2020-2021学年山东省菏泽市郓城县九年级(上)期中数学试卷 解析版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年山东省菏泽市郓城县九年级(上)期中数学试卷一、选择题(每小题给出的四个选项中,只有一个是正确的,把正确选项的代号填入该小题后的括号内,每小题3分,共24分)
1.如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC =10,则OB的长为()
A.5B.4C.D.
2.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()
A.75°B.65°C.55°D.50°
3.在一幅长为80cm、宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程是()
A.x2+65x﹣350=0B.x2+130x﹣1400=0
C.x2﹣65x﹣350=0D.x2﹣130x﹣1400=0
4.把方程x2﹣10x=﹣3左边化成含有x的完全平方式,其中正确的是()A.x2﹣10x+(﹣5)2=28B.x2﹣10x+(﹣5)2=22
C.x2+10x+52=22D.x2﹣10x+5=2
5.如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为
A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()
A.B.C.D.
6.有两个可以自由转动的转盘,每个转盘被分成如图所示的几个扇形,游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()
A.两个转盘转出蓝色的概率一样大
B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了
C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为
7.已知2x=3y,则下列比例式成立的是()
A.B.C.D.
8.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()
A.(3,2)B.(4,1)C.(3,1)D.(4,2)
二、填空题(每小题3分,共18分)
9.如图.边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是.
10.已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=.
11.某校举办艺术节,校舞蹈队队长小颍准备购买某种演出服装,商店老板给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元,按此优惠条件,小颖一次性购买这种服装付了1200元,则她购买了这种服装件.
12.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子颗.
13.下面关于两个图形相似的判断:①两个等腰三角形相似;②两个等边三角形相似;③两个等腰直角三角形相似;④两个正方形相似;⑤两个等腰梯形相似.其中正确的是.(填写序号)
14.如图,已知△ABC中,若BC=6,△ABC的面积为12,四边形DEFG是△ABC的内接的正方形,则正方形DEFG的边长是.
三、解答题(共78分,解答要写出必要的文字说明、证明过程或演算步骤)
15.(12分)用适当的方法解下列方程.
(1)x(x﹣2)+x﹣2=0;
(2)x2﹣4x﹣192=0;
(3)3x2﹣5x+1=0;
(4)4x2﹣3=12x.
16.(6分)某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.
(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?
17.(6分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况.
(2)求点A落在第三象限的概率.
18.(7分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是;
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是(用树状图或列表法求解).
19.(7分)已知:如图,矩形ABCD中,AC与BD交于O点,若点E是AO的中点,点F 是OD的中点.求证:BE=CF.
20.(8分)如图,已知△ABC,直线PQ垂直平分AC,与边AB交于E,连接CE,过点C 作CF平行于BA交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
(3)若AD=3,AE=5,则菱形AECF的面积是多少?
21.(7分)如图,在△ABC中,点D是边AB的四等分点,DE∥AC,DF∥BC,AC=8,BC=12,求四边形DECF的周长.
22.(8分)如图,在△ABC中,∠ABC=90°,F是AC的中点,过AC上一点D作DE∥AB,交BF的延长线于点E,AG⊥BE,垂足是G,连接BD,AE.
(1)求证:△ABC∽△BGA;
(2)若AF=5,AB=8,求FG的长;
23.(8分)已知一元二次方程x2+px+q+1=0的一个根为2
(1)求q关于p的关系式;
(2)求证:方程x2+px+q=0有两个不等的实数根;