电磁感应知识点专题总结及对应练习

电磁感应知识点专题总结及对应练习
电磁感应知识点专题总结及对应练习

电磁感应的知识点梳理

?Φ对比表一、磁通量Φ、磁通量变化?Φ、磁通量变化率

t?

二、电磁感应现象与电流磁效应的比较

电流磁效应:

电磁感应现象:

三、产生感应电动势和感应电流的条件比较

1.产生感应电动势的条件

2.产生感应电流的条件

只要穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生,即产生感应电流的条件有两个:①②

四、感应电流方向的判定方法

方法一、楞次定律

⑴内容:

⑵运用楞次定律判定感应电流方向的步骤:

①②

②④

(3)应用范围:

方法二、右手定则

(1)内容:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是

感应电流的方向.

(2)应用范围:

五、感应电动势

在电磁感应现象中产生的电动势叫 ,产生感应电流必存

在 ,产生感应电动势的那部分导体相当于 ,如果电路断开时

没有电流,但 仍然存在。

(1)电路不论闭合与否,只要 切割磁感线,则这部分导体就会

产生 ,它相当于一个 。

(2)不论电路闭合与否,只要电路中的 发生变化,电路中就产生

感应电动势,磁通量发生变化的那部分相当于 。 六、公式t

n E ??Φ=与E=BLvsin θ 的区别与联系

七、楞次定律中“阻碍”的含义

3、对楞次定律中“阻碍”的含义还可以推广为:

①阻碍原磁通量的变化或原磁场的变化;可理解为。

②②阻碍相对运动,可理解为。

③使线圈面积有扩大或缩小趋势;可理解为。

④④阻碍原电流的变化,可以理解为。

八.电磁感应中的图像问题

1、图像问题

(1)图像类型

B-t图像、Φ-t图像、E-t图像和I-t图像;切割磁感线产生感应电动势E和感应电流I随线圈位移x变化的图像,即E-x图像和I-x图像

(2)问题类型由给定的电磁感应过程选出或画出正确的图像;

由给定的有关图像分析电磁感应过程,求解相应的物理量

2、解决这类问题的基本方法

⑴明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像⑵分析电磁感应的具体过程

⑶结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。

⑷根据函数方程,进行数学分析,如斜率及其变化,两轴的截距等。⑸画图像或判断图像。

例1、如图16-1,平面M的面积为S,垂直于匀强磁场B,求平面

M由此位置出发绕与B垂直的轴转过600和转过1800时磁通量的变

化量。

例2、在一个匀强磁场中有一个金属框MNOP,且MN杆可

沿轨道滑动。

(1)当MN杆以速度v向右运动时,金属框内有没有感

应电流

(2)若MN杆静止不动而突然增大电流强度I,金属框内有无感应电流方向如何

例3、磁通量的变化引起感应电流。判断下列情况下的感应电流方向

I A B

C D

(1)向上平动、向下平动;(2)向左平动、向右平动;(3)以AB 为轴向

外转动;(4)以BC 为轴向外转动;(5)以导线为轴转动;

例4、如图所示,有两个同心导体圆环。内环中通有顺时针方向

的电流,外环中原来无电流。当内环中电流逐渐增大时,外环

中有无感应电流方向如何

例5、如图所示,闭合导体环固定。条形磁铁S 极向下以初速度v0沿过

导体环圆心的竖直线下落过程,导体环中的感应电流方向如何

例6、如图所示,O1O2是矩形导线框abcd 的对称轴,其左

方有匀强磁场。以下哪些情况下abcd 中有感应电流产生方向如何( )

A.将abcd 向纸外平移

B.将abcd 向右平移

C.将abcd 以ab 为轴转动60°

D.将abcd 以cd 为轴转动60

例7、如图所示,水平面上有两根平行导轨,上面放两根金属棒a 、b 。当条形

磁铁如图向下移动时(不到达导轨平面),a 、b 的电流方向如何将如何移动

a

例8、关于感应电动势的大小,下列说法中正确的是,()

A.跟穿过闭合电路的磁通量有关系

B.跟穿过闭合电路的磁通量的变化大小有关系

C.跟穿过闭合电路的磁通量的变化快慢有关系

D.跟电路的电阻大小有关系电磁感应现象中的电路问题

例9、如图所示,长L1宽L2的矩形线圈电阻为R,处于磁感应强度为B的匀强磁场边缘,线圈与磁感线垂直。求:将线圈以向右的速度v匀速拉出磁场的过程中,试分析:

⑴处于磁场中的面积如何变化

⑵矩形线圈的磁通量如何变化

⑶感应电流的方向如何

⑷四条边的受到什么力

⑸拉力F大小;

⑹拉力的功率P;

⑺拉力做的功W;

⑻线圈中产生的电热Q ;

2

⑼通过线圈某一截面的电荷量q 。

例、 如图所示,U 形导线框固定在水平面上,右端放有质量为m 的金属棒ab ,

ab 与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L 1、L 2,回路的总

电阻为R 。

⑴若B 不变,金属棒ab 在F 外作用下,以速度v 向右匀速直线运动,ab 棒产生

的感应电动势是多少ab 棒感应电流的方向如何,大小是多少ab 棒所受到的安

培力F 的方向如何,大小是多少F 外的方向如何,大小是多少

⑵若从t =0时刻起,在竖直向上方向加一个随时间均匀变化的匀强磁场B =kt ,

(k >0)那么在t 为多大时,金属棒开始移动

电磁感应现象中的力学问题

例、如图16-6,在竖直向下的磁感应强度为B 的匀强磁场中,有两根水平放置

相距L 且足够长的平行金属导轨AB 、CD ,在导体的AC 端连接一阻值为R 的电阻,

一根垂直于导轨放置的金属棒ab ,质量为m ,导轨和金属棒的电阻及它们间的

摩擦不计,若用恒力F 沿水平向右拉棒运动,求金属棒的最大速度。

b a

B L

电磁感应中的能量守恒

只要有感应电流产生,电磁感应现象中总伴随着能量的转化。

电磁感应的题目往往与能量守恒的知识相结合。这种综合是很重要

的。要牢固树立起能量守恒的思想。

例12、如图所示,图中回路竖直放在匀强磁场中磁场的方向垂直于回路平面向内。导线AC 可以贴着光滑竖直长导轨下滑。设回路的总电阻恒定

为R ,当导线AC 从静止开始下落后,下面有关回路能量转化的叙述中正确的是

( )

A.导线下落过程中,机械能守恒;

B.导线加速下落过程中,导线减少的重力势能全部转化为回路产生的热量;

C.导线加速下落过程中,导线减少的重力势能全部转化为导线增加的动能;

D.导线加速下落过程中,导线减少的重力势能转化为导线增加的动

能和回路增加的内能

例13、 如图所示,矩形线圈abcd 质量为m ,宽为d ,在竖直平面

内由静止自由下落。其下方有如图方向的匀强磁场,磁场上、下边

界水平,宽度也为d ,线圈ab 边刚进入磁场就开始做匀速运动,那么在线圈穿

越磁场的全过程,产生了多少电热

例、如图所示,平行光滑导轨PQ、MN,与水平方向成角,长

度L、质量m、电阻为R的导体ab紧贴滑轨并与PM平行,滑

轨电阻不计。整个装置处于与滑轨平面正交、磁感强度为B的匀强磁场中,滑轨足够长。试分析:

1、导体ab由静止释放后,最大加速度为多少

2、导体ab由静止释放后,最大速度为多少?

3、

4、

练习在水平面上有一不规则的多边形导线框,面积为S=20cm2,在竖直方向加以如图9-1-2所示的磁场,则下列说法中正确的

图9-1-2是(方向以竖直向上为正)( )

A.前2s内穿过线框的磁通的变化为ΔΦ=0

B.前1s内穿过线框的磁通的变化为ΔΦ=-30Wb

C.第二个1s内穿过线框的磁通的变化为ΔΦ=-3x10-3Wb

D.第二个1s内穿过线框的磁通的变化为ΔΦ= -1x10-3Wb

练习某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是( )

→○G→b B.先a→○G→b,后b→○G→a

C.先b→○G→a

D.先b→○G→a,后a→○G→b

练习一个弹性导体做成的闭合线圈,垂直于磁场方向放置,如图所示,当磁感应强度B发生变化时,观察到线圈所围的面积增大了,那么磁感应强度B的方向和大小变化的情况可能是

A. B的方向垂直于线圈向里,并不断增大

B. B的方向垂直于线圈

向里,并不断减小

C. B的方向垂直于线圈向外,并不断增大

D. B的方向平行于线圈向外,并不断减小

练习如图12-1所示,平行导轨间距为d,一端跨接一个电阻为R,

匀强磁场的磁感强度为B,方向与导轨所在平面垂直。一根足够长

的金属棒与导轨成θ角放置,金属棒与导轨的电阻不计。当金属棒沿垂直于棒的方向以速度v滑行时,通过电阻R的电流强度是()

A.Bdv

R B.sin

Bdv

R

θ C.cos

Bdv

R

θ D.

sin

Bdv

练习一直升飞机停在南半球的地磁极上空,该处地磁场的方向竖直向上,磁感应强度为B,直升飞机螺旋桨叶片的长度为L,螺旋桨转动的

图9-1-3

图9-4-13

频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动.螺旋桨叶片的

近轴端为a,远轴端为b,如图9-2-7所示.如果忽略a 到转轴中心线的距离,用E

表示每个叶片中的感应电动势,则( )

A.Ε=πfL 2B,且a 点电势低于b 点电势

B.Ε=2πfL 2B,且a 点电势低于b 点电势

C.Ε=πfL 2B,且a 点电势高于b 点电势

D.Ε=2πfL 2B,且a 点电势高于b 点电势

练习如图所示,竖直放置的螺线管与导线abcd 构成回路,导线所围区域内有一

垂直纸面向里的变化的匀强磁场,螺线管下方水平桌面上有一导体圆环,导线

abcd 所围区域内磁场的磁感强度按下列哪一图线所表示的方式随时间变化时,

导体圆环将受到向上的磁场作用力 ( )

练习.如图9-4-13所示,两个互连的金属圆环,粗金属环的电

阻是细金属环电阻的二分之一,磁场垂直穿过粗金属环所在区域,当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b

两点间的电势差为( )

2 3 C.2E/3

练习。如图16-7-9,匀强磁场的磁感应强度B=,MN长为l=,

R1=R2=Ω,金属框CDEF和导体MN电阻忽略不计,使MN以v=3m/s

的速率向右滑动,则MN两端的电压为多少伏MN两端的电势哪

一端高

图像能量专题训练

1. 如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导

线右侧,且其长边与长直导线平行。已知在t=0到t=t1的时间间隔内,直导

线中电流i发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到

的安培力的合力先水平向左、后水平向右。设电流i正方向与图中箭头方向相同,则i随时间t变化的图线可能是

2.(2008年全国理综1)矩形导线框abcd固定在匀强磁场中,

磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直低

面向里,磁感应强度B随时间变化的规律如图所示.若规定顺时针方向为感应电流I的正方向,下列各图中正确的是

3.如图所示,两根平行光滑导电轨道竖直放置,处于垂直轨道平面的匀强磁场中,金属杆ab接在两导轨间,在开关S断开时让金属杆自由下落,

金属杆下落的过程中始终保持与导轨垂直并与之接触良好。设导

轨足够长且电阻不计,闭合开关S并开始计时,金属杆ab的下落

速度随时间变化的图象可能是以下四个图中的( )

4. .一个100匝的闭合线圈,所围的面积为100cm2,线圈的总电阻

为,处在磁感应强度B按如图所示规律变化的匀强磁场中,磁场的方向与线圈平面垂直。则在0~内,通过线圈导线横截面的电荷量为______C;在0~内,通过线圈导线横截面的电荷量为______C。

5.一个圆形线圈位于一随时间t变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面),如图(甲)所示,磁感应强度B随时间t变化的规律如图(乙)所示。下列关于感应电流的大小和方向的判断,正确的是( )

A.t3时刻的感应电流最大B.t4时刻的感应电流最

C.t1和t2时刻感应电流方向相同D.t2和t4时刻感应电流方向相同

6. 如图,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R,在金属线框的下方有一匀强磁场区,MN

和M′N′是匀强磁场区域的水平边界,并与线框的

bc边平行,磁场方向与线框平面垂直,现金属线框

由距MN的某一高度从静止开始下落,下图(2)是金属

线框由开始下落到完全穿过匀强磁场区域瞬间的速

度一时间图象,图象中坐标轴上所标出的字母均为已

知量,求:

(1)金属框的边长; (2)磁场的磁感应强度;

(3)金属线框在整个下落过程中所产生的热量.

7.如图所示,AB.CD是两根足够长的固定平行金属导轨,

两轨间距离为L,导轨平面与水平面的夹角为,在整个导

轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感

应强度为B,在导轨的AC端连接一个阻值为R的电阻,一

根垂直于导轨放置的金属棒ab,质量为m,电阻为R,与导轨的动摩擦因数为,从静止开始沿导轨下滑,求:

(1)ab棒的最大速度

(2)ab释放的最大功率

(3)若ab棒下降高度h时达到最大速度,在这个过程中,ab棒产生的焦耳热为多大

8、图所示电路,两根光滑金属导轨,平行放置在倾角为θ

的斜面上,导轨下端接有电阻R,导轨电阻不计,斜面处在

竖直向上的匀强磁场中,电阻可略去不计的金属棒ab质量

为m,受到沿斜面向上且与金属棒垂直的恒力F的作用,金

属棒沿导轨匀速下滑,则它在下滑h高度的过程中,以下说法正确的是()A.作用在金属棒上各力的合力做功为零

B.重力做功等于系统产生的电能

C.金属棒克服安培力做功等于电阻R上产生的焦耳热

D.金属棒克服恒力F做功等于电阻R上发出的焦耳热

9、如图所示,竖直放置的两根平行金属导轨之间接有定值电阻

R,质量不能忽略的金属棒与两导轨始终保持垂直并良好接触且

无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁

场方向与导轨平面垂直,棒在竖直向上的恒力F作用下加速上升

的一段时间内,力F做的功与安培力做的功的代数和等于:()

A.棒的机械能增加量 B.棒的动能增加量

C.棒的重力势能增加量 D.电阻R上放出的热量

10.如图所示,一闭合的小金属环用一根绝缘细杆挂在固定点O处,使金属圆环

在竖直线OO′的两侧来回摆动的过程中穿过水平方向的匀强磁场区域,磁感线

的方向和水平面垂直。若悬点摩擦和空气阻力均不计,则()

A.金属环每次进入和离开磁场区域都有感应电流,而且感应

电流的方向相反

B.金属环进入磁场区域后越靠近OO′线时速度越大,而且产生的感应电流越大C.金属环开始摆动后,摆角会越来越小,摆角小到某一值后不再减小

D.金属环在摆动过程中,机械能将全部转化为环中的电能

电磁感应过程往往涉及多种能量的转化

1.如图中金属棒ab沿导轨由静止下滑时,重力势能减少,一部

分用来克服安培力做功,转化为感应电流的电能,最终在R上转

化为焦耳热,另一部分转化为金属棒的动能.

2.安培力做功和电能变化的特定对应关系

“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.

3.在利用功能关系分析电磁感应的能量问题时,首先应对研究对象进行准确的受力分析,判断各力做功情况,利用动能定理或功能关系列式求解.

4.利用能量守恒分析电磁感应问题时,应注意明确初、末状态及其能量转化,根据力做功和相应形式能的转化列式求解.

八、自感现象:

1、自感现象:当一个线圈中的电流变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也使_____________激发出感应电动势,这种现象称为_____________.由于自感而产生的感应电动势叫_____________.

2、产生原因:

3、自感电动势的方向:

4、自感电动势的作用:

5、自感电动势和自感系数:

自感电动势:,式中为电流的变化率,L为自感系数。

自感系数L:自感系数的大小由决定,线圈越长,单位长度的匝数越多,横截面积越大,自感系数,若线圈中加有铁芯,自感系数。

5、通电自感和断电自感比较

九、自感涡流

高二物理-选修3-2-电磁感应-期末重点复习资料

电磁感应专题复习 知识网络 第一部分电磁感应现象、楞次定律 知识点一——磁通量 ▲知识梳理 1.定义 磁感应强度B与垂直场方向的面积S的乘积叫做 穿过这个面积的磁通量,。如果面积S与B不垂直,如图所示,应以B乘以在垂直于磁场方向上的投影面积,即 。 2.磁通量的物理意义 磁通量指穿过某一面积的磁感线条数。 3.磁通量的单位:(韦伯)。 特别提醒: (1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别;另外,磁通量与线圈匝数无关。

(2)磁通量的变化,它可由B、S或两者之间的夹角的变化引起。 ▲疑难导析 一、磁通量改变的方式有几种 1.线圈跟磁体间发生相对运动,这种改变方式是S不变而相当于B变化。 2.线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。 3.线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。其实质也是B不变,而S增大或减小。 4.线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。 二、对公式的理解 在磁通量的公式中,S为垂直于磁感应强度B方向上的有效面积,要正确理解三者之间的关系。 1.线圈的面积发生变化时磁通量是不一定发生变化的,如图(a),当线圈面积由变为时,磁通量并没有变化。 2.当磁场范围一定时,线圈面积发生变化,磁通量也可能不变,如图(b)所示,在空间有磁感线穿过线圈S,S外没有磁场,如增大S,则不变。

3.若所研究的面积内有不同方向的磁场时,应是将磁场合成后,用合磁场根据去求磁通量。 例:如图所示,矩形线圈的面积为S(),置于磁感应强度为B(T)、方向水平向右的匀强磁场中,开始时线圈平面与中性面重合。求线圈平面在下列情况的磁通量的改变量:绕垂直磁场的轴转过(1);(2);(3)。 (1); (2); (3)。负号可理解为磁通量在减少。 知识点二——电磁感应现象 ▲知识梳理 1.产生感应电流的条件 只要穿过闭合电路的磁通量发生变化,即,则闭合电路中就有感应电流产生。 2.引起磁通量变化的常见情况 (1)闭合电路的部分导体做切割磁感线运动。 (2)线圈绕垂直于磁场的轴转动。 (3)磁感应强度B变化。 ▲疑难导析

工程电磁场复习提纲及考点

第一部分:电磁场的数学工具和物理模型 来源:工程电磁场原理教师手册 场的概念;场的数学概念;矢量分析; 数学工具:在不同坐标系下的数学描述方法;巩固标量场梯度的概念和数学描述方法;掌握散度在直角坐标系下的表达形式;掌握旋度在直角坐标系下的表达形式;强调几个矢量分析的恒等式:0=???V (任何标量函数梯度的旋度恒等于零);0)(=????A (任意矢量函数旋度的散度恒等于零);() A A A 2?-???=????;?????+??=??A A A )(; V V 2?=???。 亥姆霍兹定理推导出:无旋场(场中旋度处处为零),但散度不为零;无散场(无源场):场中散度处处为零,但其旋度不为零;一般矢量场:场中散度和旋度均不为零。无限空间中的电磁场作为矢量场)(r F 按定理所述,其特性取决于它的散度和旋度特性,而用公式可以表示为:)()()(r A r r F ??+-?=?,其中标量函数?-??= V dV r r r F r '') '('41)(π?,矢量函数?-??= V dV r r r F r A '' ) '('41)(π,由此可见,无限空间中的电磁场)(r F 唯一地取决于其散度和旋度的分布。 散度定理——高斯定理;旋度定理——stokes 定理 第二部分:静态电磁场——静电场 掌握电场基本方程,并理解其物理意义。 电场强度E 与电位?的定义以及物理含义;理解静电场的无旋性,及电场强度的线积分与路径无关的性质,以及电场强度与电位之间的联关系。 掌握叠加原理,对自由空间中的静电场,会应用矢量分析公式计算简单电荷分布产生的电场强度与电位;对于呈对称性分布的特征的场,能熟练地运用高斯定理求解器电场强度与电位分布。 了解媒介(电介质)的线性、均匀和各向同性的含义;了解电偶极子、电偶极矩的概念及其电场分布的特点。了解极化电荷、极化强度P 的定义及其物理意义。连接通过极化电荷求极化电场分布的积分形式。 理解电位移矢量D 的定义,以及D 、E 和P 三者之间的关系。对电介质中的静电场,会求解其相应对称的场的分布。

高中物理-电磁感应知识点汇总

电磁感应 1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.★楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割

磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化; ②阻碍物体间的相对运动; ③阻碍原电流的变化(自感)。 ★★★★4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=nΔΦ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v 若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

电机学主要知识点复习提纲

电机学主要知识点复习提纲 一、直流电机 A. 主要概念 1. 换向器、电刷、电枢接触压降2 U b 2. 极数和极对数 3. 主磁极、励磁绕组 4. 电枢、电枢铁心、电枢绕组 5. 额定值 6. 元件 7. 单叠、单波绕组 8. 第1节距、第2节距、合成节距、换向器节距 9. 并联支路对数a 10. 绕组展开图 11. 励磁与励磁方式 12. 空载磁场、主磁通、漏磁通、磁化曲线、每级磁通 13. 电枢磁场 14. (交轴、直轴)电枢反应及其性质、几何中性线、物理中性线、移刷 15. 反电势常数C E、转矩常数C T 16. 电磁功率P em 电枢铜耗p Cua

励磁铜耗 p Cuf 电机铁耗 p Fe 机械损耗 p mec 附加损耗 p ad 输出机械功率 P 2 可变损耗、不变损耗、空载损耗 17. 直流电动机(DM )的工作特性 18. 串励电动机的“飞速”或“飞车” 19. 电动机的机械特性、自然机械特性、人工机械特性、硬特性、 软特性 20. 稳定性 21. DM 的启动方法:直接启动、电枢回路串电阻启动、降压启动; 启动电流 22. DM 的调速方法:电枢串电阻、调励磁、调端电压 23. DM 的制动方法:能耗制动、反接制动、回馈制动 B. 主要公式: 发电机:P N =U N I N (输出电功率) 电动机:P N =U N I N ηN (输出机械功率) 反电势: 60E a E E C n pN C a Φ==

电磁转矩: em a 2T a T T C I pN C a Φπ== 直流电动机(DM )电势平衡方程:a a E a a U E I R C Φn I R =+=+ DM 的输入电功率P 1 : 12 ()()a f a f a a a f a a a f em Cua Cuf P UI U I I UI UI E I R I UI EI I R UI P p p ==+=+=++=++=++ 12em Cua Cuf em Fe mec ad P P p p P P p p p =++=+++ DM 的转矩方程:20d d em T T T J t Ω --= DM 的效率:2111 2100%100%(1)100%P P p p P P P p η-∑∑= ?=?=-?+∑ 他励DM 的转速调整率: 0N N 100%n n n n -?=? DM 的机械特性:em 2 T j a j a a ) (T ΦC C R R ΦC U ΦC R R I U n E E E +-=+-= . 并联DM 的理想空载转速n 0: 二、变压器 A. 主要概念 1. 单相、三相;变压器组、心式变压器;电力变压器、互感器; 干式、油浸式变压器 2. 铁心柱、轭部 3. 额定容量、一次侧、二次侧 4. 高压绕组、低压绕组

物理电磁感应知识点的归纳

物理电磁感应知识点的归纳 物理电磁感应知识点的归纳 1.电磁感应现象 利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb (2)求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右

手定则只适用于导线切割磁感线运动的`情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。 ④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式:E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为 E=BLvsin。当B、L、v三者两两垂直时,感应电动势E=BLv。 (1)两个公式的选用方法E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。 (2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。 ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势 E=Nbs/t。

电机学期末复习总结

《电机学》期末复习材料 第三篇 交流电机理论的共同问题 1、同步电机的结构: 定子——三相对称绕组,通入三相对称电流,产生一个旋转磁场。 转子——直流励磁,是一个恒稳磁极。 极对数p 与转速n 之间的关系是固定的,为 60 1 pn f = 2、异步电机的结构: 定子——三相对称绕组,通入三相对称电流,产生一个旋转磁场。 转子——三相对称短路绕组,产生一个旋磁磁通。 【三相对称:空间上差120度电角度;时序上差120度电角度。】 3、电角度与机械角度: 电角度:磁场所经历的角度称为电角度。 机械角度:转子在空间所经历的几何角度称为机械角度。 电角度?=p 机械角度 4、感应电势: ①感应电势的频率:60 1 pn f = ②感应电势的最大值:m m m f lv B E φπ==(τφl B P m =) ③每根导体感应电势的有效值: m m m d f f E E φφπ 22.22 2 == = 5、极距: ①概念:一个磁极在空间所跨过的距离,用 τ来表示。(了解整距、短距、长距) ②公式:p z p D 22= = πτ 6、线圈电势与节距因数: ①节距因 数 : 1 90sin 90)1(cos 11≤?? ??????=????????-=ττy y k y 物理意义:表示了短距线圈电势的减少程度。 ②分布因数:12 sin 2sin ≤= a q a q k q 物理意义:表示了分布绕组电势的减少程度。 ③绕组因数:q y w k k k = ④合成电势:w m k fN E φ44.4= ⑤槽距角:z p a 360 = 电角度 ⑥每极每相的槽数:pm z q 2= 【练习1】一台三相同步发电机, Hz f 50=,min /1000r n =,定子铁芯长 cm l 5.40=,定子铁芯内径cm D 270=, 定子槽数72=z ,101=y 槽,每相串联匝数144=N ,磁通密度的空间分布波的表示式为xGs B sin 7660=。试求:(1)绕组因数w k ;(2)每相感应电势的有效值。

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

工程电磁场期末知识点总结

工程电磁场课程总结大作业 1. 静电场 本章研究的对象是静电场,静电场是相对于观察者静止且量值不随时间变化的电荷所产生的电场,静电场中最主要的场量是电场强度E 和标量电位?。首先是从库伦定律 1212 21204πq q R ε= ?e F 2112 =-F F 出发,注意此式适用条件:两个可视为点电荷的带电体之间的相互作用力; 且在真空中成立,真空中的介电常数 12 08.8510ε-=?F/m 。进而引入电场强度: 000 =lim q f E q → 根据此式不难推出真空中单个点电荷引起的电场强度的一般表达式: 3 0()(')4π' p q ε= --E r r r r r n 个点电荷产生的电场强度 ( 矢量叠加原理 ): 3 10() 1()4πN k k k k q ε='-='-∑r r E r r r 连续分布电荷产生的电场强度: 体电荷分布: 2 01 d 4πR V V R ρε' ' = ? E e 面电荷分布: 2 01d 4πR S S R σε' ' = ? E e 线电荷分布: 2 1d 4πR l l R τε' ' = ? E e 由上面公式可以看出,当电荷分布不具有规律时,此时求电场的分布是非常困难的,所以这个时候就要寻求一种新的求解电场的方法,根据亥姆霍兹定理可以知道,从旋度和散度的角度去求电场可以使得问题变得简单。

首先从静电场的环路定律,在静电场沿任何一条闭合路径做功为零,即:0 l Edl =?这样由Stokes’定理,静电场在任一闭合环路的环量: d ()d 0l s ?=???≡??E l E S 0??=E 此式说明了静电场中电场强度的旋度等于0,即电场力作功与路径无关,静电场是保守场,是无旋场。又根据数学知识知,标量函数的梯度的旋度等于0, φ=-?E 因此可以用一个标量函数的负梯度来表示电场强度,即静电场的标量电位或简称电位,E 就是φ的最大减小率,负号表示电场强度的方向从高电位指向低电位。又由上面推导不难看出,φ与 E 的积分关系---电位差,设P0为电位参考点,即0 P φ=,则P 点电位 为: d P P P φ=??E l d d ()()Q Q P P E l P Q φφφ?=-=-? ? 由上式可以看出,P 、Q 两点间的电位差等于电场力将单位正电荷从P 点移至Q 点所做的功,电场力使单位正电荷由高电位处移到低电位处。电位参考点是非常重要的,工程上一般取大地为参考点,理论上取无穷远为参考点。另外,也可以根据上面的计算可以得到点电荷周围的电位为: 0()4π' q C φε= +-r r r 接下来是静电场中的高斯定律,真空中的高斯定律为: 1 1 d n i S i q ε=?= ∑? E S (') ()ρε??= r E r 由于实际生活中,总存在某种介质,故为了计算当有介质存在时,对已有电场的影响,引入了电极化强度P 和D ,这样只需考虑电介质中的高斯定律即可:

电磁感应知识点总结

《电磁感应》知识点总结 1、 磁通量Φ、磁通量变化?Φ、磁通量变化率 t ??Φ 对比表 234、 感应电动势 在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。 (1) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就会产生感应电动势,它相 当于一个电源 (2) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感应电动势,磁通量发生变 化的那部分相当于电源。

5、 公式 n E ?Φ =与E=BLvsin θ 的区别与联系 6、 楞次定律 (2) 楞次定律中“阻碍”的含义

(3)对楞次定律中“阻碍”的含义还可以推广为感应电流的效果总是要阻碍产生感应电流的原因1)阻碍原磁通量的变化或原磁场的变化,即“增反减同”; 2)阻碍相对运动,可理解为“来拒去留”; 3)使线圈面积有扩大或缩小趋势,可理解为“增缩减扩”; 4)阻碍原电流的变化,即产生自感现象。 7、电磁感应中的图像问题 (3)解决这类问题的基本方法 1)明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像 2)分析电磁感应的具体过程 3)结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。 4)根据函数方程,进行数学分析,如斜率及其变化,两轴的截距等。 5)画图像或判断图像。 8、自感涡流

(2 ) 自感电动势和自感系数 1) 自感电动势:t I L E ??=,式中t I ??为电流的变化率,L 为自感系数。 2) 自感系数:自感系数的大小由线圈本身的特性决定,线圈越长,单位长度的匝数越多,横截面 积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大。 (3) 日关灯的电路结构及镇流器、启动器的作用 1) 启动器:利用氖管的辉光放电,起着自动把电路接通和断开的作用。 2) 镇流器:在日光灯点燃时,利用自感现象,产生瞬时高压;在日关灯正常发光时,利用自感现 象起降压限流作用。

高中物理电磁感应核心知识点归纳

高中物理《电磁感应》核心知识点归 纳 一、电磁感应现象 1、产生感应电流的条件 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。 2、感应电动势产生的条件。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。 3、关于磁通量变化 在匀强磁场中,磁通量,磁通量的变化有多种形式,主要有: ①S、α不变,B改变,这时

②B、α不变,S改变,这时 ③B、S不变,α改变,这时 二、楞次定律 1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。 (1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。 (2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。 (3)从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象中产生的自感电动势总是阻碍自身电流的变化。 2、实质:能量的转化与守恒 3、应用:对阻碍的理解: (1)顺口溜“你增我反,你减我同”

工程电磁场基本知识点讲课教案

工程电磁场基本知识 点

第一章矢量分析与场论 1 源点是指。 2 场点是指。 3 距离矢量是,表示其方向的单位矢量用表示。 4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。 5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。 6 方向导数与梯度的关系为。 7 梯度在直角坐标系中的表示为u?=。 8 矢量A在曲面S上的通量表示为Φ=。 9 散度的物理含义是。 10 散度在直角坐标系中的表示为??= A。 11 高斯散度定理。 12 矢量A沿一闭合路径l的环量表示为。 13 旋度的物理含义是。 14 旋度在直角坐标系中的表示为??= A。 15 矢量场A在一点沿 e方向的环量面密度与该点处的旋度之间的关 l 系为。 16 斯托克斯定理。

17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e 20 0(0)11''4()(0)R R R R R πδ≠???????=??=? ? ?-=?????g g 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点 P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ???处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体内部电场强度等于 。 8处于静电平衡状态的导体,其内部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其内部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。

电磁感应知识点总结

第16章:电磁感应 一、知识网络 二、重、难点知识归纳 1、 法拉第电磁感应定律 (1)、产生感应电流的条件:穿过闭合电路的磁通量发生变化。 以上表述就是充分必要条件。不论什么情况,只要满足电路闭合与磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定就是闭合的,穿过该电路的磁通量也一定发生了变化。 当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。这个表述就是充分条件,不就是必要的。在导体做切割磁感线运动时用它判定比较方便。 (2)、感应电动势产生的条件:穿过电路的磁通量发生变化。 闭合电路中磁通量发生变化时产生感应电流 当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量:φ=BS 如果该面积与磁场夹角为α,则其投影面积为S sin α,则磁通量为Φ =BS sin α。磁通量的单位: 韦伯,符号:Wb 产生感应电流的方法 自感 电磁感应 自感电动势 灯管 镇流器 启动器 闭合电路中的部分导体在做切割磁感线运动 闭合电路的磁通量发生变 感应电流方向的判定 右手定则, 楞次定律 感应电动势的大小 E=BL νsin θ t n E ??=φ 实验:通电、断电自感实验 大小:t I L E ??= 方向:总就是阻碍原电流的变化方向 应用 日光灯构造 日光灯工作原理:自感现象 感应现象:

这里不要求闭合。无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路就是否闭合,电动势总就是存在的。但只有当外电路闭合时,电路中才会有电流。 (3)、引起某一回路磁通量变化的原因 a磁感强度的变化 b线圈面积的变化 c线圈平面的法线方向与磁场方向夹角的变化 (4)、电磁感应现象中能的转化 感应电流做功,消耗了电能。消耗的电能就是从其它形式的能转化而来的。 在转化与转移中能的总量就是保持不变的。 (5)、法拉第电磁感应定律: a决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢 b注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同 —磁通量,—磁通量的变化量, c定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。 (6)在匀强磁场中,磁通量的变化ΔΦ=Φt-Φo有多种形式,主要有: ①S、α不变,B改变,这时ΔΦ=ΔB?S sinα ②B、α不变,S改变,这时ΔΦ=ΔS?B sinα ③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1) 在非匀强磁场中,磁通量变化比较复杂。有几 种情况需要特别注意: ①如图16-1所示,矩形线圈沿a→b→c在条形 磁铁附近移动,穿过上边线圈的磁通量由方向向上 减小到零,再变为方向向下增大;右边线圈的磁通量由方向向下减小到 零,再变为方向向上增大。 ②如图16-2所示,环形导线a中有顺时针方向的电流,a环外有两个同心导线圈b、c,与环形导线a在同一平面内。当a中的电流增大时,b、 a b c 图16-1 图16-2

高三物理电磁感应知识点

2019届高三物理电磁感应知识点物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

工程电磁场复习基本知识点

第一章 矢量分析与场论 1 源点是指 。 2 场点是指 。 3 距离矢量是 ,表示其方向的单位矢量用 表示。 4 标量场的等值面方程表示为 ,矢量线方程可表示成坐标形 式 ,也可表示成矢量形式 。 5 梯度是研究标量场的工具,梯度的模表示 ,梯度的方向表 示 。 6 方向导数与梯度的关系为 。 7 梯度在直角坐标系中的表示为u ?= 。 8 矢量A 在曲面S 上的通量表示为Φ= 。 9 散度的物理含义是 。 10 散度在直角坐标系中的表示为??=A 。 11 高斯散度定理 。 12 矢量A 沿一闭合路径l 的环量表示为 。 13 旋度的物理含义是 。 14 旋度在直角坐标系中的表示为??=A 。 15 矢量场A 在一点沿l e 方向的环量面密度与该点处的旋度之间的关系 为 。 16 斯托克斯定理 。 17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别为 , , 。 19 221111''R R R R R R ?=-?=-=e e

20 0(0)11''4() (0)R R R R R πδ≠???????=??=? ? ?-=????? 第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E = 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ??? 处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体部电场强度等于 。 8处于静电平衡状态的导体,其部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。 11 无限长直导线,电荷线密度为τ,则空间电场E = 。 12 无限大导电平面,电荷面密度为σ,则空间电场E = 。 13 静电场中电场强度线与等位面 。 14 两等量异号电荷q ,相距一小距离d ,形成一电偶极子,电偶极子的电偶极矩 p = 。 15 极化强度矢量P 的物理含义是 。 16 电位移矢量D ,电场强度矢量E ,极化强度矢量P 三者之间的关系 为 。 17 介质中极化电荷的体密度P ρ= 。 18介质表面极化电荷的面密度P σ= 。

电磁感应知识点总结

电磁感应 1、 磁通量Φ、磁通量变化?Φ、磁通量变化率t ??Φ 对比表 2、 电磁感应现象与电流磁效应的比较 3、 产生感应电动势和感应电流的条件比较

4、 感应电动势 在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。 (1) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就会产生 感应电动势,它相当于一个电源 (2) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感应电动 势,磁通量发生变化的那部分相当于电源。 5、 公式 n E ?Φ =与E=BLvsin θ 的区别与联系 6、 楞次定律 (1) 感应电流方向的判定方法

(2)楞次定律中“阻碍”的含义 (3)对楞次定律中“阻碍”的含义还可以推广为感应电流的效果总是要阻碍产生感应电流的原因 1)阻碍原磁通量的变化或原磁场的变化; 2)阻碍相对运动,可理解为“来拒去留”。 3)使线圈面积有扩大或缩小趋势; 4)阻碍原电流的变化。 7、电磁感应中的图像问题 (1)图像问题 (3)解决这类问题的基本方法 1)明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像 2)分析电磁感应的具体过程 3)结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。 4)根据函数方程,进行数学分析,如斜率及其变化,两轴的截距等。 5)画图像或判断图像。 8、自感涡流 (1)通电自感和断电自感比较

(2) 自感电动势和自感系数 1) 自感电动势:t I L E ??=,式中t I ??为电流的变化率,L 为自感系数。 2) 自感系数:自感系数的大小由线圈本身的特性决定,线圈越长,单位长度的匝 数越多,横截面积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大。 (3) 涡流 9、电磁感应中的“棒-----轨”模型

电机学知识点总结

电机学知识点总结 电机学课程是高等学校电气类专业的一门重要技术基础课课程的特点是理论性强、概念抽象、专业性特征明显它涉及的基础理论和知识面较广牵涉电、磁、热、机械等综合知识。下面请看我带来的电机学知识点总结。 电机学知识点总结 直流电动机知识点 1、直流电动机主要结构是定子和转子;定子主要包括定子铁心、励磁绕组、电刷。转子主要包括转子铁心、电枢绕组、换向器。 2、直流电动机通过电刷与换向器与外电路相连接。 3、直流电动机的工作原理:通过电刷与换向器之间的切换,导体内的电流随着导体所处的磁极性的改变而同时改变其方向,从而使电磁转矩的方向始终不变。 4、通过电刷和换向器将外部通入的直流电变成线圈内的交变电流的过程叫做“逆变”。 5、励磁方式分为他励式和自励式;自励式包括并励式、串励式和复励式。(只考他励式和并励式,掌握他励式和并励式的图形) 6、直流电机的额定值:①额定功率PN 对于发电机额定功率指线端输出的电功率;对于电动机额定功率指轴上输出的机械功率。②额定电压、额定电流均指额定状态下电机的线电压线电流。 7、磁极数=电刷数=支路数(2p=电刷数=2a,p为极对数,a为支路对数) 8、空载时电极内的磁场由励磁绕组的磁动势单独作用产生,分为主磁通和

漏磁通两部分。 9、电枢反应:负载时电枢磁动势对气隙主磁场的影响。 10、电刷位置是电枢表面电流分布的分界线。 11、交轴电枢反应的影响:①使气隙磁场发生畸变;②物理中线偏离几何中线;③饱和时具有一定的去磁作用。 12、电刷偏离几何中线时,出现直轴。 13、Ea=CeΦn Te=CTΦIa CT=9.55Ce 14、发电机 Ea=U+IaRa 电动机 U=Ea+IaRa 15、他励发电机的特性(主要掌握外特性U=f(I)) 曲线向下倾斜原因①U=Ea‐IaRa;随着负载电流I增大,电枢电阻压降 IaRa 随之增大,所以U减小。②交轴电枢反应产生一定的去磁作用;随着负载的增加,气隙磁通Φ和电枢电动势Ea将减小,再加上IaRa的增大使电压的下降程度增大。 16、并励发电机自励条件:①电机的磁路中要有剩磁;②励磁绕组的接法要正确,使剩磁电动势所产生的电流和磁动势,其方向与剩磁方向相同;③励磁回路的总电阻必须小于临界电阻。 17、并励发电机的外特性U=f(I),曲线下降原因①②同上他励发电机;③励磁电流减小,引起气隙磁通量和电枢电动势的进一步下降。 18、为什么励磁绕组不能开断? 若励磁绕组开断,If=0,主磁通将迅速下降到剩磁磁通,电枢电动势也将下降到剩磁电动势,从而使电枢电流Ia迅速增大,如果负载为轻载,则电动机转

物理电场磁场电磁感应知识点

电场知识点 一、电荷、电荷守恒定律 1、两种电荷:“+”“-”用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。 2、元电荷:所带电荷的最小基元,一个元电荷的电量为1.6×10-19C,是一个电子(或质子)所带的电量。 说明:任何带电体的带电量皆为元电荷电量的整数倍。 荷质比(比荷):电荷量q与质量m之比,(q/m)叫电荷的比荷 3、起电方式有三种 ①摩擦起电, ②接触起电注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。 ③感应起电——切割B,或磁通量发生变化。 4、电荷守恒定律: 电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的. 二、库仑定律 1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。方向由电性决定(同性相斥、异性相吸) 2.公式:k=9.0×109N·m2/C2 极大值问题:在r和两带电体电量和一定的情况下,当Q1=Q2时,有F最大值。 3.适用条件:(1)真空中;(2)点电荷. 点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。点电荷很相似于我们力学中的质点. 注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律

电磁兼容知识点总结

填空题 1、电磁干扰的危害主要体现在两个方面:a.电气、电子设备的相互影响;b.电磁污染对人体的影响 2、电磁兼容设计方法: a.问题解决法。问题解决法是先研制设备,然后针对调试中出现的电磁干扰的问题,采用各种电磁干扰抑制技术加以解决。 b.规范法。规范法是按颁布的电磁兼容性标准和规范进行设备或系统的设计制造。 c.系统法。系统法是利用计算机软件对某一特定系统的设计方案进行电磁兼容性分析和预测。 3、电磁干扰的三要素 1、形成电磁干扰的三个基本条件:骚扰源,对骚扰敏感的接收单元,把能量从骚扰源耦合到接收单元的传输通道,称为电磁干扰三要素。 骚扰源——耦合通道——敏感单元 2、电路受干扰的程度可用公式描述I WC S S 为电路受干扰的程度;W 为骚扰源的强度;C 为骚扰源通过某种路径到达被干扰处的耦合因素;I 为被干扰电路的抗干扰性能。 4、 屏蔽技术是利用屏蔽体阻断或减少电磁能量在空间传播的一种技术,是减少电磁发射和实现电磁骚扰防护的最基本,最重要的手段之一,采用屏蔽有两个目的,一是限制内部产生的辐射超出某一个区域,二是防止外来的辐射进入某一区域。 5、常用的电磁密封衬垫有1.金属丝网衬垫2.导电布衬垫3.导电橡胶

4.指形簧片 6、电源线滤波器:作用主要是抑制设备的传导发射或提高对电网中骚扰的抗扰度,虽然同为抑制骚扰,但两者的方向不同,前者是防止骚扰从设备流入电网(称为电源EMI滤波器),后者是防止电网中的骚扰进入设备(称为电源滤波器) 6、干扰控制接地:1.浮地2.单点接地3.多点接地4.混合接地 8、电磁兼容性GB的定义:设备或系统在其电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。 9、电磁骚扰:可能引起装置、设备或系统性能降低或对有生命、无生命物质产生损害作用的电磁现象。电磁骚扰可以是电磁噪声、无用信号或有用信号,也可以是传播媒介自身的变化。 10、电磁干扰:由电磁骚扰引起的设备、系统或传播通道的性能下降。电磁骚扰是指电磁能量的发射过程,后者则强调电磁骚扰造成的后果。 11、谐波电流的抑制方法 1、电流侧设置LC滤波器 2、采取有源功率因数校正 3、采用PWM整流器 4、多绕组变压器的多脉整流 简答题 1】、电磁兼容研究的内容主要包括: 1、电磁干扰特性及其传播机理。因此研究电磁干扰特性及其传播耦

电机学知识点总汇

1. 空载、负载磁场、漏磁场的产生: 直流电机、变压器、异步电机、同步电机空载时的主磁场各是由什么产生的? 直流电机、变压器、异步电机、同步电机负载时的合成磁场各是由什么产生的? 漏磁场是如何产生的?何时有?何时无? 2. 磁势平衡方程、电枢反应问题 变压器、异步电机中,磁势平衡方程说明了什么? 直流电机、同步电机中,电枢反应的物理意义是是什么? 磁势平衡和电枢反应有何联系? 3. 数学模型问题: I. 直流电机: u = E + I ×ra (+ 2U b )(电动) E = u + I ×ra (+ 2U b )(发电) E = C E n C E = PN a /60/a T E = C M I a C M = PN a /2/a 其中N a 上总导体数 II. 变压器: 折算前1 1 1 1 2222120121022/m L U E I Z U E I Z I I k I E kE E I Z U I Z ?=-+?=-??+=??=??-=? ?=?&&&&&& &&&&&&&&& 折算后 1 1 11 2222012121022'''''''''m L U E I Z U E I Z I I I E E E I Z U I Z ?=-+?=-??=+??=??-=??=?&&&&&&&&&&&&&&&

III. 异步电机:f 折算后()1111 2222σ012121m m //i e U E I Z E I R s jX I I I k E k E E I Z ?=-+?=+??=+??=??=-? &&&&& &&&&&&& w 折算后()1 1 11 2 222σ102 12 10m /j U E I Z E I R s X I I I E E E I Z ?=-+?''''=+??'=-??'=??=-?&&&&& &&& && && 未折算时 ()1 1 11 22222201212221m m , , s s s s s e s U E I Z E I R jX X sX F F F E k E E sE E I Z σσσ ?=-+?=+=??=+??==??=-? &&&&& r r r && && IV. 同步电机:0()a d ad q aq a d d q q E U I R jX jI X jI X U IR jI X jI X σ=++++=+++&&&&&&&&&(凸极机、双反应理论) 0()a a a t E U I R jX jIX U IR jIX σ=+++=++&&&&&&&(隐极机) 4. 等效电路: I. 直流电动机: II. 变压器: III.异步动机: IV. 同步发电机: 隐极机 5. 相量图及其绘制 I . 直流电机: (无) II . 变压器:

相关文档
最新文档