专题11:统计概率问题
2022年四川各地(成都德阳南充等)中考数学真题按知识点分类汇编 专题11 统计与概率(原卷版)
专题11 统计与概率1.(2022·成都)在中国共产主义青年团成立100周年之际,某校团委招募志愿者到六个社区开展“书香成都”全民阅读服务活动,报名人数分别为:56,60,63,60,60,72,则这组数据的众数是()A.56B.60C.63D.722.(2022·自贡)六位同学的年龄分别是13、14、15、14、14、15岁,关于这组数据,正确说法是()A.平均数是14B.中位数是14.5C.方差3D.众数是143.(2022·泸州)费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35B.34,33C.34,35D.35,344.(2022·德阳)在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A.6,6B.4,6C.5,6D.5,55.(2022·广元)如图是根据南街米粉店今年6月1日至5日每天的用水量(单位:吨)绘制成的折线统计图.下列结论正确的是()A.平均数是6B.众数是7C.中位数是11D.方差是86.(2022·乐山)一个布袋中放着6个黑球和18个红球,除了颜色以外没有任何其他区别.则从布袋中任取1个球,取出黑球的概率是()A.14B.13C.23D.347.(2022·乐山)李老师参加本校青年数学教师优质课比赛,笔试得90分、微型课得92分、教学反思得88分.按照图所显示的笔试、微型课、教学反思的权重,李老师的综合成绩为()A.88B.90C.91D.928.(2022·南充)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是()A.平均数B.中位数C.众数D.方差9.(2022·眉山)中考体育测试,某组10名男生引体向上个数分别为:6,8,8,7,7,8,9,7,8,9.则这组数据的中位数和众数分别是()A.7.5,7B.7.5,8C.8,7D.8,810.(2022·凉山)一组数据4、5、6、a、b的平均数为5,则a、b的平均数为()A.4B.5C.8D.1011.(2022·自贡)为了比较甲、乙两鱼池中的鱼苗数目,小明从两鱼池中各捞出100条鱼苗,每条做好记号,然后放回原鱼池;一段时间后,在同样的地方,小明再从甲、乙两鱼池中各捞出100条鱼苗,发现其中有记号的鱼苗分别是5条、10条,可以初步估计鱼苗数目较多的是____________鱼池(填甲或乙)12.(2022·德阳)学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制),某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是______分.13.(2022·广元)一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是________.14.(2022·遂宁)遂宁市某星期周一到周五的平均气温数值为:22,24,20,23,25,这5个数的中位数是__.15.(2022·南充)老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是________.16.(2022·成都)2022年3月25日,教育部印发《义务教育课程方案和课程标准(2022年版)》,优化了课程设置,将劳动从综合实践活动课程中独立出来.某校以中国传统节日端午节为契机,组织全体学生参加包粽子劳动体验活动,随机调查了部分学生,对他们每个人平均包一个粽子的时长进行统计,并根据统计结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的学生总人数为_________,表中x 的值为_________;(2)该校共有500名学生,请你估计等级为B 的学生人数;(3)本次调查中,等级为A 的4人中有两名男生和两名女生,若从中随机抽取两人进行活动感想交流,请利用画树状图或列表的方法,求恰好抽到一名男生和一名女生的概率.17.(2022·自贡)为了解学生每周参加课外兴趣小组活动的累计时间t (单位:小时),学校采用随机抽样的方法,对部分学生进行了问卷调查,调查结果按03t ≤<,34t ≤<,45t ≤<,5t ≥分为四个等级,分别用A、B、C、D表示;下图是受损的调查统计图,请根据图上残存信息解决以下问题:(1)求参与问卷调查的学生人数n,并将条形统计图补充完整;(2)全校共有学生2000人,试估计学校每周参加课外兴趣小组活动累计时间不少于4小时的学生人数;(3)某小组有4名同学,A、D等级各2人,从中任选2人向老师汇报兴趣活动情况,请用画树状图或列表法求这2人均属D等级的概率.18.(2022·泸州)劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了m名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:a________;(1)m=________,=t≤≤范围的学生有多少人?(2)若该校学生有640人,试估计劳动时间在23t≤≤范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感(3)劳动时间在2.53受,求抽取的2名学生恰好是一名男生和一名女生的概率.19.(2022·德阳)据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.20.(2022·广元)为丰富学生课余活动,明德中学组建了A体育类、B美术类、C音乐类和D其它类四类学生活动社团,要求每人必须参加且只参加一类活动.学校随机抽取八年级(1)班全体学生进行调查,以了解学生参团情况.根据调查结果绘制了两幅不完整的统计图(如图所示).请结合统计图中的信息,解决下列问题:(1)八年级(1)班学生总人数是人,补全条形统计图,扇形统计图中区域C所对应的扇形的圆心角的度数为;(2)明德中学共有学生2500人,请估算该校参与体育类和美术类社团的学生总人数;(3)校园艺术节到了,学校将从符合条件的4名社团学生(男女各2名)中随机选择两名学生担任开幕式主持人,请用列表或画树状图的方法,求恰好选中1名男生和1名女生的概率.21.(2022·遂宁)北京冬奥会、冬残奥会的成功举办推动了我国冰雪运动的跨越式发展,激发了青少年对冰雪项目的浓厚兴趣.某校通过抽样调查的方法,对四个项目最感兴趣的人数进行了统计,含花样滑冰、短道速滑、自由式滑雪、单板滑雪四项(每人限选1项),制作了如下统计图(部分信息未给出).请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了______名学生;若该校共有2000名学生,估计爱好花样滑冰运动的学生有______人;(2)补全条形统计图;(3)把短道速滑记为A、花样滑冰记为B、自由式滑雪记为C、单板滑雪记为D,学校将从这四个运动项目中抽出两项来做重点推介,请用画树状图或列表的方法求出抽到项目中恰有一项为自由式滑雪C的概率.22.(2022·乐山)为落实中央“双减”精神,某校拟开设四门校本课程供学生选择:A.文学鉴赏,B.越味数学,C.川行历史,D.航模科技.为了解该校八年级1000名学生对四门校本课程的选择意向,张老师做了以下工作:①抽取40名学生作为调查对象;①整理数据并绘制统计图;①收集40名学生对四门课程的选择意向的相关数据:①结合统计图分析数据并得出结论.(1)请对张老师的工作步骤正确排序______.(2)以上步骤中抽取40名学生最合适的方式是______.A.随机抽取八年级三班的40名学生B.随机抽取八年级40名男生C.随机抽取八年级40名女生D.随机抽取八年级40名学生(3)如图是张老师绘制的40名学生所选课后服务类型的条形统计图,假设全年级每位学生都做出了选择,且只选择了一门课程.若学校规定每个班级不超过40人,请你根据图表信息,估计该校八年级至少应该开设几个趣味数学班.23.(2022·南充)为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A.阅读数学名著;B.讲述数学故事;C.制作数学模型;D.挑战数学游戏要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题:a_______________,b=_______________.(1)=(2)扇形统计图中“B”项目所对应的扇形圆心角为_______________度.(3)在月末的展示活动中,“C”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率.24.(2022·眉山)北京冬奥组委会对志愿者开展培训活动,为了解某批次培训活动效果,随机抽取了20名志愿者的测试成绩.成绩如下:84 93 91 87 94 86 97 100 88 9492 91 82 89 87 92 98 92 93 88整理上面的数据,得到频数分布表和扇形统计图:请根据以上信息,解答下列问题:(1)C 等级的频数为________,B 所对应的扇形圆心角度数为________;(2)该批志愿者有1500名,若成绩不低于90分为优秀,请估计这批志愿者中成绩达到优秀等级的人数;(3)已知A 等级中有2名男志愿者,现从A 等级中随机抽取2名志愿者,试用列表或画树状图的方法求出恰好抽到一男一女的概率.25.(2022·达州)“防溺水”是校园安全教育工作的重点之一.某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理和分析(成绩得分用x 表示,共分成四组:A .8085x <,B .8590x <,C .9095x <,D .95100x ),下面给出了部分信息:七年级10名学生的竞赛成绩是:96,84,97,85,96,96,96,84,90,96.八年级10名学生的竞赛成绩在C 组中的数据是:92,92,94,94.七、八年级抽取的学生竞赛成绩统计表八年级抽取的学生竞赛成绩扇形统计图根据以上信息,解答下列问题:a__________,b=__________,m=__________;(1)上述图表中=(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);x)的学生人数(3)该校七、八年级共1200人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(95是多少?26.(2022·凉山)为丰富校园文化生活,发展学生的兴趣与特长,促进学生全面发展.某中学团委组建了各种兴趣社团,为鼓励每个学生都参与到社团活动中,学生可以根据自己的爱好从美术、演讲、声乐、舞蹈、书法中选择其中1个社团.某班班主任对该班学生参加社团的情况进行调查统计,并绘制成如下两幅不完整的统计图.请根据统计图提供的信息完成下列各题:(1)该班的总人数为人,并补全条形图(注:在所补小矩形上方标出人数);(2)在该班团支部4人中,有1人参加美术社团,2人参加演讲社团,1人参加声乐社团如果该班班主任要从他们4人中任选2人作为学生会候选人,请利用树状图或列表法求选出的两人中恰好有1人参加美术社团、1人参加演讲社团的概率.。
第十一章 概率与统计
第十一章 概率与统计两个计数原理1.分类计数原理: 。
分步计数原理: 。
2.王云同学有参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读,若他从这些参考书中带一本去图书馆,有 种不同的方法;若带外语,数学,物理各一本,有 种不同的带法;若从这些参书中选2本不同学科的参考书带到图书馆,有种不同的带法。
3.设*,x y N ∈,且4x y +≤,则点(,)x y 共有 个.、4.设{1,2,3},{4,5}A B ==,从集合A 到集合B 共可建立不同的函数个数为 . 5.一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成 个四位数字号码。
6.11n mi ji j a b==⋅∑∑展开后共有 项.例1.(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生争夺数学、物理、化学竞赛的冠军(无并列),有多少种不同的结果? (3)某人要将4封不同的信投入3个不同信箱中,不同的投寄方法有多少种?(4)将3个不贩小球放入4个不同编号的盒子中(一个盒子只放一个小球),不同的放法有多少种?例2.在一次综艺节目的演出中,热心观众坐成四个方阵(如下图),现有4种不同颜色的T 恤衫,要求相邻方阵着不同颜色的T 恤,有多少种不同的着衣方法?例3.(1)用数字0,1,2,3,4可组成多少个不同的三位数?(2)甲、乙、丙3人互相传1只篮球,开始球在甲手中,经过5次传球后,球在甲手中,问共有多少种不同的传球方式?例4.(备选题)设整数4,(,)n P a b ≥是平面直角坐标系xOy 中的点,其中,{1,2,3,,}a b n ∈L ,a b >.(1)记n A 为满足3a b -=的点P 的个数,求n A ; (2)记n B 为满足1()3a b -是整数的点P 的个数,求n B .排列、组合的概念和运算1.排列的定义: ,叫做从n 个不同元素中取出m 个元素的一个排列.2.排列数的定义: ,叫做从n 个不同元素中取出m 个元素的排列数,用符号 表示.3.排列数公式:mn A = = ;m n A = = ;0!=4.组合的定义: ,叫做从n 个不同元素中取出n 个元素的一个组合.5.组合数的定义: ,叫做从n 个不同元素中取出m 个元素的给合数,用符号 表示.6.组合数公式:mn C = = = ;0n C = 7.组合数的两个性质:(1) (2)例1.(1)若17161554mn A =⨯⨯⨯⨯⨯L ,则n = ,m = .(2)若*n N ∈,则(55)(56)(57)(68)n n n n ----L 用排列数符号表示为(3)若33210n n A A =,则n =(4)若75589n nnA A A -=,则n = 例2.(1)若*x N ∈,求123231x x x x C A ---++的所有可能值.(2)求11224n nn n A A -++的值.例3.(1)化学:1!22!33!!n n +⋅+⋅++⋅L (2)化简:12312!3!4!!n n -++++L (3)化简:122nn n n C C nC +++L例4.(备选题)已知(2)p p ≥是给定的某个正整数,数列{}n a 满足:111,(1)()k k a k a p k p a +=+=-,其中1,2,3,,1k p =-L .(1)设4,p =求234,,a a a ; (2)求123p a a a a ++++L .二项式定理及通项公式的应用1.二项式定理:对于*n N ∈,()na b += ,二项式展开式的通项公式为 ,二项式展开式中第r 项的二项式系数为 ,要分清展开式中第一项的系数与该项的二项式系数.2.6(23)a b +的展开式的第3项是 ;6(32)b a +的展开式的第3项是 . 3.15(12)x -的展开式的第1r +项为 .4.37(2)x x +展开式的第4项的二项式系数是 ,第4项的系数是 .5.*n N ∈,式子01122(1)2(1)n n k k n k n n n n n C C C C ---++-++-L L = .例1.求10的展开式中,求:(1)第3项的二项式系数及系数;(2)含2x 的项及系数;(3)常数项、有理项.例2.(1)已知9a x ⎛- ⎝的展开式中3x 的系数为94,求常数a 的值 (2)求2521(2)x x++的展开式中2x 项 (3)求64(1)(1)x x -+展开式中3x 的系数例3.(1)求100.998的近似值(精确到0.01) (2)当n 为正奇数时,求112215555n n n n n n n C C C ---++++L 被7除所得的余数.(3)当*3,n n N ≥∈,求证:221nn >+例4.(备选题)是否存在等比数列{}n a ,使12121(1)2nn nnn na C a C a C --+++=L 对一切*n N ∈都成立?如存在,求出n a ;如不存在,请说明理由.二项式系数的性质及应用1.二项式系数的性质(1)对称性:在()na b +展开式中, 的两项的二项式系数相等.(2)增减性与最大值;当12n k +<时,二项式系数是逐渐 的,由对称性知它的后半部分是逐渐的,且在中间取得最大值,当n 是偶数时,中间的一项 取得最大值;当n 是奇数时,中间两项 相等,且同时取得最大值.(3)二项式系数的和:012nn n n n C C C C ++++L = ;022135n n n n n n C C C C C C +++=+++L L = .2.在()nx y +的展开式中,若第7项的系数最大,则n 等于 .3.若29323636012,(2),n n n n n C C x a a x a x a x ++=-=++++L 则011n a a a -+++L = ;12323n a a a na ++++L = .4.函数1010()(1cos )(1cos )(0)f x x x x π=++-≤≤的最大值为 .5.若1)nx的展开式中各项系数和为P ,所有二项式系数和为2,272,r n S P S C +=最大,则r .例1.(1)求7(2)x y +展开式中系数最大的项;(2)求7(2)x y -展开工中系数最大的项.例2.求12(13)x -的展开式中 (1)各项二项式系数之和; (2)奇数项二项式系数和; (3)各项系数和; (4)各项系数绝对值的和.例3.已知数列{}n a 的首项为1,011222111231()(1)(1)(1)(1)n n n n n n n n n n n n n n p x a C x a xC x a x C x a C x x a C x ----+=-+-+-++-+L .(1)若数列{}n a 是公比为2的等比数列,求(1)p -的值;(2)若数列{}n a 是公差为2的等差数列,求证:()p x 是关于x 的一次多项式.例4.(备选题)(1)当*k N ∈时,求证:(1(1k k ++-是正整数;(2)试证明大于2(1n +的最小整数能被12n +整除*()n N ∈ .排列、组合的应用题(1)1.特殊元素、特殊位置的“优先安排法” 2.正难则反:排除法(去杂法)3.相邻问题:捆绑法4.不相邻问题:插空法5.顺序一定问题:除法6.至多、至少问题:正面与反面的选择7.染色问题:“树型图法”、恰当的分类与准确的分步8.相同元素问题:隔板法例1.4男3女坐成一排,下列各小题分别有多少种排法?(1)某人必须在中间(2)某两人只能在两端(3)某人不在中间和两端(4)甲、乙两人必须相邻(5)甲、乙两人不相邻(5)甲、乙两人必须相隔1人(7)4男必须相邻(8)4男必须相邻,3女也必须相邻(9)3女不相邻(10)4男不相邻(11)4男不在两端(12)甲在乙左边(13)3男不等高,按高矮自左向右顺序排列例2.用0、1、2、3、4、5六个数字分别可以组成多少个符合下列条件的没有重复数字的自然数?(1)四位偶数(2)四位奇数(3)是25的倍数的六位数(4)比240135大的六位数(5)个位数字比十位数字小的五位数例3.某旅行社有导游9人,其中3人只会英语,2人只会日语,其余4人既会英语又会日语,现要从中选6人,其中3人做英语导游,另外3人做日语导游,则不同的选择方法有多少种?例4.(备选题)将4个编号1、2、3、4的小球放入4个编号为1、2、3、4的盒子中,(1)每盒子至多一球,有多少种放法?(2)恰好有一个空盒,有多少种放法?(3)每个盒子放一球,并且恰好有一球的编号与盒子的编号相同,有多少种放法?(4)把4个不同的小球换成4个相同的小球,恰有一个空盒子,有多少种放法?(5)把4个不同的小球换成20个相同的小球,要求每个盒子内的球数不少于它的编号数,有多少种放法?排列、组合的应用题(2)1.某天某班的课程表要排语文、数学、外语、物理、化学、体育六门课程,如果第一节不排体育,最后一节不排数学,一共有种不同的排法。
统计与概率问题
统计与概率问题统计与概率是数学中重要的分支,它涉及到数据收集、分析和解释的方法,以及在不确定性条件下对事件发生的可能性进行预测的能力。
本文将探讨几个与统计与概率相关的问题,并以解决这些问题的方法来阐述这一主题的重要性。
1. 抽样与调查抽样与调查是统计学中常用的数据收集方法。
抽样是从整体中选择一部分个体来进行研究,以便对整体进行推断。
调查则是通过问卷、面谈等方式,收集相关数据。
例如,为了研究人口的收入情况,可以进行一项全国范围的调查,或者采用随机抽样的方式选取一部分人口进行调查。
通过抽样与调查,可以得到对整体情况的估计结果。
2. 概率计算概率是描述事件发生可能性的数值,在统计与概率中扮演着核心角色。
概率的计算可以通过频率法和数学方法来进行。
频率法根据实验或观察的结果,统计事件发生的次数,计算事件发生的频率。
数学方法则通过分析事件的属性和相关的数学模型,预测事件发生的概率。
例如,掷硬币的问题中,我们可以通过实验得到正面朝上的频率,从而推断出正面朝上的概率。
3. 随机变量与概率分布随机变量是在概率问题中起到承载随机现象的作用的变量。
它可以是离散型的,例如掷骰子的点数;也可以是连续型的,例如人的身高。
概率分布则是描述随机变量的取值及取值的概率分布情况。
常见的概率分布包括二项分布、正态分布等。
通过对随机变量和概率分布的研究,可以对随机现象的发生规律进行建模和预测。
4. 统计推断统计推断是通过对样本数据的分析,对总体的性质和特征进行推断的过程。
根据样本数据的特点,使用概率模型和统计方法来估计总体参数和进行假设检验。
例如,我们可以通过对400只猫的体重进行测量,推断整个猫群体的平均体重,并通过假设检验判断这个推断是否具有统计显著性。
5. 相关性与回归分析相关性和回归分析是用来探究变量之间关系的统计方法。
相关性分析可以衡量两个变量之间的相关程度,包括正向相关和负向相关。
回归分析则是建立一个数学模型,通过自变量对因变量进行预测。
应用概率统计习题十一答案
习题11答案11.1 一种物质吸附另一种物质的能力与温度有关.在不同温度下吸附的重量Y ,测得结果列于下表中.设对于给定x ,Y 为正态变量,方差与x 无关. C mg 试求吸附量Y 关于温度x 的一元回归方程.解: 其中9n =,由此得 3.36667x =,10.1222y =,2(1)8 1.637513.1xx x S n s =-=⨯=,2(1)814.3114.4yy y S n s =-=⨯=38.3867xy S =则 38.3867ˆ 2.930313.1xyxx S b S === ˆˆ0.2568ay bx =-= 故y 关于温度x 的一元回归方程为ˆ0.2568 2.9303yx =+ 11.2 合成纤维抽丝工段第一导丝盘的速度是影响丝的质量的重要参数,今发现它和电流的周波有密切关系,生产中测量数据如下表设对周波x ,速度Y 是正态变量,方差与x 无关,求速度Y 关于周波x 的一元回归方程,并对回归方程进行显著性检验,求出050.5x =处y 的预报值0ˆy和预报区间(0.05α=).解: (1)其中10n =,由此得49.61x =,16.86y =,20.221x s =,20.027y s =2(1)90.221 1.989xx x S n s =-=⨯=,1018364.921049.6116.860.674xy i ii S x y nx y ==-=-⨯⨯=∑ 则 0.674ˆ0.33891.989xyxx S b S ==≈ ˆˆ0.0471a y bx =-= 故y 关于x 的一元回归方程为ˆ0.04710.3389yx =+ (2)由于 1.989xx S =,ˆ0.3389b= 故22ˆ()(0.3389) 1.9890.2284xxS b S 回==⨯= 2(1)90.02710.244yy y S n s =-=⨯=22ˆ()0.244(0.3389) 1.9890.0156e yy xxQ S b S =-=-⨯= yy S 的自由度为9,e Q 的自由度为8故方差分析表为方差来源 平方和 自由度 均方 F 比 回 归 0.22839 1 0.22839 117.08 残差误差 0.01561 8 0.00195合 计 0.24400 9由于0.05α=,0.05117.08 5.32(1,8)F F =>=,故回归效果显著(3)预设值00.04710.338950.517.16345y =+⨯=(4)由于0.025(8) 2.306t =,49.61x =,050.549.610.89x x -=-=20.0156ˆ0.019528e Q n σ===-,ˆ0.044σ=故0()(50.5) 2.3060.12419x δδ==⨯= 所以预报区间为(17.16345-0.12419,17.6345+0.12419)即为(17.03926,17.28764)。
浙江专用2021届高考数学一轮复习专题十一概率与统计11.4抽样方法与总体分布的估计试题含解析
§11。
4 抽样方法与总体分布的估计基础篇固本夯基【基础集训】考点一随机抽样1.在简单随机抽样中,某一个个体被抽到的可能性()A。
与第几次有关,第一次可能性最大 B。
与第几次有关,第一次可能性最小C.与第几次无关,与抽取的第几个样本有关D.与第几次无关,每次可能性相等答案D2.某单位员工按年龄分为A,B,C三组,其人数之比为5∶4∶1,现用分层抽样的方法从总体中抽取一个容量为20的样本,已知C组中甲、乙二人均被抽到的概率是1,则该单位员工总数为45()A。
110B。
100 C.900D。
800答案B3.《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示。
若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩,按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手"称号的人数为()A.2B.4C.5D。
6答案B4.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.答案10考点二用样本估计总体5.甲、乙两组数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数相同的是()A。
极差 B.方差C。
平均数 D.中位数答案C6。
为比较甲、乙两地某月11时的气温情况,随机选取该月5天11时的气温数据(单位:℃)制成如图所示的茎叶图,已知甲地该月5天11时的平均气温比乙地该月5天11时的平均气温高1 ℃,则甲地该月5天11时的气温数据的标准差为()甲乙9 82 6 892 m 03 1 1 A 。
2 B 。
√2 C 。
10 D 。
√10答案 B7.某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于100的产品为优质产品。
(江苏版)备战高考数学模拟试卷分项 专题11 概率统计-人教版高三全册数学试题
第十一章 概率统计 1. 【南师附中2017届高三模拟二】从集合{}1,2,3,4,5,6,7,8,9中任取两个不同的数,则其中一个数恰是另一个数的3倍的概率为__________.【答案】112【解析】从集合{}1,2,3,4,5,6,7,8,9中任取两个不同的数,有98362n ⨯==种情形,其中一个是另一个的三倍的事件有()()()1,3,2,6,3,9,共3种情形,所以由古典概型的计算公式可得其概率是313612P ==,应填答案112。
2. 【南师附中2017届高三模拟二】射击运动员打靶,射5发,环数分别为9,10,8,10,8,则该数据的方差为__________.【答案】45【解析】因为910810895x ++++==,所以[]2140111155s =++++=,应填答案45。
3. 【南师附中2017届高三模拟一】从2,3,4中任取两个数,其中一个作为对数的底数,另一个作为对数的真数,则对数值大于1的概率是__________.【答案】124.【南师附中2017届高三模拟一】随机抽取年龄在[)[)[]10,20,20,30,......50,60年龄段的市民进行问卷调查,由此得到的样本的频数分布直方图如图所示,采用分层抽样的方法从不小于40岁的人中按年龄阶段随机抽取8人,则[]50,60年龄段应抽取人数为__________.【答案】2【解析】由题设提供的直方图可以看出年龄在[]40,60内的人数为()0.0150.005100.02(n n n +⨯=是样本容量),则0.028400n n =⇒=,故年龄在[]50,60内的人数为0.005100.052n n ⨯==,应填答案2。
5. 【某某中学2018届高三10月月考】记函数定义域为,在区间上随机取一个数,则的概率是_______. 【答案】点睛:解答几何概型问题的关键在于弄清题中的考察对象和对象的活动X 围.当考察对象为点,点的活动X 围在线段上时,用线段长度比计算;当考察对象为线时,一般用角度比计算,即当半径一定时,由于弧长之比等于其所对应的圆心角的度数之比,所以角度之比实际上是所对的弧长(曲线长)之比.6. 【某某中学2018届高三上学期开学考试】某校在市统测后,从高三年级的1000名学生中随机抽出100名学生的数学成绩作为样本进行分析,得到样本频率分布直方图,如图所示,则估计该校高三学生中数学成绩在之间的人数为__________.【答案】660【解析】由样本频率分布直方图,知:该校高三学生中数学成绩在之间的频率为:,∴估计该校高三学生中数学成绩在之间的人数为:.故答案为660.7. 【海安县2018届高三上学期第一次学业质量测试】已知一个边长为2的正方形及其外接圆.现随机地向圆内丢一粒豆子,则豆子落入正方形内的概率为_________.【答案】8.【海安县2018届高三上学期第一次学业质量测试】某校高一年级共有800名学生,根据他们参加某项体育测试的成绩只做了如图所示的频率分布直方图,则成绩不低于80分的学生人数为_________.【答案】240【解析】由题设中提供的频率分布直方图可以看出:不低于80分的学生人数为()0.020.0110800240m=+⨯⨯=,应填答案240。
(上海专用)2018版高考数学总复习专题11概率与统计分项练习.
第十一章 概率与统计一.基础题组1. 【2017高考上海,9】已知四个函数:①y x =-;②1y x=-;③3y x =;④12y x =.从中任选2个,则事件“所选2个函数的图像有且仅有一个公共点” 的概率为 . 【答案】13【解析】考查函数图象交点的个数:y x =- 与1y x=- 有2个交点;y x =- 与3y x = 有1个交点;y x =- 与12y x = 有1个交点; 1y x=-与3y x = 有0个交点;1y x=-与12y x = 有0个交点;3y x =与12y x = 有2个交点;结合古典概型公式可得:所选两个函数的图像有且仅有一个公共点的概率为2163p == . 2.【2016高考上海理数】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米). 【答案】1.76 【解析】试题分析:将这6位同学的身高按照从低到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76. 【考点】中位数的概念【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力. 3.【2016高考上海理数】如图,在平面直角坐标系xOy 中,O 为正八边形821A A A 的中心,()0,11A .任取不同的两点j i A A ,,点P 满足0i j OP OA OA ++=,则点P 落在第一象限的概率是_____________.【答案】528【解析】试题分析:共有28C 28=种基本事件,其中使点P 落在第一象限的情况有23C 25+=种,故所求概率为528. 【考点】排列组合、古典概型、平面向量的线性运算【名师点睛】本题主要考查古典概型概率的计算.解答本题时,关键在于能够准确地确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好地考查考生的数学应用意识、基本运算求解能力、数形结合思想等.4.【2016高考上海文数】某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______. 【答案】16【考点】古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题时,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好地考查考生的数学应用意识、基本运算求解能力等.5. 【2015高考上海理数】赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E = (元). 【答案】0.2【解析】赌金的分布列为所以11(12345)35E ξ=++++=奖金的分布列为所以223111.4(1234)2.8510510E ξ=⨯⨯+⨯+⨯+⨯=12ξξE -E =0.2【考点定位】数学期望【名师点睛】一般地,若离散型随机变量X 的分布列为:则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,均值E (X )是一个实数,由x 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 值的取值平均状态.6. 【2014上海,理10】为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示). 【答案】115【考点】古典概型.7. 【2014上海,理13】某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩游戏的得分.若()ξE =4.2,则小白得5分的概率至少为 .【答案】0.2【解析】设ξ=1,2,3,4,5的概率分别为12345,,,,P P P P P ,则由题意有123452345 4.2P P P P P ++++=,123451P P P P P ++++=,对于1234234P P P P +++,当4P 越大时,其值越大,又41P <,因此1234234P P P P +++4≤5(1)P -,所以554(1)5 4.2P P -+≥,解得50.2P ≥.【考点】随机变量的均值(数学期望),排序不等式.8. 【2014上海,文13】为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率 是 (结构用最简分数表示). 【答案】115【解析】任意选择3天共有310120C =种方法,其中3天是连续3天的选法有8种,故所求概率为8112015P ==. 【考点】古典概型.9. 【2013上海,理8】盒子中装有编号为1,2,3,4,5,6,7,8,9的九个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是______(结果用最简分数表示). 【答案】1318【解析】9个数5个奇数,4个偶数,根据题意所求概率为1-2529C 13C 18=.10. 【2013上海,文6】某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为______. 【答案】78 【解析】平均成绩=40607580100100⋅+⋅=78. 11. 【2013上海,文11】盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是______(结果用最简分数表示).【答案】57【解析】考查排列组合;概率计算策略:正难则反。
2020高考数学解答题核心素养题型《专题11 概率与统计综合问题》+答题指导)(解析版)
专题11 概率与统计综合问题【题型解读】几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件、互斥事件常作为解答题的一问考查,也是进一步求分布列、期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】 (2018·天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16,现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查. ①用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望;②设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 【答案】见解析【解析】(1)由题意得,甲、乙、丙三个部门的员工人数之比为3∶2∶2.由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人、2人、2人. (2)①随机变量X 的所有可能取值为0,1,2,3. P (X =k )=C k 4C 3-k3C 37(k =0,1,2,3).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×35+1×35+2×35+3×35=7.②设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A =B ∪C ,且B 与C 互斥. 由①知,P (B )=P (X =2),P (C )=P (X =1), 故P (A )=P (B ∪C )=P (X =2)+P (X =1)=67.所以事件A 发生的概率为67.【素养解读】本题考查分层抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式,考查分析问题和解决问题的能力,体现了数学运算和数据分析等核心素养.试题难度:中.【突破训练1】 (2017·天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】见解析【解析】(1)随机变量X 的所有可能取值为0,1,2,3.P (X =0)=⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14=14,P (X =1)=12×⎝⎛⎭⎪⎫1-13×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-12×13×⎝⎛⎭⎪⎫1-14+⎝⎛⎭⎪⎫1-12×⎝⎛⎭⎪⎫1-13×14=1124,P (X =2)=⎝⎛⎭⎪⎫1-12×13×14+12×⎝ ⎛⎭⎪⎫1-13×14+12×13×⎝ ⎛⎭⎪⎫1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为所以E (X )=0×4+1×24+2×4+3×24=12.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0) =14×1124+1124×14=1148. 所以这2辆车共遇到了1个红灯的概率为1148.▶▶题型二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,常有解答题的考查,属于中档题.复习中应强化应用类习题的理解与掌握,弄清随机变量的所有取值,它是正确求随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中应强化解答题的规范性训练.【例2】 (2018·北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk =1”表示第k 类电影得到人们喜欢,“ξk =0”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.【答案】见解析【解析】 (1)设“从电影公司收集的电影中随机选取1部,这部电影是获得好评的第四类电影”为事件A . 因为第四类电影中获得好评的电影有200×0.25=50(部), 所以P (A )=50140+50+300+200+800+510=502 000=0.025.(2)设“从第四类电影和第五类电影中各随机选取1部,恰有1部获得好评”为事件B ,则P (B )=0.25×(1-0.2)+(1-0.25)×0.2=0.35.(3)由题意可知,定义随机变量如下:ξk =⎩⎪⎨⎪⎧0,第k 类电影没有得到人们喜欢,1,第k 类电影得到人们喜欢,则ξk 显然服从两点分布,故Dξ1=0.4×(1-0.4)=0.24,Dξ2=0.2×(1-0.2)=0.16, Dξ3=0.15×(1-0.15)=0.127 5,Dξ4=0.25×(1-0.25)=0.187 5, Dξ5=0.2×(1-0.2)=0.16, Dξ6=0.1×(1-0.1)=0.09.综上所述,Dξ1>Dξ4>Dξ2=Dξ5>Dξ3>Dξ6.【素养解读】本题考查统计中的概率计算、随机变量的方差计算,考查运算求解能力,体现了数据分析、数学运算等核心素养.试题难度:中.【突破训练2】 (2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列.(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值? 【答案】见解析【解析】(1)由题意知,X 所有可能取值为200,300,500, 由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4, P (X =500)=25+7+490=0.4, 因此X 的分布列为当300≤n ≤500时,若最高气温不低于25,Y =6n -4n =2n ; 若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以当n=300时,Y的数学期望达到最大值,最大值为520元.▶▶题型三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下.(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面的列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;附:K 2=(a +b)(c +d)(a +c)(b +d).【答案】见解析【解析】(1)记B 表示事件“旧养殖法的箱产量低于50 kg”,C 表示事件“新养殖法的箱产量不低于50 kg”. 由题意知P (A )=P (BC )=P (B )P (C ). 旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P (B )的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为 (0.068+0.046+0.010+0.008)×5=0.66, 故P (C )的估计值为0.66.因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)根据箱产量的频率分布直方图得如下列联表.K 2=100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为(0.004+0.020+0.044)×5=0.34<0.5,箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法箱产量的中位数的估计值为 50+0.5-0.340.068≈52.35(kg).【素养解读】本题考查频率分布直方图、独立性检验、中位数、相互独立事件的概率,考查学生的阅读理解能力、数据处理能力.主要体现了数据分析,数学运算等核心素养.【突破训练3】 (2017·北京卷)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望E (ξ);(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小(只需写出结论). 【答案】见解析【解析】(1)由题图知,在服药的50名患者中,指标y 的值小于60的有15人. 所以从服药的50名患者中随机选出一人,此人指标y 的值小于60的概率为1550=0.3.(2)由题图知,A ,B ,C ,D 四人中,指标x 的值大于1.7的有2人:A 和C . 所以ξ的所有可能取值为0,1,2.P (ξ=0)=C 22C 24=16,P (ξ=1)=C 12C 12C 24=23,P (ξ=2)=C 22C 24=16.所以ξ的分布列为故ξ的期望E (ξ)=0×6+1×3+2×6=1.(3)在这100名患者中,服药者指标y 数据的方差大于未服药者指标y 数据方差. 题型四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差等)的考查,解答题中也有所考查.【例4】 (2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t . (1)分析利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?请说明理由. 【答案】见解析【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施资源额的预测值为y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势,2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年的数据建立基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. (以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.)【素养解读】本题以统计图为背景,考查线性回归方程,考查运算求解能力和数形结合思想,体现了数学运算的核心素养.【突破训练4】 下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y)2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2∑i =1n(y i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .【答案】见解析【解析】(1)由折线图中数据和附注中参考数据得t =4,∑i =17(t i -t )2=28,∑i =17(y i -y -)2=0.55,∑i =17(t i -t -)(y i -y -)=∑i =17t i y i -t -∑i =17y i =40.17-4×9.32=2.89,r ≈2.890.55×2×2.646≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(2)由y -=9.327≈1.331及(1)得b ^=∑i =17(t i -t -)(y i -y -)∑i =17(t i -t -)2=2.8928≈0.103,a ^=y --b ^t -=1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^=0.92+0.10t .将2019年对应的t =9代入回归方程,得y ^=0.92+0.10×9=1.82.所以预测2019年我国生活垃圾无害化处理量约为1.82亿吨.。
高考统计概率题型的解题方法
高考统计概率题型的解题方法高考统计概率题型通常涉及到概率、期望和抽样等内容。
解题的方法和思路决定了我们能否高效地解决这些题目。
下面我将介绍一些常用的解题方法,希望对您有所帮助。
一、概率问题的解题方法1.事件的概率计算在解决概率问题时,首先要确定所求事件的概率。
概率可以表示为“事件发生的次数/总的可能次数”。
有以下几种常见情况:-均匀概率问题:即各事件发生的概率相等。
此时,所求事件的概率等于所求事件发生的次数/总的可能次数。
-条件概率问题:即事件A在事件B已经发生的条件下发生的概率。
此时,所求事件的概率等于事件A与事件B同时发生的次数/事件B发生的次数。
-独立事件概率问题:即事件A和事件B相互独立,互不影响。
此时,所求事件的概率等于事件A发生的概率乘以事件B发生的概率。
2.用排列组合解决问题有些概率问题中,可能涉及到多个选择,这时可以使用排列组合的方法来解决。
-排列:表示从n个元素中取出m个元素按照一定顺序排列的数目。
计算排列数的公式为:P(n,m)=n!/(n-m)!-组合:表示从n个元素中取出m个元素,不考虑其排列顺序的情况。
计算组合数的公式为:C(n,m)=n!/(m!(n-m)!)二、期望问题的解题方法1.期望的定义期望是一个随机变量在长期重复试验中出现的平均现象,通常用E 表示。
对于离散型随机变量,其期望可以表示为:E(X)=∑(x*p(x)),其中x为取值,p(x)为该值出现的概率。
对于连续型随机变量,期望可以用积分的形式表示。
2.期望的性质-线性性质:设X,Y为两个随机变量,a,b为常数,则E(aX+bY)=aE(X)+bE(Y)。
-期望的非负性:对于任意的随机变量X,有E(X)>=0。
-期望的加法性质:对于任意的随机变量X,Y,有E(X+Y)=E(X)+E(Y)。
三、抽样问题的解题方法1.抽样方法在抽样问题中,常见的有放回抽样和不放回抽样两种方法。
-放回抽样:即每次抽到一个元素后,将抽到的元素放回到总体中。
初中统计与概率问题
初中统计与概率问题在初中数学学科中,统计与概率是一个重要的知识点。
它涵盖了数据收集、整理和分析的过程,以及基于已知数据进行概率计算和预测的方法。
通过学习统计与概率问题,能够培养学生的观察和分析能力,提高他们的问题解决能力。
本文将围绕统计与概率问题展开讨论。
一、统计问题统计是指对数据进行收集、整理、分析和解释的过程。
在初中数学中,统计问题主要包括以下几个方面:1. 数据收集:学生可以通过调查问卷、实地观察等方式收集数据。
收集到的数据可以是数量的,也可以是性质的。
2. 数据整理与描述:将收集到的数据进行整理和分类。
可以使用表格、图表等形式进行展示。
同时,还可以通过计算平均数、中位数、众数等统计量来描述数据的集中趋势。
3. 数据分析与解释:通过对数据的分析,可以发现数据之间的关联和趋势。
例如,通过对一组数据的分析,可以发现某个变量与结果的变化有着一定的关系。
统计问题的解决过程中,需要学生具备一定的数据处理能力和统计分析能力。
通过实际操作和思考,可以加深对统计学的理解和应用。
二、概率问题概率是用来描述某个事件发生的可能性的数值。
初中数学中的概率问题主要包括以下几个方面:1. 实验与样本空间:概率的计算通常需要进行实验,并确定实验的所有可能结果构成的样本空间。
样本空间中的每一个元素代表一个可能的结果。
2. 事件与概率:事件是样本空间的子集,表示一个或多个可能的结果。
概率是事件发生的可能性大小,通常用一个介于0和1之间的数值来表示。
3. 概率的计算:根据样本空间和事件的定义,可以计算事件发生的概率。
常用的计算方法有等可能性原则、频率方法和几何方法。
通过学习概率问题,学生可以了解事件发生的可能性,培养他们的判断能力和分析思维。
概率问题也与生活实际密切相关,例如在游戏、赌博和保险领域都有概率的应用。
总结起来,初中统计与概率问题作为数学学科的重要组成部分,对于培养学生的观察、分析和解决问题的能力具有重要意义。
通过学习统计和概率,学生可以掌握数据的收集和处理方法,了解概率的计算和应用,为学习更高级的数学知识打下良好的基础。
2014届高三名校数学(文)试题分省分项汇编 专题11 概率和统计
一.基础题组1.【江苏启东中学2014届上学期期中模拟高三数学】若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是.2.【江苏启东中学2014届上学期期中模拟高三数学】已知样本7,8,9,,x y的平均数是8,xy ,则此样本的标准差是.且603.【金陵中学2013-2014学年度第一学期高三期中试卷数学】若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P在直线x+y = 5下方的概率为.66×6= 1 6.考点:古典概型概率的计算.4.【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】一个频率分布表(样本容量为50)不小心被损坏了一部分,只记得样本中数据在[20,60)上的频率为0.6,则估计样本在「40,50),[50,60)内的数据个数之和是_ __ .5.【江苏省通州高级中学2013-2014学年度秋学期期中考试高三数学试卷】甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是 _ .6.【江苏省扬州中学2013—2014期中考试模拟】若以连续掷两次骰子分别得到的点数nm,作为点P的横、纵坐标,则点P在直线5=+yx上的概率为.7. 【江苏省扬州中学2013—2014期中考试模拟】如图是某学校学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为10,则抽取的学生人数是 .二.能力题组1.【江苏省扬州中学2013—2014期中考试模拟】若样本321,,a a a 的方差是2,则样本32,32,32321+++a a a 的方差是。
(天津版)高考数学分项版解析 专题11 概率和统计、算法 文-天津版高三全册数学试题
第十一章 概率和统计一.基础题组1. 【2016高考某某文数】甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为(A )65 (B )52 (C )61 (D )31【答案】A 【解析】试题分析:甲不输概率为115.236+=选A. 【考点】概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法公式.对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件. 2.【2007某某,文11】从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下: 分组 [)90100, [)100110, [)110120, [)120130, [)130140, [)140150, 频数123101则这堆苹果中,质量不小于...120克的苹果数约占苹果总数的%. 【答案】703.【2008某某,文11】一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工________________人.【答案】10【解析】依题意知抽取超过45岁的职工为258010 200⨯=.4.【2009某某,文6】阅读下面的程序框图,则输出的S等于( )A.14B.20C.30D.55【答案】C【解析】由题意知:S=12+22+…+i2,当i=4时循环程序终止,故S=12+22+32+42=30.5.【2010某某,文3】阅读下边的程序框图,运行相应的程序,则输出s的值为 ( )A.-1 B.0 C.1 D.3【答案】B6.【2010某某,文18】有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47 其中直径在区间1.48,1.52]内的零件为一等品.(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(2)从一等品零件中,随机抽取2个.①用零件的编号列出所有可能的抽取结果;②求这2个零件直径相等的概率.【答案】(1) 35,(2) ①共有15种.②257.【2011某某,文3】阅读右边的程序框图,运行相应的程序,若输入x的值为-4,则输出y 的值为B.1C.2D.48.【2011某某,文15】编号分别为1216,,,A A A 的16名篮球运动员在某次训练比赛中的得分记录如下: 运动员编号 A 1A 2A 3A 4A 5A 6A 7A 8得分 15 35 21 28 25 36 18 34 运动员编号 A 9A 10A 11A 12A 13A 14A 15A 16得分1726253322123138(Ⅰ)将得分在对应区间内的人数填入相应的空格: 区间 [10,20)[20,30)[30,40)人数(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人, (i) 用运动员编号列出所有可能的抽取结果; (ii)求这2人得分之和大于50的概率.【答案】(1)4,6,6(2)15,1 . 39.【2012某某,文3】阅读下边的程序框图,运行相应的程序,则输出S的值为( )A.8 B.18 C.26 D.80【答案】C【解析】n=1,S=0+31-30=2,n=2;n=2<4,S=2+32-31=8,n=3;n=3<4,S=8+33-32=26,n=4;4≥4,输出S=26.10.【2012某某,文15】某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.【答案】(Ⅰ)3,2,1;(Ⅱ)①共15种;②1 511.【2013某某,文3】3.(2013某某,文3)阅读下边的程序框图,运行相应的程序,则输出n的值为( ).A.7B.6C.5D.4【答案】D【解析】由程序框图可知,n=1时,S=-1;n=2时,S=1;n=3时,S=-2;n=4时,S=2≥2,输出n的值为4,故选D.12.【2013某某,文15】某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z 评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号A1A2A3A4A5质量指标(x, y,z)(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1) 产品编号A6A7A8A9A10质量指标(x,y,z)(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)(2)在该样本的一等品中,随机抽取2件产品,①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.【答案】(Ⅰ)0.6;(Ⅱ)①可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种;②(Ⅲ)2 5(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B 发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以P(B)=62 105.13.【2014某某,文9】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生. 【答案】60 【解析】试题分析:分层抽样实质为按比例抽样,所以应从一年级本科生中抽取4300604556⨯=+++名学生.考点:分层抽样14.【2014某某,文11】阅读右边的框图,运行相应的程序,输出S 的值为________.【答案】 4.-考点:循环结构流程图15.【2014某某,文15】某校夏令营有3名男同学C B A ,,和3名女同学Z Y X ,,,其年级情况如下表:一年级 二年级 三年级 男同学 A B C 女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同) (1)用表中字母列举出所有可能的结果(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.【答案】(1)15,(2) 2.5【解析】试题分析:(1)列举事件,关键是按一定顺序,做到不重不漏. 从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种. (2) M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,其事件包含{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种. 因此,事件M 发生的概率62().155P M == 试题解析:解(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M 发生的概率62().155P M == 考点:古典概型概率16. 【2015高考某某,文15】(本小题满分13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛. (I )求应从这三个协会中分别抽取的运动员人数;(II )将抽取的6名运动员进行编号,编号分别为123456,,,,,A A A A A A ,从这6名运动员中随机抽取2名参加双打比赛.(i )用所给编号列出所有可能的结果;(ii )设A 为事件“编号为56,A A 的两名运动员至少有一人被抽到”,求事件A 发生的概率.【答案】(I )3,1,2;(II )(i )见试题解析;(ii )35【解析】(ii )编号为56,A A 的两名运动员至少有一人被抽到的结果为{}15,A A ,{}16,A A ,{}25,A A ,{}26,A A , {}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共9种,所以事件A 发生的概率()93.155P A == 【考点定位】本题主要考查分层抽样与古典概型及运用概率统计知识解决实际问题的能力. 17. 【2015高考某某,文3】阅读下边的程序框图,运行相应的程序,则输出i 的值为( ) (A) 2 (B) 3 (C) 4 (D)5【答案】C 【解析】由程序框图可知:2,8;3,S 5;4, 1.i S i i S ====== 故选C.【考点定位】本题主要考查程序框图及学生分析问题解决问题的能力.18.【2016高考某某文数】阅读下边的程序框图,运行相应的程序,则输出S 的值为_______.【答案】4【考点】循环结构流程图【名师点睛】算法与程序框图的考查,侧重于对程序框图中循环结构的考查.先明晰算法及程序框图的相关概念,其次重视循环次数、终止条件,更要通过循环规律,明确程序框图研究的数学问题是求和还是求项.19.【2009某某,文18】为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C 三个区中抽取7个工厂进行调查.已知A,B,C 区中分别有18,27,18个工厂.(1)求从A,B,C 区中应分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A 区的概率.【答案】(Ⅰ)2,3,2;(Ⅱ)1121【解析】(1)解:工厂总数为18+27+18=63,样本容量与总体中的个体数的比为91637 ,所以从A,B,C 三个区中应分别抽取的工厂个数为2,3,2. (2)解:设A1,A2为在A 区中抽得的2个工厂,B1,B2,B3为在B 区中抽得的3个工厂,C1,C2为在C 区中抽得的2个工厂.在这7个工厂中随机地抽取2个,全部可能的结果。
概率与统计- 高考数学试题分项版解析(解析版)
专题11 概率与统计1. 【2014高考福建卷文第13题】如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为___________.2. 【2014高考广东卷文第6题】为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A.50B.40C.25D.203. 【2014高考广东卷文第12题】从字母a 、b 、c 、d 、e 中任取两个不同的字母,则取到字母a 的概率为 .4. 【2014高考湖北卷文第5题】随机投掷两枚均匀的投骰子,他们向上的点数之和不超过5的概率为1P ,点数之和大于5的概率为2P ,点数之和为偶数的概率为3P ,则( )A. 321P P P <<B. 312P P P <<C. 231P P P <<D. 213P P P << 【答案】C 【解析】试题分析:依题意,36101=P ,3626361012=-=P ,36183=P ,所以231P P P <<.选C. 考点:古典概型公式求概率,容易题.5. 【2014高考湖北卷文第6题】根据如下样本数据:x3 4 56 78y4.02.55.0-0.50.2-0.3-得到的回归方程为a bx y+=ˆ,则( ) A.0a > ,0<b B.0a > ,0>b C.0a < ,0<b D.0a < ,0>b6. 【2014高考湖北卷文第11题】甲、乙两套设备生产的同类产品共4800件,采用分层抽样的方法从中抽取一个容量为80 的样本进行检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.7. 【2014高考湖南卷文第3题】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( )123.A p p p =< 231.B p p p =< 132.C p p p =< 123.D p p p ==【答案】D【解析】根据随机抽样的原理可得简单随机抽样,分层抽样,系统抽样都必须满足每个个体被抽到的概率相等,即123p p p ==,故选D. 【考点定位】抽样调查8. 【2014高考湖南卷文第5题】在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( )4.5A 3.5B 2.5C 1.5D 9. 【2014高考江苏卷第4题】 从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为 .10. 【2014高考江苏卷第6题】某种树木的底部周长的取值范围是[]80,130,它的频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100 cm.【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.【考点】频率分布直方图.11. 【2014高考江西卷文3第题】掷两颗均匀的骰子,则点数之和为5的概率等于( )1.18A 1.9B 1.6C 1.12D12. 【2014高考江西卷文第7题】某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是( ) 表1 不及格 及格 总计 男 6 14 20 女1022 32 总计 16 3652A.成绩 表2 不及格 及格 总计 男 4 16 20 女1220 32 总计 163652B.视力表3 不及格 及格 总计 男 8 12 20 女824 32 总计 163652C.智商表4 不及格 及格 总计 男 14 6 20 女23032总计 16 36 52D.阅读量13.14. 【2014高考辽宁卷文第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π 15. 【2014高考全国1卷文第13题】将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【答案】23【解析】试题分析:根据题意显然这是一个古典概型,其基本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:42P63 ==.考点:古典概率的计算16.【2014高考全国2卷文第13题】甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.17.【2014高考山东卷文第8题】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋅⋅⋅⋅⋅⋅,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18【答案】C【解析】由图知,样本总数为2050.0.160.24N==+设第三组中有疗效的人数为x,则60.36,1250xx+==,故选C.考点:频率分布直方图.18.【2014高考陕西卷文第6题】从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )1.5A2.5B3.5C4.5D19. 【2014高考陕西卷文第9题】某公司10位员工的月工资(单位:元)为1x ,2x ,…,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为(A )x ,22s 100+ (B )100x +,22s 100+ (C )x ,2s (D )100x +,2s20.【2014高考四川卷文第2题】在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
统计概率问题高中数学人教版
1. 统计:1)简单随机抽样、分层抽样和系统抽样的共同特点是每个个体被抽到的概率相等; 2)统计数据的几种形式是条形图、折线图、扇形图和茎叶图;3)数据的数字特征:平均数、中位数、众数;极差、方差(s 2)、标准差(s);注:数据12,n x x x ⋅⋅⋅的平均数和方差分别为x 和s,则数据12,n ax b ax b ax b ++⋅⋅⋅+的平均数和方差分别为a xb +和as ;4)频率分布直方图中每个小矩形的宽为i x ∆,高为iif x ∆,其面积为每组频率i f ,所有小矩形面积之和为1.5)相关性:变量与变量之间不满足函数关系但存在着某种联系; 6)最小二乘估计求线性回归方程y a bx =+:1122222212n n n x y x y x y nx y b x x x nx++⋅⋅⋅+-=++⋅⋅⋅+-,a y bx =-;这里a 、b 为回归系数,(,)x y 是平均点;注:回归直线特征:散点图中所有点不一定在回归直线上,但平均点一定在回归直线上,所有点都距离回归直线最近; 典例分析:1.某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,以每人被抽到的机会为0.2,向该中学抽取容量为n 的样本,则n= ; (200)2.某社区700户家庭,其中高收入家庭225户,中等收入家庭400户,低收入家庭75户,为了调查社会购买的某项指标,要从中抽取一个容量为100户的样本,记作①; 某中学高二年级有12名足球运动员,要从中选出3人调查学习负担情况,记作②;某礼堂有32排座位,每排有40个座位(座位号为1-40),一次报告会坐满了观众,会后为听取意见留下了座位号为16的所有的32名观众进行座谈,记作③.则完成上述3项应采用的抽样方法是( B ) A.①用简单随机抽样法,②用系统抽样法,③用分层抽样法; B.①用分层抽样法,②用简单随机抽样法,③用系统抽样法; C.①用简单随机抽样法,②用分层抽样法,③用系统抽样法; D.①用分层抽样法, ②用系统抽样法, ③用简单随机抽样法;3.下面哪种统计图没有数据信息的损失,所有的原始数据都可以从该图中得到( B ) A.条形统计图 B.茎叶图 C.扇形统计图 D.折线统计图4.若M 个数的平均数为X,N 个数的平均为Y,则这M+N 个数的平均数为( C ) A.2X Y + B. X Y M N ++ C. MX NY M N ++ D. MX NYX Y++ 5.一组数据12,n x x x ⋅⋅⋅的方差为9,则数据123,33n x x x ⋅⋅⋅的方差是 ,标准差是 .(81,9)6.从甲、乙两名学生中选拔一人参加射击水平进行了测试,两人在相同条件下各射击10次,命中的环数如下:甲:9,8,6,9,6,5,9,9,7,4. 乙:9,5,7,8,7,6,8,67,7.1) 分别计算甲、乙两人射击命中环数的极差、众数和中位数;(5,9,7;4,7,7)2)分别计算甲、乙两人射击命中环数平均数、方差、标准差;(7,2.8,1.673;7,1.2,1.095) 3)比较两人的成绩,然后决定选择哪一个人参赛.( 乙)123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( B )A.312s s s >> B.213s s s >> C.123s s s >> D.231s s s >>8. 从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:根据以上茎叶图,对甲乙两品种棉花的纤维长度作比较,写出两个统计结论: ①_______________ ②__________________(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). (3)甲品种棉花的纤维长度的中位数为307mm ,乙品种棉花的纤维长度的中位数为318mm . (4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.)9.下列说法:①一组数据不可能有两个众数;②一组数据的方差必须是正数;③将一组数据中的每个数据都加上或减去同一常数后,方差恒不变;④在频率分布直方图中,每个小长方形的面积等于相应小组的频率,其中错误的个数是( C )D.310. 某班50名学生在一次百米测试中,成绩全部介甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307308 310 314 319 323 325 325 328 331 334 337 352 乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318320322322324327329331333336337343356于13秒与19秒之间,将测试结果按如下方式分成六 组:每一组,成绩大于等于13秒且小于14秒;第二 组,成绩大于等于14秒且小于15秒;……第六组, 成绩大于等于18秒且小于等于19秒.右图是按上述 分组方法得到的频率分布直方图,设成绩小于17秒 的学生人数占全班人数的百分比为x ,成绩大于等于 15秒且小于17秒的学生人数为y ,则从频率分布直方 图中可以分析出x 和y 分别为( A )A .0.935,B .0.945,C .0.135,D .0.145,11.一组数据都在100附近摆动,将这组数据中的每一个数都减去100后,若求得的新的数据的平均数是1.2,方差是5.8,则将原始数据组中的每一个数都扩大为原来的2倍后,重新得到一组数据,则该新数据的平均数和方差是 .(202.4,23.2)12.某班有50名学生,某次数学考试的成绩经计算得到的平均分数是70分,标准差是s ,后来发现记录有误,甲得70分却误记为40分,乙得50分误记为80分,更正后重新计算得标准差为s 1,则s 与s 1之间的大小关系是 ;(s >s 1) 13.( B )ABC .3D .514.设有一个回归方程y=-1.5x+2,则变量x 增加一个单位时( C )A .y 平均增加1.5个单位B .y 平均增加2个单位C .y 平均减少1.5个单位D .y 平均减少2个单位15.线性回归方程y=-5+2x ,则( D )A..5是回归系数aB.2是回归系数aC. -5是回归系数b D. 25y x =-16.由一组样本数据1122(,),(,),(,)n n x y x y x y ⋅⋅⋅得到的回归直线方程y=bx+a ,那么下面说法不正确的是( B )A .直线y=bx+a 必经过点(,)x y B. 直线y=bx+a 至少经过点1122(,),(,),(,)n n x y x y x y ⋅⋅⋅中的一个点C. 直线y=bx+a 的斜率为1122222212n n n x y x y x y nx y x x x nx++⋅⋅⋅+-++⋅⋅⋅+- D.直线y=bx+a 和各点1122(,),(,),(,)n n x y x y x y ⋅⋅⋅的偏差21[()]n i i i y bx a =-+∑,是该坐标平面上所有直线与这些点的偏差中最小的直线17. 某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是A A. ^10200y x =-+ B. ^10200y x =+ C. ^10200y x =-- D. ^10200y x =- 2.算法初步:1)算法特征:有穷性;确定性;有序性;不唯一性;普遍性;2)排序法:有序列直接插入排序法和有序列折半插入排序法;折半插入排序法先与“中间位置”进行比较,若有2n+1个数则“中间位置”是第n+1个数,若有2n 个数则“中间位置”是第n 个数,然后插入到靠左边的一半;(辗转相除法:例:18和32的最大公约数:先用18整除32余,14再用14整除18余4,再用4整除14余2,再用2整除4,即2为最大公约数)3)框图含义:三种基本结构:顺序结构、选择结构、循环结构;是处理框表示算法的各种处理操作; ; 另一操作;4)变量与赋值:如a=1表示赋予变量常数值;b=2a+1表示将含有其它变量的表达式赋予变量,输出b ;5)条件语句结构:If 条件Then 循环语句结构:For 语句的一般形式是: Do Loop 语句: 语句1 For 循环变量=初始值To 终值 DoElse(否则) 循环体 循环体语句 2 Next Loop While 条件为真End If 典例训练:1.某程序框图如图所示,若输出的S=57,则判断框内位 A ) k >4? B )k >5? C ) k >6? D )k >7?2.右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( A )A. c > x B . x > c C. c > b D. b > c 结束3. 执行右边的程序框图,若0.8p =,则输出的n = 4 .4. 某程序框图如图所示,该程序运行后输出的k 的值是 ( A ) A .4 B .5 C .6 D .75.如果执行右面的程序框图,输入6,4n m ==,那么输出的p 等于B A )720 B ) 360 C ) 240 D ) 1203.概率:1)在相同条件下,大量重复进行同一试验时,随机事件A 发生的频率会在某个常数附近摆动,即随机事件A 发生的频率具有稳定性,这个常数叫作随机事件A 的概率。
概率论与数理统计习题11
《概率论与数理统计》综合复习资料第一章 随机事件与概率一、填空题(请把答案填在题中横线上):1.一个袋子中有5只黑球3只白球,从袋中任取两只球,若以A 表示:“取到的两只球均为白球”;B 表示:“取到的两只球同色”; C 表示:“取到的两只球至少有一只白球”。
则=)(A P ;=)(B P ; =)(C P 。
2.一个盒子中有10个球,其中有3个红球,2个黑球,5个白球,从中取球两次,每次取一个(无放回),则:第二次取到黑球的概率为 ;取到的两只球颜色相同的概率为 ;取到的两只球至少有一个黑球的概率为 ;取到的两只球没有黑球的概率为 。
3.一盒子中黑球、红球、白球各占50%、30%、20%,从中任取一球,结果不是红球,则:取到的是白球的概率为 ;取到的是黑球的概率为 .4.一个袋子中有5个新球3个旧球,从中取球两次,每次取一个(无放回),若以A 表示:“取到的两个球均为旧球”;B 表示:“取到的两个球恰有一个旧球”; C 表示:“取到的两个球至少有一个旧球"。
则=)(A P ;=)(B P ;=)(C P 。
5.一批产品共有10个正品2个次品,从中任取两次,每次取一个(有放回)。
则 第二次取出的是次品的概率为 ;两次都取到正品的概率为 ;第一次取到正品,第二次取到次品的概率为 ;第一次取到次品,第二次取到正品的概率为 ;恰有一次取到次品的概率为 ;两次都取到次品的概率为 ;恰有一次取到正品的概率为 ;已知第一次取到的是次品,第二次取到正品的概率为 ;已知第一次取到的是次品,第二次取到次品的概率为 。
6.一批产品共有6件正品2件次品,从中任取两件,则:两件都是正品的概率为 ;恰有一件次品的概率为 ;两件都是次品的概率为 ;至少取到一件次品的概率为 。
7.袋中有50个乒乓球,其中20个黄球,30个白球,今由两人依次随机地各取一球,取后不放回,则:第二个人取得黄球的概率是 ;两个人都取得黄球的概率是 ;至少有一人取得黄球的概率是 .8.设一批产品中一、二、三等品各占50%、30%、20%,从中任取一件,结果不是一等品,则取到的是二等品的概率为 ;取到的是三等品的概率为 。
统计概率题教案
统计概率题教案一、教学目标。
1.了解统计概率的基本概念和相关知识。
2.掌握统计概率的计算方法。
3.培养学生分析问题和解决问题的能力。
4.激发学生对数学的兴趣和学习动力。
二、教学重点和难点。
重点,统计概率的基本概念和计算方法。
难点,统计概率的应用和实际问题的解决。
三、教学过程。
1.导入。
通过一个生活中的例子引入统计概率的概念,让学生了解统计概率的应用背景和意义。
2.概念讲解。
首先介绍统计概率的基本概念,包括样本空间、随机事件、概率的定义和性质等内容。
然后讲解概率的计算方法,包括古典概率、几何概率和统计概率的计算方法。
3.例题讲解。
通过一些例题,让学生掌握统计概率的计算方法和技巧,包括计算单个事件的概率、计算多个事件的概率、计算互斥事件和非互斥事件的概率等内容。
4.练习。
让学生进行一些相关的练习,巩固所学的知识和方法。
5.拓展。
通过一些拓展题目,让学生了解统计概率在生活中的应用,培养学生分析问题和解决问题的能力。
6.课堂小结。
对本节课所学的内容进行小结,并强调统计概率的重要性和应用价值。
四、课后作业。
布置一些相关的课后作业,让学生进行巩固练习和拓展思考。
五、教学反思。
通过本节课的教学,我发现学生对统计概率的概念和计算方法还存在一定的理解和掌握上的困难,需要通过更多的例题和练习来加强学生的理解和掌握。
另外,我还需要更多地引导学生进行思维拓展,让他们了解统计概率在生活中的应用和意义,培养他们分析问题和解决问题的能力。
六、教学反馈。
通过课堂观察和学生作业的批改,我发现学生对统计概率的理解和掌握有了一定的提高,但仍然存在一些问题,需要我在后续的教学中加强相关的讲解和引导。
同时,我还需要及时对学生的学习情况进行反馈,及时发现问题并加以解决。
北京市十年高考数学真题(2013-2022)与优质模拟题(一二模)精华汇编专题11计数原理与概率统计
大数据之十年高考真题(2013-2022)与优质模拟题(北京卷)专题11计数原理与概率统计真题汇总1.【2022年北京卷08】若(2x−1)4=a4x4+a3x3+a2x2+a1 x+a0,则a0+a2+a4=()A.40B.41C.−40D.−412.【2020年北京卷03】在(√x−2)5的展开式中,x2的系数为().A.−5B.5C.−10D.10)4展开式中常数项为__________.3.【2021年北京11】(x3−1x4.【2016年北京理科10】在(1﹣2x)6的展开式中,x2的系数为.(用数字作答)5.【2015年北京理科09】在(2+x)5的展开式中,x3的系数为(用数字作答)6.【2014年北京理科13】把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有种.7.【2013年北京理科12】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是.8.【2022年北京卷18】在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)9.【2021年北京18】为加快新冠肺炎检测效率,某检测机构采取“k合1检测法”,即将k个人的拭子样本合并检测,若为阴性,则可以确定所有样本都是阴性的;若为阳性,则还需要对本组的每个人再做检测.现有100人,已知其中2人感染病毒.(1)①若采用“10合1检测法”,且两名患者在同一组,求总检测次数;②已知10人分成一组,分10组,两名感染患者在同一组的概率为111,定义随机变量X 为总检测次数,求检测次数X 的分布列和数学期望E (X ); (2)若采用“5合1检测法”,检测次数Y 的期望为E (Y ),试比较E (X )和E (Y )的大小(直接写出结果). 10.【2020年北京卷18】某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案的概率估计值记为p 0,假设该校年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p 1,试比较p 0与p 1的大小.(结论不要求证明)11.【2019年北京理科17】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(0,1000] (1000,2000]大于2000仅使用A 18人 9人 3人 仅使用B10人14人1人(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率;(Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.12.【2018年北京理科17】电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk=1”表示第k类电影得到人们喜欢.“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差Dξ1,Dξ2,D ξ3,Dξ4,Dξ5,Dξ6的大小关系.13.【2017年北京理科17】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)14.【2016年北京理科16】A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):A班 6 6.5 7 7.5 8B班 6 7 8 9 10 11 12C班 3 4.5 6 7.5 9 10.5 12 13.5(Ⅰ)试估计C班的学生人数;(Ⅱ)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(Ⅲ)再从A,B,C三班中各随机抽取一名学生,他们该周锻炼时间分别是7,9,8.25(单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)15.【2015年北京理科16】A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组;12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ)求甲的康复时间不少于14天的概率;(Ⅱ)如果a=25,求甲的康复时间比乙的康复时间长的概率;(Ⅲ)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)16.【2014年北京理科16】李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立);场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X为李明在这场比赛中的命中次数,比较EX 与x的大小(只需写出结论).17.【2013年北京理科16】如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)模拟好题1.为倡导“节能减排,低碳生活”的理念,某社区对家庭的人均月用电量情况进行了调查,通过抽样,获得了某社区100个家庭的人均月用电量(单位:千瓦时),将数据按照[40,60),[60,80),[80,100),[100,120),[120,140),[140,160]分成6组,制成了如图所示的频率分布直方图. 若该社区有3000个家庭,估计全社区人均月用电量低于80千瓦时的家庭数为())6A.300B.450C.480D.6002.二项式(x−1x的展开式中x4的系数与x6的系数之比为()A.6B.-6C.15D.-153.有一副去掉了大小王的扑克牌(每副扑克牌有4种花色,每种花色13张牌),充分洗牌后,从中随机抽取一张,则抽到的牌为“红桃”或“A”的概率为()A.152B.827C.413D.17524.若某地区60岁及以上人群的新冠疫苗全程(两针)接种率为60%,加强免疫接种(第三针)的接种率为36%,则在该地区完成新冠疫苗全程接种的60岁及以上人群中随机抽取一人,此人完成了加强免疫接种的概率为()A.0.6B.0.375C.0.36D.0.2165.下表是某生活超市2021年第四季度各区域营业收入占比和净利润占比统计表:该生活超市本季度的总营业利润率为32.5%(营业利润率是净利润占营业收入的百分比),给出下列四个结论:①本季度此生活超市营业收入最低的是熟食区;②本季度此生活超市的营业净利润超过一半来自生鲜区;③本季度此生活超市营业利润率最高的是日用品区;④本季度此生活超市生鲜区的营业利润率超过40%.其中正确结论的序号是()A.①③B.②④C.②③D.②③④6.在(x+√x)5的展开式中,x3的系数是_________.(用数字作答)7.在(√x−1x)6的展开式中,常数项为___________.(用数字作答)8.若(1−2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+a2+a3+a4+a5=________.9.在(x2−1x)5的展开式中,x4的系数为___________.(用数字作答)10.二项式(1+x)n(n∈N∗)的展开式中x2的系数为21,则n=__________.11.某商家为了促销,规定每位消费者均可免费参加一次抽奖活动,活动规则如下:在一不透明纸箱中有8张相同的卡片,其中4张卡片上印有“幸”字,另外4张卡片上印有“运”字.消费者从该纸箱中不放回地随机抽取4张卡片,若抽到的4张卡片上都印有同一个字,则获得一张10元代金券;若抽到的4张卡片中恰有3张卡片上印有同一个字,则获得一张5元代金券;若抽到的4张卡片是其他情况,则不获得任何奖励.(1)求某位消费者在一次抽奖活动中抽到的4张卡片上都印有“幸”字的概率;(2)记随机变量X为某位消费者在一次抽奖活动中获得代金券的金额数,求X的分布列和数学期望E(X);(3)该商家规定,消费者若想再次参加该项抽奖活动,则每抽奖一次需支付3元.若你是消费者,是否愿意再次参加该项抽奖活动?请说明理由.12.某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程数”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,得到他们的电动汽车的“实际平均续航里程数”.从年龄在40岁以下的客户中抽取1 0位归为A组,从年龄在40岁及以上的客户中抽取10位归为B组,将他们的电动汽车的“实际平均续航里程数”整理成下图,其中“+”表示A组的客户,“⊙”表示B组的客户.注:“实际平均续航里程数”是指电动汽车的行驶总里程与充电次数的比值.(1)记A,B两组客户的电动汽车的“实际平均续航里程数”的平均值分别为m,n,根据图中数据,试比较m,n的大小(结论不要求证明);(2)从抽取的20位客户中随机抽取2位,求其中至少有1位是A组的客户的概率;(3)如果客户的电动汽车的“实际平均续航里程数”不小于350,那么称该客户为“驾驶达人”,现从该市使用这种电动汽车的所有客户中,随机抽取年龄40岁以下和40岁以上的客户各1位,记“驾驶达人”的人数为X,求随机变量X的分布列和数学期望.13.2022 年春节后,新冠肺炎的新变种奥密克戎在我国部分地区爆发. 该病毒是一种人传人,不易被人们直接发现,潜伏期长且传染性极强的病毒. 我们把与该病毒感染者有过密切接触的人群称为密切接触者. 一旦发现感染者,社区会立即对其进行流行性病医学调查,找到其密切接触者进行隔离观察. 调查发现某位感染者共有10 位密切接触者,将这10 位密切接触者隔离之后立即进行核酸检测. 核酸检测方式既可以采用单样本检测,又可以采用“ k合1 检测法”. “ k合1 检测法” 是将k个样本混合在一起检测,若混合样本呈阳性,则该组中各个样本再全部进行单样本检测; 若混合样本呈阴性,则可认为该混合样本中每个样本都是阴性. 通过病毒指标检测,每位密切按触者为阴性的概率为p(0<p<1),且每位密切接触者病毒指标是否为阴性相互独立.(1)现对10 个样本进行单样本检测,求检测结果最多有1个样本为阳性的概率f(p)的表达式;(2)若对10 个样本采用“5合1检测法” 进行核酸检测. 用p表示以下结论:①求某个混合样本呈阳性的概率;②设总检测次数为X,求X的分布列和数学期望E(X).14.某家电专卖店试销A、B、C三种新型空调,销售情况如下表所示:(1)从前三周随机选一周,若A型空调销售量比B型空调多,求A型空调销售量比C型空调多的概率;(2)为跟踪调查空调的使用情况,根据销售记录,从该家电专卖店第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列和数学期望;(3)直接写出一组A4,B4,C4的值,使得表中每行数据的方差相等.15.为了解某地区高中生的每天日间户外活动现状,分别在两所学校随机抽取了部分学生,得到甲校抽取的学生每天日间户外活动时间(单位:h)的统计表和乙校抽取的学生每天日间户外活动时间(单位:h)的频率分布直方图如下.乙校抽取的学生每天日间户外活动时间频率分布直方图甲校抽取的学生每天日间户外活动时间统计表(1)根据图表中的数据,估计甲校学生每天日间户外活动时间的25%分位数在第几组;(2)已知每天日间户外活动时间不低于2h可以对保护视力起到积极作用.现从乙校全体学生中随机选抽取2人,记其中每天日间户外活动时间不低于2h的人数为X,求X的分布列和数学期望;(3)根据上述数据,能否推断甲校抽取的学生每天日间户外活动时间的平均值一定低于乙校抽取的学生每天日间户外活动时间的平均值?说明理由.16.某公司在2013~2021年生产经营某种产品的相关数据如下表所示:注:年返修率=年返修台数年生产台数(1)从2013~2020年中随机抽取一年,求该年生产的产品的平均利润不小于100元/台的概率;(2)公司规定:若年返修率不超过千分之一,则该公司生产部门当年考核优秀.现从2013~2020年中随机选出3年,记ξ表示这3年中生产部门获得考核优秀的次数,求ξ的分布列和数学期望;(3)记公司在2013~2015年,2016~2018年,2019~2021年的年生产台数的方差分别为s12,s22,s32.若s32≤max {s12,s22},其中max{s12,s22}表示s12,s22这两个数中最大的数.请写出a的最大值和最小值.(只需写出结论)17.北京2022年冬奥会,向全世界传递了挑战自我、积极向上的体育精神,引导了健康、文明、快乐的生活方式.为了激发学生的体育运动兴趣,助力全面健康成长,某中学组织全体学生开展以“筑梦奥运,一起向未来”为主题的体育实践活动.为了解该校学生参与活动的情况,随机抽取100名学生作为样本,统计他们参加体育实践活动时间(单位:分钟),得到下表:(1)从该校随机抽取1名学生,若已知抽到的是女生,估计该学生参加体育实践活动时间在[50,60)的概率;(2)从参加体育实践活动时间在[80,90)和[90,100)的学生中各随机抽取1人,其中初中学生的人数记为X,求随机变量X的分布列和数学期望;(3)假设同组中每个数据用该组区间中点值代替,样本中的100名学生参加体育实践活动时间的平均数记为μ0,.(结论不初中、高中学生参加体育实践活动时间的平均数分别记为μ1,μ2,当m满足什么条件时,μ0≥μ1+μ22要求证明)18.第24届冬季奥林匹克运动会,于2022年2月在北京市和张家口市联合举行.某校寒假期间组织部分滑雪爱好者参加冬令营集训.训练期间,冬令营的同学们都参加了“单板滑雪”这个项目相同次数的训练测试,成绩分别为A、B、C、D、E五个等级,分别对应的分数为5、4、3、2、1.甲、乙两位同学在这个项目的测试成绩统计结果如图所示.(1)根据上图判断,甲、乙两位同学哪位同学的单板滑雪成绩更稳定?(结论不需要证明)(2)求甲单板滑雪项目各次测试分数的众数和平均数;(3)若甲、乙再同时参加两次测试,设甲的成绩为4分并且乙的成绩为3分或4分的次数为X,求X的分布列(频率当作概率使用).19.某产业园生产的一种产品的成本为50元/件.销售单价依产品的等级来确定,其中优等品、一等品、二等品、普通品的销售单价分别为80元、75元、65元、60元.为了解各等级产品的比例,检测员从流水线上随机抽取200件产品进行等级检测,检测结果如下表所示.(1)若从流水线上随机抽取一件产品,估计该产品为优等品的概率;(2)从该流水线上随机抽取3件产品,记其中单件产品利润大于20元的件数为X,用频率估计概率,求随机变量X的分布列和数学期望;(3)为拓宽市场,产业园决定对抽取的200件样本产品进行让利销售,每件产品的销售价格均降低了5元.设降价前后这200件样本产品的利润的方差分别为s12,s22,比较s12,s22的大小.(请直接写出结论)20.2021年12月9日,《北京市义务教育体育与健康考核评价方案》发布.义务教育体育与健康考核评价包括过程性考核与现场考试两部分,总分值70分.其中过程性考核40分,现场考试30分.该评价方案从公布之日施行,分学段过渡、逐步推开.现场考试采取分类限选的方式,把内容划分了四类,必考、选考共设置22项考试内容.某区在九年级学生中随机抽取1100名男生和1000名女生作为样本进行统计调查,其中男生和女生选考乒乓球的比例分别为10%和5%,选考1分钟跳绳的比例分别为40%和50%.假设选考项目中所有学生选择每一项相互独立.(1)从该区所有九年级学生中随机抽取1名学生,估计该学生选考乒乓球的概率;(2)从该区九年级全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人选考1分钟跳绳的概率;(3)已知乒乓球考试满分8分.在该区一次九年级模拟考试中,样本中选考乒乓球的男生有60人得8分,40人得7.5分,其余男生得7分;样本中选考乒乓球的女生有40人得8分,其余女生得7分.记这次模拟考试中,选考乒乓球的所有学生的乒乓球平均分的估计值为μ1,其中男生的乒乓球平均分的估计值为μ2,试比较μ1与μ2的大小.(结论不需要证明)。
2014年全国高考理科数学试题分类汇编11:概率与统计_有答案
2014年全国高考理科数学试题分类汇编11:概率与统计一、选择题1某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100.若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60【答案】B2某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, , 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为()A.11 B.12 C.13 D.14【答案】B3某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班级男生成绩的平均数小于该班女生成绩的平均数【答案】C4某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法【答案】D5如图, 在矩形区域ABCD的A, C两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是()A .14π-B .12π- C .22π-D .4π【答案】A6节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是 ( ) A .14B .12C .34D .78【答案】C错误!未指定书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年江苏省各地中考数学模拟优质试题分项版解析汇编专题11:统计概率问题一、选择题1.【昆山市一模】某课外兴趣小组为了解所在地区的老年人的健康状况,分别作了四种不同的抽样调查,你认为抽样较合理的是()A、在公园调查了1000名老年人的健康状况B、在医院调查了1000名老年人的健康状况C、调查了100名小区内老年邻居的健康状况D、禾U用派出所的户籍网随机调查了该地区10%的老年人的健康状况2.【昆山市二模】有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛•某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()A、平均数B、中位数C、众数D、方差3.【泰兴市二模】下列说法不正确的是()A、了解全市中学生对泰州三个名城”含义的知晓度的情况,适合用抽样调查B、若甲组数据方差S甲=0.39,乙组数据方差S乙=0.27,则乙组数据比甲组数据稳定1C、某种彩票中奖的概率是,买100张该种彩票一定会中奖100D、数据一1、1.5、2、2、4的中位数是2 •4.【高邮市二模】校篮球队所买10双运动鞋的尺码统计如表:则这双运动鞋尺码的众数和中位数分别为()A、4cm, 26cmB、4cm, 26.5cmC、26.5cm, 26.5cmD、26.5cm, 26cm5.【扬州市宝应县一模】五箱苹果的质量分别为(单位:千克):18, 20 , 21, 22, 19.则这五箱苹果质量的平均数和中位数分别为()A、19 和20B、20 和19C、20 和20D、20 和216.【扬州市江都市一模】有一组数据:3, 4, 5, 6, 6,则下列四个结论中正确的是()A 、 这组数据的平均数、众数、中位数分别是 4.8 , 6, 6B 、 这組数据的平均数、众数、中位数分别是 5, 5, 5C 、 这组数据的平均数、众数、中位数分别是 4.8 , 6, 5D 、 这组数据的平均数、众数、中位数分别是 5, 6, 67.【南京市建邺区二模】为调查某班学生每天使用零花钱的情况,张华随机调查了 20名同学,结果如下表:则这20名同学每天使用的零花钱的众数和中位数分别是()A 、3, 3B 、3, 3.5C 、3.5,3.5D 、3.5,3C 、2B 、 一个不透明的袋中装有 8个红球,从中摸出一个球是红球 ”是随机事件C 、 为了了解我市今年夏季家电市场中空调的质量,不宜采用普查的调查方式进行D 、销售某种品牌的凉鞋,销售商最感兴趣的是该品牌凉鞋的尺码的平均数 11.【仪征市一模】 为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭周垃圾袋的使用量,结果如下: 乙9,11,8,7,14,10,8,9,7 (单位:个),关于 这组数据下列结论正确的是()A .极差是6B .众数是7C .中位数是8D .平均数是1012. 【宿迁市泗阳县】2月份,泗阳某周的日最高气温统计如下(单位:C ): 2、4、5、3、4、6、乙则这七天中日最高气温的众数和中位数分别是()A . 4C ,4CB . 5C ,4CC . 4 C ,3CD .4 C ,4.5 C 13. 【盐城市大丰市一模】 某市3月下旬抽样六天的最高气温如下(单位C ): 18,19, 20,21,19, 23,对这组数据下列说法错误的是()8.【苏州市一模】 一组数据1,3,2,0,3,0,2的中位数是(9.【徐州市一模】 一组数据—1,2,3, —1,0的中位数和众数分别是(10. 2,— 1B . 0,— 1C . 1.5,0D 、一 1,【徐州市二模】 F 列说法正确的是(打开电视机, 它正在播广告”是必然事件A、平均数是20B、众数是19C、中位数是21D、都不正确14.【南京市高淳区二模】在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是()分数50 60 70 80 90 100人数 1 2 8 13 14 4A、70, 80B、70, 90C、80,90D、90,10015.【泰州市姜堰区一模】如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况•则这些车的车速的众数、中位数分别是()A、8, 6B、8, 5C、52, 53D、52, 5216.【泰州市姜堰区一模】跳远训练时,甲、乙两同学在相同条件下各跳10次,统计得,他们的平均成绩相同,甲的方差为0.3m2,乙方差为0.4m2,那么成绩较为稳定的是(填甲”或乙”.17.【铜山县】甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙T平均数(环〉g. 2乩29.2虫2方差(环0.0350,0150.0250, 027则这四人中成绩发挥最稳定的是()18.【泰兴市二模】已知m为一9,—6, - 5, - 3,—2, 2, 3, 5, 6, 9中随机取的一个数,则m4> 100的概率为()1 3 1 3A、B、C、D、—5 10 2 5B .乙C .丙D •丁19.【无锡市崇安区一模】抛一枚均匀硬币,落地后正面朝上”这一事件是()A、必然事件B、随机事件C、确定事件D、不可能事件20.【江阴市青阳片一模】下列事件是确定事件的是()A、阴天一定会下雨B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C、打开电视机,任选一个频道,屏幕上正在播放新闻联播D、在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书1 1 21.【苏州市吴江区一模】在平面直角坐标系中,一次函数y=x的图象、反比例函数y图x 象以及二次函数y=x2- 6x的对称轴围成一个封闭的平面区域(含边界),从该区域内所有格点(横、纵坐标均为整数的点称为格点)中任取3个,贝U该3点恰能作为一个三角形的三个顶点的概率是()1A.-2O O二、填空题1.【南京市建邺区一模】一组数据4、5、6、7、8的方差为$2,另一组数据3、5、6、7、9的方差为S22,那么S/ _______________ S22(填'”、“=或/”).2.【江阴市青阳片一模】数据5, 6, 7, 4, 3的方差是_________________________ .3.【南京市高淳区一模】某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3: 3: 4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分, 90分和85分,则他本学期数学学期综合成绩是 _____________ 分.4.【南京市鼓楼区一模】某同学6次引体向上的测试成绩(单位:个)分别为16、18、20、17、16、18,这组数据的中位数是________________ .5.【苏州市一模】某校在九年级的一次模拟考试中,随机抽取50名学生的数学成绩进行分析,其中有10名学生的成绩达110分以上,据此估计该校九年级650名学生中这次模拟考试数学成绩达110分以上的约有名学生.6.【徐州市二模】小明从市环境监测网随机查阅了若干天的空气质量数据作为样本进行统计,分别绘制了如图的条形统计图和扇形统计图,根据图中提供的信息,可知扇形统计图中表示空气质量为优的扇形的圆心角的度数为_______________量类别7.【常州市武进区一模】 __________________________________________ 已知一组数据为1, 2, 1 , 2, 4, 2,则这组数据的众数是 ____________________________________ 方差是 _______ .甲、乙两个旅行团的游客人数相同,且每个团游客的平均年龄都是32岁,导游小白更喜欢带游客年龄相近的甲团队,则这两个团队游客年龄的方差: S2甲S 乙.(填 '”、z”或“=”9.【苏州市吴江区一模】 班30位女生所穿鞋子的尺码•数据如下(单位:码)码号 33 34 35 36 37 人数761511记众数为 a ,中位数为 b ,贝U a+b= ___________________10. 【南京市浦口区一模】 某校九年级(1 )班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 _____________ 岁.11. 【昆山市一模】 在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只1有3个红球,且一次摸出一个球是红球的概率为-,那么袋中的球共有个.312. 【昆山市二模】 一个不透明盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球 2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率 是 _____________________ .13. 【盐城市滨海县一模】 在一个不透明的袋中装有除颜色外其余均相同的 n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,把它放回袋中,搅匀后,再摸出一球, …通过多次试验后,发现摸到黑球的频率稳定于0.5,则n 的值大约是 __________ .14. 【高邮市二模】小军家的玩具店进了一箱除颜色外都相同的塑料球共1000个,小军将箱中的球搅匀后,随机摸出一个球记下颜色,放回箱中;搅匀后再随机摸出一个球记下颜色,誤天数(天)181 1—…-3 ... ---- »优艮轻污染空汽质8.【宿迁市泗阳县一模】放回箱中;…多次重复上述实验后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是______________ 个.15.【扬州市宝应县一模】甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6, 7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张•若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游•(填公平”或不公平”)学校安排三辆车,组织九年级学生团员去敬老院慰问老人,其中 小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为17.【南京市高淳区一模】 同时抛掷两枚材质均匀的硬币, 则正面都向上的概率为 18.【苏州市一模】 在3 >3的方格中,A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上,从C 、D 、E 、F 四点中任意取一点,以所取得一点及点16.【扬州市江都市一模】A 、B 为顶点画三角形,则2个红球和3个白球,搅匀后从中任意摸出 三、解答题1个球,摸出的球是红球的概率是 1.【昆山市一模】 2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长•某地区农民工人均月收入增长率如图 1,并将人均月收入绘制成如下图的不完整的条形统计图.农民工人月收入墳枫牽统计图农民工人均月收入统计图年份(1) 2013年农民工人均月收入的增长率是多少?(2) 2011年农民工人均月收入是多少? 所画三角形为等腰三角形的概率是C,装有除颜色外都相同的(3)小明看了统计图后说: 农民工2012年的人均月收入比 2011年的少了. ”你认为小明的说法正确吗?请说明理由.2. 【昆山市二模】 某校为了调查学生书写汉字的能力, 从八年级800名学生中随机抽选了 50 名学生参加测试,这 50名学生同时听写50个常用汉字,若每正确听写出一个汉字得 1分, 根据测试成绩绘制出不完整的频数分布表和频数分布直方图如图表:频数分布養亠请结合图表完成下列各题:(1) 求表中a 的值;(2) 请把频数分布直方图补充完整;(3) 若测试成绩不低于 40分为优秀,请你估计该校八年级汉字书写优秀的人数? (4)第一组中的A 、B 、C 、D 四名同学为提高汉字书写能力,分成两组,每组两人进行对抗练习,请用列表法或画树状图的方法,求A 与B 名同学能分在同一组的概率.3.【泰兴市二模】校园手机”现象越来越受到社会的关注•小丽在 统计实习”活动中随机调 查了学校若干名学生家长对 中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:频数分布直方图组别*成绩X 分4频数(人 数)4第1组口4卩第2组心 3W#第3组心35C40+16第4组口 40<K <4^*第5组3 45<K <50-1“25 30 35 40 45 50 测试成绩家长--中学生帚手机到学校态度統计表非堂壁睡玄箜成无所谓不赞成选项(1)求这次调查的家长总数及家长表示无所谓”的人数,并补全图①;(2)求图②中表示家长无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是不赞成”态度的家长的概率是多少.4.【南京市鼓楼区二模】某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据•(单位:个)1号2号3号4号5号总数甲班89 100 96 118 97 500乙班100 96 110 90 104 500统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判. 试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?5.【无锡市崇安区一模】如图所示,A、B两个旅游点从2011年至2015年清明小长假”期间的旅游人数变化情况分别用实线和虚线表示,请解答以下问题:(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A、B两个旅游点从2011年到2015年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人.A旅游点决定提高门票价格来控制游客数量•已知游客数量y (万人)与门票价格x (元)之间满足函数关系y=5•若要使A旅游点的游客人数不超过1004万人,则门票价格至少应提高多少元?(1 )你认为大米手机5月份的销售量必定是三个品牌手机中最高的吗?通过计算说明你的理由. (2)若各品牌手机2015年4月的销售量如下:求该卖场5月份三个品牌手机销售量的平均增长率.7.【江阴市青阳片一模】国家规定中小学生每天在校体育活动时间不低于1小时”为此,某市就你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t v 0.5h; B 组:0.5h Wv 1h; C 组:1h Wv 1.5h; D 组:t> 1.5(1)C组的人数是,并补全直方图;(2 )本次调查数据的中位数落在组____________ 内;(3)若该辖区约有24000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?8.【盐城市滨海县一模】你今天光盘了吗?”这是国家倡导厉行节约,反对浪费以来的时尚流行语,某校团委随机抽取部分了学生,对他们是否了解关于光盘行动”的情况进行调查, 调查结果有三种:A、了解很多;B、了解一点;C、不了解•团委根据调查的数据进行整理,绘制了尚不完整的统计图如下,图1中C区域的圆心角为36°请根据统计图中的相关的信息,解答下列问题:(1)求本次活动共调查了多少名学生?(2)请补全图2,并求出图1中,B区域的圆心角度数;(3)若该校有2400名学生,请估算该校不是了解很多的学生人数.9.【高邮市二模】学校为统筹安排大课间体育活动,在各班随机选取了一部分学生,分成四类活动:篮球” 羽毛球”、乒乓球”、其他”进行调查,整理收集到的数据,绘制成如下的两幅统计图.人(3)该校共有1100名学生,请估计喜欢 篮球”的学生人数.图2・各类箔动人数所占百分比统计图吸烟有害健康!你知道吗,即使被动吸烟也大大危害健康、有消息称,我国准备从 2011年元月一日起在公众场所实行禁烟”为配合 禁烟”行动,某校组你支持哪种戒烟方式”的问卷调查,征求市民的意见,并将调查结 果整理后制成了如下统计图:磯制警示音代品药物戒: 戒烟戒烟戒ig 戒烟式根据统计图解答:(1) 同学们一共随机调查了多少人? (2) 请你把统计图补充完整; (3)如果在该社区随机咨询一位市民,那么该市民支持强制戒烟”的概率是多少?假定该社区有1万人,请估计该地区大约有多少人支持警示戒烟”这种方式?11.【扬州市江都市一模】 某校九年级(1 )班所有学生参加 2010年初中毕业生升学体育测 试,根据测试评分标准,将他们的成绩进行统计后分为A 、B 、C 、D 四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1 )学校采用的调查方式是 ;学校在各班随机选取了 _______ 名学生; (2)补全统计图中的数据:羽毛球人、乒乓球人、其他人、其他织同学们在某社区开展了 A AS 60 30图1*各类君动人敎编计罔10.【扬州市宝应县一篮球站% 其他丄%/ 、羽毛球21号 乓球1S%\ /彗代品120(3)在扇形统计图中,等级___________ B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.12.【南京市高淳区一模】为了倡导节约用水,从我做起”,某市政府决定对市直机关500户家庭的用水情况作一次调查.市政府调查小组随机抽查了其中的100户家庭去年一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)写出这100个样本数据的众数和中位数;(3)试估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?13.【南京市高淳区一模】低碳环保,你我同行”,两年来,南京市区的公共自行车给市民出行带来切实方便,电视台记者在某区街头随机选取了市民进行调查,调查的问题是您大概多九使用一次公共自行车?”,将本次调查结果归为四种情况: A •每天都用;B •经常使用;C.偶尔使用;D •从未使用•将这次调查情况整理并绘制如下两幅统计图:根据图中的信息,解答下列问题:(1) _______________________ 本次活动共有位市民参与调查;(2)补全条形统计图;(3)根据统计结果,若该区有46万市民,请估算每天都用公共自行车的市民约有多少人?14.【南京市建邺区二模】据报道,历经一百天的调查研究,南京PM2.5源解析已经通过专家论证•各种调查显示,机动车成为PM2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物.校环保志愿小分队从环保局了解到南京100天的空气质量等级情况,并制成统计图和表:2014年南京市100天空气质量等级天数统计表空气质量等级优良轻度污染中度污染重度污染严重污染天数(天) 10 a 12 8 25 b(1)________________ 表中a= _____ , b= ,图中严重污染部分对应的圆心角__________ n= __________ °(2)请你根据“2014年南京市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的频率共是多少?(3 )小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米.已知南京市2014年机动车保有量已突破200万辆,请你通过计算,估计2014年南京市一天中出行的机动车至少要向大气里排放多少千克污染物?2014年南京市100天空气质全等级天数统计图15【徐州市一模】某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了50扇形图名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图, 其中科普类册数占这50名学生借阅总册数的40% .类别科普类教辅类文艺类其他册数(本) 168 105 m 32(1)__________________________________ 表格中字母m的值等于;(2)____________________________________________________________ 扇形统计图中教辅类”所对应的圆心角a的度数为________________________________________ °(3)该校2014年八年级有600名学生,请你估计该年级学生共借阅教辅类书籍约多少本?样本情况的扇形统计图16.【徐州市二模】八(2)班组织了一次经典朗读比赛,甲、乙两队各甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9(1)甲队成绩的中位数是________ 分,乙队成绩的众数是________ 分;(2 )计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是________________1.4分2,则成绩较为整齐的是队.17.【仪征市一模】房山某中学改革学生的学习模式,变老师要学生学习”为学生自主学习培养了学生自主学习的能力. 小华与小明同学就最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图. 请根据下面两个不完整的统计图回答以下问题:(1 )这次抽样调查中,共调查了 ______________ 名学生;(2)补全两幅统计图;10人的比赛成绩如(3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择小组合作学习”?18.【常州市武进区一模】某校举行汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x 人数A 0$v 8 10B 8 $v 16 15C 16 $v 24 25D 24 $V 32 mE 32 $V 40 n根据以上信息解决下列问题:(1)在统计表中,m- ,n-,并补全条形统计图(2)_____________________________________________ 扇形统计图中C组”所对应的圆心角的度数是____________________________________________ •(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学19.【宿迁市泗阳县】为了迎接2015宿迁市市长杯”阳光体育联赛,丰富学生的课外活动,車生羊二丰式人訂珅计孚曾團孚主字习巧式人覲爲花筑计團我县某校团委对部分学生进行了一次问卷调查你最喜欢的体育活动是什么?”(每人限选项).根据收集到的数据,绘制如图统计图(不完整):请根据图中提供的信息,完成下列问题:图②(1)在这次问卷调查中,一共抽查了_________ 名学生;(2)请将条形统计图补充完整;(3)若全校有I860名学生,则全校学生中,最喜欢球类”活动学生约有多少人?20.【江阴市要塞片二模】某市2012年国民经济和社会发展统计公报显示,2012年该市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型. 老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全图 1 ;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一•由于购买人数超过房子套数,购买者必须通过电脑摇号产生•如果对2012年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2014年新开工廉租房建设的套数要达到720套,那么2013〜2014这两年新开工廉租房的套数的年平均增长率是多少?21.【盐城市大丰市】去年以来,我国中东部地区持续出现雾霾天气. 我市某记者为了了解霾天气的主要成因”,随机调查了部分市民,并对调查结果进行整理,绘制了如下尚不完整 的统计表:请根据图表中提供的信息解答下列问题:(1) 填空:m= ___ , n= _____ ,扇形统计图中 E 组所占百分比为 _____________ ; (2) 若该市人口约有 75万人,请你估计其中持 D 组 观点”的市民人数; (3) 若在这次接受调查的市民中,随机抽查一人,则此人持C 组 观点”的概率是多少?22. 【南京市高淳区二模】 某校举行全体学生 汉字听写”比赛,每位学生听写汉字 39个. 机抽取了部分学生的听写结果,绘制成如下的图表.4500 斗000Hi3000 2500 2000 1500 100050037751500商品房簾瑕房经济 适用房珥第房住房酒 公共矩 當房 24%^3cnW组别 观点频数 A 大气气压低,空气不流动120B 地面灰尘多,空气湿度底C 汽车尾气排抜D 工厂造成的污染180 E其它90调查结果扇形统计團组别正确字数龙人数30'人数各组别人数分布比例QWg10-—1— _ AB8^x<16152015C16^x<242510]Q V v D24=^x<32m-匕n A B C(1)统计表中的m= , n= ,并补全条形统计图;(2)扇形统计图中C组”所对应的圆心角的度数是;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.23.【泰州市姜堰区一模】某校九年级所有学生参加2015年初中毕业生升学体育测试,为了解情况,从中抽取了部分学生的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)计算一共抽取了多少名学生的测试成绩并将条形统计图补充完整;(2 )在扇形统计图中,等级C对应的圆心角的度数为多少度?(3 )若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有多少人?24.【铜山县】为了解某校初三学生英语口语检测成绩等级的分布情况,随机抽取了该校若干名学生的英语口语检测成绩,按A, B, C, D四个等级进行统计分析,并绘制可如下尚不完整的统计图;请根据以上统计图提供的信息,解答下列问题:(1)______________________ 本次抽取的学生有名;(2)补全条形统计图;(3)__________________________________________ 在抽取的学生中C级人数所占的百分比是_________________________________________________ ;(4)根据抽样调查结果,请你估计某校860名初三学生英语口语检测成绩等级为A级的人25.【苏州市吴江区一模】苏州某中学为了迎接第53届世乒赛,在九年级举行了乒乓球知识竞赛”从全年级600名学生的成绩中随机抽选了100名学生的成绩,根据测试成绩绘制成以下不完整的频数分布表和频数分布直方图:请结合图表完成下列各题:(1)求表中a的值:(2 )请把频数分布直方图补充完整九年级有多少位同学可以获得乒宝”?26.【南京市浦口区一模】国家环保局统一规定,空气质量分为5级•当空气污染指数达0—50时为1级,质量为优;51 - 100时为2级,质量为良;101 —200时为3级,轻度污染;201 - 300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图. 请根据图中信息,解答组别*成绩X分2频数(人数八第1纵50=ex<60-第2紹GOWicVFO匸第3组*70^y<80<第4纵80^x00-32^第5组*90<x<100*頻数分布亶方图频数(人数)1 1 I || I •32 ................... •…24(3)若测试成绩不低于90分的同学可以获得第53届世乒赛吉祥物乒宝”,请你估计该校数.频率分布表:。