城郊煤矿围岩松动圈变化规律及控制研究

合集下载

煤巷支护设计中围岩松动圈支护理论的应用

煤巷支护设计中围岩松动圈支护理论的应用

煤巷支护设计中围岩松动圈支护理论的应用发布时间:2022-10-12T03:12:07.465Z 来源:《科学与技术》2022年第11期作者:陈健[导读] 在屯兰矿12501运输巷道内,根据围岩松动圈支护理论,运用PHD-2型松动圈测试仪器进行测试陈健鄂托克前旗长城五号矿业有限公司内蒙古自治区鄂尔多斯市 016200摘要:在屯兰矿12501运输巷道内,根据围岩松动圈支护理论,运用PHD-2型松动圈测试仪器进行测试,能初步确定LP的数值—松动圈的厚度值,再进行松动圈的分类。

通过对已测结果的分析,得知巷道围岩松动厚度介于1.3-1.5m之间,按照围岩的分类标准划分,属于中松动圈Ⅲ类一般围岩。

此种情况应按照悬吊理论设计支护参数,以此重新确定该巷道的支护方案。

操作人员通过对现场进行多次测量与实验,验证了巷道的变形量较小,顶底板最大位移接量小于25mm,双侧最大位移量小于35mm,围岩性能依然稳定。

以上数据表明根据围岩松动圈理论来设计巷道支护方式及参数是合理可靠的。

关键词:围岩松动圈;支护理论;测试技术;支护设计前言:煤矿安全生产的重点任务就是巷道支护,所以,巷道支护理论的研究者对于支护理论的研究方法给出了多种解答。

如组合梁理论、组合拱理论、悬吊理论等。

但是这些研究者给出的方法都是基于理论层面,没有经过系统的测算与实践,部分结果具有片面性。

巷道围岩力学特征及其复杂,在应用时,首先要根据巷道实际情况与围岩类型来选择合理的支护理论。

1围岩松动圈的定义如在原始围岩中开挖巷道,直接导致周边围岩应力与强度变化;其次,围岩的受力情况直接由三向变成两向,巷道附近径向应力逐渐消失。

相反,环向应力集中,开挖后围岩变得较为脆弱。

当下降后的围岩强度小于集中应力,围岩处于弹塑性状态,围岩比较稳定,无需考虑巷道支护问题。

当开挖巷道后,围岩破裂将从周边至深处逐渐扩张,直至达到另一个新的三向应力平衡状态后,这时的围岩中极有可能出现一个破裂带,这就是“围岩松动圈”。

阿舍勒铜矿巷道围岩的变形规律及其控制技术

阿舍勒铜矿巷道围岩的变形规律及其控制技术

阿舍勒铜矿巷道围岩的变形与控制技术摘要:针对矿山建设中,因矿床形成的地质历史背景和岩体特性条件,出现的围岩变形对巷道稳定影响等问题,从工程结构和岩体稳定性的理论角度,分析了引起巷道变形的原因,阐明了通过调查研究所获得的规律认识;提出了巷道围岩的变形与稳定控制技术措施和方法;总结了提高技术应用效果的经验。

关键词:变形与稳定控制技术巷道围岩前言阿舍勒铜矿是一个大型地下开采矿山,地处新疆北部阿勒泰地区哈巴河县城郊丘陵区。

矿山从2002年4月开始,以惊人的建设速度,用两年半不到的时间完成了试投产的艰巨任务。

目前,生产稳定产量攀升,出矿能力达到3000t/d,并呈现强劲发展势头。

矿山建设坚持科技兴矿理念,克服各种困难,解决生产技术难题,成绩骄人。

矿井生产工程中,由于复杂的成矿地质历史背景等综合原因,出现巷道围岩变形的问题,立即得到高度重视,并开展了针对性的技术项目攻关与应用研究工作,取得了适用于生产的巷道围岩变形控制的技术成果,为矿山生产安全与稳定发展提供了良好的技术保障。

1 矿山概况1.1 地质概况阿舍勒铜矿床是一个火山喷发--沉积成因的黄铁矿型铜锌多金属矿床。

矿体呈层状,似屋状产出,形态受向斜构造控制,剖面呈“吊钩”状,水平断面为“镰刀状”。

矿区内有Ⅰ、Ⅱ号矿体。

Ⅰ号矿体占总储量的铜金属量为97.43×10-2,锌金属量为100×10-2,分布于18~17勘探线之间,南北走向长700m,倾向E,倾角为45°~75°,最小垂直深度为30m,最大为900m。

矿体具有厚大特点,正常翼的平均厚度为20m,倒转翼部位的平均厚度达到45m,最大的厚度可达80m。

矿区内构造类型较复杂,构造破碎带、构造发育密集带,蚀变破碎带发育,还有直到1998年的地震感应记录,共计32次。

矿体围岩主要是蚀变火山――沉积碎屑岩,其次有次生石英岩,次英安斑岩和玄武岩等。

以层状和凝灰质结构的凝灰岩类是Ⅰ号矿体的主要围岩,且整合接触,构成正常翼的底板或<倒转翼的顶底板。

探讨如何有效控制巷道围岩形变

探讨如何有效控制巷道围岩形变

探讨如何有效控制巷道围岩形变引言随着煤炭连续的开采,浅、表部煤炭资源越来越少,目前己转向深部煤层的开采,高地应力巷道支护问题便越来越突出,如冲击地压、围岩大变形、强烈底臌等浅部巷道没有的支护问题。

孟村煤矿煤层埋藏深,煤层厚,地质构造较多,随着中央带式输送机大巷的不断延伸,冲击地压灾害日益显现,选取合理的支护参数和防冲措施对工作面安全生产至关重要。

1、工程概况中央带式输送机大巷设计层位在煤层中部,顶板为砂岩,底板为铝质泥岩,巷道规格为掘宽5.64m,掘高4.57m,掘进断面积达22.4m2,属于典型的深部大断面巷道。

原支护形式为:锚杆规格采用φ20×2800mm,锚杆托盘为150×150×8mm;锚索采用φ21.6×8800mm的钢绞线,间排距2.1m×2.1m,布置形式为“四四”型,锚索托盘规格为:100×100×10mm、200×200×10mm、300×300×10mmQ235组合托盘。

该巷道在掘进过程中,动力显现频次、强度与日俱增,主要表现为煤炮频繁、声响巨大,伴随围岩震动,造成掘进工作面煤壁片帮,顶板抽冒,巷道成形差,支护施工困难,施工安全存在风险。

2、巷道稳定控制方法2.1 掘进支护在冲击地压矿井的支护设计中,要坚持一次支护的原则。

特别是锚杆支护,应尽量一次支护就能有效控制围岩变形,避免二次或多次支护。

一方面,这是矿井实现高效、安全生产的要求,为采矿服务的巷道和硐室等工程,需要保持长期稳定,不能经常维修;另一方面,这是锚杆支护本身的作用原理决定的。

巷道围岩一旦揭露立即进行锚杆支护效果最佳,而在已发生离层、破坏的围岩中安装锚杆,支护效果会受到显著影响。

中央带式输送机大巷为矩形断面,采用锚网索喷联合支护。

锚杆采用20#左旋无纵筋400号螺纹钢筋,L=2500mm,杆尾螺纹为M22,螺纹长度150mm,配高强度螺母,矩形布置,间排距700mm;锚杆托盘采用拱型高强度托盘,钢号Q235,规格为150×150×10mm,拱高不低于34mm,配调心球垫和减阻尼龙垫圈;锚杆护板采用W型钢护板,厚度5mm,宽280mm,长度450mm。

煤矿巷道层状围岩松动圈范围的发育规律

煤矿巷道层状围岩松动圈范围的发育规律

煤矿巷道层状围岩松动圈范围的发育规律
煤矿巷道围岩松动圈是一种比较常见的构造现象,它是一种径向向外发展、具有复杂
体系和蕴藏煤层变形的本构空间体系,影响着煤矿的顶、底板的破坏,煤层的改造,地压
演化,回采率及煤矿稳定性,因此,考察围岩松动圈的发育规律及变形特征具有重要意义。

煤矿巷道围岩松动圈的发育大体上有三个阶段:前破碎期、空间拉张期和密度提高期,其受到矿山地质结构、力学地压、温度、围岩质地、物理性质、地质历史等多因素的共同
作用影响。

前破碎期是指围岩组织发生前破碎现象,按煤层剪应力的方向扩展,形成发展良好的
巷道本构围岩,当围岩经受煤层无序去应力侵蚀时,巷道围岩几何形状发生改变。

空间拉张期是指围岩组织发生大尺度的松缩变形,实现从泥煤层而来的拉应力的承载
功能,煤层膨胀围岩的松动程度变大,围岩拉应力发展状态,煤层受均衡应力和非均衡应
力的共同作用,煤层向里弯折,出现弯曲现象,呈现拉相凸状,呈螺旋状,圈绕状等形态。

密度提高期是指围岩组织发生抗破坏强度增大,重力水压增强,醒目煤体整体松动,
沿围岩松动线并发生断层活动,释放围绕醒目煤体围岩的松弛压力,形成节理线和节理面,从而影响如煤层中心的破坏程度,降低整层煤的回采率,从而维持煤矿的稳定性。

煤矿巷道围岩松动圈的发育过程受多种因素影响,变形成因和发育规律也不尽相同,
此外,该构造也会影响煤层的破坏性,煤层的改造,从而影响煤矿的安全性。

因此,在煤
矿开采时,应该重视煤矿巷道围岩松动圈的发育特征,采取必要的提前改造措施去改善松
动环境,以保证煤矿的安全运行。

控制爆破减小围岩松动分析

控制爆破减小围岩松动分析

控制爆破减小围岩松动分析矿山井岗的维护工作依照矿山的实际需求,分别从设计、施工、维护等多个方面进行分析,采取科学合理的措施进行施工,一方面能够提高围岩的强度,另一方面还能把围岩的承载能力充分的体现出来,保证其稳定性。

另外快速掘进、以此成巷、光面爆破等技术都能提高围岩的强度,降低开挖过程围岩的消弱程度。

1、井巷位置的选择1.1井巷位置的选择步骤首先矿床开拓和回采设计中,井巷位置的选择,在满足开采技术条件的前提下,应尽量选在水文地质条件好,没有软弱夹层、受水蚀易膨胀岩层、难以维护的地质构造破碎带和化学蚀变岩层及溶岩地区。

其次若不可避免在节理比较发育的岩层中布置井巷,应尽量垂直穿过节理或构造面;在褶皱地带避开背斜或向斜轴,并注意当地地下水的活动规律。

最后合理的矿床开采顺序应尽量避免使采区附后的井巷处于高应力区。

也就是说,主要井巷应布置在低应力区或岩层移动范围以外。

1.2放缓边坡角,减轻上部荷载在设计时,露天边坡参数的确定主要是根据地质报告、边坡研究报告及现场踏勘等资料了解矿岩性质、地质构造、水文情况之后进行的,但这些资料只能反映矿山的整体情况,在真正揭露之后往往会存在局部差异,若完全按照设计进行的话,局部边坡就可能不稳定。

例如,白马铁矿田家村矿段,按地质报告所述风化层厚度为30~40m,设计当初仅考虑上部2-3个台阶坡面角放缓、不进行并段方式处理边坡能达到稳定。

但在开采时发现西帮山头位置实际风化层厚度达80m,通过稳定性验算后这一区段稳定性系数K=1.15,比一般规定的K=1.20低,为保证下部开采台阶的安全,将这一部位风化层中的台阶到帮边坡角进一步放缓,减轻上部荷载近60万t后边坡稳定性系数K值增加到了1.32,满足了边坡稳定性要求。

2、井巷断面的形状和尺寸和支护类型的选择2.1井巷断面的形状和尺寸首先,巷道断面的最大尺寸方向应为最大主应力方向。

其次,最大来压方向的井巷周边应尽量选用曲线形状。

再次,巷道断面形状应在满足生产要求的前提下,同时考虑便于开挖、易于维护和经济合理。

厚煤层大断面煤巷围岩松动圈分布范围及形成过程研究

厚煤层大断面煤巷围岩松动圈分布范围及形成过程研究

厚煤层大断面煤巷围岩松动圈分布范围及形成过程研究题目:厚煤层大断面煤巷围岩松动圈分布范围及其形成过程研究摘要:本文旨在研究厚煤层大断面煤巷围岩松动圈的分布范围和形成过程。

以某煤矿厚煤层大断面煤巷为研究对象,通过实测、数据获取以及实体模型建立,得出并讨论了该煤巷围岩松动圈的形态特征、分布规律及预测模型等方面的结论。

研究发现,松动圈在煤巷轨迹上存在较多的集中分布,且呈锯齿状分布,存在明显的先后顺序,且随着煤巷前进方向呈渐增趋势。

该煤巷围岩松动圈形成的主要原因是开采面抽采作业、施工抽采作业以及开采及施工过程中产生的机械剪切耦合作用。

此外,本文还提出了预测厚煤层煤巷围岩松动圈的方法,即利用已知煤巷开采和施工的围岩的综合因素,结合抽采面的设计,预测煤巷开采后的周边围岩“松动圈”的长度、宽度及深度等。

综上所述,本文研究了厚煤层大断面煤巷围岩松动圈的分布范围和形成过程,为进一步深入研究和实践煤巷岩爆抽采技术奠定了基础。

关键词:厚煤层;大断面煤巷;围岩松动圈;形成过程正文:一、研究背景和意义随着煤炭行业的发展,越来越多的新技术和新工艺应用于煤矿的开采。

近年来,由于厚煤屢煤矿的开采工艺的不断改进和深化,煤巷开采技术也渐渐得到了重视和发展。

其中最重要的一个要素是围岩松动圈的控制。

传统的煤巷开采方法依靠穿越煤巷附近的围岩岩体,从而使煤巷获得支撑。

煤巷围岩松动圈分布范围及其形成过程的研究对制定煤巷设计、优化开采结构、解决安全隐患和充分利用空间等方面都具有重要的意义。

二、研究对象本研究以某煤矿厚煤层大断面煤巷为研究对象,研究范围包括煤巷围岩松动圈的形态特征、分布规律及预测模型等方面的内容。

三、研究方法1. 实测:采用井下观察、放射性试验等方法进行煤巷围岩松动圈的实体勘察;2. 数据获取:获取该煤矿有关煤巷围岩松动圈的相关实测数据;3. 实体模型建立:基于实测数据,建立煤巷围岩松动圈的模型,以模拟实际情况;4. 数据分析:对实体模型中煤巷围岩松动圈的形态特征、分布规律和形成过程等进行统计分析;5. 模型验证:对实体模型和数据分析结果进行验证,确定其准确性及可信度。

隔离矿柱巷道围岩松动圈分布规律的测试

隔离矿柱巷道围岩松动圈分布规律的测试

隔离矿柱巷道围岩松动圈分布规律的测试隔离矿柱巷道是煤矿开采中常用的一种支护方式,它可以有效地避免矿柱失稳引发的事故。

然而,在煤矿巷道开挖过程中,由于采动压力的作用,巷道围岩难免会出现一定程度的松动。

为了探究隔离矿柱巷道围岩松动圈的分布规律,我们进行了一系列的测试和研究。

我们选择了不同位置和不同长度的隔离矿柱巷道进行了测试。

通过测量巷道围岩的位移和变形情况,我们得到了一组数据。

通过对这些数据的分析,我们发现,隔离矿柱巷道围岩松动圈的分布规律与巷道的位置和长度有关。

在巷道的纵向分布上,我们发现隔离矿柱巷道围岩松动圈呈现出一定的对称性。

即巷道两端的围岩松动程度较小,而中间位置的围岩松动程度较大。

这是由于巷道两端的围岩受到了较大的约束力,而中间位置的围岩受到的约束力较小所致。

在巷道的横向分布上,我们发现隔离矿柱巷道围岩松动圈呈现出一定的非对称性。

即巷道的一侧围岩松动程度较大,而另一侧围岩松动程度较小。

这是由于巷道一侧的围岩受到了较大的采动压力,而另一侧的围岩受到的采动压力较小所致。

我们还对不同长度的隔离矿柱巷道进行了比较。

结果显示,隔离矿柱巷道围岩松动圈的范围随着巷道长度的增加而增大。

这是由于巷道长度的增加导致围岩受到的采动压力增加,从而引发了更大范围的围岩松动。

通过对隔离矿柱巷道围岩松动圈分布规律的测试和研究,我们发现巷道位置和长度对围岩松动的影响较大。

巷道的纵向分布呈现出对称性,巷道的一侧围岩松动程度较大,巷道长度越长,围岩松动范围越大。

这些研究结果对于煤矿巷道的设计和支护具有一定的指导意义,可以帮助工程师更好地进行巷道的支护设计,提高煤矿开采的安全性和效率。

希望通过我们的研究和测试,对隔离矿柱巷道围岩松动圈的分布规律有了更深入的了解。

我们将继续深入研究巷道围岩的力学特性和支护方式,为煤矿开采提供更科学、更安全的技术支持。

松动圈围岩支护理论与工程实践研究

松动圈围岩支护理论与工程实践研究

松动圈围岩支护理论与工程实践研究【摘要】介绍了围岩松动圈巷道支护理论,以某矿为例进行了围岩松动圈范围测试与巷道支护方案设计,结果表明该矿属于中号围岩松动圈,采用悬吊理论设计支护形式后测得顶底板与两帮移近量较,说明根据围岩松动圈理论设计巷道支护方式及参数是合理可靠的。

【关键词】松动圈;巷道围岩;巷道支护前言煤矿巷道围岩为非连续各向异性体,其物质组成成分与组合状况存在一定变化,表现为非均质性。

因此试图用一种理论来解决所用的巷道支护问题显然是不切实际的。

目前巷道支护理论包括围岩松动圈理论、压力拱理论、最大水平应力理论等,其中围岩松动圈理论在深井煤矿中得到广泛应用,其理论简明直观、可操作性强,基本内容为:矿井巷道掘进后,原岩应力平衡状态遭到破坏并重新分布,巷道顶底板及两帮形成应力集中现象,岩石强度显著下降。

若集中应力小于破坏后的岩石强度,此时围岩处于弹塑性状态,可以基本维持巷道的稳定。

若集中应力发展至甚至超过破坏后的岩石强度,围岩破坏会继续向深部扩展,直至形成新的应力平衡状态,我们将围岩破坏扩展形成的破裂带称之为围岩松动圈,研究围岩松动圈对于解决巷道支护工程问题具有重要作用。

1 工程地质概况某矿位于吕梁-太行断块五台山块隆古交向斜的南部,俗称太原西山向斜。

其西部为吕梁山复式背斜,东部为山西断陷盆地系中部的太原-晋中盆地。

12501运输巷道位于南五盘区+750m水平的2#煤层。

该煤层均厚为4.25m,属较稳定的厚煤层,煤层结构简单,裂隙较发育,平均倾角2.5°,最大为6°,为近水平煤层。

煤层顶板以薄层状的粉砂岩和泥岩为主,并夹杂砂质泥岩互层。

岩性松软,机械强度低,节理裂隙发育,属不稳定顶板;底板以碳质泥岩及砂质泥岩为主,局部为3#煤层,富含植物根须化石,较松软,遇水易膨胀,易发生底鼓现象,为不稳定底板岩层。

2 围岩松动圈巷道支护理论围岩松动圈支护理论提出把围岩破裂过程中的岩石碎胀变形(碎胀力)作为支护对象,并把在围岩中发展的这个破裂区定义为围岩松动圈。

地下巷道施工中的围岩松动与支护状态监测技术

地下巷道施工中的围岩松动与支护状态监测技术

地下巷道施工中的围岩松动与支护状态监测技术第一节引言地下巷道施工是一项复杂而又重要的工程,涉及到交通运输、矿山、地下工程等众多领域。

然而,在地下巷道施工过程中,围岩松动和支护状态监测成为了关键问题。

本文将探讨地下巷道施工中的围岩松动与支护状态监测技术。

第二节围岩松动原因与危害围岩松动通常是由于地下施工中的挖掘过程造成的。

挖掘过程中,连续重复的爆破、钻孔、开挖操作会导致围岩松动,从而造成巷道的变形和塌方等危害。

围岩松动的主要原因包括地质条件、施工方法选择以及施工期间的地下水变动等。

第三节围岩松动与支护状态监测技术综述为了及时掌握巷道围岩松动和支护状态,需要采用先进的监测技术。

目前,常用的围岩松动监测技术包括应变测量、位移监测、声波法和地面雷达等。

应变测量通过测量围岩的应变来判断其松动状态,位移监测则通过监测围岩的位移来判断其稳定性。

声波法可以用于检测围岩内部的松动情况,地面雷达则可以用于测量巷道壁面的变形情况。

第四节应变测量技术应变测量技术是地下巷道围岩松动监测中常用的方法之一。

该技术通过安装应变片或应变计等设备来测量围岩的应变情况。

通过分析应变曲线的变化,可以判断围岩的变形情况,并及时采取支护措施。

应变测量技术可以实时、精确地监测围岩的变化情况,为施工人员提供重要的数据支持。

第五节位移监测技术位移监测技术是地下巷道围岩支护状态监测的关键技术之一。

该技术通过安装位移传感器等设备来测量围岩的位移情况。

位移监测可以帮助工程人员及时了解围岩的变形情况,判断支护结构的有效性。

位移监测技术还可以通过数据分析,为施工过程中的调整和改进提供参考依据。

第六节声波法声波法是一种可以用于检测地下巷道围岩松动的无损检测技术。

通过将声波传感器安装在巷道围岩上,可以测量围岩内部的声波传播速度和强度。

当围岩发生松动时,传播速度和强度会有所变化,从而可以判断围岩的松动情况。

声波法具有实时快速、非侵入性等优点,逐渐被应用于地下巷道施工的围岩监测中。

煤矿巷道围岩松动范围分布规律及支护成套技术的分析研究

煤矿巷道围岩松动范围分布规律及支护成套技术的分析研究

煤矿巷道围岩松动范围分布规律及支护成套技术的分析研究项目综述巷道开挖后,围岩的应力和物理变化过程是判断支护外荷载的基础,是支护理论的基石。

松动圈支护理论是在研究巷道周围的岩石介质物理力学状态属性的过程中发展起来的,所以,松动圈的研究始终贯穿松动圈支护理论发展的整个过程中。

对松动圈属性的深入认识是松动圈支护理论的立论基础之一。

为此,本课题围绕松动圈的现场实测、工程验证、理论分析和数值模拟进行研究,以便对巷道围岩松动圈进行全面了解。

在深刻认识松动圈的性质的基础上,为松动圈支护理论提供依据。

研究表明,地下巷道开挖后,围岩的变形主要来源于松动圈中破裂岩体的体积膨胀,巷道围压也主要由松动圈引起,基于此,我国学者提出了围岩松动圈支护理论。

由大量的理论分析、模拟实验及现场实测结果表明,地下巷道支护的对象主要是松动圈形成中的碎胀变形,松动圈越厚,围岩变形力越大,支护越困难。

实践证明,松动圈支护理论抓住了支护的主要对象,其分类方法和所确定的支护形式与参数符合现场实际,取得的技术、经济与社会效益非常显著,从而应用越来越广泛。

然而,要用该理论对硐室进行合理有效地支护,最关键的是要预先知道被支护硐室的松动圈厚度值。

到目前为止,松动圈厚度值的获取大都是靠现场实测,因此根据现场实测,从而准确获取松动圈厚度值是势在必行的。

锚固技术,国内习惯统称为锚杆支护技术,国外一般称为锚固技术或锚杆(索)加固技术。

自1872年英国北威尔士露天页岩矿采用锚杆加固边坡及1912年德国谢列兹矿最先在井下采用锚固技术以来,锚固技术距今已有将近100多年的历史,与完全依靠自身的强度、重力而使结构物保持稳定的传统方法相比较,锚杆支护方式具有支护效果好、效率高、成本低等诸多特点,它的广泛采用给煤矿企业带来巨大的技术经济效益,锚杆(索)支护己经成为巷道支护的一个主要发展方向。

我国煤巷锚杆支护技术近年来取得了长足发展。

我国最早从1956年开始在煤矿中使用锚杆,由于煤层地质条件复杂多样,锚杆支护理论、设计方法、锚杆材料、施工工具、监测手段等不够完善,因而发展缓慢。

软岩巷道围岩松动圈变形机理及控制技术研究_靖洪文

软岩巷道围岩松动圈变形机理及控制技术研究_靖洪文

第28卷第6期 中国矿业大学学报 V o l.28 N o.6 1999年11月 Journal of Ch ina U niversity of M ining&T echno logy N ov.1999软岩巷道围岩松动圈变形机理及控制技术研究3α靖洪文 宋宏伟 郭志宏(中国矿业大学建筑工程学院 江苏徐州221008)摘要 通过对软岩巷道工程特征的研究,提出用定量指标——稳定的围岩松动圈厚度值L p(L p ≥150c m)来判定“软岩巷道工程”的方法.以此为基础,进而分析了围岩松动圈碎胀、水胀及复合等变形机理,提出对大松动圈碎胀变形 , 类软岩采用锚喷网支护, 类软岩采用联合支护,对水胀变形软岩首先采用综合防治水措施的新思路,并被大量的工程证明是正确的.关键词 软岩,松动圈,碎胀变形,水胀变形,控制技术中图分类号 TD353第一作者简介 靖洪文,男,1963年生,博士研究生,副教授 软岩巷道支护一直是煤矿生产建设中的难题,也是目前国内外尚未解决的问题.尽管国内外学者对软岩工程进行了大量的研究工作,并取得了很多成果,但由于软岩问题的复杂性,目前不仅软岩工程支护设计仍停留在经验的工程类比及盲目的试验基础上,而且软岩工程判定及分类方法也缺乏可行的量化指标,造成工程实践中的浪费.在原岩中开挖巷道,破坏了围岩原有的三向应力平衡状态,围岩中的应力将重新分布,同时伴随应力集中现象出现.如果集中应力小于围岩强度,围岩虽有变形出现,但巷道整体处于稳定状态,不存在支护问题;只有当集中应力大于围岩强度,围岩发生破坏时,巷道才产生非线性变形.如果这种非线性变形得不到有效控制,巷道就会冒落或断面尺寸缩小而不能满足使用要求,因而须进行加固或返修.本文在探讨软岩巷道工程特征的基础上,提出用全面反映围岩应力和围岩强度等因素综合作用结果——稳定的围岩松动圈厚度来定量确定软岩工程,进而分析其非线性变形破坏机理,重点研究了碎胀变形机理及支护参数设计方法,并且经过工程实践证实其可靠性.1 软岩巷道工程的矿压显现特征软岩工程地压大,致使一般刚性支护不能进行有效的维护,多至3层料石碹也遭到破坏;围岩变形量大,变形持续时间长,一般达1~3个月;底臌现象明显.综合起来表现为支护难度大,在选择支护时必须摒弃各种刚性支护,而选择各种支撑力较强的可缩性支护.用这个概念来划分软岩工程的范畴将包括:深部工程、构造应力明显地区、密集工程群、受采动影响的巷道工程和遇水软化膨胀岩层地区等.它们都能达到上述支护难度,即每矿都有可能遇到软岩工程问题.围岩松动圈巷道支护理论[1]在对围岩状态进行深入研究后,发现松动圈的存在是煤矿巷道围岩的固有特性,它的范围大小可以用声波仪进行测定.稳定后的围岩松动圈厚度是围岩应力p与围岩强度R的复杂函数,L p=f(p,R).它是一个综合指标,反映了支护的难易程度,而且大量相似模拟试验及现场实测表明,煤矿巷道的跨度(一般3~5m范围)及支护强度(一般为0.1~0.2M Pa)等影响不大.当松动圈厚度大于150c m时,多种支护,特别是刚性支护发生严重破坏;当松动圈厚度小于150c m时,支护破坏轻微.因此就这个意义而言,“软岩”已不单纯指围岩的软硬或者地应力水平的高低,而是把“软岩”与“硬岩”的界限划定在松动圈厚度为150c m处,大于该值时称为大松动圈软岩工程.大松动圈软岩工程分类见表1,共分成3类.α收稿日期 199906223煤炭科学基金资助项目(96建0101)表1 大松动圈软岩工程分类Table1 The classif ication of sof t rock roadwaywith a large broken zoneL p c m围岩类别围岩类型支护机理及方式备 注150~200 一般软岩锚杆组合拱理论锚喷网支护 200~300 较软软岩锚杆组合拱理论全断面锚喷网支护>300 极软软岩二次支护理论 联合支护  注 近期研究表明:L p相同但岩石不同时支护难度有差异. 用松动圈厚度判定软岩工程有两个突出特点:1)松动圈厚度可现场实测,容易取得且可靠性高;2)松动圈厚度是一个综合指标,它全面反映原岩应力(包括采动应力)、岩体性质(包括强度、裂缝、软弱夹层等)、施工和水等的影响,在工程中又不需要对这些指标进行观测和具体量化,现场应用方便.这一划分软岩工程支护范畴的分类方法已经过大量工程验证[2],获得良好的效果.2 大松动圈软岩变形机理分析巷道开挖后,一般总要引起巷道周边围岩的收敛变形,其变形量的大小是衡量巷道矿压显现强烈程度和维护状况的重要指标1研究其变形组成和机制,预测其变形规律、特征和变形量值,以便合理确定支护形式和参数,最大限度地利用围岩自身支撑能力,避免目前大松动圈软岩巷道中经常遇到的支护多次破坏和频繁返修的困难局面,具有重要的实用价值.当围岩松动圈厚度L p≥150c m时,围岩突出地表现为软岩工程特征,但由于巷道围岩形成松动圈的机理不同,则其支护对策亦不同.因此,依据支护对象(碎胀变形、水胀变形、复合变形)及支护对策上的差异又可将分类表中大松动圈软岩分成碎胀型、水胀型和复合型3类.2.1 碎胀型软岩岩石是一种脆性材料,在受力过程中,产生较小的变形就会进入破裂状态.破裂意味着岩石中裂隙增多,单位体积增大,我们把岩石由于破裂而产生的体积增大现象称为碎胀(破裂膨胀).碎胀型软岩是指主要支护对象为碎胀变形,它包括两种情况:1)高应力软岩——岩层在自然状态下单轴抗压强度较高,而且受水和风化影响较小;2)低强度软岩——岩层在自然状态下结构松散,软弱,胶结程度差,单轴抗压强度较低,一般小于30M Pa,而且受水和风化影响较大1上述两种岩层都是指围岩遇水无明显膨胀、软化的大松动圈软岩工程.它一般是由于埋深较大、构造应力明显、采动应力叠加、巷道较密等原因形成的.在地下开挖空间要扰动岩石介质,围岩应力进行重分布,导致围岩应力和围岩强度的变化,围岩应力超出围岩强度值越大,围岩变形破坏越快.由于起初巷道表面围岩内的应力集中系数最大而围岩强度最低,因此,巷道周边围岩首先发生变形甚至破坏,应力峰值向深部转移1在此过程中,尽管围岩产生破坏,但是只要它不坍塌、冒落,则对深部围岩体仍然具有一定的支护抗力,使围岩强度得到提高,围岩应力与围岩强度的差值逐渐减小,围岩破坏逐渐趋向缓和1当应力峰值趋近或小于围岩强度时,应力分布趋于稳定,围岩破坏过程趋于结束,最终达到新的应力平衡状态.由此看出巷道剧烈变形是由围岩破坏引起的,而且围岩松动圈厚度值越大,巷道围岩变形量越大,持续变形时间越长.实验室试验充分证实了上述分析的正确性,在煤炭科学基金资助下,采用M T S815型电液伺服岩石力学试验系统,对砂岩、粉砂岩、泥岩、煤、大理岩等5种岩石的19个试块进行“零围压”岩石单轴碎胀试验,测定了其全应力2应变过程中体积应变变化及碎(剪)胀力(图1)情况[3,4].从图1各条曲线之间的相互关系可以看出岩石在受力过程中对接触介质的荷载影响程度(支护与围岩相互作用机理).图1 砂岩体积应变与碎(剪)胀试验曲线F ig.1 Experi m ental curves of vo lum etric strain anddilatancy fo r sandstone综上试验结果表明:1)影响巷道围岩收敛变形的主要因素是岩石破裂后(巷道围岩形成松动圈)的体积变形,岩石在峰值前(弹塑性)变形量很小,而峰后岩石体积变形要比峰值前大的多,一般达8~10倍,因此峰后破裂围岩体积膨胀变形才是巷道收敛变形的主要原因1在煤矿大松动圈(软岩)巷道围岩收敛变形中,由围岩破坏和软化、碎胀引起的变形占75%~95%,而围岩弹塑性区的变形引起巷道收敛变形量较小,一般约占5%~165第6期 靖洪文等:软岩巷道围岩松动圈变形机理及控制技术研究 25%12)在全应力2应变过程中,峰后岩石体积应变曲线可分成两段:在弱化段,体积膨胀增长较快;在残余强度段,体积膨胀增长比较平缓.说明岩石在弱化段大量裂隙张开贯通,而在残余强度段则是一种岩石结构滑移现象,这对研究岩石碎胀变形机理及分段建立岩石本构关系具有重要的理论和实用价值13)岩石峰后体积应变大小与岩石性质有关,岩石单轴抗压强度越高,则峰后体积应变量越大1即同样的围岩松动圈厚度,由于岩性不同,体积应变值亦不同,其支护难度是不同的1这一试验结果从某种意义上讲是对“围岩松动圈巷道支护理论”研究的深化.综上所述,碎胀变形力是巷道支护的主要荷载,这类巷道破坏的关键是松动圈(破裂区)内“危石”滑移脱落,即关键块体的坍塌引起其周围岩块的松动冒落.2.2 水胀型软岩水胀型软岩是指岩石在自然状态下强度并不低,但遇水后强度急剧下降,甚至软化成泥,同时伴随岩石遇水体积膨胀的一类岩石.这类软岩主要是富含蒙脱石、伊利石、高岭石等粘土矿物的岩石.由于这类岩石遇水软化、膨胀,改变了围岩强度与围岩应力的相对关系,而且加大了围岩应力,所以在这类地层中,如果对底板积水、空气潮湿控制不当,表面岩石日渐软化膨胀,将在同样地应力条件下使松动圈增大1同时,由于这类岩石遇水后体积成倍膨胀,膨胀变形压力巨大,又使围岩内应力升高,结果围岩的碎胀和吸水膨胀结合起来产生较大的围岩变形.这一现象有围岩流变的因素,更重要的是围岩不断地脱离应力场,破坏了围岩松动圈内的应力平衡,造成巷道围岩失稳、支架破坏、生产受到严重影响.水胀型软岩破坏的主要原因是岩石遇水软化(强度降低)、膨胀造成松动圈再次扩大,因此,支护的对策是严格控制水的影响,而支护阻力并不要求很大.2.3 复合型软岩复合型大松动圈软岩是指两种软岩变形因素同时存在,围岩碎胀变形及水胀变形均较大1一方面由于围岩应力较大而出现大松动圈,另一方面水的作用降低了围岩强度,围岩吸水发生体积膨胀.复合型大松动圈围岩(软岩)巷道之所以具有大变形、大地压、难支护的工程特点,是因为复合型软岩并非具有单一的碎胀或水胀变形机制,而是一种同时具有碎胀和水胀两种变形机制的复合类型,而且碎胀变形超前于水胀变形.复合型软岩破坏的根本原因是兼有碎胀和水胀两种变形,所以对于此类软岩要十分注重合理运用复合型向单一型转化技术1即首先利用对付水胀型软岩防治水措施,将复合型软岩转化为单一碎胀型软岩进行支护,然后按碎胀型软岩选择支护方式和确定支护参数.应当强调的是,煤系地层不同程度具有复合型软岩的特征,如果忽略这一点,就会造成支护的失败.3 控制技术大松动圈巷道围岩表面位移,绝对限制是无法办到的,也是不经济的.控制原理只能是既允许围岩有一定变形,释放压力,又控制其过大变形,保持巷道在不影响正常使用前提下的稳固,以防止冒顶和片帮.弹性变形在开巷瞬间基本完成,根本无法控制,它不会施加于支护结构.因此:1)对大松动圈围岩碎胀变形,只要及时提供支护抗力,并有适量的可缩变形量以释放压力,促使极限平衡及早实现,即可保持巷道稳定;2)对大松动圈围岩水胀变形,必须首先解决水的问题,水胀型软岩支护对策是严格控制水的影响;3)对大松动圈复合变形,必须十分注重合理运用复合型向单一型转化技术,利用对付水胀型软岩防治水措施,将复合型软岩转化为碎胀型软岩进行支护,然后按碎胀型软岩选择支护方式和确定支护参数.3.1 , 类大松动圈碎胀型软岩锚喷网支护由于岩体破坏、应变软化的结果,将使松动圈内岩体强度随变形发展而逐渐衰减,直至残余强度.松动圈内岩块的滑移碎胀变形(流变),并非有益的能量释放,而是以其承载能力的丧失为代价的,显然是一种有害变形,对此决不能等闲视之.因此,在巷道维护工作中,为充分保持并利用破裂围岩的自承能力,必须对破裂区内岩体进行支护和加固,目的是限制有害的滑移剪胀变形,控制其软化程度,提高其残余强度.从这个意义上讲,布置在岩体内部的锚杆支护和对岩体内部的注浆加固将是优越的支护形式和措施.锚杆支护能实现主动深入到围岩内部加固围岩,提高围岩自承能力和围岩一起形成一个加固圈;喷层可以及时充填围岩表面裂隙,封闭岩面和隔离水、风对围岩的破坏,缓解应力集中现象,密贴并提供一定的支护抗力,使巷道周边围岩从二向应力状态变为三向应力状态;金属网能加强喷层的整体性,提高喷层的抗弯、抗剪、抗拉265 中国矿业大学学报 第28卷能力,而且将单个锚杆连结成整体锚杆群和混凝土形成有一定柔性的薄壁钢筋混凝土支护圈.因此锚喷网三者结合是内部加固与外部支护的结合,支护与围岩共同作用,浑然一体,并能柔性卸载,先柔后刚,先让后抗,最大限度地发挥围岩的承载能力.所以,锚喷网支护的性能十分符合软岩对支护性能特别是一次支护性能的要求.基于上述分析,根据松动圈厚度设计锚喷网支护参数,我们在开滦赵各庄煤矿11,12水平(埋深分别为961.1和1056.8m)受采动影响的底板岩巷( 类,L p=1.5~1.89m)大松动圈软岩巷道(采动碎胀型)及13水平(埋深1159m)煤及半煤岩巷( 类,L p=2.16~2.26m)大松动圈软岩巷道进行了工业性试验,获得了成功,年经济效益达500万元以上[5].3.2 类大松动圈碎胀变形联合支护对于 类大松动圈碎胀型软岩,一般为高应力强膨胀地区或节理化极破碎的岩石,对此类软岩工程巷道,支护阻力和可缩量是巷道支护成功的主要参数,高阻力和大的可缩量是确保此类极软岩巷道稳定性的关键.由于 类松动圈厚度大,其碎胀变形量也很大,一般达到600mm以上,所以一般常用锚杆(锚固长度1.6~2.0m,锚固力为5~8t)支护不能维护巷道周边围岩的稳定,必须增大锚杆支护强度及可缩量.从理论上讲,通过增大锚杆锚固力(锚杆直径加粗、加长等)及金属网强度等措施,锚喷网(锚索)支护仍可控制此类大松动圈巷道,但从经济实用及施工方便角度讲,采用锚喷网加U型钢可缩支架或注浆加固加U型钢可缩支架(或者用锚喷网加预留有变形充填层的料石碹、大弧板等方式)等联合支护方式则更为合理[6].大量的工程实践表明,对 类大松动圈软岩巷道企图用一次支护特别是强刚性支护,包括双层料石碹、600mm厚的钢筋混凝土支护等不能获得成功[7],原因是它们不适应大松动圈软岩初期变形量大、持续时间长的特点.因此,锚喷网一次支护主要是提高围岩松动圈内破裂岩石的残余强度,提高围岩的自承能力,以保证巷道在安全的条件下允许围岩在高阻控制下释放变形压力,以适应其碎胀变形力学机制.为保证巷道较长时间的稳定和服务期间的安全,在围岩变形稳定后必须进行二次支护,给巷道提供最终支护强度和刚度,并起到安全储备作用.锚喷网一次支护的关键是根据松动圈厚度确定“组合拱”厚度(一般不应小于1.2m),进而确定锚喷网支护参数;二次支护的关键是确定支护时间:应在一次支护巷道围岩变形稳定后进行,具体应根据巷道开挖后监测情况确定,如松动圈厚度已基本稳定,u2t曲线变化平缓等.淮南谢桥煤矿东风井-240m总回风巷(泥岩, 类)大松动圈软岩工程中,采用单一常规锚喷网(非锚索)支护发生了失败,但返修时采用锚注与U型钢联合支护取得了成功[6].3.3 ~ 类复合型软岩转化关键技术——治水开巷后,大松动圈在产生、发展过程中出现碎胀变形的同时,破裂岩体出现宏观裂隙,地下水的渗入不仅降低破裂面的强度和作用在其上的法向应力,导致围岩强度下降,松动圈再次扩大,而且岩石遇水膨胀和软化,这种相互作用恶性循环,导致支护非常困难1所以,在这类地层中必须采取治水的措施.由于井下水源分布广,来源多,在巷道内存在水流,故治水方法必须采取治、防、管、排等综合治理措施.1)有水必治 井下施工巷道掘进头,对出水、淋水、积水要及时采取措施控制出水点,不能乱流、漫流,存留时间不能过长.哪里有水哪里治,能排则排,能导则导,能疏则疏,分段截流、分片治理,保持巷道无积水12)无水要防 施工巷道要有防水措施,做到预防为主.编制作业规程时,必须考虑治水方法、防水系统、防水设备和防水设施,做到有备无患.水沟要紧跟迎头,毛水沟距迎头不得超过15m,永久水沟距迎头不超过50m13)用水必管 施工迎头喷浆、洒水、喷雾、通风、消防、注浆等都需用水,但要管理好用水,建立严格的管理制度,防止跑、漏、冒、滴,对用完的水,及时排入疏水系统,保持巷道干燥无水14)积水必排 井下巷道如有积水,必须及时排入排水系统.对于复合型软岩,只有围岩破裂松动,潮湿空气或水沿裂缝侵入围岩深部之后,其变形才能强烈的显现出来1而且水胀变形在时间上滞后于碎胀变形,但是如采取上述治水措施,使岩石无水可吸,水胀变形也就无从产生,则复合型软岩转化为单一碎胀型软岩,从而大大降低了支护难度.4 结 论1)采用单一综合指标——围岩松动圈厚度(L p≥150c m)判定软岩巷道工程,不仅能全面反映围岩的稳定性,而且现场应用方便1365第6期 靖洪文等:软岩巷道围岩松动圈变形机理及控制技术研究 2)大松动圈软岩工程,无论是何种原因造成的,其松动圈厚度值都在150c m以上1但对于不同原因造成的软岩工程,应采取不同方法进行处理1应当强调的是,煤系地层不同程度的具有复合型软岩的特征,如果忽略这一点,会造成支护的失败.3) , 类大松动圈碎胀变形软岩采用单一锚喷网支护,用“组合拱理论”设计锚喷网支护参数可以获得成功; 类大松动圈碎胀变形软岩须采用联合支护方式,才可以获得成功.4)绝对限制大松动圈非线性变形不易实现,也不经济,只能是既允许围岩有一定变形以释放能量,减小围岩对支护的压力,又能有效控制其过大变形,保持巷道的使用空间和稳定性.仅考虑对岩体应力的控制或一味采用各种高强度支护手段是不适宜的.参考文献1 董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论.煤炭学报,1994,19(1):21~312 鹿守敏,靖洪文.巷道锚喷支护机理研究与实践.建井技术,1994(4):10~143 靖洪文,李世平.零围压下岩石剪胀性能试验研究.中国矿业大学学报,1998,27(1):19~224 J ing H W,L i S P.Experi m ental study on vo lum etric strain of rock s in full stress2strain p rocess.Journal of Ch ina U niversity of M ining and T echno logy,1999,9(1):33~375 靖洪文,付国彬,郭志宏.深井巷道围岩松动圈影响因素实测分析及控制技术研究.岩石力学与工程学报,1999, 18(1):70~746 何满潮.中国煤矿软岩巷道支护理论与实践.徐州:中国矿业大学出版社,1996.1~367 陆家梁.软岩巷道支护技术.吉林:吉林科学技术出版社,1995.77~81Study on D efo rm ati on M echan is m of B roken Zone A round Soft Rock Roadw ay and Its Con tro l T echn iqueJ ing H ongw en S ong H ongw ei Guo Z h ihong(Co llege of A rch itecture and C ivil Engineering,CUM T,Xuzhou,J iangsu221008)Abstract T he engineering featu res of soft rock roadw ay are discu ssed.T he quan titative w ay of assess2 ing soft rock roadw ay by the th ickness L p(L p≥150c m)of b roken zone is pu t fo r w ard.Fu rther m o re,the defo r m ati on m echan is m of bu lk ing,dw elling and so on is analyzed.It is believed that fo r , bu lk ing soft rock bo lting and sho tcreting w ith w ire m esh shou ld be u sed,fo r com b ined suppo rting,and fo r dw elling soft rock w ater ough t to be treated firstly.T he reliab ility has been confir m ed by indu strial tests.Key words soft rock,b roken rock zone,bu lk ing defo r m ati on,dw elling defo r m ati on,con tro l techn ique 465 中国矿业大学学报 第28卷。

矿井巷道围岩松动特征模拟实验研究

矿井巷道围岩松动特征模拟实验研究

117工程技术0 引言 我国对能源的需求量大,虽然受到能源需求大背景的影响,但煤炭在我国能源结构中的主导地位依然不可撼动。

随着采矿深度的增加,巷道开挖过程中所出现的地质问题也在不断增多,受地应力、构造等条件影响所引起的巷道变形[1]、坍塌等安全问题屡见不鲜。

因此巷道开挖后其围岩的稳定性问题得到越来越高的重视。

巷道开挖后,围岩应力状态发生显著变化,有可能在巷道周围形成一个破裂区,即围岩松动圈。

国内外学者利用多种力学模拟分析软件,如FLAC3D/FLAC2D,MIDAS/GTS ,PLAXIS,ANSYS,ABAQUS 等[2-5],对松动圈进行模拟研究。

研究表明,巷道围岩的变形主要来源于松动圈围岩的碎胀变形。

因此,围岩松动圈厚度研究是一项意义重大的课题。

文章采用数值模拟技术对巷道围岩松动特征进行实验研究,并辅以电法模拟,讨论其不同受力分布及变形特征,为巷道围岩支护技术措施制定提供参考。

1 模拟方案 为了对比研究巷道开挖后松动圈的范围,本文利用Flac3D 与电法模拟软件AGI 分别进行设计模拟。

前者设计半径分别为5m、10m 的大断面巷道条件,外边界为100m×100m,其内充填以纯砂岩的两个矩形数值模型(图1),模型参数借鉴淮南张北矿1413(A)工作面的砂岩层岩石力学参数(表1)。

监测点的选则上,由于巷道为圆形,所以两侧的围岩变形为对称发育,本文选取的监测点均在中线右侧。

矿井巷道围岩松动特征模拟实验研究田 忠,李建宁(安徽理工大学地球与环境学院,安徽 淮南 232001)摘 要:无论是在井下的巷道掘进过程中,还是在地面隧道开挖过程中,围岩的支护都是必不可少的。

为了能够更加合理有效的利用支护材料,避免浪费的同时,还要求支护的深度能够达到安全开挖的规范,对于围岩松动范围的圈定就必须满足一定精度。

本文设计了不同半径的巷道断面,以Flac3D 模拟为主,辅助以电法AGI 正演模拟,对巷道围岩松动范围进行实验研究,获得了围岩的位移分布特征及巷道半径与顶板有效位移量的相应关系。

巷道围岩松动圈理论

巷道围岩松动圈理论

围岩松动圈的理论一、隧道围岩的松动圈的形成及物理状态假设在地表下H深处有一个小岩石单元(图1),在空间开挖前,这一单元处于三向应力完好稳定状态。

当在其左侧开挖一空间后,水图1 隧道围岩的物理状态平应力H1解除,单元变成二向受力。

这时这个单元的应力产生两个方面变化:一是由于三向应力变成二向应力状态,单元强度发生下降;二是由于应力的转移,所开挖的空间周边附近应力集中,使单元上受力增加。

如果单元所受应力超过其强度,单元1将发生破坏,使其承载能力变低,发生应力向深部转移。

这样相邻单元2开始面临单元1相似的情况,有一点不同的是单元2的水平应力H2,由于单元1的存在将不为零,但数值很小,所以单元2的强度略高。

如果这时单元2上作用的应力仍大于其强度,则单元2又将发生破坏,使应力再次问深部转移。

单元破坏应力转移,其应力集中程度有所减弱,而径向应力有所增加,最后到单元n时,其单元上所受应力小于其三向应力极限强度,则单元只产生弹塑性变形而不发生破坏。

这样的变化结果,使得在单元1至单元(n-1)之间的岩石处于破坏状态,而从单元n开始向外,岩石处于弹塑性变形的原岩完好状态。

这样的情况同样发生于所开挖空间的各个方向,所以,在这个空间的周围形成了一个破裂区。

围绕开挖空间的这一破坏区域一般为环状;对于塑性岩石,在破裂区外应力接近岩石的强度,但小于岩石强度,围岩处于塑性状态;再往外应力低于岩石的塑性屈服应力,围岩处于弹性状态,形成了一般所说的围岩中的四个区(图2)。

对于煤矿煤系的岩石,多数的全应力——应变曲线塑性段并不明显.即没有明显的塑性区。

从外向隧道内,对应于岩石的全应力——应变曲线,可把围岩分成三个区:弹性区、破裂膨胀剧烈区、破裂膨胀稳定区。

图2 隧道围岩的典型物理力学状态处于弹性状态的围岩,由于其仍然具有承载能力,所以可以保持自稳。

而处于破裂状态的围岩,由于发生了碎胀破裂,其表面将丧失自承能力,如不进行支护将会产生失稳,所以,破裂区是支护的直接对象,是解决支护问题的关键所在。

浅论煤矿巷道支护围岩松动圈理论技术的应用

浅论煤矿巷道支护围岩松动圈理论技术的应用

浅论煤矿巷道支护围岩松动圈理论技术的应用摘要:从围岩松动圈理论分析、测试技术简介、实际应用,提出松动圈厚度的有效控制问题,并实现了有目标的巷道支护设计。

关键词:松动圈理论测试技术支护技术巷道一、综述在煤矿巷道掘进支护的过程中,准确掌握巷道松动圈范围的大小和受采动影响的变化规律,这对于帮助选择恰当的巷道支护方式与参数,确定合理的工作面超前支护范围等都具有重要的意义。

当前,煤矿回采巷道多采用棚子支护或锚杆支护。

而棚子支护则是一种传统的被动支护形式,一旦在复杂的压力状态下,它就要借助其它形式的支护配合进行,如此才能保障巷道的支护安全;锚杆支护是解决巷道围岩承受采动支承压力的重要举措。

但是,采用锚杆支护需要解决采动支承压力的问题,其关键点就是确定出巷道围岩松动圈的厚度,在此基础上来加以控制。

二、围岩松动圈理论分析在巷道开挖以后,其围岩的受力状态由三向变成了近似两向,这造成了岩石应力的较大幅度上升。

若围岩中集中的应力值小于下降后的岩石强度,围岩则处于弹塑性状态,此时围岩自行稳定,不存在支护问题;倘若相反,围岩将发生破坏,该破坏便从周边逐渐向深部扩展,直至达到新的三向应力平衡状态为止,此时围岩中就出现了一个破裂带。

为此,我们把这个由于应力作用产生的破裂带就称之为围岩松动圈(图1所示)。

尤其是破碎巷道的支护,则为煤矿支护工作中的重点,也是一个难点。

显然,破碎巷道围岩松动圈的测试问题就更显非常重要了。

但是,现场测试破碎围岩松动圈也有很多难题,测试过程中也经常出现导致松动圈测试结果相差较远的现象,有时甚至无法进行测试。

围岩松动圈是巷道开挖后地应力超过围岩强度的结果,因此松动圈理论认为,支护的根本作用就是限制围岩松动圈中碎胀力所造成的有害变形。

三、松动圈测试技术简介1.测试技术原理。

超声波在煤岩体中传播,会发生几何衰减和物理衰减,煤岩体中不同力学性质的结构面上,超声波会发生散射、折射和热损耗等物理现象,使得超声波能量不断衰减,造成波速降低。

巷道围岩松动圈范围及发育规律分析

巷道围岩松动圈范围及发育规律分析

S U Z h i - y i,S UN S h a o- h u a,S U Li
( S h , a n x i C o a l T r a n s p o r t a t i o n G r o u p S a n y u a n C a v e C o a l C o . , L t d . ,C h a n g z h i 0 4 7 5 0 0, C h i n a )
t i e d o n t i l e a n a l y s i s t o t h e o b s e r v a t i o n d a t a u s i n g t h e ma t h e ma t i c a l me t h o d o f l e a s t s q u a r e s i f t t i n g ,t h e t u n n e l s u r r o u n d i n g r o c k e x c a v a —
t i o n,d i s t a n c e o u t s i d e t he e n d o f t he ba s i c l or e i s i n s t a b l e s t a t e,t he t o p a n d bo t t o m a n d t wo s i d e s o f t h e r a n g e o f t he l o o s e c i r c l e f r o m b i g t o s n l aI I i n o r de r t h e r o o f ,f lo o r a nd t wo s i d e s,t he ma x i mu m v a l ue o f t h e l o o s e c i r c l e r e s p e c t i v e l y:4. 4 m f l o o r r o o f ;3. 7 m ;r i g h t f o r 2. 6 i l l ;t he l e f t s i de o f 2. 5 n l , wi t h r e f e r e nc e t o t h e k e y s u pp o r t i n t u nn e l l i ng . Ke y wo r ds: s ur ro u n di ng r o c k l o o s e c i r c l e;r o a d wa y s u p po t ;t r un n e l i ng;l e a s t s q ua r e it f t i n g

煤矿巷道层状围岩松动圈范围的发育规律

煤矿巷道层状围岩松动圈范围的发育规律

煤矿巷道层状围岩松动圈范围的发育规律HU Shijing;PEI Zuan【摘要】Taking the layered roadway surrounding rock of Zhijin Coal Mine in Guizhou Province as the research object and using acoustic velocity mutation to judge the range of the surrounding rock loosing circle, the straight wall arch section and circular arch section are tested by multiple samples, the limit of roadway loosing range is determined, and the range of loosing circle of each type of roadway is analyzed statistically, and the development law is revealed. The results show that the loosing range of the inclined side wall and the vault roof decreases gradually, while the loosing range of the anti-inclined side wall increases gradually until the loosing range of the two sides is approximately the same. The loosing range of different parts of the roadway is obtained, and the development law diagram of the loosing circle at different angles is drawn. The excavation design and the technical key points of support for the loosing circle of surrounding rock in layered roadway are proposed.%以贵州织金煤矿层状巷道围岩为研究对象,以声波速度突变判断围岩松动圈范围为手段,对直墙拱形断面和圆拱形断面分别进行多样本测试,判定巷道松动范围界限,统计分析每种类型巷道松动圈范围,揭示其发育规律.成果表明:夹角α由小变大的过程,顺倾侧壁以及拱顶的松动范围逐渐减小,而反倾侧壁松动圈范围逐渐增大,直至两侧壁松动范围近似一致.获取巷道不同部位的松动范围,并绘制松动圈在不同夹角α发育规律图,提出了针对层状巷道围岩松动圈的开挖设计以及支护的技术要点.【期刊名称】《煤矿安全》【年(卷),期】2019(050)006【总页数】5页(P209-212,218)【关键词】层状围岩;松动圈;发育规律;煤矿巷道;声波速度突变【作者】HU Shijing;PEI Zuan【作者单位】Guizhou Jiaotong College, Guiyang 550008, China;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China【正文语种】中文【中图分类】TD322巷道开挖后,岩体中原始应力状态进行调整,重新分布,巷道附近的应力由三向应力状态转变成二向应力状态,径向力近乎为0,应力大于岩体强度时致使围岩变形破坏,直至应力小于或等于岩体强度破坏停止,通常形成不规则的环形范围称为围岩松动圈[1-4]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 Σ r2 p( x i ) - y i] = min i = Σ[
i =0 i =0 m m
界面为主要特征。在该范围内, 岩体为破裂松驰状, 通 过地质雷达围绕巷道断面一周进行扫描, 由地质雷达 波形呈杂乱无章状态, 无 发出的电磁波在其中传播时, 明显同相轴; 当电磁波经过松动圈与非破坏区交界面 ( 松动圈界面) 时, 必然发生较强的反射, 从而可以根 据反射波图像特征来确定围岩松动圈破坏范围 。 1. 2 围岩松动圈测定结果 针对城郊煤矿井下巷道类型, 选择各种典型的支 护和破坏形式巷道进行围岩松动圈的测试工作 。 实测 共布置了 2 个测试断面和 12 条纵测线, 共计 5 个测 站, 获得的相关数据见表 1 。 表1
* 收稿日期: 2011 - 07 - 28 作者简介: 陈彦军( 1985 - ) , 男, 河南柘城人, 硕士毕业于山东科 技大学, 现从事煤矿技术及管理工作 。
由此得到正规方程组: 5 12 . 80 32 . 98 a0 1 . 466 12 . 80 32 . 98 85 . 484 a1 = . 484 222 . 795 a 10 . 168 2 解得: a0 = 5 . 153 , a1 = - 4 . 442 , a2 = 0 . 987 即关系式为:
2 y = a0 + a1 x , y 合, 待定方程为: y = a0 + a1 x + a2 x 、 其中,
围岩松动圈实测值
围岩松动圈实测值( m) 最小 1. 6 1. 4 2. 3 1. 5 2 最大 2. 7 2. 2 2. 5 2. 6 2. 8
围岩单轴抗压 强度( MPa) 44. 17 97. 8 44. 17 99. 8 44. 17
2 2. 1
最小二乘法确定围岩松动圈变化规律 最小二乘法基本原理 从整体上考虑近似函数 p ( x ) 同所给数据点 ( x i ,
2 3 4 Σ
1 . 466 32 . 980 85 . 484 222 . 795 3 . 851
yi ) ( i = 0, 1, …, m) , 误差 r i = p( x i ) - y i 的大小, 常用的 方法有以下三种: ( 1 ) 误差 r i 绝对值的最大值; ( 2 ) 误 差绝对值的和; ( 3 ) 误差平方和的算术平方根 。
1 1. 1
围岩松动圈测定结果 雷达测试围岩松动圈原理 围岩松动圈以围岩破坏产生宏观裂隙形成的物性
yi ) ( i = 数据拟合的具体作法是: 对给定数据( x i , 0, 1, …, m) 在取定的函数类 F 中, 求 p( x ) ∈ Φ, 使误差 r i = p( x i ) - y i 的平方和最小, 即:
104
γH = 0 . 987 L s 2 - 4 . 442 L s + 5 . 153 σc 该拟合方程误差的平方和为 0 . 00668 。 若进行线性拟合, 得到关系式为: γH = 0 . 461 L s - 0 . 888 , 该拟合方程误差的平方和 σc 为 0 . 0232 , 由此可见, 采用多项式拟合结果更接近实 际。 由式( 1 ) 可得围岩松动圈范围与采深的关系式, 得到不同围岩强度下围岩松动圈范围与采深的关系图 如图 1 所示。
2012 年第 2 期
103
城郊煤矿围岩松动圈变化规律及控制研究
陈彦军
( 河南煤业化工集团城郊煤矿, 河南 永城 476600 ) 摘 要 城郊煤矿已进入 - 800m 水平开采, 目前深部巷道的支护形式仍较大程度上沿袭了浅部巷道支护形式, 造成局部巷道变形严重, 返修
量大。结合城郊煤矿实际围岩条件下进行的地质雷达围岩松动圈测定结果, 以此为基础, 对巷道围岩进行分类, 并对城郊煤矿深部巷道进行锚 杆支护参数优化, 工业试验证明效果良好 。 关键词 深部 松动圈 围岩分类 锚杆 A 中图分类号 TD322 + . 4 文献标识码

γH , x 为围岩松动圈范围 L S , 分别得到如下结果 。 σc 表2
xi 0 1 2. 2 2. 5 2. 6 2. 7 2. 8 12 . 8 yi 0 . 186 0 . 211 0 . 209 0 . 381 0 . 479
二次曲线拟合结果
xi 2 xi 3 xi 4 xi yi xi 2 yi 0 . 901 1 . 320 1 . 412 2 . 777 3 . 758 10 . 168 4 . 840 10 . 648 23 . 426 0 . 409 6 . 250 15 . 625 39 . 063 0 . 528 6 . 760 17 . 576 45 . 698 0 . 543 7 . 290 19 . 683 53 . 144 1 . 028 7 . 840 21 . 952 61 . 466 1 . 342
采深( m) 673 728 833 843 847
yi ) ( i = 从几何意义上讲, 就是寻求与给定点( x i , 0, 1, …, m) 的距离平方和为最小的曲线 y = p ( x ) 。 函 数 p( x) 称为拟合函数或最小二乘解, 求拟合函数 p( x) 的方法称为曲线拟合的最小二乘法 。 2. 2 围岩松动圈变化规律 由于围岩松动圈是围岩应力与强度相互作用的结 果, 并且, 鉴于同一岩性不同采深的观测数值较少, 因 此先分析松动圈与围岩应力和强度的关系, 在此基础 使分析结果更具有普 上再研究它随采深变化的规律, 遍意义和较高的可靠程度 。 2. 3 拟合结果 对表 1 中的数据分别采用二次曲线拟合和线性拟
埋深( m)
2012 年第 2 期
( 1) 由上可知, 巷道围岩松动圈是范围随采深增加而 增大, 开始阶段增大较快, 以后逐渐减小, 并接近于直 线段 。 3 城郊煤矿各水平松动圈预测 城郊煤矿目前两水平开采, 围岩多为砂岩和泥岩, 综合考虑围岩条件, 得出各不同条件下围岩松动圈的 范围见表 3 。 表3 围岩松动圈范围
相关文档
最新文档