1所示:CP=21-2t,DQ=16-t,若以C,D,Q,P为顶点的四边形面积为60cm2,则12(DQ+CP)×AB=60,即12(16-t+21-2t)×12=60,解得:t=9;即当0<t<10.5时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为9秒;(3)当10.5≤t<16时,如图2所示,点P到达C点返回,CP=2t-21,DQ=16-t,则同(2)得:12(DQ+CP)×AB=60,即12(16-t+2t-21)×12=60,解得:t=15.即当10.5≤t<16时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为15秒.【点睛】本题是四边形综合题目,考查了直角梯形的性质、平行四边形的判定与性质、梯形的面积等知识,熟练掌握直角梯形的性质和平行四边形的判定与性质是解题的关键.【专题训练】一、选择题1.(2021·全国九年级专题练习)如图,在四边形ABCD 中,//AD BC ,且AD BC ,6cm BC .动点P ,Q 分别从A ,C 同时出发,P 以1cm/s 的速度由A 向D 运动.Q 以2cm /s 的速度由C 向B 运动,______s 时四边形ABQP 为平行四边形.A .1B .1.5C .2D .2.5【答案】C【分析】 由运动时间为x 秒,则AP =x ,QC =2x ,而四边形ABQP 是平行四边形,所以AP =BQ ,则得方程x =6-2x 求解.【详解】解:∵运动时间为x 秒,∵AP =x ,QC =2x ,∵四边形ABQP 是平行四边形,∵AP=BQ,∵x=6-2x,∵x=2.答:2秒后四边形ABQP是平行四边形.故选:C.【点睛】本题考查了平行四边形的判定与性质.此题根据路程=速度×时间,得出AP、QC的长,然后根据已知条件列方程求解.2.(2021·新乡市·河南师大附中九年级其他模拟)如图,直线m经过点B且平行于AC,点P为直线m上的一动点,连接PC,P A,随着点P在直线m上移动,则下列说法中一定正确的是()A.ABC与PCA全等B.ABC与PCA的周长相等C.ABC与PCA的面积相等D.四边形ACBP是平行四边形【答案】C【分析】由全等三角形和平行四边形的判定,以及同底等高三角形的面积相等,可以得出正确的选项.【详解】解:选项A,因为点A,B,C是定点,而点P是直线m上的动点,所以ABC与PCA不一定全等,故A错误;选项B,ABC的周长是定值,而PCA的周长随着点P位置的变化而变化,所以B错误;选项C,由于ABC与PCA都可以看作是以AC为底边的三角形,且直线m平行于AC,可由平行线间的距离处处相等知道ABC与PCA属于同底等高的三角形,故二者面积相等,所以选项C正确;选项D,由于P是动点,点A,B,C,是定点,所以BP不总是等于AC,而平行四边形的对边应该相等,所以选项D错误.故选:C.【点睛】本题是考查全等三角形和平行四边形的判定,以及同底等高三角形的面积相等的,属于中等难度的题目.3.(2020·浙江温州市·实验中学八年级期中)已知∵ABCD ,点E 是边BC 上的动点,以AE 为边构造∵AEFG ,使点D 在边FG 上,当点E 由B 往C 运动的过程中,∵AEFG 面积变化情况是( )A .一直增大B .保持不变C .先增大后减小D .先减小后增大【答案】B【分析】 延长BE ,与GF 的延长线交于点P ,先证明四边形ADPE 是平行四边形,再证明∵AGD ∵∵EFP ,得出平行四边形AGFE 的面积等于平行四边形ADPE 的面积,又AD ∵BP ,根据两平行线之间的距离处处相等得出平行四边形ABCD 的面积等于平行四边形ADPE 的面积,进而得出平行四边形ABCD 的面积等于平行四边形AEFG 面积.所以根据图示进行判断即可.【详解】解:设∵ABE ,∵ECH ,∵HFD ,∵DGA 的面积分别为S 1、S 2、S 3、S 4,延长BE ,与GF 的延长线交于点P .∵四边形ABCD 是平行四边形,∵AD ∵BP ,∵ADG =∵P .∵四边形AEFG 是平行四边形,∵AG ∵EF ,AE ∵DP ,AG =EF ,∵∵G =∵EFP .∵AD ∵BP ,AE ∵DP ,∵四边形ADPE 是平行四边形.在∵AGD 与∵EFP 中,,AG EF ⎧⎪⎨⎪=⎩∠G=∠EFG ∠ADG=∠P∵∵AGD ∵∵EFP (AAS ),∵S 4=S ∵EFP ,∵S4+S四边形AEFD=S∵EFP+S四边形AEFD,即S∵AEFG=S∵ADPE,又∵∵ADPE与∵ADCB的一条边AD重合,且AD边上的高相等,∵S∵ABCD=S∵ADPE,∵平行四边形ABCD的面积=平行四边形AEFG的面积.故∵AEFG面积不变,故选:B.【点睛】本题考查了平行四边形面积变化情况,解题的关键是根据两平行线之间的距离处处相等得出平行四边形ABCD的面积等于平行四边形ADPE的面积,进而得出平行四边形ABCD的面积等于平行四边形AEFG面积.4.(2019·山东济宁市·八年级期中)如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∵FBM=∵CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q 也时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2B.3C.3或5D.4或5【答案】C【解析】【分析】由平行四边形的性质可得AD∵BC,AD=BC,由平行线的性质可得BF=DF=12cm,可得AD=AF+DF=18cm=BC,由平行四边形的性质可得PF=EQ,列出方程可求解.【详解】解:∵四边形ABCD是平行四边形∵AD∵BC,AD=BC∵∵ADB=∵MBC,且∵FBM=∵MBC ∵ADB=∵FBM∵BF=DF=12cm∵AD=AF+DF=18cm=BC,∵点E是BC的中点∵EC=12BC=9cm,∵以点P、Q、E、F为顶点的四边形是平行四边形∵PF=EQ∵6﹣t=9﹣2t,或6﹣t=2t﹣9∵t=3或5故选C.【点睛】本题考查平行四边形的判定,利用方程思想解决问题是解本题的关键.5.(2019·四川绵阳市·中考模拟)如图,∵ABCD中,AB=3,AD=5,AC∵AB,E、F为线段BD上两动点(不与端点重合)且EF=12BD连接AE,CF,当点EF运动时,对AE+CF的描述正确的是()A.等于定值5B.有最大值13C D【答案】D【解析】【分析】由平行四边形的性质得出OB=OD,OA=OC,得出OB=EF=OD,BE=OF,OE=DF,由勾股定理求出AC 4,OB BE =OE 时,AE +CF 的值最小,E 为OB 的中点,由直角三角形的性质得出AE =12OB ,同理:CF =12OD ,即可得出结果 【详解】 解:∵四边形ABCD 是平行四边形,∵OB =OD ,OA =OC ,∵EF =12BD , ∵OB =EF =OD ,∵BE =OF ,OE =DF ,∵AB =3,AD =5,AC ∵AB ,∵AC 4,∵OA =2,∵OB当BE =OE 时,AE +CF 的值最小,E 为OB 的中点,∵AE =12OB , 同理:CF =12OD ,∵AE +CF =OB即AE +CF故选:D .【点睛】本题考查了平行四边形的性质、直角三角形的性质、勾股定理等知识;熟练掌握平行四边形的性质和勾股定理是解题的关键.6.(2020·河北沧州市·九年级其他模拟)如图,在四边形ABCD 中,//AD BC ,6AD =,16BC =,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.若以点,,,P Q E D为顶点的四边形是平行四边形,则点P运动的时间为()A.1B.72C.2或72D.1或72【答案】D【分析】要使得以P、Q、E、D为顶点的四边形是平行四边形,已知//AD BC,即要使PD=EQ即可,设点P的运动时间为t (0≤t≤6) 秒,分别表示出PD,EQ的长度,根据PD=EQ列方程求解即可.【详解】设点P的运动时间为t (0≤t≤6) 秒,则AP=t,CQ=3t,由E是BC的中点可得:BE=EC=8,要使得以P、Q、E、D为顶点的四边形是平行四边形,已知//AD BC,即要使PD=EQ即可.(1)如图:点Q位于点E右侧时,PD=6-t,CQ=3t,EQ=8-3t,6-t =8-3t,t=1(秒);(2)如图:点Q位于点E左侧时,PD=6-t,CQ=3t,EQ=3t-8,6-t =3t-8,t=72(秒).综上所述:P的运动时间为1或72秒.故选:D.【点睛】本题主要考查平行四边形的判定方法以及一元一次方程的应用,熟记平行四边形的判定方法,根据对应边相等列方程是解题关键.7.(2017·江苏苏州市·)如图①,在∵ABCD中,∵B=120°,动点P从点B出发,沿BC、CD、DA运动至点A停止.设点P运动的路程为xcm,∵P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H 点的横坐标为()A.11B.14C.8D.8+【答案】B【解析】试题分析:作CM∵AB于M,如图所示:当点P 在CD 上运动时,∵P AB 的面积不变,由图②得:BC =4cm ,∵∵ABC =120°,∵∵CBM =60°,∵CM =4∵∵ABC 的面积=12AB •CM =12AB × ∵AB =6cm , ∵OH =4+6+4=14,∵点H 的横坐标为14.故选B .点睛:本题考查了平行四边形的性质、动点问题的函数图象.解决本题的关键是利用函数图象和三角形面积确定AB 的长.8.(2020·山东济南市·八年级期末)如图,平行四边形ABCD 绕点A 逆时针旋转30°,得到平行四边形AB ′C ′D ′(点B ′与点B 是对应点,点C ′与点C 是对应点,点D ′与点D 是对应点),点B ′恰好落在BC 边上,则∵C 的度数等于( )A .100°B .105°C .115°D .120°【答案】B【解析】 分析:根据旋转的性质得出AB =AB ′,∵BAB ′=30°,进而得出∵B 的度数,再利用平行四边形的性质得出∵C 的详解:∵平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),∵AB=AB′,∵BAB′=30°,∵∵B=∵AB′B=(180°﹣30°)÷2=75°,∵∵C=180°﹣75°=105°.故选B.点睛:本题主要考查了旋转的性质以及平行四边形的性质,根据已知得出∵B=∵AB′B=75°是解题的关键.二、填空题9.(2019·山西运城市·八年级期末)如图,在四边形ABCD中,AD∵BC,且AD>BC,BC=6cm,动点P,Q分别从A,C 同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动(Q运动到B时两点同时停止运动),则________后四边形ABQP为平行四边形.【答案】2s【解析】【分析】设运动时间为t秒,则AP=t,QC=2t,根据四边形ABQP是平行四边形,得AP=BQ,则得方程t=6-2t即可求解.【详解】如图,设t秒后,四边形APQB为平行四边形,则AP=t,QC=2t,BQ=6-2t,∵AD∵BC,∵AP∵BQ,当AP=BQ时,四边形ABQP是平行四边形,∵t=6-2t,∵t=2,当t=2时,AP=BQ=2<BC<AD,符合.综上所述,2秒后四边形ABQP是平行四边形.故答案为2s.此题主要考查的是平行四边形的判定,熟练掌握平行四边形的判定方法是关键.10.(2019·武汉二中广雅中学八年级月考)如图,在四边形ABCD 中,AD ∵BC ,∵A =90°,AD =18cm ,BC =30cm .点E 从点D 出发,以1cm /s 的速度向点A 运动:点F 从点C 同时出发,以2cm /s 的速度向点B 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动的时间为t 秒,M 为BC 上一点且CM =13cm ,t =_____s 秒时,以D 、M 、E 、F 为顶点的四边形是平行四边形.【答案】133或13 【分析】由题意得出DE =t ,CF =2t ,当点F 在点M 的右边;当点F 在点M 的左边;以D 、M 、E 、F 为顶点的四边形是平行四边形时,DE =MF ,分别得出方程,解方程即可.【详解】解:由题意得:DE =t ,CF =2t ,∵AD ∵BC ,当点F 在点M 的右边MF =13﹣2t ,以D 、M 、E 、F 为顶点的四边形是平行四边形时,DE =MF , 即t =13﹣2t ,解得:t =133; 当点F 在点M 的左边MF =2t ﹣13,以D 、M 、E 、F 为顶点的四边形是平行四边形时,DE =MF , 即t =2t ﹣13,解得:t =13;综上所述,t =133s 或13s 时,以D 、M 、E 、F 为顶点的四边形是平行四边形. 故答案为:133或13 【点睛】本题考查的是四边形的动点问题,主要涉及的知识是平行四边形的判定,运用了方程思想来求解. 11.(2020·广东九年级专题练习)如图,四边形ABCD 中,//AD BC ,8AD cm =,12BC cm =,M 是BC上一点,且9BM cm =,点E 从点A 出发以1/cm s 的速度向点D 运动,点F 从点C 出发,以3/cm s 的速度向点B 运动,当其中一点到达终点,另一点也随之停止,设运动时间为t ,则当以A 、M 、E 、F 为顶点的四边形是平行四边形时,t =__________.【答案】34或32. 【分析】 分两种情形列出方程即可解决问题【详解】①当点F 在线段BM 上,AE FM =时,以A 、M 、E 、F 为顶点的四边形是平行四边形, 则有9312t t =+-,解得32t =, ②当F 在线段CM 上,AE FM =时,以A 、M 、E 、F 为顶点的四边形是平行四边形,则有1293t t =--,解得3t 4=, 综上所述,3t 4=或32s 时,以A 、M 、E 、F 为顶点的四边形是平行四边形. 故答案为:34或32【点睛】本题考查平行四边形的判定和性质等知识,解题的关键是学会构建方程解决问题,学会用分类讨论的思想思考问题.12.(2020·辽宁营口市·八年级期末)如图,平行四边形ABCD 中,AB =8cm ,AD =12cm ,点P 在AD 边上以每秒1cm 的速度从点A 向点D 运动,点Q 在BC 边上,以每秒4cm 的速度从点C 出发,在CB 间往返运动,两个点同时出发,当点P 到达点D 时停止(同时点Q 也停止),在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有______次.【解析】∵四边形ABCD是平行四边形,∵BC=AD=12,AD∵BC,∵四边形PDQB是平行四边形,∵PD=BQ,∵P的速度是1cm/秒,∵两点运动的时间为12÷1=12s,∵Q运动的路程为12×4=48cm,∵在BC上运动的次数为48÷12=4次.第一次PD=QB时,12−t=12−4t,解得t=0,不合题意,舍去;第二次PD=QB时,Q从B到C的过程中,12−t=4t−12,解得t=4.8;第三次PD=QB时,Q运动一个来回后从C到B,12−t=36−4t,解得t=8;第四次PD=QB时,Q在BC上运动3次后从B到C,12−t=4t−36,解得t=9.6.∵在运动以后,以P、D. Q、B四点组成平行四边形的次数有3次,故答案为3.点睛:本题考查了平行四边形的判定.注意能求出符合条件的所有情况是解此题的关键,注意掌握分类讨论思想的应用.13.(2020·浙江杭州市·八年级期中)如图,在四边形ABCD中,AD∵BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒1个单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.【答案】2或14 3.【分析】分别从当Q运动到E和B之间与当Q运动到E和C之间去分析, 根据平行四边形的性质, 可得方程, 继而【详解】 解:E 是BC 的中点,∴BE =CE =12BC =12⨯12=6, ①当Q 运动到E 和C 之间, 设运动时间为t , 则AP =t , DP =AD -AP =4-t , CQ =2t ,EQ =CE -CQ =6-2t∴t =6-2t ,解得: t =2;②当Q 运动到E 和B 之间,设运动时间为t ,则AP =t , DP =AD -AP =4-t , CQ =2t ,EQ =CQ -CE =2t -6,∴t =2t -6,解得: t =6(舍),③P 点当D 后再返回点A 时候,Q 运动到E 和B 之间,设运动时间为t ,则AP =4-(t -4)=8-t , EQ =2t -6,∴8-t =2t -6,14t=3, ∴当运动时间t 为2、143秒时,以点P ,Q ,E ,A 为顶点的四边形是平行四边形. 故答案为: 2或143. 【点睛】 本题主要考查平行四边形的性质及解一元一次方程.14.(2021·全国八年级课时练习)如图,在Rt ABC 中,90B =∠,5AB =,12BC =,点D 是BC 边上一动点,以AC 为对角线的所有平行四边形ADCE 中,对角线DE 最小的值是_____.【答案】5【分析】由平行四边形的对角线互相平分可知,OD OE =,OA OC =,根据垂线段最短可知,当OD 取最小值时,DE 最短,此时OD BC ,由三角形中位线定理即可求出答案.【详解】在Rt ABC 中,90B =∠,∴BC AB ⊥,四边形ADCE 是平行四边形,∴OD OE =,OA OC =,∴当OD 取最小值时,DE 最短,此时OD BC ,∴OD 是ABC 的中位线, ∴1522OD AB ==,∴25DE OD ==.故答案为:5.【点睛】本题考查了平行四边形的性质,三角形中位线定理以及垂线段最短,熟练掌握平行四边形的性质是解题的关键.15.(2020·成都市·四川电子科大实验中学九年级期中)如图,四边形ABCD 是平行四边形,4AB =,12BC =,60ABC ∠=︒,点E 、F 是AD 边上的动点,且2EF =,则四边形BEFC 周长的最小值为______.【答案】14+【分析】根据题意,将点B 沿BC 向右平移2个单位长度得到点B ',作点B '关于AD 的对称点B '',连接CB '',交AD 于点F ,在AD 上截取2EF =,连接BE ,B F ',此时四边形BEFC 的周长为B C EF BC ''++,则当点C 、F 、B ''三点共线时,四边形BEFC 的周长最小,进而计算即可得解.【详解】如下图,将点B 沿BC 向右平移2个单位长度得到点B ',作点B '关于AD 的对称点B '',连接CB '',交AD于点F ,在AD 上截取2EF =,连接BE ,B F ',∵BE B F '=,B F B F '''=,此时四边形BEFC 的周长为BE EF FC BC B F EF FC BC B C EF BC ''''+++=+++=++, 当点C 、F 、B ''三点共线时,四边形BEFC 的周长最小,4AB =,2BB '=,60ABC ∠=︒,B B '''∴经过点A ,AB '∴=B B '''∴=12BC =,10B C '∴=,B C ''∴=,14B C EF BC ''∴++=+,四边形BEFC 周长的最小值为14+故答案为:14+【点睛】本题主要考查了四边形周长的最小值问题,涉及到含30的直角三角形的性质,勾股定理等,熟练掌握相关轴对称作图方法以及线段长的求解方法是解决本题的关键.16.(2019·四川省成都市七中育才学校八年级期中)如图,在ABC 中,45BAC ∠=︒,8AB AC ==,P 为AB 边上一动点,以A P 、PC 为边作平行四边形PAQC ,则对角线PQ 的最小值为__________.【答案】【分析】以P A,PC为邻边作平行四边形P AQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作A B的垂线PO,然后根据等腰直角三角形的性质即可求出PQ的最小值.【详解】解:∵四边形APCQ是平行四边形,∵AO=CO,OP=OQ,∵PQ最短也就是PO最短,∵过点O作OP´∵AB于P´,∵∵BAC=45°∵∵AP´O是等腰直角三角形,∵AO=12AC=4,∵OP AO ∵PQ的最小值=2OP´=故答案为:【点睛】本题考查平行四边形的性质和垂线段最短.找到最短线段是解决本题的关键.17.(2020·河南南阳市·八年级期中)如图,在∵ABCD中,AB=,BC=10,∵A=45°,点E是边AD上一动点,将∵AEB沿直线BE折叠,得到∵FEB,设BF与AD交于点M,当BF与∵ABCD的一边垂直时,DM 的长为_____.【答案】4或7【分析】如图1,当BF∵AD时,如图2,当BF∵AB时,根据折叠的性质和等腰直角三角形的判定和性质即可得到结论.【详解】解:如图1,当BF∵AD时,∵∵AMB=90°,∵将∵AEB沿BE翻折,得到∵FEB,∵∵A=∵F=45°,∵∵ABM=45°,∵AB=,∵AM=BM==3,2∵平行四边形ABCD,BC=AD=10,∵DM=AD﹣AM=10﹣3=7;如图2,当BF∵AB时,∵将∵AEB沿BE翻折,得到∵FEB,∵∵A=∵EFB=45°,∵∵ABF=90°,此时F与点M重合,∵AB=BF=,∵AF=6,∵DM=10﹣6=4.综合以上可得DM的长为4或7.故答案为:4或7.【点睛】本题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及折叠的特点.三、解答题18.(2020·淮阳第一高级中学初中部八年级期末)如图,正方形ABCD的边长为6cm,点E在AB边上,且2AE cm=,动点M从点C开始,以2/cm s的速度沿折线C-B-E移动,动点N同时由点D开始,以1/cm s 的速度沿边DC移动,几秒钟时四边形EMND是平行四边形?【答案】103秒【分析】根据平行四边形的性质可知当EM平行且等于DN时,四边形EMDN为平行四边形,所以可设经过t(t≥3)秒后,EM等于DN,据此列出方程求解即可.【详解】解:设t(t≥3)秒时四边形EMND为平行四边形.由题意知,此时点M 运动到BE 上,则26BM t =-,DN t =,()426ME t =--,由ME DN =可得,()426t t --=, 解得,103t =. 所以103秒时四边形EMND 为平行四边形. 【点睛】本题主要考查了平行四边形的性质,根据平行四边形的对边相等列出方程是解决此题的关键.19.(2020·内蒙古通辽市·九年级月考)在四边形ABCD 中,//,90,8,2426AD BC B AB cm AD cm BC cm ∠=︒===,;点P 从点A 出发,以1/cm s 的速度向点D 运动;点Q 从点C 同时出发,以3/cm s 的速度向点B 运动. 规定其中一个动点到达端点时另一个动点也停止运动.从运动开始. 何时图中会出现平行四边形?点P Q 、最近距离为多少cm ?【答案】6s 或6.5s ;8PQ =.【分析】设经过t s 时,AP =BQ ,结合题意此时四边形ABQP 为平行四边形.根据平行四边形的性质列方程即可得到结论,当PD =CQ 时,四边形PQCD 为平行四边形,利用平行四边形的性质列方程求解,P ,Q 两点之间最短时,,PQ BC ⊥从而可得答案.【详解】解:当四边形ABQP 为平行四边形时,,AP BQ ∴=,263,AP t BQ t ==-263,t t ∴=-6.5,t =当四边形PQCD 为平行四边形时,,PD CQ ∴=24,3,PD t CQ t =-=243,t t ∴-=6,t ∴=综上:当 6.5t s =或6t s =的时候出现平行四边形.,P Q 两点最短时,,PQ BC ⊥此时四边形ABQP 为矩形,所以,P Q 之间的最短距离为8.【点睛】本题考查的是平行四边形的判定与性质,掌握平行四边形的判定与性质是解题的关键.20.(2016·江苏扬州市·八年级月考)如图所示,在直角梯形ABCD 中,AD //BC ,∵A =90°,AB =12,BC =21,AD =16.动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒).(1)设∵DPQ 的面积为S ,用含有t 的代数式表示S .(2)当t 为何值时,四边形PCDQ 是平行四边形?【答案】S=96-6t;t=5.【解析】试题分析:(1)首先将QD的长度用含t的代数式来表示,然后得出三角形的面积与t之间的关系;(2)根据平行四边形的判定定理得出OD=PC,列出关于t的一元一次方程,求出t的值.试题解析:(1)根据题意得:AQ=t,则QD="16-t"∵S=12(16-t)×12=96-6t(2)∵AD∵BC∵当QD=PC时,四边形PCDQ是平行四边形∵BP=2t∵PC=21-2t∵16-t=21-2t∵t="5"答:当t为5秒时,四边形PCDQ是平行四边形考点:(1)平行四边形的性质;(2)一次函数;(3)动点问题.21.(2019·广东实验中学附属天河学校八年级月考)如图,等边∵ABC的边长为8,动点M从点B出发,沿B→A→C→B的方向以3的速度运动,动点N从点C出发,沿C→A→B→C方向以2的速度运动.(1)若动点M、N同时出发,经过几秒钟两点第一次相遇?(2)若动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及∵ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.【答案】(1)165秒;(2)运动了85秒或245秒时,A、M、N、D四点能够成平行四边形,此时点D在BC上,且BD=245或325.【分析】(1)设经过t秒钟两点第一次相遇,然后根据点M运动的路程+点N运动的路程=AB+CA列方程求解即可;(2)首先根据题意画出图形:如图②,当0≤t≤83时,DM+DN=AN+CN=8;当83<t≤4时,此时A、M、N三点在同一直线上,不能构成平行四边形;4<t≤163时,MB+NC=AN+CN=8;当163<t≤8时,∵BNM为等边三角形,由BN=BM可求得t的值.【详解】解:(1)设经过t秒钟两点第一次相遇,由题意得:3t+2t=16,解得:t=165,所以,经过165秒钟两点第一次相遇;(2)①当0≤t≤83时,点M、N、D的位置如图2所示:∵四边形ANDM为平行四边形,∵DM=AN,DM//AN.DN//AB ∵∵MDB=∵C=60°,∵NDC=∵B=60°∵∵NDC=∵C.∵ND=NC∵DM+DN=AN+NC=AC+BN=8,即:3t+2t=8,t=85,此时点D在BC上,且BD=245(或CD=165),②当83<t≤4时,此时A、M、N三点在同一直线上,不能构成平行四边形;③4<t≤163时,点M、N、D的位置如图所1示:∵四边形ANDM为平行四边形,∵DN=AM,AM∵DN.∵∵NDB=∵ACB=60°∵∵ABC为等腰三角形,∵∵B=60°.∵∵MDB=∵B.∵MD=MB.∵MB+NC=AN+CN=8,3t-8+2t-8=8,解得:t=245,此时点D在BC上,且BD=325(或CD=85),④当165<t≤8时,点M、N、D的位置如图3所示:则BN=16-2t,BM=24-3t,由题意可知:∵BNM为等边三角形,∵BN=BM,即:2t-8=3t-16,解得t=8,此时M、N重合,不能构成平行四边形.答:运动了85秒或245秒时,A、M、N、D四点能够成平行四边形,此时点D在BC上,且BD=245或325.【点睛】本题主要考查的是平行四边形的性质和等边三角形的性质,利用平行四边形的性质和等边三角形的性质求得相关线段的长度,然后列方程求解是解题的关键.22.(2021·安徽九年级一模)如图,在□ ABCD中,点P在对角线AC上一动点,过点P作PM//DC,且PM=DC,连接BM,CM,AP,BD.(1)求证:∵ADP∵∵BCM;(2)若P A=12PC,设∵ABP的面积为S,四边形BPCM的面积为T,求ST的值.【答案】(1)证明见解析;(2)13【分析】 (1)根据四边形ABCD 是平行四边形,得到AD =BC ,∵ADC +∵BCD =180︒,由PM //DC ,且PM =DC ,证得四边形PMCD 是平行四边形,得到PD =CM ,∵PDC +∵DCM =180︒,推出∵ADP =∵BCM ,即可证得结论; (2)作BH ∵AC 于H ,DG ∵AC 于G ,根据四边形ABCD 是平行四边形,得到∵ABC ∵∵CDA ,BH =DG ,求得2BCP ABP S S =,ADP ABP S S =,利用∵ADP ∵∵BCM ,得到ADP BCM S =S ,即可求出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∵AD =BC ,∵ADC +∵BCD =180︒,∵PM //DC ,且PM =DC ,∵四边形PMCD 是平行四边形,∵PD =CM ,∵PDC +∵DCM =180︒,∵∵ADP =∵BCM ,∵∵ADP ∵∵BCM ;(2)解:作BH ∵AC 于H ,DG ∵AC 于G ,∵四边形ABCD 是平行四边形,∵∵ABC ∵∵CDA ,∵BH =DG , ∵12ABP BCP SAP S CP ==,即2BCP ABP S S =,12112ABP ADP AP BH SS AP DG ⋅⋅==⋅⋅,即ADP ABP S S =,∵∵ADP ∵∵BCM ,∵ADP BCM S =S , ∵S T =13ABP BCP ADP S S S =+.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,同底等高或同高的三角形的面积关系,证明∵ADP ∵∵BCM 并利用其全等的性质解决问题是解题的关键.23.(2020·吉林长春市·八年级期末)如图①,在ABCD □中,AB =3,AD =6.动点P 沿AD 边以每秒12个单位长度的速度从点A 向终点D 运动.设点P 运动的时间为()0t t >秒.(1)线段PD 的长为_________(用含t 的代数式表示).(2)当CP 平分∵BCD 时,求t 的值.(3)如图②,另一动点Q 以每秒2个单位长度的速度从点C 出发,在CB 上往返运动.P 、Q 两点同时出发,当点P 停止运动时,点Q 也随之停止运动。

初二平行四边形动点专题

初二平行四边形动点专题

初二平行四边形动点专题(原创实用版)目录1.初二平行四边形动点专题简介2.平行四边形的性质3.平行四边形动点的概念及应用4.动点问题解题技巧5.总结与展望正文一、初二平行四边形动点专题简介初二平行四边形动点专题是初中数学中一个重要的知识点,主要涉及到平行四边形的性质、动点的概念及应用,以及动点问题解题技巧。

通过学习这个专题,可以帮助学生更好地理解平行四边形的相关知识,提高解决实际问题的能力。

二、平行四边形的性质平行四边形是指具有两组对边分别平行的四边形。

它具有以下性质:1.对边平行且相等。

2.对角线互相平分且相等。

3.同底异位角相等。

4.角平分线分得的角相等。

5.对边角相等。

三、平行四边形动点的概念及应用平行四边形动点是指在平行四边形中,某一点相对于其他点的位置发生变化。

动点问题通常包括:求动点的轨迹、求动点到定点的距离、求动点的速度等问题。

在解决这类问题时,需要灵活运用平行四边形的性质和几何知识。

四、动点问题解题技巧1.建立平面直角坐标系:在解决动点问题时,可以建立平面直角坐标系,将点的位置用坐标表示,方便计算。

2.利用平行四边形的性质:在解题过程中,要充分利用平行四边形的性质,如对边平行、对角线平分等,将问题转化为简单的几何问题。

3.运用几何知识和公式:在解决动点问题时,要熟练掌握相关的几何知识和公式,如勾股定理、相似三角形等,以便快速求解。

4.化简问题:在解题过程中,要尽量化简问题,将复杂的问题转化为简单的问题,便于求解。

五、总结与展望初二平行四边形动点专题是初中数学中的一个重要知识点,掌握这个专题对于提高学生的数学素养和解决实际问题具有重要意义。

在学习过程中,要注重理解平行四边形的性质和动点问题的解题技巧,加强练习,不断提高自己的解题能力。

八年级数学下册动点问题构成平行四边形解题技巧(一)

八年级数学下册动点问题构成平行四边形解题技巧(一)

八年级数学下册动点问题构成平行四边形解题技巧(一)八年级数学下册动点问题构成平行四边形解题技巧什么是动点问题?动点问题是数学中经常遇到的一类问题,它通常涉及到平行四边形的性质和特点。

解决动点问题需要一定的技巧和方法。

动点问题解题技巧以下是一些解决八年级数学下册动点问题的技巧:•确定动点的位置和性质在解决动点问题时,首先要确定动点的位置和性质。

根据问题所给条件,我们可以确定动点在平行四边形内部、边界上还是延长线上。

这些信息有助于我们确定动点的坐标。

•确定平行四边形的特点平行四边形有一些独特的性质,利用这些性质可以解决动点问题。

例如,平行四边形的对角线相互平分,对角线长相等等。

通过确定平行四边形的特点,我们可以推断出关于动点的一些性质。

•运用向量法或坐标法求解在解决动点问题时,我们可以运用向量法或坐标法来求解。

向量法常用于证明或推导问题,而坐标法常用于具体计算。

具体选择使用哪种方法要根据问题的特点和要求来决定。

•画图辅助解题绘制图形是解决动点问题的重要步骤。

通过画图,我们可以更好地理解问题,并帮助我们找到解题的思路。

画图时,注意要准确绘制出平行四边形的形状和各个元素的位置关系。

•通过推理和运算得出答案在完成前面步骤后,我们可以通过推理和运算来得出最终的答案。

根据题目所要求的内容,进行逻辑推理和数学运算,得出问题的解答。

总结解决八年级数学下册动点问题需要我们熟悉平行四边形的性质和特点,并掌握相应的解题技巧。

通过确定动点的位置和性质、确定平行四边形的特点、运用向量法或坐标法、画图辅助解题以及通过推理和运算得出答案,我们可以有效地解决动点问题。

希望以上技巧能帮助到你解决八年级数学下册动点问题,在数学学习中取得更好的成绩!对于八年级数学下册动点问题构成平行四边形解题,下面给出了更具体的步骤和实例来帮助你更好地理解和应用这些技巧。

1.确定动点的位置和性质首先,从题目中找出关于动点的相关信息,然后根据这些信息来确定动点的位置和性质。

初二平行四边形的动点问题提升

初二平行四边形的动点问题提升

平行四边形中的动点问题1.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD2.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是边AD ,AB 的中点,EF 交AC 于点H ,则的值为( )平行四边形的判定:定义: 两组对边分别平行的四边形是平行四边形定理1:两组对角分别相等的四边形是平行四边形定理2:两组对边分别相等的四边形是平行四边形定理3:对角线互相平分的四边形是平行四边形定理4:一组对边平行且相等的四边形是平行四边形1.如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16.动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒).(1)当t 为何值时,四边形PQCD 的面积是梯形ABCD 的面积的一半;(2)四边形PQCD 能为平行四边形吗?如果能,求出t 的值;如果不能,请说明理由.(3)四边形PQCD 能为等腰梯形吗?如果能,求出t 的值;如果不能,请说明理由.解答:解:(1)由已知得:AQ=t ,QD=16﹣t ,BP=2t ,PC=21﹣2t ,依题意,得12)22116(2112)2(21⨯-+-=⨯+t t t t 解得; (2)能;当四边形PQDC 为平行四边形时,DQ=PC ,即16﹣t=21﹣2t 解得t=5;(3)不能作QE⊥BC,DF⊥BC,垂足为E、F,当四边形PQCD为等腰梯形时,PE=CF,即t﹣2t=21﹣16解得t=﹣5,不合实际.变式练习:如图所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.动点P 从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设△DPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形PCDQ是平行四边形?(3)分别求出当t为何值时,①PD=PQ,②DQ=PQ.☆专题2:平行四边形的证明【例2】如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P 从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,(1)直角梯形ABCD的面积为_____cm2;(2)当t=_____秒时,四边形PQCD成为平行四边形?(3)当t=_____秒时,AQ=DC;(4)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值;若不存在,说明理由.考点:直角梯形;平行四边形的判定变式练习如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B 点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,(1)这个直角梯形ABCD的面积是多少?(2)当t为何值时,四边形PQCD成为平行四边形?(3)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值,若不存在,说明理由.分析:(1)作DM⊥BC于点M,在直角△CDM中,根据勾股定理即可求得CM,得到下底边的长,根据梯形面积公式即可求解.(2)当PD=CQ时,四边形PQCD成为平行四边形.(3)连接QD,根据S△DQC=S△DQC,即可求解.难度提升:1.直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.分析:(1)分别令y=0,x=0,即可求出A、B的坐标;(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出,当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得 PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.解答:例3、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?分析:(1)四边形PQCD为平行四边形时PD=CQ.(2)四边形PQCD为等腰梯形时QC-PD=2CE.(3)四边形PQCD为直角梯形时QC-PD=EC.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形中的动点问题
1.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:
①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( )
A . 3种
B . 4种
C . 5种
D . 6种 2.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,
点E ,F 分别是边AD ,AB 的中点,EF 交AC 于点H ,则的值为( )
平行四边形的判定:
定义: 两组对边分别平行的四边形是平行四边形
定理1:两组对角分别相等的四边形是平行四边形
定理2:两组对边分别相等的四边形是平行四边形
定理3:对角线互相平分的四边形是平行四边形
定理4:一组对边平行且相等的四边形是平行四边形
1.如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16.
动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒).
(1)当t 为何值时,四边形PQCD 的面积是梯形ABCD 的面积的一半;
(2)四边形PQCD 能为平行四边形吗?如果能,求出t 的值;如果不能,请说明理由.
(3)四边形PQCD 能为等腰梯形吗?如果能,求出t 的值;如果不能,请说明理由.
解答:解:(1)由已知得:AQ=t ,QD=16﹣t ,BP=2t ,PC=21﹣2t ,
依题意,得 12)22116(2112)2(2
1⨯-+-=⨯+t t t t 解得;
(2)能;当四边形PQDC 为平行四边形时,
DQ=PC ,即16﹣t=21﹣2t 解得t=5; 解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边
形;
③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD 为平行四边形; ①③可证明△ADO ≌△CBO ,进而得到AD=CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;
①④可证明△ADO ≌△CBO ,进而得到AD=CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;
故选:B .
(3)不能
作QE⊥BC,DF⊥BC,垂足为E、F,
当四边形PQCD为等腰梯形时,PE=CF,
即t﹣2t=21﹣16
解得t=﹣5,不合实际.
变式练习:如图所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.动点P 从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).
(1)设△DPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,四边形PCDQ是平行四边形?
(3)分别求出当t为何值时,①PD=PQ,②DQ=PQ.
☆专题2:平行四边形的证明
【例2】如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P 从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,(1)直角梯形ABCD的面积为_____cm2;
(2)当t=_____秒时,四边形PQCD成为平行四边形?
(3)当t=_____秒时,AQ=DC;
(4)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值;若不存在,说明理由.考点:直角梯形;平行四边形的判定
变式练习
如图,在直角梯形ABCD中,∠B=90°,AD∥BC,且AD=4cm,AB=6cm,DC=10cm.若动点P从A点出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点出发以每秒5cm的速度沿CB向B 点运动.当Q点到达B点时,动点P、Q同时停止运动.设点P、Q同时出发,并运动了t秒,
(1)这个直角梯形ABCD的面积是多少?
(2)当t为何值时,四边形PQCD成为平行四边形?
(3)是否存在t,使得P点在线段DC上且PQ⊥DC?若存在,求出此时t的值,若不存在,说明理由.分析:(1)作DM⊥BC于点M,在直角△CDM中,根据勾股定理即可求得CM,得到下底边的长,根据梯形面积公式即可求解.
(2)当PD=CQ时,四边形PQCD成为平行四边形.
(3)连接QD,根据S△DQC=S△DQC,即可求解.
难度提升:
1.直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.
分析:
(1)分别令y=0,x=0,即可求出A、B的坐标;
(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出,
当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得 PD=48-6t5,利用S= 12OQ×PD,即可求出答案;
(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.
解答:
例3、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P 从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?
(2)当t为何值时,四边形PQCD为等腰梯形?
(3)当t为何值时,四边形PQCD为直角梯形?
分析:
(1)四边形PQCD为平行四边形时PD=CQ.
(2)四边形PQCD为等腰梯形时QC-PD=2CE.
(3)四边形PQCD为直角梯形时QC-PD=EC.。

相关文档
最新文档