物理电磁感应知识点的归纳

合集下载

电磁感应基础知识归纳

电磁感应基础知识归纳

1.感应电动势大小的计算公式(1):E =tn ∆∆Φ〔任何条件下均适用;t ∆∆Φ为斜率,斜率的符号相同,表示感应电流的方向相同。

斜率的大小就表示感应电动势或感应电流的大小〕(2):E =tB nS ∆∆〔S 为有磁感线穿过的面积,适用于S 不变时;t B ∆∆为斜率,斜率的符号相同,表示感应电流的方向相同。

斜率的大小就表示感应电动势或感应电流的大小〕 (3):E =nBLV适用于导体棒垂直切割磁感线时;B 、L 和V 两两互相垂直,不垂直时,把B 或V 正交分解 L 为有效长度;切割的磁感线越多,E 就越大,切割的磁感线相同,E 就相同 B 为导体棒垂直切割处的磁感强度大小 B 可为非匀强磁场(4):E =nB 1L 1V 1 ± nB 2L 2V 2适用于两根以上导体棒垂直切割磁感线时,B 、L 和V 两两互相垂直,不垂直时,把B 或V 正交分解感应电流相互抵消时用减号L 为有效长度;切割的磁感线越多,E 就越大; B 为导体棒垂直切割处的磁感强度大小; B 可为非匀强磁场(5):E =ω221BL 用于导体一端固定以角速度ω旋转切割磁感线,ω单位必须用rad/s ;B 、L 和V 两两互相垂直,不垂直时,把B 或V 正交分解;L 为有效长度;切割的磁感线相同,E 就相同,切割的磁感线越多,E 就越大;; B 为导体棒垂直切割处的磁感强度大小; B 可为非匀强磁场(6):e= θωsin NBS = t NBS ωωsin 〔用于从中性面开始计时,即线圈垂直于磁感线开始计时〕e 为交流发电机的瞬时感应电动势〔V 〕; B 为匀强磁场(T);S 为有磁感线穿过的面积(m 2)ω为线圈的角速度,其单位必须用rad/s ;450=4π rad ;5r/s(转/秒)=5⨯2π rad/s ω=2πf 〔f 为交流电的频率〕θ为线圈和中性面的夹角〔rad 〕;线圈处于中性面时,Φ最大,感应电动势e=0应从切割磁感线的角度理解该公式,切割的磁感线越多,E 就越大;(7):e= βωcos NBS =t NBS ωωcos (从线圈平行于磁感线开始计时)e 为交流发电机的瞬时感应电动势〔V 〕; B 为匀强磁场(T);S 为有磁感线穿过的面积(m 2)ω为线圈的角速度,其单位必须用rad/s ;300= 6π rad ;5r/s(转/秒)=5⨯2π rad/s ω=2πf 〔f 为交流电的频率〕θ为线圈和磁感线的夹角〔rad 〕;线圈和中性面垂直时,即线圈和磁感线平行,Φ=0,感应电动势e 最大 应从切割磁感线的角度理解该公式,切割的磁感线越多,E 就越大;(8):E=U 外+Ir 〔适用条件:适用于任何电路;U 外为电源两端的电压〔即外电路的总电压〕,I 为总电流,r 为电源的内阻〕2:公式的推导:(1):E = BLV (如右图)E=t n ∆∆Φ=n BLv tBLdvt d BL tBLdS d BL tt ===-+-+∆Φ-∆Φ)()(0 (2):E=NBS ωsin θ(如右图)一矩形线圈绕oo ´轴转动〔t=0时,线圈处于中性面〕E=BL ad V ad sin θ + BL bc V bc sin θ E=BL ad ω21L ab sin θ + BL bc ω21L ab sin θE=21B ωS sin θ+ 21B ωS sin θ E=B ωS sin θ当线圈有N 匝时:E=NBS ωsin θθ=ωt∴ E=NBS ωsin ωt 即 e=NBS ωsin ωt3.磁通量:表示穿过某截面的磁感线数量,穿过的磁感线数量越多,磁通量越大;穿过的磁感线数量相同,磁通量就相同〔1〕:Φ=BS 使用条件:B 和S 垂直时,S 为有磁感线穿过的面积(m 2) 〔2〕:Φ=0 使用条件:B 和S 平行时〔3〕:当B 、S 既不平行也不垂直时,可以把B 拿来正交分解或把S 投影到B 的方向上,0<Φ<BS〔4〕:0Φ-Φ=∆Φt ,Φ是标量,但是它有正负,如:某线圈的磁通量为6 wb ,当它绕垂直于磁场的轴转过1800,此时磁通量为-6 wb ,在这一过程中,∆Φ=12 wb 而不是04:感应电动势E 与∆Φ的大小、B 的大小无关,E 与B 的变化快慢、∆Φ的变化快慢有关。

电磁感应高中物理知识点

电磁感应高中物理知识点

电磁感应高中物理知识点1. 电磁感应的基本概念电磁感应是指当导体相对于磁场运动或磁场的强度发生变化时,会在导体中产生感应电动势和感应电流的现象。

电磁感应是电磁学的重要基础,具有广泛的应用。

2. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的重要定律。

它的表达式为:感应电动势的大小与导体中磁场的变化率成正比。

3. 磁通量和磁感应强度磁通量表示磁场穿过某个面积的数量,用符号Φ表示,单位为韦伯(Wb)。

磁感应强度表示单位面积上的磁通量,用符号B表示,单位为特斯拉(T)。

4. 楞次定律和楞次圈定律楞次定律是描述电磁感应中电流方向的定律。

根据楞次定律,感应电流会产生一个磁场,其方向与原磁场相反。

楞次圈定律是描述电磁感应中感应电动势的方向的定律。

根据楞次圈定律,感应电动势的方向使得感应电流产生一个磁场,其磁场的方向与原磁场相反。

5. 弗莱明右手定则弗莱明右手定则是判断电流在磁场中受力方向的定则。

根据该定则,当右手大拇指指向电流方向,四指指向磁场方向时,手掌所指方向就是电流受力方向。

6. 涡流和涡流损耗涡流是指在导体中由于磁场的变化而产生的感应电流。

涡流会在导体内部产生能量损耗,称为涡流损耗。

涡流损耗的大小与导体特性、磁场强度、频率等因素有关。

7. 互感和自感互感是指两个或多个线圈之间由于磁场的相互作用而产生感应电动势的现象。

互感的大小与线圈的匝数、磁场强度等因素有关。

自感是指线圈中自身磁场变化所产生的感应电动势。

自感的大小与线圈的匝数、磁场强度等因素有关。

8. 电磁感应的应用电磁感应在生活和工业中有广泛的应用,如变压器、电动机、发电机、电磁感应炉等。

它们的原理都是利用电磁感应现象。

以上是电磁感应的高中物理知识点的简要介绍。

电磁感应是电磁学中的重要概念,对于理解电磁现象和应用具有重要意义。

希望这份文档能对你有所帮助!。

高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳

高中物理:电磁感应知识点归纳一、电磁感应的发现1.“电生磁”的发现奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应2.“磁生电”的发现(1)电磁感应现象的发现法拉第根据他的实验,将产生感应电流的原因分成五类:①变化的电流;②变化的磁场;③运动中的恒定电流;④运动中的磁铁;⑤运动中的导线。

(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。

二、感应电流产生的条件1. 探究实验实验一:导体在磁场中做切割磁感线的运动实验二:通过闭合回路的磁场发生变化2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生三、感应电动势1. 定义:由电磁感应产生的电动势,叫感应电动势。

产生电动势的那部分导体相当于电源。

2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。

3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。

产生感应电动势的那部分导体相当于电源。

【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合四、法拉第电磁感应定律1. 定律内容:感应电动势的大小,跟穿过这个电路的磁通量的变化率成正比。

2. 表达式:说明:①式中N为线圈匝数,是磁通量的变化率,注意它与磁通量以及磁通量的变化量的区别。

②E与无关,成正比③在图像中为斜率,所以斜率的意义为感应电动势五、导体切割磁感线时产生的电动势公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.图中有效长度分别为:甲图:l=cdsin β(容易错算成l=absin β).乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,沿v2方向运动时,l=0;沿v3方向运动时,l=R.六、右手定则1. 内容:将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心穿入,大拇指指向导体运动方向,这时四指的指向就是感应电流的方向,也就是感应电动势的方向2. 适用情况:导体切割磁感线产生感应电流七、楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

电磁感应-知识点总结

电磁感应-知识点总结

第16章:电磁感应一、知识网络二、重、难点知识归纳1. 法拉第电磁感应定律(1).产生感应电流的条件:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。

不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。

这个表述是充分条件,不是必要的。

在导体做切割磁感线运动时用它判定比较方便。

(2).感应电动势产生的条件:穿过电路的磁通量发生变化。

闭合电路中磁通量发生变化时产生感应电流当磁场为匀强磁场,并且线圈平面垂直磁场时磁通量:φ=BS 如果该面积与磁场夹角为α,则其投影面积为S sin α,则磁通量为Φ=BS sin α。

磁通量的单位: 韦伯,符号:Wb 产生感应电流的方法自感电磁感应自感电动势灯管 镇流器 启动器闭合电路中的部分导体在做切割磁感线运动 闭合电路的磁通量发生变 感应电流方向的判定 右手定则, 楞次定律 感应电动势的大小E=BL νsin θtnE ∆∆=φ 实验:通电、断电自感实验大小:tI LE ∆∆= 方向:总是阻碍原电流的变化方向应用日光灯构造日光灯工作原理:自感现象感应现象:这里不要求闭合。

无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。

这好比一个电源:不论外电路是否闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

(3). 引起某一回路磁通量变化的原因a磁感强度的变化b线圈面积的变化c线圈平面的法线方向与磁场方向夹角的变化(4). 电磁感应现象中能的转化感应电流做功,消耗了电能。

消耗的电能是从其它形式的能转化而来的。

在转化和转移中能的总量是保持不变的。

(5). 法拉第电磁感应定律:a决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢b注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同—磁通量,—磁通量的变化量,c定律容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。

高中物理-电磁感应-知识点归纳

高中物理-电磁感应-知识点归纳

电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。

(2)由电磁感应现象产生的电流,叫做感应电流。

物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流原因:闭合回路磁感线通过面积发生变化不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生原因闭合电路磁场B发生变化开关闭合、开关断开、开关闭合,迅速滑动变阻器,只要线圈A中电流发生变化,线圈B就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。

....中磁通量发生变化2、产生感应电流的常见情况 .(1)线圈在磁场中转动。

(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。

(3)磁场强度B变化或有效面积S变化。

(比如有电流产生的磁场,电流大小变化或者开关断开)3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。

(2)“运动不一定切割,切割不一定生电”。

导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。

三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。

(2)“阻碍”的含义.从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。

从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。

(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。

(4)“阻碍”的形式.1.阻碍原磁通量的变化,即“增反减同”。

2.阻碍相对运动,即“来拒去留”。

3. 使线圈面积有扩大或缩小的趋势,即“增缩减扩”。

初中物理电磁感应知识点总结归纳

初中物理电磁感应知识点总结归纳

初中物理电磁感应知识点总结归纳电磁感应是物理学中的一个重要概念,它描述了磁场对电路中电流和电荷的影响。

在初中物理学习中,我们接触到了一些基本的电磁感应知识点,本文将对这些知识点进行总结归纳。

一、法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本规律,它被简洁地表述为:“导体中的电动势与磁通量的变化率成正比”。

具体表达式为:ε = -dΦ/dt其中,ε表示感应电动势,Φ表示磁通量,t表示时间。

负号表示感应电动势的方向与磁通量变化的方向相反。

根据法拉第电磁感应定律,我们可以得出以下几个重要结论:1. 磁通量的改变会引起感应电动势。

当磁通量Φ随时间变化时,电磁感应现象就会发生。

2. 电磁感应现象只发生在闭合电路中。

只有在电路是一个闭合回路的情况下,才会有感应电动势的产生。

3. 磁通量的改变率越大,感应电动势的大小越大。

磁通量变化越快,感应电动势就越大。

二、楞次定律楞次定律是电磁感应的另一个重要规律,它描述了感应电动势产生的方向。

楞次定律的表述为:“感应电动势的方向总是使得产生它的磁场变化所引起的电流的磁场方向与磁通量变化所引起的磁场方向相互作用,尽量抵消”。

通俗来说,楞次定律可以总结为以下两个规律:1. 当磁通量增大时,感应电动势的方向使得产生电流的磁场方向与磁通量变化所引起的磁场方向相反。

2. 当磁通量减小时,感应电动势的方向使得产生电流的磁场方向与磁通量变化所引起的磁场方向相同。

楞次定律可以帮助我们判断感应电流的方向,从而进一步理解电磁感应现象。

三、感应电动势与导体运动的关系当导体相对于磁场运动时,也会产生电磁感应现象。

导体运动所产生的感应电动势与导体运动方向、磁场方向等因素有关。

1. 假设导体以速度v垂直地穿过一个磁感应强度为B的磁场,那么感应电动势的大小为ε = Bvl,其中l表示导体的长度。

2. 如果导体运动的方向与磁场方向垂直,并且导体两端连接一个外电路,那么在导体中就会产生感应电流,导体受到的磁场力会使它产生运动。

电磁感应知识点(全)

电磁感应知识点(全)

电磁感应知识点(全)
电磁感应是物理学中的一个重要分支,特别是在电学中占有重
要地位。

以下是电磁感应的主要知识点:
电磁感应现象
电流、电荷等在磁场中的受力、运动,以及一些电学现象如变
压器、电动机、感应电流、涡电流等都是电磁感应现象。

法拉第电磁感应定律
法拉第电磁感应定律描述了磁通量改变率与感应电动势的关系,是电磁感应定律的基本公式。

楞次定律
楞次定律描述了感应电流的方向,即感应电流所产生的磁场方
向总是相反于变化所产生的磁场方向。

洛伦兹力
洛伦兹力是符合磁场与运动电荷相互作用规律的力,它是电磁感应定律与运动电荷受力定律的推论。

感应电动势
感应电动势是由于磁通量发生变化所产生的电动势。

感应电动势可以应用于发电机,使机械能转换为电能。

电磁感应定律的应用
电磁感应定律的应用广泛,如变压器、电动机、感应电流等,都是利用电磁感应原理实现的。

涡电流
涡电流是在导体中由于磁通量变化所产生的感应电流,它会产生热量,甚至熔化导体。

以上就是电磁感应的主要知识点。

电磁感应知识点

电磁感应知识点

第四章电磁感应第一模块:电磁感应、楞次定律(先介绍右手螺旋定则)『基础知识』一、划时代的发现1、奥斯特梦圆“电生磁”奥斯特实验:在1820年4月的一次讲演中,奥斯特碰巧在南北方向的导线下面放置了一枚小磁针、当电源接通时,小磁针居然转动了(如右图)。

随后的实验证明了电流的确能使磁针偏转,这种作用称为电流的磁效应。

突破:电与磁是联系的2、法拉第心系“磁生电”1831年8月29日,法拉第终于发现了电磁感应:把两个线圈绕在同一铁环上(如右图),一个线圈接入接到电源上,另一个线圈接入“电流表”,在给一个线圈通电或断电瞬间,另一个线圈也出现了电流,这种磁生电的效应终于被发现了。

物理学中把这种现象叫做电磁感应.由电磁感应产生的电流叫做感应电流.二、感应电流的产生1、N极插入、停在线圈中和抽出(S极插入、停在线圈中和抽出)有无感应电流(如图)。

磁铁动作表针摆动方向磁铁动作表针摆动方向极插入线圈偏转S极插入线圈偏转N极停在线圈中不偏转S极停在线圈中不偏转N极从线圈中抽出偏转S极从线圈中抽出偏转实验表明产生感应电流的条件与磁场的变化有关。

2、闭合回路中的一部分导体在磁场中做切割磁感应线运动时,导体中就产生感应电流。

实验表明磁场的强弱没有变化,但是导体棒切割磁感的运动是闭合的回路EFAB包围的面积在发生变化。

这种情况下线圈中同样有感应电流。

3、磁通量定义:磁感应强度B与面积S的乘积,叫做穿过这个面的磁通量定义式:φ=BS(B与S垂直) φ=BScosθ(θ为B与S之间的夹角)单位:韦伯(Wb)物理意义:表示穿过磁场中某个面的磁感线条数磁通量虽然是标量,但有正负之分。

三、楞次定律1、S极插入线圈和抽出线圈中会有感应电流,那么他的方向会如何呢。

条形磁铁运动的情况N 极向下插入线圈N 极向上拔出线圈S极向下拔出线圈S极向上插入线圈原磁场方向(向上或向下)?向下?向下?向上?向上穿过线圈的磁通量变化情况(增加或减少)?增加?减少?减少?增加感应电流的方向(流过灵敏电流计的方向)?向左?向右?向左?向右感应电流的磁场方向(向上或向下)?向上?向下?向上?向上结论:楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化2、对楞次定律中阻碍二字的正确理解“阻碍”不是阻止,这里是阻而未止。

高三物理知识点:电磁感应和电磁感应现象

高三物理知识点:电磁感应和电磁感应现象

高三物理知识点:电磁感应和电磁感应现象一、电磁感应的基本概念电磁感应是指在导体周围的磁场发生变化时,导体中会产生电动势的现象。

这个现象是由英国科学家迈克尔·法拉第在1831年发现的,因此也被称为法拉第电磁感应定律。

1.1 感应电动势当闭合导体回路所围面积内的磁通量发生变化时,回路中就会产生电动势,这个电动势称为感应电动势。

数学表达式为:[ = - ]其中,( ) 表示感应电动势,( _B ) 表示磁通量,( t ) 表示时间。

负号表示楞次定律,即感应电动势的方向总是阻碍磁通量的变化。

1.2 楞次定律楞次定律是描述感应电动势方向的重要定律。

它指出,感应电动势的方向总是使得其产生的电流所产生的磁通量变化方向与原磁通量变化方向相反。

1.3 法拉第电磁感应定律法拉第电磁感应定律是描述感应电动势大小的重要定律。

它指出,感应电动势的大小与磁通量的变化率成正比,即:[ = N ]其中,( N ) 表示闭合导体回路的匝数。

二、电磁感应现象电磁感应现象是指在电磁感应过程中,导体中会产生电流的现象。

2.1 感应电流的产生当闭合导体回路所围面积内的磁通量发生变化时,回路中就会产生感应电流。

感应电流的产生遵循楞次定律和法拉第电磁感应定律。

2.2 感应电流的方向根据楞次定律,感应电流的方向总是使得其产生的磁通量变化方向与原磁通量变化方向相反。

2.3 感应电流的大小根据法拉第电磁感应定律,感应电流的大小与感应电动势的大小成正比,与闭合导体回路的电阻成反比。

即:[ I = ]其中,( I ) 表示感应电流,( R ) 表示闭合导体回路的电阻。

三、电磁感应的应用电磁感应现象在生产和生活中有广泛的应用。

3.1 发电机发电机是利用电磁感应现象将机械能转化为电能的装置。

它通过旋转磁场和线圈之间的相对运动,产生感应电动势,从而产生电流。

3.2 变压器变压器是利用电磁感应现象改变电压的装置。

它通过两个或多个线圈之间的互感现象,实现电压的升高或降低。

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应磁生电第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.1磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.2磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.3磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.产生的电流叫做感应电流;2.产生感应电流的条件:表述1:闭合电路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件:穿过电路的磁通量发生变化;理解:电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场Φ原方向及ΔΦ情况确定感应磁场B 感方向判断感应电流I 感方向.重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS 计算磁通量及磁通量的变化应把握好以下几点: 1、此公式只适用于匀强磁场; 2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值,即ΔΦ=|Φ2-Φ1|.例面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中磁场区域足够大,磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转900过程中,穿过abcd 的磁通量变化量ΔΦ=.解析设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁通量是由正向BSsin θ减小到零,再由零增大到负向BScos θ,所以,磁通量的变化量为:ΔΦ=Φ2-Φ1=-BScos θ-BSsin θ=-BScos θ+sin θ答案-BScos θ+sin θ点拨磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负.穿过某一面积的磁通量一般指合磁通量. 二、感应电流方向的判定:方法一:右手定则部分导体切割磁感线;方法二:楞次定律例某实验小组用如图9-1-3所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是D →→bB.先a →→b,后b →→a C.先b →→aD.先b →→a,后a →→b第二部分法拉第电磁感应定律一、感应电动势:在电磁感应现象中产生的电动势叫感应电动势,产生感应电动势的那部分导体相当于电源,其电阻相当于电源内电阻.电动势是标量,感应电动势的方向就是电源内部电流的方向,由电源的负极指向电源的正极; 二、感应电动势的大小1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:nt∆ΦE =∆图9-1-3图9-1-1公式理解:①上式适用于回路中磁通量发生变化的情形,回路不一定闭合.②感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比.要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③当∆Φ由磁场变化引起时,t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算. ④由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤n 表示线圈的匝数,可以看成n 个单匝线圈串联而成; 2.导体切割磁感线产生的感应电动势公式:θsin Blv E =,对公式的理解如下:①公式只适用于一部分导体在匀强磁场中做切割磁感线运动时产生的感应电动势的计算,其中L 是导体切割磁感线的有效长度,θ是矢量B 和v 方向间的夹角,且L 与磁感线保持垂直实际应用中一般只涉及此种情况.②若θ=900,即B ⊥v 时,公式可简化为E=BL v ,此时,感应电动势最大;若θ=00,即B ∥V 时,导体在磁场中运动不切割磁感线,E=0.③若导体是曲折的,则L 应是导体的有效切割长度,即是导体两端点在B 、v 所决定平面的垂线上的投影长度.④公式E=BL v 中,若v 为一段时间内的平均速度,则E 亦为这段时间内感应电动势的平均值;若v 为瞬时速度,则E 亦为该时刻感应电动势的瞬时值.⑤直导线绕其一端在垂直匀强磁场的平面内转动,产生的感应电动势运用公式E=BL v 计算时,式中v 是导线上各点切割速度的平均值,20L v ω+=,所以ω221Bl v Bl E==-3.反电动势:反电动势对电路中的电流起削弱作用.三、几个总结:重点难点解析一、公式nt∆ΦE =∆和sin Lv θE =B 的比较=n t∆∆Φ求的是回路中Δt 时间内的平均电动势.=BL v sin θ既能求导体做切割磁感线运动的平均电动势,也能求瞬时电动势.v 为平均速度,E 为平均电动势;v 为瞬时速度,E 为瞬时电动势.其中L 为有效长度.1E=BL v 的适用条件:导体棒平动垂直切割磁感线,当速度v 与磁感线不垂直时,要求出垂直于磁感线的速度分量.2122L ωE =B 的适用条件:导体棒绕一个端点垂直于磁感线匀速转动切割磁感线.3E=nBS ωsin ωt 的适用条件:线框绕垂直于匀强磁场方向的一条轴从中性面开始转动,与轴的位置无关.若从与中性面垂直的位置开始计时,则公式变为E=nBS ωcos ωt 3.公式nt∆ΦE =∆和E=BL v sin θ是统一的,前者当Δt →0时,E 为瞬时值,后者v 若代入平均速度v ,则求出的是平均值.一般说来,前者求平均感应电动势更方便,后者求瞬时电动势更方 便.二、Ф、ΔФ、ΔФ/Δt 三者的比较例一个200匝、面积为20cm 2的线圈,放在磁场中,磁场的方向与线圈平面成300角,若磁感应强度在内由增加到,则始末通过线圈的磁通量分别为Wb 和Wb;在此过程中穿过线圈的磁通量的变化量为Wb;磁通量的平均变化率为Wb/s;线圈中的感应电动势的大小为V.解析始、末的磁通量分别为:Φ1=B 1Ssin θ=×20×10-4×1/2Wb=10-4Wb Φ2=B 2Ssin θ=×20X10-4×1/2Wb=5×10-4Wb 磁通量变化量ΔΦ=Φ2-Φ1=4×10-4Wb磁通量变化率05.01044-=∆∆Φx t Wb/s=8×10-3Wb/s感应电动势大小nt∆ΦE =∆=200×8×10-3V=点拨Φ、ΔΦ、ΔΦ/Δt 均与线圈匝数无关,彼此之间也无直接联系;感应电动势Ε的大小取决于ΔΦ/Δt 和线圈匝数n,与Φ和ΔΦ无必然联系. 三、直导体在匀强磁场中转动产生的感应电动势直导体绕其一点在垂直匀强磁场的平面内以角速度ω转动,切割磁感线,产生的感应电动势的大小为:(1)以中点为轴时Ε=02以端点为轴时122L ωE =B 平均速度取中点位置线速度v =ωL/23以任意点为轴时122()122L L ωE =B -与两段的代数和不同第三部分互感和自感涡流一、互感与互感电动势1.互感现象:一个线圈中的电流变化时,所引起的磁场的变化在另一个线圈中产生感应电动势的现象叫做互感现象.2.互感电动势:在互感现象中产生的电动势叫做互感电动势. 二、自感现象1.自感现象:由于导体本身的电流发生变化而产生的电磁感应现象,叫做自感现象.2.自感电动势1.定义:在自感现象中产生的电动势,叫做自感电动势. 2.作用:总是阻碍导体中原电流的变化.3.自感电动势的方向:自感电动势总是阻碍导体中原电流的变化.即当电流增大时,自感电动势阻碍电流增大;当电流减小时,自感电动势阻碍电流减小.4.自感电动势的大小:Lt∆I E =∆,自感电动势的大小与电流的变化率成正比,其中L 为自感系数.3.自感系数:自感系数也叫自感或电感.自感系数L 由线圈本身的特性决定.L 的大小与线圈的长度、线圈的横截面积等因素有关,线圈越长,单位长度的匝数越多,横截面积越大,自感系数L 越大.另外,若线圈中有铁芯,自感系数L 会大很多.4.自感现象与互感现象的区别和联系区别:1互感现象发生在靠近的两个线圈间,而自感现象发生在一个线圈导体内部; 2通过互感可以把能量在线圈间传递,而自感现象中,能量只能在一个线圈中储存或释放. 联系:二者都是电磁感应现象.通电自感和断电自感的比较例如图9-3-6所示,A 、B 是两个完全相同的灯泡,L 是自感系数较大的线圈,其 直流电阻忽略不计.当电键K 闭合时,下列说法正确的是 比B 先亮,然后A 熄灭比A 先亮,然后B 逐渐变暗,A 逐渐变亮 、B 一齐亮,然后A 熄灭、B 一齐亮.然后A 逐渐变亮.B 的亮度不变 正解电键闭合的瞬间,线圈由于自感产生自感电动势,其作用相当于一个电源,这样对整个回路图9-3-6图9-3-7而言相当于两个电源共同作用在同一个回路中.两个电源各自独立产生电流,实际上等于两个电流的叠加.根据上述原理可在电路中标出两个电源各自独立产生的电流的方向.图9-3-7a、b是两电源独立产生电流的流向图,C图是合并在一起的电流流向图.由图可知在A灯处原电流与感应电流反向,故A灯不能立刻亮起来.在B灯处原电流与感应电流同向,实际电流为两者之和,大于原电流,故B灯比正常发光亮因正常发光时电流就是原电流.随着自感的减弱,感应电流减弱,A灯的实际电流增大,B灯实际电流减少,A灯变亮,B灯变暗,直到自感现象消失,两灯以原电流正常发光,应选B.三、三、涡流1.涡流:当线圈的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内形成闭合回路,很像水的漩涡,把它叫做涡电流,简称涡流.特点:整块金属的电阻很小,涡流往往很大.四.电磁阻尼与电磁驱动1电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动,这种现象称为电磁阻尼.(2)电磁驱动:磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力,安培力使导体运动,这种作用称为电磁驱动.注意:电磁阻尼与电磁驱动也是一种特殊的电磁感应现象,原理上都可以用楞次定律解释.五、电磁感应中的能量问题1.电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能量.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.解决这类问题的一般步骤:1用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向2画出等效电路,求出回路中电阻消耗电功率的表达式3分析导体机械能的变化,用动能定理或能量守恒关系,得到机械功率的改变所满足的方程。

初中物理电磁感应知识点整理

初中物理电磁感应知识点整理

初中物理电磁感应知识点整理电磁感应是物理学中的一个重要概念,也是初中物理课程中的重点内容。

它是指导体中相对磁场变化所引起的感应电动势和感应电流现象。

下面我将给大家整理一些初中物理电磁感应的知识点。

1. 感应电动势当磁场的磁通量发生改变时,会在导体中产生感应电动势。

感应电动势的大小与磁通量的变化率成正比。

如果磁通量发生增加,感应电动势的方向与磁通量的变化方向相反;如果磁通量发生减少,感应电动势的方向与磁通量的变化方向相同。

2. 感应电流当导体中存在感应电动势时,会在导体中产生感应电流。

感应电流的方向与感应电动势的方向相同,它们遵循右手螺旋定则。

感应电流的大小与感应电动势的大小成正比,与导体本身的电阻和导体的形状有关。

3. 法拉第电磁感应定律法拉第电磁感应定律是描述磁通量变化与感应电动势之间关系的定律。

它表明,感应电动势的大小与磁通量的变化率成正比,且与感应回路中的导线数目有关。

4. 感应电磁铁感应电磁铁是利用电磁感应现象制作的,它由铁芯和线圈组成。

当通过线圈的电流发生变化时,会在铁芯中产生磁场,从而实现对铁芯吸引和释放铁磁物体的控制。

5. 感应电磁炉感应电磁炉是利用电磁感应原理加热的一种设备。

它通过感应线圈产生交变磁场,而锅底中的铁磁物质作为磁芯,由于电磁感应现象而发热。

感应电磁炉具有加热迅速、高效节能、安全可靠等优点。

6. 发电机发电机是利用电磁感应原理将机械能转化为电能的装置。

它由转子、定子和磁场组成。

当转子以一定速度旋转时,通过转子中的导线,磁通量会发生变化,从而在定子中产生感应电动势,进而产生电流。

7. 电磁感应的应用电磁感应在现实生活中有许多应用。

例如,电磁感应原理可以应用于读卡器、变压器、电磁锁、电磁制动器等设备中。

此外,感应电磁炉、发电机、变压器等也是利用电磁感应原理实现功能的设备。

总结起来,电磁感应是物理学中的一个重要概念,它涉及到感应电动势、感应电流、法拉第电磁感应定律等知识点。

初中物理电磁感应知识点归纳

初中物理电磁感应知识点归纳

初中物理电磁感应知识点归纳电磁感应是物理学中的重要概念,也是初中物理中的一项重要内容。

它涉及到电磁学和电路学的交叉领域,对于理解电磁学基本原理以及应用有着重要的意义。

下面将对初中物理电磁感应的知识点进行归纳和总结。

1. 电磁感应的基本概念电磁感应是指导体内的自由电子在磁场中运动所产生的感应电动势或电流的现象。

当导体相对于磁场运动或磁场的强度发生变化时,就会产生电磁感应现象。

例如,当一个导体在磁场中运动或磁场通过导体发生变化时,导体内将会产生感应电流。

2. 法拉第电磁感应定律法拉第电磁感应定律是电磁感应的基本定律之一,由英国物理学家法拉第于1831年提出。

定律表明,当导体中的磁通量发生变化时,会在导体中产生感应电动势。

该定律可以用公式表示为:ε=-N*dΦ/dt。

其中,ε为感应电动势,N为线圈的匝数,Φ为磁通量,dt为时间的变化量。

3. 楞次定律楞次定律是法拉第电磁感应定律的补充定律,由法国物理学家楞次于1834年提出。

楞次定律又称为动力学电磁感应定律,规定了感应电流的方向。

根据楞次定律,感应电流的方向总是使其产生的磁场与导致感应电流的变化的磁场方向相反。

这意味着当磁场通过导体增加时,感应电流的方向将使导体产生的磁场减小,反之亦然。

4. 电磁感应的应用电磁感应在现实生活中有许多重要的应用。

其中包括:- 发电机和电磁铁:通过电磁感应原理,我们可以制造发电机和电磁铁。

发电机利用磁场和导体相对运动产生的感应电动势来转化为电能;而电磁铁则利用通电线圈的磁场吸引和释放铁物体。

- 变压器:变压器是利用电磁感应原理来改变交流电压大小的装置。

通过将输入线圈和输出线圈相互绕绕,当输入线圈接通电流时,在输出线圈中也会产生感应电流,从而改变输出电压。

5. 弗莱明右手法则弗莱明右手法则是判断导体中感应电流方向的一种方法。

该法则使用右手来判断导体中感应电流的方向,具体操作方法如下:- 握住右手,让食指、中指和拇指垂直放置;- 当食指指向磁感线方向,中指指向导体运动方向时,拇指的方向就代表感应电流的方向。

物理电磁感应知识点的归纳

物理电磁感应知识点的归纳

物理电磁感应知识点的归纳在我们平凡的学生生涯里,大家都背过各种知识点吧?知识点就是学习的重点。

还在为没有系统的知识点而发愁吗?下面是店铺收集整理的物理电磁感应知识点的归纳,希望能够帮助到大家。

1、电磁感应现象利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2、磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。

如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb(2)求磁通量时应该是穿过某一面积的磁感线的净条数。

任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。

反之,磁通量为负。

所求磁通量为正、反两面穿入的磁感线的代数和。

3、楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。

④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。

电磁感应知识点总结

电磁感应知识点总结

电磁感觉1、磁通量、磁通量变化、磁通量变化率对照表t磁通量物理某时辰穿过磁场中某个意面的磁感线条数义大, S为与B垂直的面积,小不垂直式,取S 在与 B 垂计直方向上的投影算若穿过某个面有方向相注反的磁场,则不可以直接用意B ? S ,应试虑相反问方向的磁通量或抵消以题后所节余的磁通量2、电磁感觉现象与电流磁效应的比较磁通量变化穿过某个面的磁通量随时间的变化量2-1,或B? S,或S?B开始和转过 1800时平面都与磁场垂直,但穿过平面的磁通量是不一样的,一正一负,此中 =B· S,而不是零磁通量变化率t表述磁场中穿过某个面的磁通量变化快慢的物理量B ?S 或t tB ?Bt t既不表示磁通量的大小也不表示磁通量变化的多少,在=t图像中,可用图线的斜率表示电磁感觉现象电流磁效应关系利用磁场产生电流的现电流产生磁场电能够生磁,磁能够生电象3、产生感觉电动势和感觉电流的条件比较只需穿过闭合电路的磁通量发生变化,闭合电路中就有感觉电流产生,即产生感觉电流的条件有两个:产生感觉电流的条件○1电路为闭合回路○2回路中磁通量发生变化,0无论电路闭合与否,只需电路中磁通量发生变化,电产生感觉电动势的条件路中就有感觉电动势产生4、感觉电动势在电磁感觉现象中产生的电动势叫感觉电动势,产生感觉电流比存在感觉电动势,产生感觉电动势的那部分导体相当于电源,电路断开时没有电流,但感觉电动势仍旧存在。

(1)电路无论闭合与否,只需有一部分导体切割磁感线,则这部分导体就会产生感觉电动势,它相当于一个电源(2)无论电路闭合与否,只需电路中的磁通量发生变化,电路中就产生感觉电动势,磁通量发生变化的那部分相当于电源。

5、公式E n与 E=BLvsin的差别与联系tE n E=BLvsintt 时间内的均匀感差别( 1)求的是( 1)求的是瞬时感觉电动势, E 与某个应电动势, E 与某段时间或某个过时辰或某个地点相对应程相对应(2)求的是整个回路的感觉电动( 2)求的是回路中一部分导体切割磁势,整个回路的感觉电动势为零感线是产生的感觉电动势时,其回路中某段导体的(3)因为是整个回路的感觉电动(3)因为是一部分导体切割磁感线的势,所以电源部分不简单确立运动产生的,该部分就相当于电源。

物理高二选修2电磁感应知识点

物理高二选修2电磁感应知识点

物理高二选修2电磁感应知识点一、电磁感应的基本原理电磁感应是指通过磁场和导体之间的相互作用产生电流的现象。

在物理高二选修2中,我们主要学习了电磁感应的基本原理和相关知识。

1. 法拉第电磁感应定律法拉第电磁感应定律是描述导体中感应电动势大小的定律。

它的表达式为:ε = -dΦ/dt,其中ε表示感应电动势,Φ表示磁通量,t表示时间。

法拉第电磁感应定律告诉我们,磁通量的改变会导致感应电动势的产生。

2. 洛伦兹力和电磁感应定律洛伦兹力是描述电荷在磁场中受力的定律。

当导体中的电子受到洛伦兹力的作用,就会发生感应电流。

电磁感应定律指出,感应电流的大小和方向与洛伦兹力成正比。

二、电磁感应的应用1. 电磁感应在发电机中的应用发电机是利用电磁感应原理来转换机械能为电能的装置。

其基本原理是通过旋转的导体在磁场中感应电动势,从而产生电流。

这一原理被广泛应用于电力工业中,为我们提供了丰富的电力资源。

2. 电磁感应在变压器中的应用变压器是利用电磁感应原理来改变交流电压大小的设备。

它主要由高压线圈和低压线圈构成,通过磁场的变化来感应电动势,并实现电压的升降。

变压器在电力传输和分配中起到了至关重要的作用。

3. 电磁感应在感应炉中的应用感应炉是利用电磁感应原理来加热物体的装置。

通过交变的电流在导体中产生交变磁场,从而感应出感应电流。

这样,导体就会发生电阻加热效应,实现对物体的加热。

感应炉广泛应用于冶金、炼钢等行业。

4. 电磁感应在感应电动机中的应用感应电动机是利用电磁感应原理来转换电能为机械能的装置。

通过感应电动势的产生,使转子在磁场的作用下转动,从而实现机械能的输出。

感应电动机是最常用的电动机之一,广泛应用于各种机械和工业设备中。

三、电磁感应的衍生知识1. 自感现象自感是指导体中的自感电动势。

当电流改变时,导体中会产生变化的磁场,从而感应出自感电动势。

自感现象主要应用于电路中的电感元件,如变压器、感应线圈等。

2. 磁场的能量电磁感应过程中,磁场对电荷做功,将机械能转化为电能。

高中物理知识点总结电磁感应

高中物理知识点总结电磁感应

高中物理知识点总结:电磁感应知识构建:新知归纳:●电流的磁效应:把一根导线平行地放在磁场上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。

这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应。

●电流磁效应现象:磁铁对通电导线的作用,磁铁会对通电导线产生力的作用,使导体棒偏转。

电流和电流间的相互作用,有相互平行而且距离较近的两条导线,当导线中分别通以方向相同和方向相反的电流时,观察到发生的现象是:同向电流相吸,异向电流相斥。

●电磁感应发现的意义:①电磁感应的发现使人们对电与磁内在联系的认识更加完善,宣告了电磁学作为一门统一学科的诞生。

②电磁感应的发现使人们找到了磁生电的条件,开辟了人类的电器化时代。

③电磁感应现象的发现,推动了经济和社会的发展,也体现了自然规律的和谐的对称美。

●对电磁感应的理解:电和磁之间有着必然的联系,电能生磁,磁也一定能够生电,但磁生电是有条件的,只有变化的磁场或相对位置的变化才能产生感应电流,磁生电表现为磁场的“变化”和“运动”。

引起电流的原因概括为五类:①变化的电流。

②变化的磁场。

③运动的恒定电流。

④运动的磁场。

⑤在磁场中运动的导体。

●磁通量:闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,即Φ,θ为磁感线与线圈平面的夹角。

对磁通量Φ的说明:虽然闭合电路的面积与垂直穿过它的磁感应强度的乘积叫磁通量,但是当磁场与闭合电路的面积不垂直时,磁感应强度也有垂直闭合电路的分量磁感应强度垂直闭合电路面积的分量。

●产生感应电流的条件:一是电路闭合。

二是磁通量变化。

●楞次定律:内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

●楞次定律的理解:①感应电流的磁场不一定与原磁场方向相反,只是在原磁场的磁通量增大时两者才相反;在磁通量减小时,两者是同样。

②“阻碍”并不是“阻止”如原磁通量要增加,感应电流的磁场只能“阻碍”其增加,而不能阻止其增加,即原磁通量还是要增加。

电磁感应知识点

电磁感应知识点

4. 一根长20cm的通电导线放在磁感应强度为0.4特的匀强磁场中,导线与磁场方向垂直,若它受到的磁场力为4*10-3N,则导线中的电流强度是——安,若将导线中的电流强度增大为0.1A,则磁感应强度为——。
5. 运动电荷在磁场中受到的力称为——力。这个力的方向与电荷运动方向————,和磁感应方向————。这个力的方向感应现象中,下列说法中错误的是( )
(A) 感生电流的磁场总是阻碍原来磁场的变化
(B) 闭合线框放在变化的磁场中一定能产生感生电流
(C) 闭合线框在匀强磁场中作切割磁力线运动,一定能产生感生电流
(D) 感生电流的磁场总是跟原来磁场的方向相反
18.法拉第电磁感应定律告诉我们:电路中的————的大小跟穿过这一电路的——————成正比。
5. 磁场强度:磁场中某点的磁场强度等于该点的磁感应强度与介质磁导率的比值。
6. 左手定则:(1)磁场对载流直导体的作用:伸出左手,让拇指和其余四指在同一平面内,拇指与四指垂直,磁力线从手心穿入,四指与导线中的电流方向一致,拇指所指的方向就是导线的受力方向。
(B) B的大小与IL的乘积无关,由磁场本身决定
(C) B的大小和方向处处相同的区域叫匀强磁场
(D) 通电导线在某处受磁场力,其大小必须与该处的磁感应强度成正比
8. 下列说法中正确的是( )
(A) 穿过某一个面的磁通量为零,该处磁感应强度也为零
11.有两根平行长直导线,通以大小相等、方向相反的电流,下列说法中正确表达了与两导线在同一平面,且与两根导线距离都相等的各点的磁场的磁感应强度是( )
(A) 等于零
(B) 不等于零,方向是从一根导线垂直指向另一根导线
(C) 不等于零,方向平行于导线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理电磁感应知识点的归纳
物理电磁感应知识点的归纳
1.电磁感应现象
利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。

(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2.磁通量
(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。

如果面积S与B不垂直,应以B 乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb
(2)求磁通量时应该是穿过某一面积的磁感线的净条数。

任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。

反之,磁通量为负。

所求磁通量为正、反两面穿入的磁感线的代数和。

3.楞次定律
(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于一般情况的感应电流方向的判定,而右
手定则只适用于导线切割磁感线运动的`情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解
①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。

④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:
①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。

4.法拉第电磁感应定律
电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

表达式:E=n/t
当导体做切割磁感线运动时,其感应电动势的计算公式为
E=BLvsin。

当B、L、v三者两两垂直时,感应电动势E=BLv。

(1)两个公式的选用方法E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。

E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

(2)公式的变形
①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。

②如果磁感强度不变,而线圈面积均匀变化时,感应电动势
E=Nbs/t。

5.自感现象
(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应
现象。

(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势。

自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自
感电动势方向总是阻碍电流的变化。

6.日光灯工作原理
(1)起动器的作用:利用动触片和静触片的接通与断开起一个自
动开关的作用,起动的关键就在于断开的瞬间。

(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用。

7.电磁感应中的电路问题
在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,
便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,
在回路中形成电流。

因此,电磁感应问题往往与电路问题联系在一起。

解决与电路相联系的电磁感应问题的基本方法是:
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和
方向。

(2)画等效电路。

(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立
求解。

8.电磁感应现象中的力学问题
(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应
问题往往和力学问题联系在一起,基本方法是:
①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。

②求回路中电流强度。

③分析研究导体受力情况(包含安培力,用左手定则确定其方向)。

④列动力学方程或平衡方程求解。

(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势感应电流通电导体受安培力合外
力变化加速度变化速度变化周而复始地循环,循环结束时,加速度
等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。

9.电磁感应中能量转化问题
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和
方向。

(2)画出等效电路,求出回路中电阻消耗电功率表达式。

(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改
变与回路中电功率的改变所满足的方程。

10.电磁感应中图像问题
电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。

用楞次定律判断出感应
电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。

另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到
图像中去,最终根据实际过程的物理规律进行判断。

相关文档
最新文档