电磁感应知识点总结
电磁感应知识点归纳
电磁感应知识点汇总一、感应电流的产生条件和感应电动势产生条件的区别感应电流的产生条件:穿过闭合电路的磁通量发生变化.感应电动势产生的条件:穿过电路的磁通量发生变化.这里不要求闭合.无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生.这好比一个电源:不论外电路是否闭合,电动势总是存在的.但只有当外电路闭合时,电路中才会有电流.产生感应电动势的那部分导体相当于电源.电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流;回路不闭合,则只产生感应电动势而不产生感应电流.二、楞次定律1、步骤楞次定律的应用应该严格按以下四步进行:①确定原磁场方向;②判定原磁场如何变化(增大还是减小);③根据“增反减同”确定感应电流的磁场方向;④根据安培定则判定感应电流的方向.2、楞次定律的四种表现形式形式一、增反减同当闭合回路中原磁通量增加时,感应电流的磁场方向就与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方相同。
形式二、来拒去留感应电流阻碍相对运动,原磁场靠近闭合回路(线圈)时,感应电流的磁场要拒之;原磁场远离回路(线圈)时,感应电流的磁场要留之。
从运动的效果看,可表述为敌进我拒,敌退我追。
形式三、增缩减扩闭合回路中原磁通量增大时,闭合回路的面积有收缩的趋势;原磁通量减少时,闭合回路面积有扩大的趋势。
形式四、(自感现象)感应电流阻碍原电流变化线圈中原电流增加,在线圈中自感电流的方向与原电流方向相反;反之,则相同。
三、楞次定律和右手定则的区别1、右手定则只适用于部分导体切割磁感线的情况楞次定律适用于任何情况2、楞次定律的研究对象是整个回路,而右手定则却是一段做切割磁感线运动的导线。
但二者是统一的3、用到楞次定律必定要用安培定则四、对法拉第电磁感应定律的理解( 1 ) 内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式:tn E ∆∆Φ=,n 为线圈的匝数. 法拉第电磁感应定律是计算感应电动势的普适规律.( 2 ) 说明:① tn E ∆∆Φ=本式是确定感应电动势的普遍规律,适用于导体回路,回路不一定闭合.② 在tn E ∆∆Φ=中,E 的大小是由匝数及磁通量的变化率(即磁通量变化的快慢)决定的,与Φ或△Φ之间无大小上的必然联系.磁通量Φ表示穿过某一平面的磁感线的条数;磁通量的变化量△Φ表示磁通量变化的多少;磁通量的变化率t∆∆Φ表示磁通量变化的快慢.Φ大,△Φ及t ∆∆Φ不一定大;t∆∆Φ大,Φ及△Φ也不一定大.它们的区别类似于力学中的v 、△v 及t v a ∆∆=的区别. ③ t n E ∆∆Φ=一般计算△t 时间内的平均电动势,但若t∆∆Φ是恒定的,则E 不变也是瞬时值.④ 若S 不变,B 随时间变化时,则t B nSE ∆∆=;若B 不变,回路面积S 随时间变化时,则tS nBE ∆∆=. 2.导体切割磁感线产生感应电动势( 1 )公式:E =BLv (可从法拉第电磁感应定律推出)( 2 )说明:① 上式仅适用于导体各点以相同的速度在匀强磁场中切割磁感线的情况,且L 、v 与B 两两垂直.② 当L ⊥B,L ⊥v ,而v 与B 成θ角时,感应电动势E =BLv sin θ.③ 若导线是曲折的,则L 应是导线的有效切割长度.④ 公式E =BLv 中,若v 是一段时间内的平均速度,则E 为平均感应电动势,若v 为瞬时速度,则E 为瞬时感应电动势.3.导体转动切割磁感线产生的感应电动势当导体在垂直于磁场的平面内,绕一端以角速度ω匀速转动, 切割磁感线产生感应电动势时:ω221BL BLv E =中=.五、电磁感应与电路的综合电磁感应中的动力学问题电磁感应中的能量问题在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.力 运动导体所受的安培力 F=BIL 感应电流 确定电源(E ,r )r R E I +=临界状态态 v与a 方向关系 运动状态的分 a 变化情况。
电磁感应知识点总结
电磁感应知识点总结电磁感应是指导体中的电流或电荷在外加磁场的作用下产生感应电动势的现象。
电磁感应是电磁学中的重要内容,也是电磁学与电动力学的基础知识之一。
下面我们将对电磁感应的相关知识点进行总结。
1. 法拉第电磁感应定律。
法拉第电磁感应定律是电磁感应的基本规律之一,它描述了磁场变化引起感应电动势的现象。
定律表述为,当导体回路中的磁通量发生变化时,回路中就会产生感应电动势。
这一定律为电磁感应现象提供了定量的描述,为电磁感应现象的应用提供了基础。
2. 感应电动势的方向。
根据法拉第电磁感应定律,我们可以得出感应电动势的方向规律。
当磁通量增加时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相同;当磁通量减小时,感应电动势的方向使得产生的感应电流产生磁场的方向与原磁场方向相反。
这一规律在电磁感应现象的分析和应用中具有重要的指导意义。
3. 感应电动势的大小。
感应电动势的大小与磁通量的变化率成正比,即。
ε = -dΦ/dt。
其中,ε表示感应电动势的大小,Φ表示磁通量,t表示时间。
这一关系式说明了磁通量的变化越快,感应电动势的大小就越大。
这一规律在电磁感应现象的定量分析中起着重要的作用。
4. 涡旋电场。
当磁场发生变化时,会在空间中产生涡旋电场。
这一现象是电磁感应的重要特征之一,也是电磁学中的重要内容。
涡旋电场的产生使得电磁感应现象更加复杂和丰富,为电磁学的研究提供了新的视角。
5. 涡旋电流。
涡旋电场的存在导致了涡旋电流的产生。
涡旋电流是一种特殊的感应电流,它的存在对电磁场的分布和能量传递产生了重要影响。
涡旋电流的研究不仅有助于理解电磁感应现象的本质,也为电磁学的应用提供了新的思路。
通过以上对电磁感应知识点的总结,我们对电磁感应现象有了更深入的理解。
电磁感应作为电磁学的重要内容,不仅在理论研究中具有重要意义,也在实际应用中发挥着重要作用。
希望我们能够深入学习和理解电磁感应的知识,为电磁学的发展和应用做出贡献。
电磁感应高中物理知识点
电磁感应高中物理知识点1. 电磁感应的基本概念电磁感应是指当导体相对于磁场运动或磁场的强度发生变化时,会在导体中产生感应电动势和感应电流的现象。
电磁感应是电磁学的重要基础,具有广泛的应用。
2. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的重要定律。
它的表达式为:感应电动势的大小与导体中磁场的变化率成正比。
3. 磁通量和磁感应强度磁通量表示磁场穿过某个面积的数量,用符号Φ表示,单位为韦伯(Wb)。
磁感应强度表示单位面积上的磁通量,用符号B表示,单位为特斯拉(T)。
4. 楞次定律和楞次圈定律楞次定律是描述电磁感应中电流方向的定律。
根据楞次定律,感应电流会产生一个磁场,其方向与原磁场相反。
楞次圈定律是描述电磁感应中感应电动势的方向的定律。
根据楞次圈定律,感应电动势的方向使得感应电流产生一个磁场,其磁场的方向与原磁场相反。
5. 弗莱明右手定则弗莱明右手定则是判断电流在磁场中受力方向的定则。
根据该定则,当右手大拇指指向电流方向,四指指向磁场方向时,手掌所指方向就是电流受力方向。
6. 涡流和涡流损耗涡流是指在导体中由于磁场的变化而产生的感应电流。
涡流会在导体内部产生能量损耗,称为涡流损耗。
涡流损耗的大小与导体特性、磁场强度、频率等因素有关。
7. 互感和自感互感是指两个或多个线圈之间由于磁场的相互作用而产生感应电动势的现象。
互感的大小与线圈的匝数、磁场强度等因素有关。
自感是指线圈中自身磁场变化所产生的感应电动势。
自感的大小与线圈的匝数、磁场强度等因素有关。
8. 电磁感应的应用电磁感应在生活和工业中有广泛的应用,如变压器、电动机、发电机、电磁感应炉等。
它们的原理都是利用电磁感应现象。
以上是电磁感应的高中物理知识点的简要介绍。
电磁感应是电磁学中的重要概念,对于理解电磁现象和应用具有重要意义。
希望这份文档能对你有所帮助!。
电磁感应-知识点总结
第16章:电磁感应一、知识网络二、重、难点知识归纳1. 法拉第电磁感应定律(1).产生感应电流的条件:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,不是必要的。
在导体做切割磁感线运动时用它判定比较方便。
(2).感应电动势产生的条件:穿过电路的磁通量发生变化。
闭合电路中磁通量发生变化时产生感应电流当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量:φ=BS 如果该面积与磁场夹角为α,则其投影面积为S sin α,则磁通量为Φ=BS sin α。
磁通量的单位: 韦伯,符号:Wb 产生感应电流的方法自感电磁感应自感电动势灯管 镇流器 启动器闭合电路中的部分导体在做切割磁感线运动 闭合电路的磁通量发生变 感应电流方向的判定 右手定则, 楞次定律 感应电动势的大小E=BL νsin θtnE ∆∆=φ 实验:通电、断电自感实验大小:tI LE ∆∆= 方向:总是阻碍原电流的变化方向应用日光灯构造日光灯工作原理:自感现象感应现象:这里不要求闭合。
无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合,电动势总是存在的。
但只有当外电路闭合时,电路中才会有电流。
(3). 引起某一回路磁通量变化的原因a磁感强度的变化b线圈面积的变化c线圈平面的法线方向与磁场方向夹角的变化(4). 电磁感应现象中能的转化感应电流做功,消耗了电能。
消耗的电能是从其它形式的能转化而来的。
在转化和转移中能的总量是保持不变的。
(5). 法拉第电磁感应定律:a决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢b注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同—磁通量,—磁通量的变化量,c定律容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。
电磁感应 知识点归纳
电磁感应 知识点归纳【知识网络】【要点梳理】要点一、关于磁通量ϕ,磁通量的变化ϕ∆、磁通量的变化率tϕ∆∆ 1、磁通量磁通量cos B S BS BS ϕθ⊥⊥===,是一个标量,但有正、负之分。
可以形象地理解为穿过某面积磁感线的净条数。
2、磁通量的变化磁通量的变化21ϕϕϕ∆=-.要点诠释: ϕ∆的值可能是2ϕ、1ϕ绝对值的差,也可能是绝对值的和。
例如当一个线圈从与磁感线垂直的位置转动180︒的过程中21ϕϕϕ∆=+.3、磁通量的变化率磁通量的变化率tϕ∆∆表示磁通量变化的快慢,它是回路感应电动势的大小的决定因素。
2121t t t ϕϕϕ-∆=∆-, 在回路面积和位置不变时B S t t ϕ∆∆=∆∆(B t∆∆叫磁感应强度的变化率); 在B 均匀不变时S B t t ϕ∆∆=∆∆,与线圈的匝数无关。
要点二、关于楞次定律(1)定律内容:感应电流具有这样的方向:感应电流的磁场总是阻碍引起感应电流的磁通量发生变化。
(2)感应电流方向的决定因素是:电路所包围的引起感应电流的磁场的方向和磁通量的增减情况。
(3)楞次定律适用范围:适用于所有电磁感应现象。
(4)应用楞次定律判断感应电流产生的力学效果(楞次定律的变式说法):感应电流受到的安培力总是阻碍线圈或导体棒与磁场的相对运动,即线圈与磁场靠近时则相斥,远离时则相吸。
(5)楞次定律是能的转化和守恒定律的必然结果。
要点三、法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即E t ϕ∆=∆. 要点诠释:对n 匝线圈有E nt ϕ∆=∆. (1)E nt ϕ∆=∆是t ∆时间内的平均感应电动势,当0t ∆→时,E n tϕ∆=∆转化为瞬时感应电动势。
(2)E ntϕ∆=∆适应于任何感应电动势的计算,导体切割磁感线时sin E BLv θ=., 自感电动势I E L t ∆=∆都是应用E n tϕ∆=∆而获得的结果。
(3)感应电动势的计算B E n nS t t ϕ∆∆==∆∆,其中B t ∆∆是磁感强度的变化率,是B t -图线的斜率。
高中物理-电磁感应-知识点归纳
电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流原因:闭合回路磁感线通过面积发生变化不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生原因闭合电路磁场B发生变化开关闭合、开关断开、开关闭合,迅速滑动变阻器,只要线圈A中电流发生变化,线圈B就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生变化2、产生感应电流的常见情况 .(1)线圈在磁场中转动。
(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。
(3)磁场强度B变化或有效面积S变化。
(比如有电流产生的磁场,电流大小变化或者开关断开)3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不一定切割,切割不一定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
(2)“阻碍”的含义.从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。
从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。
(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。
(4)“阻碍”的形式.1.阻碍原磁通量的变化,即“增反减同”。
2.阻碍相对运动,即“来拒去留”。
3. 使线圈面积有扩大或缩小的趋势,即“增缩减扩”。
电磁感应知识点
电磁感应知识点1、磁通量:磁感应强度B与垂直于B的面积S的乘积。
单位:适用条件:匀强磁场,面积为有效面积2、磁感应强度B:垂直穿过单位面积的磁感应的条数。
单位:3、电磁感应现象:注:(1)产生感应电流的条件:①闭合电路②磁通量发生变化4、感应电流的方向的判断:右手定则(伸开右手,让磁感线垂直通过掌心,拇指指向导体运动方向,四指的指向即为电流方向)5、楞次定律:感应电流产生的磁场总要阻碍引起感应电流的磁通量的变化注:(1)闭合导体回路中,磁通量的变化是产生感应电流的原因,而感应电流的磁场又是产生感应磁场的原因,感应磁场是产生阻碍作用的原因(2)应用楞次定律判断感应电流的的方向:一般步骤①明确引起感应电流的原磁场的方向分布及其空间分布,用磁感线表示出来②分析穿过闭合电路的磁通是增还是减③增反减同(3)阻碍特点:阻碍但不阻止6、法拉第电磁感应定律:电路中感应电动势的大小跟穿过这一电路的磁通量的变化成正比7、感应电动势大小的计算8、自感现象:由于导体本身的电流变化而产生的电磁感应现象注;(1)产生原因:导体自身电流变化,引起磁通量的变化(2)自感电动势:在自感现象中产生的电动势。
作用:阻碍线圈中原来电流的变化(E= )(3)自感系数:由线圈本身的因素决定,线圈越长,单位长度匝数越多,截面积越大,加有铁芯,自感系数越大,阻碍作用越强9、几种定则应用的区别:(1)安培定则:运动的电荷或则电流产生的磁场(2)左手定则:磁场对运动电荷、电流的作用力的方向(3)右手定则:部分导体切割磁感线运动所产生的电流方向(4)楞次定律:闭合电路磁通量的变化所产生的感应电流方向10、涡流:11、电磁感应现象的应用:①电路问题②受力问题。
电磁感应知识点总结
电磁感应知识点总结电磁感应是指通过磁场或电场的作用产生电流或电动势的现象。
它是电磁学的重要内容,应用广泛。
下面将从电磁感应的基本原理、应用和影响等方面进行总结。
一、电磁感应的基本原理1. 法拉第电磁感应定律:当磁场的变化穿过闭合回路时,回路中会产生感应电流。
这个定律描述了磁场变化对电流的影响。
2. 楞次定律:感应电流的方向会使得其磁场的改变抵消原来磁场变化的效果。
此定律描述了感应电流对磁场的反作用。
3. 磁通量:磁力线通过单位面积的数量。
磁通量的变化是电磁感应的直接原因。
二、电磁感应的应用1. 发电机:利用电磁感应原理将机械能转化为电能,广泛应用于发电行业。
2. 变压器:利用电磁感应原理实现电压的升降。
3. 感应电炉:利用电磁感应原理将电能转化为热能,用于熔炼金属等工业领域。
4. 电磁感应传感器:利用电磁感应原理测量物理量,如温度、压力等。
5. 电磁制动器和离合器:利用电磁感应原理实现制动和离合的功能。
三、电磁感应的影响1. 电磁辐射:由于电磁感应产生的电流会产生电磁辐射,对人体健康和电子设备产生一定的影响。
2. 电磁波干扰:电磁感应产生的电磁场有可能干扰无线通信、雷达等设备的正常工作。
3. 电磁感应对电路的影响:电磁感应会在电路中引入干扰电压和电流,影响电路的稳定性和性能。
电磁感应作为电磁学的重要内容,其基本原理和应用在现实生活中有着广泛的应用。
了解电磁感应的原理和应用,有助于我们更好地理解和应用电磁学知识,推动科学技术的发展。
同时,我们也需要关注电磁辐射和电磁干扰等问题,合理利用电磁感应技术,保护环境和人类健康。
电磁感应知识点归纳
电磁感应知识点归纳1.电流的磁效应:把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。
这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。
2.电流磁效应现象:磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。
电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。
3.电磁感应辨认出的意义:①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。
②电磁感应的辨认出并使人们找出了磁生电的条件,开拓了人类的电器化时代。
③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。
4.对电磁感应的认知:电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。
引发电流的原因归纳为五类:① 变化的电流。
② 变化的磁场。
③ 运动的恒定电流。
④ 运动的磁场。
⑤ 在磁场中运动的导体。
5.磁通量:闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即φ,θ为磁感线与线圈平面的夹角。
6.对磁通量φ的表明:虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。
7.产生感应电流的条件:一是电路闭合。
二就是磁通量变化。
8.楞次定律:感应电流具备这样的方向,即为感应电流的磁场总必须制约引发感应电流的磁通量的变化。
9.楞次定律的理解:① 感应电流的磁场不一定与原磁场方向恰好相反,只是在原磁场的磁通量减小时两者才恰好相反;在磁通量增大时,两者就是同样。
② “阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。
电磁感应知识点
第四章电磁感应第一模块:电磁感应、楞次定律(先介绍右手螺旋定则)『基础知识』一、划时代的发现1、奥斯特梦圆“电生磁”奥斯特实验:在1820年4月的一次讲演中,奥斯特碰巧在南北方向的导线下面放置了一枚小磁针、当电源接通时,小磁针居然转动了(如右图)。
随后的实验证明了电流的确能使磁针偏转,这种作用称为电流的磁效应。
突破:电与磁是联系的2、法拉第心系“磁生电”1831年8月29日,法拉第终于发现了电磁感应:把两个线圈绕在同一铁环上(如右图),一个线圈接入接到电源上,另一个线圈接入“电流表”,在给一个线圈通电或断电瞬间,另一个线圈也出现了电流,这种磁生电的效应终于被发现了。
物理学中把这种现象叫做电磁感应.由电磁感应产生的电流叫做感应电流.二、感应电流的产生1、N极插入、停在线圈中和抽出(S极插入、停在线圈中和抽出)有无感应电流(如图)。
磁铁动作表针摆动方向磁铁动作表针摆动方向极插入线圈偏转S极插入线圈偏转N极停在线圈中不偏转S极停在线圈中不偏转N极从线圈中抽出偏转S极从线圈中抽出偏转实验表明产生感应电流的条件与磁场的变化有关。
2、闭合回路中的一部分导体在磁场中做切割磁感应线运动时,导体中就产生感应电流。
实验表明磁场的强弱没有变化,但是导体棒切割磁感的运动是闭合的回路EFAB包围的面积在发生变化。
这种情况下线圈中同样有感应电流。
3、磁通量定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量定义式:φ=BS(B与S垂直) φ=BScosθ(θ为B与S之间的夹角)单位:韦伯(Wb)物理意义:表示穿过磁场中某个面的磁感线条数磁通量虽然是标量,但有正负之分。
三、楞次定律1、S极插入线圈和抽出线圈中会有感应电流,那么他的方向会如何呢。
条形磁铁运动的情况N 极向下插入线圈N 极向上拔出线圈S极向下拔出线圈S极向上插入线圈原磁场方向(向上或向下)?向下?向下?向上?向上穿过线圈的磁通量变化情况(增加或减少)?增加?减少?减少?增加感应电流的方向(流过灵敏电流计的方向)?向左?向右?向左?向右感应电流的磁场方向(向上或向下)?向上?向下?向上?向上结论:楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化2、对楞次定律中阻碍二字的正确理解“阻碍”不是阻止,这里是阻而未止。
高中物理电磁感应知识点汇总
电磁感应磁生电第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.1磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.2磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.3磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流;2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件:穿过电路的磁通量发生变化;理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场Φ原方向及ΔΦ情况确定感应磁场B 感方向判断感应电流I 感方向.重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS 计算磁通量及磁通量的变化应把握好以下几点: 1、此公式只适用于匀强磁场; 2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值,即ΔΦ=|Φ2-Φ1|.例面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中磁场区域足够大,磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转900过程中,穿过abcd 的磁通量变化量ΔΦ=.解析设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁通量是由正向BSsin θ减小到零,再由零增大到负向BScos θ,所以,磁通量的变化量为:ΔΦ=Φ2-Φ1=-BScos θ-BSsin θ=-BScos θ+sin θ答案-BScos θ+sin θ点拨磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负.穿过某一面积的磁通量一般指合磁通量. 二、感应电流方向的判定:方法一:右手定则部分导体切割磁感线;方法二:楞次定律例某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是D →→bB.先a →→b,后b →→a C.先b →→aD.先b →→a,后a →→b第二部分法拉第电磁感应定律一、感应电动势:在电磁感应现象中产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源,其电阻相当于电源内电阻.电动势是标量,感应电动势的方向就是电源内部电流的方向,由电源的负极指向电源的正极; 二、感应电动势的大小1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:nt∆ΦE =∆图9-1-3图9-1-1公式理解:①上式适用于回路中磁通量发生变化的情形,回路不一定闭合.②感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比.要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③当∆Φ由磁场变化引起时,t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算. ④由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤n 表示线圈的匝数,可以看成n 个单匝线圈串联而成; 2.导体切割磁感线产生的感应电动势公式:θsin Blv E =,对公式的理解如下:①公式只适用于一部分导体在匀强磁场中做切割磁感线运动时产生的感应电动势的计算,其中L 是导体切割磁感线的有效长度,θ是矢量B 和v 方向间的夹角,且L 与磁感线保持垂直实际应用中一般只涉及此种情况.②若θ=900,即B ⊥v 时,公式可简化为E=BL v ,此时,感应电动势最大;若θ=00,即B ∥V 时,导体在磁场中运动不切割磁感线,E=0.③若导体是曲折的,则L 应是导体的有效切割长度,即是导体两端点在B 、v 所决定平面的垂线上的投影长度.④公式E=BL v 中,若v 为一段时间内的平均速度,则E 亦为这段时间内感应电动势的平均值;若v 为瞬时速度,则E 亦为该时刻感应电动势的瞬时值.⑤直导线绕其一端在垂直匀强磁场的平面内转动,产生的感应电动势运用公式E=BL v 计算时,式中v 是导线上各点切割速度的平均值,20L v ω+=,所以ω221Bl v Bl E==-3.反电动势:反电动势对电路中的电流起削弱作用.三、几个总结:重点难点解析一、公式nt∆ΦE =∆和sin Lv θE =B 的比较=n t∆∆Φ求的是回路中Δt 时间内的平均电动势.=BL v sin θ既能求导体做切割磁感线运动的平均电动势,也能求瞬时电动势.v 为平均速度,E 为平均电动势;v 为瞬时速度,E 为瞬时电动势.其中L 为有效长度.1E=BL v 的适用条件:导体棒平动垂直切割磁感线,当速度v 与磁感线不垂直时,要求出垂直于磁感线的速度分量.2122L ωE =B 的适用条件:导体棒绕一个端点垂直于磁感线匀速转动切割磁感线.3E=nBS ωsin ωt 的适用条件:线框绕垂直于匀强磁场方向的一条轴从中性面开始转动,与轴的位置无关.若从与中性面垂直的位置开始计时,则公式变为E=nBS ωcos ωt 3.公式nt∆ΦE =∆和E=BL v sin θ是统一的,前者当Δt →0时,E 为瞬时值,后者v 若代入平均速度v ,则求出的是平均值.一般说来,前者求平均感应电动势更方便,后者求瞬时电动势更方 便.二、Ф、ΔФ、ΔФ/Δt 三者的比较例一个200匝、面积为20cm 2的线圈,放在磁场中,磁场的方向与线圈平面成300角,若磁感应强度在内由增加到,则始末通过线圈的磁通量分别为Wb 和Wb;在此过程中穿过线圈的磁通量的变化量为Wb;磁通量的平均变化率为Wb/s;线圈中的感应电动势的大小为V.解析始、末的磁通量分别为:Φ1=B 1Ssin θ=×20×10-4×1/2Wb=10-4Wb Φ2=B 2Ssin θ=×20X10-4×1/2Wb=5×10-4Wb 磁通量变化量ΔΦ=Φ2-Φ1=4×10-4Wb磁通量变化率05.01044-=∆∆Φx t Wb/s=8×10-3Wb/s感应电动势大小nt∆ΦE =∆=200×8×10-3V=点拨Φ、ΔΦ、ΔΦ/Δt 均与线圈匝数无关,彼此之间也无直接联系;感应电动势Ε的大小取决于ΔΦ/Δt 和线圈匝数n,与Φ和ΔΦ无必然联系. 三、直导体在匀强磁场中转动产生的感应电动势直导体绕其一点在垂直匀强磁场的平面内以角速度ω转动,切割磁感线,产生的感应电动势的大小为:(1)以中点为轴时Ε=02以端点为轴时122L ωE =B 平均速度取中点位置线速度v =ωL/23以任意点为轴时122()122L L ωE =B -与两段的代数和不同第三部分互感和自感涡流一、互感与互感电动势1.互感现象:一个线圈中的电流变化时,所引起的磁场的变化在另一个线圈中产生感应电动势的现象叫做互感现象.2.互感电动势:在互感现象中产生的电动势叫做互感电动势. 二、自感现象1.自感现象:由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象.2.自感电动势1.定义:在自感现象中产生的电动势,叫做自感电动势. 2.作用:总是阻碍导体中原电流的变化.3.自感电动势的方向:自感电动势总是阻碍导体中原电流的变化.即当电流增大时,自感电动势阻碍电流增大;当电流减小时,自感电动势阻碍电流减小.4.自感电动势的大小:Lt∆I E =∆,自感电动势的大小与电流的变化率成正比,其中L 为自感系数.3.自感系数:自感系数也叫自感或电感.自感系数L 由线圈本身的特性决定.L 的大小与线圈的长度、线圈的横截面积等因素有关,线圈越长,单位长度的匝数越多,横截面积越大,自感系数L 越大.另外,若线圈中有铁芯,自感系数L 会大很多.4.自感现象与互感现象的区别和联系区别:1互感现象发生在靠近的两个线圈间,而自感现象发生在一个线圈导体内部; 2通过互感可以把能量在线圈间传递,而自感现象中,能量只能在一个线圈中储存或释放. 联系:二者都是电磁感应现象.通电自感和断电自感的比较例如图9-3-6所示,A 、B 是两个完全相同的灯泡,L 是自感系数较大的线圈,其 直流电阻忽略不计.当电键K 闭合时,下列说法正确的是 比B 先亮,然后A 熄灭比A 先亮,然后B 逐渐变暗,A 逐渐变亮 、B 一齐亮,然后A 熄灭、B 一齐亮.然后A 逐渐变亮.B 的亮度不变 正解电键闭合的瞬间,线圈由于自感产生自感电动势,其作用相当于一个电源,这样对整个回路图9-3-6图9-3-7而言相当于两个电源共同作用在同一个回路中.两个电源各自独立产生电流,实际上等于两个电流的叠加.根据上述原理可在电路中标出两个电源各自独立产生的电流的方向.图9-3-7a、b是两电源独立产生电流的流向图,C图是合并在一起的电流流向图.由图可知在A灯处原电流与感应电流反向,故A灯不能立刻亮起来.在B灯处原电流与感应电流同向,实际电流为两者之和,大于原电流,故B灯比正常发光亮因正常发光时电流就是原电流.随着自感的减弱,感应电流减弱,A灯的实际电流增大,B灯实际电流减少,A灯变亮,B灯变暗,直到自感现象消失,两灯以原电流正常发光,应选B.三、三、涡流1.涡流:当线圈的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内形成闭合回路,很像水的漩涡,把它叫做涡电流,简称涡流.特点:整块金属的电阻很小,涡流往往很大.四.电磁阻尼与电磁驱动1电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼.(2)电磁驱动:磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力,安培力使导体运动,这种作用称为电磁驱动.注意:电磁阻尼与电磁驱动也是一种特殊的电磁感应现象,原理上都可以用楞次定律解释.五、电磁感应中的能量问题1.电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能量.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.解决这类问题的一般步骤:1用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向2画出等效电路,求出回路中电阻消耗电功率的表达式3分析导体机械能的变化,用动能定理或能量守恒关系,得到机械功率的改变所满足的方程。
电磁感应知识点总结
电磁感应知识点总结电磁感应是电磁学中的重要概念,揭示了电流和磁场之间的相互作用关系。
在日常生活和科学研究中,电磁感应的应用十分广泛。
现在,本文将对电磁感应的基本原理和应用进行总结。
一、电磁感应基本原理1. 法拉第电磁感应定律法拉第电磁感应定律是电磁感应的基本原理之一。
它指出,当磁场变化时,磁场线与导线相交,将在导线中产生感应电动势。
这个电动势的大小与磁场变化速率成正比,与导线长度成正比,与导线的角度有关。
2. 楞次定律楞次定律是电磁感应的另一个重要原理。
它规定,在感应电动势产生时,感应电流的方向使其引起的磁场阻碍磁场变化。
这个定律可以用右手定则来判断感应电流的方向。
3. 磁通量磁通量是一个描述磁场穿过某个特定表面的物理量。
它与磁感应强度和表面的夹角有关。
如果磁通量发生变化,就会在导线中产生感应电动势。
二、电磁感应的应用1. 发电机和电动机电磁感应的最重要应用之一是在发电机和电动机中。
发电机通过旋转的磁场和线圈之间的相对运动来产生电流,将机械能转化为电能。
而电动机则是通过通电的导线在磁场中产生力矩,将电能转化为机械能。
2. 变压器变压器是电力系统中常见的设备,它利用电磁感应原理进行能量传递和电压变换。
当交流电通过一对线圈时,由于磁通量的变化,感应电动势在另一组线圈中产生,从而实现电能的传输和变压。
3. 感应炉感应炉是利用电磁感应原理实现材料加热的装置。
在感应炉中,通过涡流效应在导体中产生感应电流,使导体表面产生热量。
感应炉广泛应用于金属加热、熔炼和热处理过程中。
4. 磁悬浮列车磁悬浮列车是一种基于电磁感应原理的交通工具。
它利用线圈产生的磁场与轨道上的磁场相互作用,产生浮力使列车悬浮在轨道上。
磁悬浮列车具有高速、平稳的特点,是未来交通运输的重要发展方向之一。
5. 无线充电电磁感应也被应用在无线充电技术中。
通过在发射装置中产生交变电流,产生变化的磁场,接收装置中的线圈通过感应电动势将电能转化为电流,实现电能的传输和充电。
电磁感应知识点(整理)
电磁感应知识点(整理)
基本概念
- 电磁感应是指导体在磁场变化或电流通过时产生感应电流和感应电动势的现象。
- 法拉第电磁感应定律描述了感应电动势的大小与磁场变化率和线圈匝数的关系。
- 感应电流的方向遵循一个右手定则,根据磁场变化的方向和线圈的位置决定。
电磁感应现象
- 磁通量的改变会引起感应电动势的产生。
当磁通量增大或减小时,感应电动势的方向也相应发生变化。
- 当导体中的电流变化时,也会产生感应电动势。
这是电动机和变压器的基本原理。
自感和互感
- 自感是指导体中的变化电流引起的感应电动势。
自感系数与导体的形状和材料有关。
- 互感是指两个线圈之间的磁场变化引起的感应电动势。
互感系数与线圈之间的匝数和几何关系有关。
电磁感应应用
- 发电机是利用电磁感应原理将机械能转换为电能的设备。
- 变压器是利用互感原理将交流电转换为不同电压的设备。
- 电磁铁是利用电磁感应原理产生强大磁力的装置,广泛应用于电磁吸盘、电磁搬运及各种机械装置中。
应用举例
- 感应加热:利用电磁感应原理加热金属或其他导电材料,常用于工业中的熔炼、烧结等过程。
- 电磁感应制动:利用电磁感应原理制动电动车辆,使其减速或停止。
- 无线充电:利用电磁感应原理将电能传输给无线充电设备,如智能手机、电动牙刷等。
以上是对电磁感应的基本知识点整理,希望对您有帮助。
电磁感应知识点总结
电磁感觉1、磁通量、磁通量变化、磁通量变化率对照表t磁通量物理某时辰穿过磁场中某个意面的磁感线条数义大, S为与B垂直的面积,小不垂直式,取S 在与 B 垂计直方向上的投影算若穿过某个面有方向相注反的磁场,则不可以直接用意B ? S ,应试虑相反问方向的磁通量或抵消以题后所节余的磁通量2、电磁感觉现象与电流磁效应的比较磁通量变化穿过某个面的磁通量随时间的变化量2-1,或B? S,或S?B开始和转过 1800时平面都与磁场垂直,但穿过平面的磁通量是不一样的,一正一负,此中 =B· S,而不是零磁通量变化率t表述磁场中穿过某个面的磁通量变化快慢的物理量B ?S 或t tB ?Bt t既不表示磁通量的大小也不表示磁通量变化的多少,在=t图像中,可用图线的斜率表示电磁感觉现象电流磁效应关系利用磁场产生电流的现电流产生磁场电能够生磁,磁能够生电象3、产生感觉电动势和感觉电流的条件比较只需穿过闭合电路的磁通量发生变化,闭合电路中就有感觉电流产生,即产生感觉电流的条件有两个:产生感觉电流的条件○1电路为闭合回路○2回路中磁通量发生变化,0无论电路闭合与否,只需电路中磁通量发生变化,电产生感觉电动势的条件路中就有感觉电动势产生4、感觉电动势在电磁感觉现象中产生的电动势叫感觉电动势,产生感觉电流比存在感觉电动势,产生感觉电动势的那部分导体相当于电源,电路断开时没有电流,但感觉电动势仍旧存在。
(1)电路无论闭合与否,只需有一部分导体切割磁感线,则这部分导体就会产生感觉电动势,它相当于一个电源(2)无论电路闭合与否,只需电路中的磁通量发生变化,电路中就产生感觉电动势,磁通量发生变化的那部分相当于电源。
5、公式E n与 E=BLvsin的差别与联系tE n E=BLvsintt 时间内的均匀感差别( 1)求的是( 1)求的是瞬时感觉电动势, E 与某个应电动势, E 与某段时间或某个过时辰或某个地点相对应程相对应(2)求的是整个回路的感觉电动( 2)求的是回路中一部分导体切割磁势,整个回路的感觉电动势为零感线是产生的感觉电动势时,其回路中某段导体的(3)因为是整个回路的感觉电动(3)因为是一部分导体切割磁感线的势,所以电源部分不简单确立运动产生的,该部分就相当于电源。
电磁感应知识点总结
电磁感应知识点总结一、电磁感应现象1、磁通量定义:穿过某一面积的磁感线条数。
公式:Φ = BS(S 为垂直于磁场方向的面积)。
单位:韦伯(Wb)。
2、电磁感应现象定义:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就会产生感应电流的现象。
产生条件:穿过闭合回路的磁通量发生变化。
3、感应电流定义:由电磁感应产生的电流。
方向判断:楞次定律和右手定则。
二、楞次定律1、内容感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
2、理解“阻碍”不是“阻止”,只是延缓了磁通量的变化。
从磁通量变化的角度看,感应电流的磁场总是“增反减同”。
从相对运动的角度看,感应电流的磁场总是“来拒去留”。
三、右手定则1、内容伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
2、适用范围适用于导体切割磁感线产生感应电流的情况。
四、法拉第电磁感应定律1、表达式E =nΔΦ/Δt (n 为线圈匝数)。
2、理解感应电动势的大小与磁通量的变化率成正比。
磁通量的变化率越大,感应电动势越大。
五、导体切割磁感线时的感应电动势1、公式E = BLv(B 为磁感应强度,L 为导体切割磁感线的有效长度,v 为导体切割磁感线的速度)。
2、方向判断用右手定则。
六、自感现象1、定义由于导体本身的电流变化而产生的电磁感应现象。
2、自感电动势大小:E =LΔI/Δt (L 为自感系数)。
作用:总是阻碍导体中原电流的变化。
3、自感系数决定因素:线圈的匝数、长度、横截面积、有无铁芯等。
单位:亨利(H)。
七、涡流1、定义块状金属在变化的磁场中,或者在磁场中运动时,金属块内产生的自成闭合回路的感应电流。
2、应用电磁炉、金属探测器、真空冶炼炉等。
3、防止变压器、电机的铁芯用硅钢片叠成,以减少涡流损失。
八、电磁感应中的电路问题1、电源:切割磁感线的导体或磁通量发生变化的回路相当于电源。
物理高二选修2电磁感应知识点
物理高二选修2电磁感应知识点一、电磁感应的基本原理电磁感应是指通过磁场和导体之间的相互作用产生电流的现象。
在物理高二选修2中,我们主要学习了电磁感应的基本原理和相关知识。
1. 法拉第电磁感应定律法拉第电磁感应定律是描述导体中感应电动势大小的定律。
它的表达式为:ε = -dΦ/dt,其中ε表示感应电动势,Φ表示磁通量,t表示时间。
法拉第电磁感应定律告诉我们,磁通量的改变会导致感应电动势的产生。
2. 洛伦兹力和电磁感应定律洛伦兹力是描述电荷在磁场中受力的定律。
当导体中的电子受到洛伦兹力的作用,就会发生感应电流。
电磁感应定律指出,感应电流的大小和方向与洛伦兹力成正比。
二、电磁感应的应用1. 电磁感应在发电机中的应用发电机是利用电磁感应原理来转换机械能为电能的装置。
其基本原理是通过旋转的导体在磁场中感应电动势,从而产生电流。
这一原理被广泛应用于电力工业中,为我们提供了丰富的电力资源。
2. 电磁感应在变压器中的应用变压器是利用电磁感应原理来改变交流电压大小的设备。
它主要由高压线圈和低压线圈构成,通过磁场的变化来感应电动势,并实现电压的升降。
变压器在电力传输和分配中起到了至关重要的作用。
3. 电磁感应在感应炉中的应用感应炉是利用电磁感应原理来加热物体的装置。
通过交变的电流在导体中产生交变磁场,从而感应出感应电流。
这样,导体就会发生电阻加热效应,实现对物体的加热。
感应炉广泛应用于冶金、炼钢等行业。
4. 电磁感应在感应电动机中的应用感应电动机是利用电磁感应原理来转换电能为机械能的装置。
通过感应电动势的产生,使转子在磁场的作用下转动,从而实现机械能的输出。
感应电动机是最常用的电动机之一,广泛应用于各种机械和工业设备中。
三、电磁感应的衍生知识1. 自感现象自感是指导体中的自感电动势。
当电流改变时,导体中会产生变化的磁场,从而感应出自感电动势。
自感现象主要应用于电路中的电感元件,如变压器、感应线圈等。
2. 磁场的能量电磁感应过程中,磁场对电荷做功,将机械能转化为电能。
电磁感应知识点
4. 一根长20cm的通电导线放在磁感应强度为0.4特的匀强磁场中,导线与磁场方向垂直,若它受到的磁场力为4*10-3N,则导线中的电流强度是——安,若将导线中的电流强度增大为0.1A,则磁感应强度为——。
5. 运动电荷在磁场中受到的力称为——力。这个力的方向与电荷运动方向————,和磁感应方向————。这个力的方向感应现象中,下列说法中错误的是( )
(A) 感生电流的磁场总是阻碍原来磁场的变化
(B) 闭合线框放在变化的磁场中一定能产生感生电流
(C) 闭合线框在匀强磁场中作切割磁力线运动,一定能产生感生电流
(D) 感生电流的磁场总是跟原来磁场的方向相反
18.法拉第电磁感应定律告诉我们:电路中的————的大小跟穿过这一电路的——————成正比。
5. 磁场强度:磁场中某点的磁场强度等于该点的磁感应强度与介质磁导率的比值。
6. 左手定则:(1)磁场对载流直导体的作用:伸出左手,让拇指和其余四指在同一平面内,拇指与四指垂直,磁力线从手心穿入,四指与导线中的电流方向一致,拇指所指的方向就是导线的受力方向。
(B) B的大小与IL的乘积无关,由磁场本身决定
(C) B的大小和方向处处相同的区域叫匀强磁场
(D) 通电导线在某处受磁场力,其大小必须与该处的磁感应强度成正比
8. 下列说法中正确的是( )
(A) 穿过某一个面的磁通量为零,该处磁感应强度也为零
11.有两根平行长直导线,通以大小相等、方向相反的电流,下列说法中正确表达了与两导线在同一平面,且与两根导线距离都相等的各点的磁场的磁感应强度是( )
(A) 等于零
(B) 不等于零,方向是从一根导线垂直指向另一根导线
(C) 不等于零,方向平行于导线
电磁感应的知识点大全总结
电磁感应的知识点大全总结一、电磁感应的基本原理电磁感应的基本原理是在磁场发生变化时,就会产生感应电流或感应电动势。
这一原理是基于麦克斯韦方程组和洛伦兹力的相互作用来解释的。
当磁场的变化引起了电流的变化时,就产生了感应电动势;而当感应电流通过导线时,就会在导体内产生感应电磁场。
这一原理是电磁学的基础之一,对于理解电磁现象具有重要意义。
二、法拉第电磁感应定律法拉第电磁感应定律是描述磁场变化引起感应电动势的定律,由英国物理学家迈克尔·法拉第于1831年提出。
法拉第定律主要有两个核心内容:一是当磁通量的变化率不为零时,就会在闭合导体回路中产生感应电动势;二是感应电动势的大小与磁通量变化率成正比,方向由楞次定律确定。
法拉第电磁感应定律是电磁学中的重要定律,对于理解感应电动势的产生规律具有重要意义。
三、感应电动势感应电动势是指磁通量的变化导致感应电流产生,从而在导体中产生电动势的现象。
感应电动势的大小与磁通量的变化率成正比,方向由楞次定律确定。
感应电动势是电磁感应现象的重要表现形式,对于理解磁场与电流的相互作用具有重要意义。
感应电动势的产生可以通过安培环路定理和法拉第定律进行定量分析,是电磁学中的重要概念。
四、自感和互感自感和互感是与感应电动势相关的两个重要概念。
自感是指导体中的感应电流产生感应电磁场,从而对自身产生感应电动势的现象;而互感是指导体中的感应电流产生感应电磁场,从而对其他导体产生感应电动势的现象。
自感和互感是电磁学中的重要概念,对于理解感应电动势的产生规律和电磁场的相互作用具有重要意义。
五、电磁感应的应用电磁感应现象是电磁学中的重要概念,具有许多重要的应用。
其中最重要的应用之一是变压器。
变压器利用电磁感应现象来实现电能的传输和功率的调节,是电力传输和能源转换中的重要设备。
另一个重要的应用是感应电动机和感应发电机,利用电磁感应现象将电能和机械能进行转换,是工业生产和能源利用中的重要设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《电磁感应》知识点总结
1、 磁通量Φ、磁通量变化∆Φ、磁通量变化率
t
∆∆Φ
对比表
234、 感应电动势
在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。
(1) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就会产生感应电动势,它相
当于一个电源
(2) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感应电动势,磁通量发生变
化的那部分相当于电源。
5、 公式
n E ∆Φ
=与E=BLvsin θ 的区别与联系
6、 楞次定律
(2) 楞次定律中“阻碍”的含义
(3)对楞次定律中“阻碍”的含义还可以推广为感应电流的效果总是要阻碍产生感应电流的原因1)阻碍原磁通量的变化或原磁场的变化,即“增反减同”;
2)阻碍相对运动,可理解为“来拒去留”;
3)使线圈面积有扩大或缩小趋势,可理解为“增缩减扩”;
4)阻碍原电流的变化,即产生自感现象。
7、电磁感应中的图像问题
(3)解决这类问题的基本方法
1)明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像
2)分析电磁感应的具体过程
3)结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。
4)根据函数方程,进行数学分析,如斜率及其变化,两轴的截距等。
5)画图像或判断图像。
8、自感涡流
(2
) 自感电动势和自感系数
1) 自感电动势:t
I L
E ∆∆=,式中t I ∆∆为电流的变化率,L 为自感系数。
2) 自感系数:自感系数的大小由线圈本身的特性决定,线圈越长,单位长度的匝数越多,横截面
积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大。
(3) 日关灯的电路结构及镇流器、启动器的作用
1) 启动器:利用氖管的辉光放电,起着自动把电路接通和断开的作用。
2) 镇流器:在日光灯点燃时,利用自感现象,产生瞬时高压;在日关灯正常发光时,利用自感现
象起降压限流作用。