人教版数学五年级下册《2、5、3的倍数特征》教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《2、5、3的倍数特征》教案(一)
教学目标
1、使学生经历探索3的倍数的特征的过程,知道3的倍数的特征,能正确判断一个数是否是3的倍数。
2、使学生在探索3的倍数的特征的过程中,进一步培养观察、比较、分析、归纳以及数学表达的能力,感受数学思维的严谨性及数学结论的确定性,激发学生学习兴趣。
教学重难点
探索3的倍数的特征,使学生掌握3的倍数的特征,会判断一个数是否是3的倍数。
教学过程
一、创设情境
课件出示:
填一填:
1、个位上的数是_________________的自然数一定
是2的倍数,也叫_________。
2、个位上的数是________的自然数一定是5的倍数.
3、一个数,如果既是2的倍数,又是5的倍数,这个数
的个位上一定是_____。这个数最小是。
4、最小的偶数是,最小的奇数是,最大的偶数,最大的奇数。
2的倍数有: 。
5的倍数有: 。
既是2的倍数又是5的倍数有:
偶数有: 。
奇数有: 。
课件出示
师:用5、6、7三个数字组成一个三位数,使这个数是2的倍数?说说什么样的数一定是2的倍数?可以摆成5的倍数吗?说说怎样摆?什么样的数是5的倍数?
(生:口答)
师:可以摆成既是2的倍数也是5的倍数吗?为什么?
师:同学们,我们已经能正确判断一个数是不是2或5的倍数,只要观察这个数的个位。那么你能从个位上发现3的倍数的特征吗?今天我们一起来研究3的倍数的特征。
(揭示课题:3的倍数的特征)
[设计意图]创设问题情境,既可以巩固已学知识又可以引导学生积极主动地投入到3的倍数的特征的教学过程中来,有利于学生轻松、愉快的学习新知。
二、探究新知
1、课件出示:(学生填一填)
师:学生独立填在课本19页上,然后观察。生:汇报结果
1、课件出示:(学生填一填)
师:学生独立填在课本19页上,然后观察。生:汇报结果
1 2 3 4 5 6 7
2、观察讨论(一):
师:同学们观察一下3的倍数的个位上的数是不是3的倍数呢?(课件出示) 生结论:3,6,9是3的倍数,但12,15,18个位上的数就不是3的倍数。(出示课件) 师:根据一个数个位上的数字,能确定一个数是3的倍数吗?(不能)那么3的倍数究竟有什么特征呢?
3、观察讨论(二):3的倍数12和21。(课件出示)
谈话:比较观察这两个数,你能发现什么有趣的现象?(生:数字相同,数字排列的顺序不同)
师:在3的倍数中,再找几个数,把他的数字顺序改变一下,看看是不是3的倍数?你有什么发现?
生:3的倍数,改变数字的顺序后,仍然是一个3的倍数。
师:在不是3的倍数中,也有这样的数,你能把他们一组一组地排列起来吗?(13,31;14,41;23,32;25,52;)这里又说明什么呢?
生:一个不是3的倍数,改变数字的顺序后,仍然不是3的倍数。
师:由此推想,3的倍数的特征和数字的排列顺序没有关系,那与这个数的各个数位上的数字有关吗?这里到底有什么奥秘呢?
4、探索发现规律
(1)活动:每个同学手中都有一些小棒和一张数位卡,我们在数位卡上分别来摆几个3的倍数,看看分别用了几根小棒。现在请你在3的倍数中任意选几个来摆一摆,开始。
生:小组中完成并记录,然后汇报,教师板书如:12:1+2=3
师:有什么发现?(是3的倍数)
(2)活动:下面我们反过来试试看,请你数出21根小棒,摆成一个两位数,看看这个数是不是3的倍数。(学生操作后汇报结果21:2+1=3)
师:现在你猜想什么样的数一定是3的倍数?(猜想:3的倍数,它的各位数的和一定是3的倍数)
(3)活动:为了验证这一猜想,举例,如49×3=147,166×3=498等,使学生进一步确认这一结论的正确性。还可以任意写一个数,利用这一结论来验证,如3697,
3+6+9+7=25,25不是3的倍数,而3697÷3也不能得到整数商,因此,它不是3的倍数。
5、出示总结:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
[设计意图]为了突出学生的自主探索,使学生在观察——猜想——推翻猜想——再观察——再猜想——验证的过程中,概括出3的倍数的特征。通过活动的方式,减缓学生在概括时的思考难度。教学时,引导学生经历观察、猜测、验证的完整过程。由于学生在概括2和5的倍数的特征时,只注意到了个位数,因此,学生在概括3的倍数时,也会很自然地寻找个位上的数的特征。但通过观察,发现这些数的个位上的数有的是3的倍数,有的不是,于是产生认知冲突。经过进一步提示,引导学生观察发现:各位上数的和是3的倍数。通过这样的方式也使学生认识到:找出某个规律后,还要找出一些正面的、反面的例子进行检验,看是不是普遍适用。激发学生积极主动探究解决问题方法的兴趣。
三、练习中提升认识
通过完成“做一做”,哪些数是3的倍数?你是怎样判断的? 明确方法:判断一个数是不是3的倍数,可以先把这个数各位上的数相加,看得到的和是不是3的倍数。
练习三,4、下面哪些数是3的倍数?在下面的( )里面“√”。
三、练习中提升认识
通过完成“做一做”,哪些数是3的倍数?你是怎样判断的? 明确方法:判断一个数是不是3的倍数,可以先把这个数各位上的数相加,看得到的和是不是3的倍数。
练习三,4、下面哪些数是3的倍数?在下面的( )里面“√”。
42 78 111 165 655 5988 ( ) ( ) ( ) ( ) ( ) ( ) 49 95 311 82 2037 2222 ( ) ( ) ( ) ( ) ( ) ( )
1、下面用数字卡片摆出的数中,哪些是3的倍数?在每个数后面增加一张卡片,使这个三位数成为3的倍数。