图的深度遍历
第15讲图的遍历
V6
V8
V8
V7
V5 深度优先生成树
V8 V1
V2
V3
V4 V5 V6 V7
V8 广度优先生成树
27
例A
B
CD E
F
GH
I
K
J
L
M
A
D
G
LCF
KI E
H M
JB
深度优先生成森林
28
二、图的连通性问题
▪1、生成树和生成森林
▪ 说明
G
▪ 一个图可以有许多棵不同的生成树
KI
▪ 所有生成树具有以下共同特点:
g.NextAdjVex(v, w))
{
if (g.GetTag(w) == UNVISITED)
{
g.SetTag(w, VISITED);
g.GetElem(w, e);
Visit(e);
q.InQueue(w);
}
}}}
24
一、图的遍历 两种遍历的比较
V0
V1 V4
V0
V1 V4
V3
V2 V5
16
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V1
V4
V5 V6
V7
V8
遍历序列: V1
17
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V2 V3
V4
V5 V6
V7
V8
遍历序列: V1 V2 V3
18
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
第7章图的深度和广度优先搜索遍历算法
和树的遍历类似,我们希望从图中某顶点出发对图中每个顶点访问一次,而且只访问 一次,这一过程称为图的遍历(traversing graph)。 本节介绍两种遍历图的规则:深度优先搜索和广度优先搜索。 这两种方法既适用于无向图,也适用于有向图。
7.3.1 深度优先搜索遍历 一.思路: 从图中某一点(如A)开始,先访问这一点,然后任选它的一个邻点(如V0) 访问,访问完该点后,再任选这个点V0的一个邻点 ( 如 W )访问,如此向 纵深方向访问。直到某个点没有其他未访问的邻点为止,则返回到前一个点。 再任选它的另一个未访问过的邻点 ( 如X )继续重复上述过程的访问,直到全 部点访问完为止。 图(a)的遍历的结果:V1V2V4V8V5V3V6V7 或V1V3V7V6V2V5V8V4
p
v0 w x v 1
V
0
v 2
V
0
typedef struct {VEXNODE adjlist[MAXLEN]; // 邻接链表表头向量 int vexnum, arcnum; // 顶点数和边数 int kind; // 图的类型 }ADJGRAPH;
W W
X
X
7.3.2 广度优先搜索遍历 一.思路:
V
0
A V
0
W W
XXΒιβλιοθήκη 二.深度优先搜索算法的文字描述: 算法中设一数组visited,表示顶点是否访问过的标志。数组长度为 图的顶点数,初值均置为0,表示顶点均未被访问,当Vi被访问过,即 将visitsd对应分量置为1。将该数组设为全局变量。 { 确定从G中某一顶点V0出发,访问V0; visited[V0] = 1; 找出G中V0的第一个邻接顶点->w; while (w存在) do { if visited[w] == 0 继续进行深度优先搜索; 找出G中V0的下一个邻接顶点->w;} }
深度优先遍历算法实现及复杂度分析
深度优先遍历算法实现及复杂度分析深度优先遍历算法(Depth First Search, DFS)是一种常用的图遍历算法,用于查找或遍历图的节点。
本文将介绍深度优先遍历算法的实现方法,并进行对应的复杂度分析。
一、算法实现深度优先遍历算法的基本思想是从图的某个节点出发,沿着深度方向依次访问其相邻节点,直到无法继续下去,然后返回上一层节点继续遍历。
下面是深度优先遍历算法的伪代码:```1. 初始化访问标记数组visited[],将所有节点的访问标记置为false。
2. 从某个节点v开始遍历:- 标记节点v为已访问(visited[v] = true)。
- 访问节点v的相邻节点:- 若相邻节点w未被访问,则递归调用深度优先遍历算法(DFS(w))。
3. 遍历结束,所有节点都已访问。
```二、复杂度分析1. 时间复杂度深度优先遍历算法的时间复杂度取决于图的存储方式和规模。
假设图的节点数为V,边数为E。
- 邻接表存储方式:对于每个节点,需要访问其相邻节点。
因此,算法的时间复杂度为O(V+E)。
- 邻接矩阵存储方式:需要检查每个节点与其他节点的连通关系,即需要遍历整个邻接矩阵。
因此,算法的时间复杂度为O(V^2)。
2. 空间复杂度深度优先遍历算法使用了一个辅助的访问标记数组visited[]来记录每个节点的访问状态。
假设图的节点数为V。
- 邻接表存储方式:访问标记数组visited[]的空间复杂度为O(V)。
- 邻接矩阵存储方式:访问标记数组visited[]的空间复杂度同样为O(V)。
综上所述,深度优先遍历算法的时间复杂度为O(V+E),空间复杂度为O(V)。
三、应用场景深度优先遍历算法在图的遍历和搜索问题中广泛应用。
以下是一些典型的应用场景:1. 连通性问题:判断图中两个节点之间是否存在路径。
2. 非连通图遍历:对于非连通图,深度优先遍历算法可以用于遍历所有连通分量。
3. 寻找路径:在图中寻找从起始节点到目标节点的路径。
层次遍历 深度遍历
层次遍历深度遍历
层次遍历和深度遍历是两种常用的树和图的遍历方式,它们在
计算机科学和算法中起着重要的作用。
首先我们来谈谈层次遍历。
层次遍历是一种广度优先的遍历方式,它从树的根节点开始,按照树的层次依次访问每个节点。
具体
来说,层次遍历是从根节点开始,先访问根节点,然后按照从左到
右的顺序依次访问根节点的子节点,再依次访问子节点的子节点,
以此类推,直到遍历完整棵树。
在层次遍历中,我们通常使用队列
来辅助实现,每次访问一个节点后,将其子节点按照顺序加入队列,然后再从队列中取出下一个节点进行访问,直到队列为空为止。
接下来是深度遍历。
深度遍历是一种深度优先的遍历方式,它
从树的根节点开始,沿着树的深度尽可能远地访问每个节点。
具体
来说,深度遍历是从根节点开始,先访问根节点,然后沿着其中一
个子节点一直向下访问,直到达到叶子节点,然后再返回到上一层
节点,继续访问其他子节点,以此类推,直到遍历完整棵树。
在深
度遍历中,我们通常使用递归或者栈来实现,递归的方式是比较直
观的,而使用栈的方式可以避免递归带来的性能开销。
总的来说,层次遍历和深度遍历都是常用的树和图的遍历方式,它们各自有着不同的特点和适用场景。
层次遍历适合于需要按层次
分析树或图结构的问题,而深度遍历适合于需要沿着深度探索树或
图结构的问题。
在实际应用中,根据具体问题的特点选择合适的遍
历方式是非常重要的。
深度遍历和广度遍历例题
深度遍历和广度遍历例题深度遍历(Depth First Search, DFS)和广度遍历(Breadth First Search, BFS)是图遍历的两种常用方法。
在本文中,将介绍深度遍历和广度遍历的定义、原理、应用以及两种方法的例题。
一、深度遍历(DFS)深度遍历使用堆栈(Stack)实现,其基本思想是先访问根节点,然后再递归地访问其相邻节点,直到所有节点都被访问。
深度遍历能够搜索到最深层次的节点,但可能会陷入死循环。
1. 深度遍历的应用场景:深度遍历常用于解决图的连通性问题、拓扑排序、求解图中的环等。
另外,也可以应用于解决迷宫问题、数独等。
2. 深度遍历的基本过程:(1)首先访问初始节点,并标记为已访问。
(2)递归地访问初始节点的相邻节点,对于每一个相邻节点,若未被访问,则进行递归访问。
(3)重复步骤(2),直到所有节点都被访问。
3. 深度遍历的例题:假设有以下有向图:A -> B,A -> C,B -> D,B -> E,C -> F,D -> G,E -> H,F -> G,G -> E,H -> E现在要求从节点A开始进行深度遍历,从A到E的路径请写出所有可能的路径。
答案:A -> B -> D -> G -> E,A -> B -> E,A -> C -> F -> G -> E,A -> C -> F -> G -> E,A -> B -> D -> G -> E -> H -> E,A -> C -> F -> G -> E -> H -> E二、广度遍历(BFS)广度遍历使用队列(Queue)实现,其基本思想是先访问根节点,然后再按照层次逐层访问其相邻节点,直到所有节点都被访问。
图的深度优先遍历详解
图的深度优先遍历详解图的深度优先遍历详解说明1. 深度优先遍历,即先向纵深处挖掘遍历,等这条路⾛不通再回溯2. 设置要开始遍历的第⼀个顶点,然后寻找该顶点的第⼀个邻接顶点,如果第⼀个邻接顶点存在,则从第⼀个邻接顶点⼜重新开始深度优先,寻找它的第⼀个邻接顶点,直到他们的第⼀个邻接顶点不存在或者第⼀个邻接顶点已经被访问,那么寻找它的下⼀个邻接顶点,直到寻找完所有的顶点3. 很明显需要使⽤递归4. 当没有通路的最后⼀个邻接顶点相连的所有顶点全部遍历完时,则回溯判断上⼀个顶点的下⼀个邻接顶点,直到遍历完然后再回溯5. 直到遍历完所有的顶点6. 说明:当当前顶点的第⼀个邻接顶点已经被访问过时,才遍历它的下⼀个邻接顶点7. 源码见下源码及分析深度优先核⼼代码//深度优先算法实现/*** @param isVisited 判断当前顶点是否已经遍历过* @param v 从遍历的当前顶点下标*/public void dfs(boolean[] isVisited, int v) {//先输出当前顶点信息System.out.print(getValueByIndex(v) + "-->");//将当前节点设置为已经访问过isVisited[v] = true;//获取当前节点的第⼀个节点int w = getFirstNeighbor(v);//如果当前顶点存在,则递归遍历while (w != -1) {//依旧需要判断当前顶点是否访问过if (!isVisited[w]) {dfs(isVisited, w);}//如果w节点已经被访问过w = getNextNeighbor(v, w);}}//对dfs进⾏重载,遍历所有的顶点public void dfs() {for (int i = 0; i < getNumOfVertex(); i++) {if (!isVisited[i]) {dfs(isVisited, i);}}}}深度优先遍历代码实现package algorithm.datastructor.graph;import java.util.ArrayList;import java.util.Arrays;/*** @author AIMX_INFO* @version 1.0*/public class Graph {//使⽤邻接矩阵表⽰图//使⽤集合存储图的顶点private ArrayList<String> vertexList;//使⽤⼆维数组即矩阵描述顶点之间的关系private int[][] edges;//边的个数private int numOfEdges;//定义变量判断是否访问过private boolean[] isVisited;//测试public static void main(String[] args) {int n = 5;String[] vertexs = {"A", "B", "C", "D", "E"};//创建图Graph graph = new Graph(n);//添加顶点for (String vertex : vertexs) {graph.insertVertex(vertex);}//连接顶点graph.insertEdge(0, 1, 1);graph.insertEdge(0, 2, 1);graph.insertEdge(1, 2, 1);graph.insertEdge(1, 3, 1);graph.insertEdge(1, 4, 1);//显⽰图graph.showGraph();System.out.println("深度优先遍历");graph.dfs();}//n为顶点的个数public Graph(int n) {edges = new int[n][n];vertexList = new ArrayList<>(n);numOfEdges = 0;isVisited = new boolean[n];}//插⼊顶点public void insertVertex(String vertex) {vertexList.add(vertex);}/*** 添加边** @param v1 顶点在集合中存储的下标* @param v2 顶点在集合中的下标* @param weight 两个顶点之间的权值,0或者1,表⽰是否相连 */public void insertEdge(int v1, int v2, int weight) {edges[v1][v2] = weight;edges[v2][v1] = weight;numOfEdges++;}//返回节点的个数public int getNumOfVertex() {return vertexList.size();}//返回边的个数public int getNumOfEdges() {return numOfEdges;}//返回下标 i 对应的数public String getValueByIndex(int i) {return vertexList.get(i);}//返回v1和v2的权值public int getWeigh(int v1, int v2) {return edges[v1][v2];}//显⽰矩阵public void showGraph() {for (int[] link : edges) {System.out.println(Arrays.toString(link));}}//获取与当前顶点连接的第⼀个邻接顶点public int getFirstNeighbor(int v) {for (int i = 0; i < vertexList.size(); i++) {if (edges[v][i] > 0) {return i;}}return -1;}//根据前⼀个邻接顶点获取下⼀个邻接节点的下标 /*** @param v1 当前顶点* @param v2 当前顶点的第⼀个顶点* @return 返回下⼀个邻接顶点*/public int getNextNeighbor(int v1, int v2) {for (int i = v2 + 1; i < vertexList.size(); i++) { if (edges[v1][i] > 0) {return i;}}return -1;}//深度优先算法实现/*** @param isVisited 判断当前顶点是否已经遍历过 * @param v 从遍历的当前顶点下标*/public void dfs(boolean[] isVisited, int v) {//先输出当前顶点信息System.out.print(getValueByIndex(v) + "-->"); //将当前节点设置为已经访问过isVisited[v] = true;//获取当前节点的第⼀个节点int w = getFirstNeighbor(v);//如果当前顶点存在,则递归遍历while (w != -1) {//依旧需要判断当前顶点是否访问过if (!isVisited[w]) {dfs(isVisited, w);}//如果w节点已经被访问过w = getNextNeighbor(v, w);}}//对dfs进⾏重载,遍历所有的顶点public void dfs() {for (int i = 0; i < getNumOfVertex(); i++) {if (!isVisited[i]) {dfs(isVisited, i);}}}}。
数据结构课设——有向图的深度、广度优先遍历及拓扑排序
数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。
功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。
按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。
图的遍历实验报告
图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。
图的遍历是指按照一定规则访问图中的所有节点。
本实验通过实际操作,探索了图的遍历算法的原理和应用。
二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。
三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。
四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。
该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。
b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。
该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。
五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。
六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。
图的两种遍历
输入:
9 10 12 13 17 28 27 34 45 47 56 ram xy; var map:array[1..20,1..20] of integer; visited,q:array[1..100] of integer; //使用辅助队列Q和访问标志数组visited。 n,m,a,b,h,r,i,j:integer; procedure bfs(); //按广度优先非递归遍历图,n个顶点,编号为1..n。 var tmp:integer; begin while h<=r do begin tmp:=q[h]; //队头元素出队并置为tmp h:=h+1; write(tmp,' '); for j:=1 to n do if (map[tmp][j]=1) and (visited[j]=0) then //j为tmp的尚未访问的邻接顶点 begin visited[j]:=1;r:=r+1;q[r]:=j; end;//j入队列 end; end;
保证图中所有 顶点被访问
三、广(宽)度优先遍历
宽度优先遍历的基本思想为:
从图中某个顶点v0出发,访问此顶点。然后依次访问v0的 各个未被访问过的邻接结点,然后分别从这些邻接结点出发 宽度优先遍历图,直到图中所有和顶点v0连通的顶点都被访 问到。 若此时图中尚有顶点未被访问,则另选图中一个未曾被访 问的顶点作起始点,重复上述过程,直到图中所有顶点都被 访问到为止。
begin readln(n,m); for i:=1 to m do begin readln(a,b); map[a][b]:=1; map[b][a]:=1; end; for i:=1 to n do if visited[i]=0 then begin visited[i]:=1;work(i);end; end.
算法设计:深度优先遍历和广度优先遍历
算法设计:深度优先遍历和广度优先遍历实现深度优先遍历过程1、图的遍历和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
它是许多图的算法的基础。
深度优先遍历和广度优先遍历是最为重要的两种遍历图的方法。
它们对无向图和有向图均适用。
注意:以下假定遍历过程中访问顶点的操作是简单地输出顶点。
2、布尔向量visited[0..n-1]的设置图中任一顶点都可能和其它顶点相邻接。
在访问了某顶点之后,又可能顺着某条回路又回到了该顶点。
为了避免重复访问同一个顶点,必须记住每个已访问的顶点。
为此,可设一布尔向量visited[0..n-1],其初值为假,一旦访问了顶点Vi之后,便将visited[i]置为真。
--------------------------深度优先遍历(Depth-First Traversal)1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。
在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。
若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。
若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。
图的深度优先遍历类似于树的前序遍历。
采用的搜索方法的特点是尽可能先对纵深方向进行搜索。
这种搜索方法称为深度优先搜索(Depth-First Search)。
相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。
2、深度优先搜索的过程设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。
若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。
深度遍历和广度遍历例题
深度遍历和广度遍历例题深度遍历(Depth-First Search,DFS)和广度遍历(Breadth-First Search,BFS)是图遍历算法中常用的两种方法。
下面我将为你提供一个例题,并从多个角度进行全面的回答。
例题,给定一个无向图,使用深度遍历和广度遍历两种方法遍历该图,并输出遍历的结果。
首先,我们需要明确一下图的表示方式。
常用的图表示方法有邻接矩阵和邻接表,这里我们选择使用邻接表表示图。
假设我们有如下无向图:A./ \。
B---C.\ /。
D.邻接表表示如下:A: B, C.B: A, C, D.C: A, B, D.D: B, C.接下来,我们来进行深度遍历。
深度遍历的基本思想是从起始节点开始,尽可能深地访问每个节点,直到无法继续深入为止,然后回溯到上一个节点,继续访问其他未访问的节点。
从节点A开始进行深度遍历,访问顺序为A-B-C-D。
具体步骤如下:1. 将节点A标记为已访问。
2. 访问与节点A相邻的未被访问的节点,即节点B和节点C。
3. 选择其中一个节点(这里选择节点B),将其标记为已访问,并继续深度遍历该节点。
4. 对节点B进行相同的操作,访问与节点B相邻的未被访问的节点,即节点A、节点C和节点D。
5. 选择其中一个节点(这里选择节点C),将其标记为已访问,并继续深度遍历该节点。
6. 对节点C进行相同的操作,访问与节点C相邻的未被访问的节点,即节点A、节点B和节点D。
7. 选择其中一个节点(这里选择节点D),将其标记为已访问,并继续深度遍历该节点。
8. 由于节点D没有未被访问的相邻节点,回溯到节点C。
9. 由于节点C也没有未被访问的相邻节点,回溯到节点B。
10. 由于节点B还有一个未被访问的相邻节点(节点A),将其标记为已访问,并继续深度遍历该节点。
11. 由于节点A没有未被访问的相邻节点,回溯到节点B。
12. 由于节点B没有未被访问的相邻节点,回溯到节点A。
13. 完成深度遍历。
邻接矩阵和邻接表 深度遍历和广度遍历原理
邻接矩阵和邻接表是图论中用于表示图结构的两种常见方式,而深度遍历和广度遍历则是图论中常用的两种图遍历算法。
本文将从简介、原理和应用三个方面探讨这四个主题。
一、邻接矩阵和邻接表1.邻接矩阵邻接矩阵是一种使用二维数组来表示图中顶点之间关系的方法。
如果图中有n个顶点,那么对应的邻接矩阵就是一个n*n的矩阵,其中元素a[i][j]表示顶点i和顶点j之间是否有边,通常用0和1表示。
邻接矩阵适用于稠密图,其存储结构简单,可以直观地展示图的结构,但对于稀疏图来说可能会造成存储空间的浪费。
2.邻接表邻接表是一种使用链表来表示图中顶点之间关系的方法。
对于图中的每一个顶点,都维护一个相邻顶点的列表,图中所有顶点的列表再组合成一个链表,用于表示整个图的结构。
邻接表适用于稀疏图,其存储结构灵活,可以有效地节省存储空间,但查找任意两个顶点之间的关系可能会比较耗时。
二、深度遍历和广度遍历原理1.深度遍历深度遍历是一种用于遍历或搜索图中节点的算法,其原理是从图的某一顶点出发,沿着一条路径不断向下遍历直到末端,然后回溯到上一个节点继续遍历。
深度遍历使用栈来实现,可以通过递归或迭代来进行。
2.广度遍历广度遍历是一种用于遍历或搜索图中节点的算法,其原理是从图的某一顶点出发,依次访问其所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推。
广度遍历使用队列来实现。
三、深度遍历和广度遍历的应用1.深度遍历的应用深度遍历常用于求解图的连通分量、拓扑排序、解决迷宫问题等。
在连通分量中,深度遍历可以帮助我们找到图中的所有连通分量,并对其进行标记,用于进一步的算法运算。
在拓扑排序中,深度遍历可以帮助我们找到一个合理的顺序,用以处理依赖关系问题。
在解决迷宫问题时,深度遍历可以帮助我们找到一条从起点到终点的路径。
2.广度遍历的应用广度遍历常用于求解最短路径、解决迷宫问题等。
在求解最短路径中,广度遍历可以帮助我们找到起点到终点的最短路径,从而解决了许多实际问题。
图的遍历(深度优先遍历和广度优先遍历)
遍历规则 从图中某结点v0出发,深度优先遍历(DFS: Depth First Search)图的规则为: 访问v0; 对v0的各个出点v01,v02,…,v0m,每次从它们中按一定方式(也可任选)选取一个未被访问过的结点,从该结点出发按深度优先遍历方式遍历。 然,因为我们没有规定对出点的遍历次序,所以,图的深度优先遍历结果一般不唯一。
20.2 深度优先遍历
例如,对图 20‑1给出的有向图与无向图,一些遍历结果(结点访问次序)为: 左图:从1出发:1,2,4,5;或1,5,2,4 从2出发:2,1,5,4;或2,4,1,5 右图:从a出发:a,b,c,d;或a,b,d,c; … …
A 如果不想让visited或top做为函数参数,也可以在函数中将其定义为static型量。但是,这样的程序是不可再入的,即函数再次被调用时,static型的量也不重新初始化,造成错误!
上面函数中的参数visited和top实质上是中间变量,只是为了避免在递归调用时重新初始化而放在参数表中,造成使用的不方便,为此,做个包装程序: long DFS1(int g[][CNST_NumNodes], long n, long v0, long *resu ) { char *visited; long top=0; visited = new char[n]; for (long i=0; i<n; i++) visited[i]=0; long num=DFS1( g, n, v0, visited, resu, top ); delete visited; return num; }
深度优先遍历非递归算法的一般性描述。
long DFS_NR(图g,结点v0)
单击此处可添加副标题
dfs的原理与应用
DFS的原理与应用1. 什么是DFSDFS(Depth-First Search),即深度优先搜索,是一种图遍历算法。
它通过访问一个顶点,然后再递归访问该顶点的所有未访问过的相邻顶点。
DFS的遍历方式类似于树的前序遍历,首先沿着树的深度遍历直到最深处,然后回溯到前一个节点,再继续遍历下一个节点,直到所有节点都被访问完成。
2. DFS的原理DFS基于栈或递归的原理实现。
其基本思想是:从图的某个顶点出发,访问此顶点,并将其标记为已访问。
然后选择该顶点的一个邻接顶点作为下一个要被访问的顶点,并将其入栈或递归调用。
直到栈为空或无法继续访问为止,遍历结束。
3. DFS的应用DFS在图的遍历中具有广泛的应用,它可以解决很多实际问题。
以下是几个常见的DFS应用场景:3.1 连通性问题对于一个无向图,可以使用DFS来判断两个顶点之间是否存在路径。
通过从一个顶点出发进行DFS,如果能访问到目标顶点,则说明两个顶点之间存在路径。
3.2 拓扑排序拓扑排序可以解决有向无环图(DAG)中的节点排序问题。
DFS可以通过寻找有向图中的环来实现拓扑排序。
具体步骤是,首先从一个未访问的顶点开始DFS,当访问完根节点的所有后继节点后,将此节点加入结果集。
然后继续DFS下一个未访问过的顶点,直到所有顶点都被访问。
3.3 迷宫求解在迷宫中,通常需要找到一条从起点到终点的路径。
DFS可以通过遍历迷宫中的所有可能路径来找到解。
具体过程是,从起点开始DFS,尝试每一种可能的行进方向,直到找到终点或者无法继续前进。
如果找到终点,则迷宫有解;如果无法继续前进,则迷宫无解。
3.4 图的连通分量在一个有向图或无向图中,DFS可以用于找出图中的所有连通分量。
具体步骤是,从一个未访问的顶点开始DFS,在DFS过程中遍历所有与其相连的节点,并将其标记为已访问。
然后找到下一个未访问的顶点,继续DFS,直到所有顶点都被访问。
3.5 数独求解DFS可以用于解决数独游戏。
数据结构中图的遍历算法研究
数据结构中图的遍历算法研究作者:陈思薇来源:《课程教育研究》2018年第40期【摘要】图算法是数据结构与算法中一个比较重要的内容,而图的遍历算法是图算法的基础,也就是说其他的图算法都是在遍历算法的基础之上加以改进。
本篇论文主要介绍了两种图的遍历算法,分别是图的深度优先遍历和图的宽度优先遍历。
在介绍图的遍历算法之前,先介绍了图的基础知识,其中包括图的定义、邻接点和关联边、顶点的度、(强)连通图和图的表示方法。
介绍图的遍历算法时,依次介绍了遍历算法的基本步骤、程序框图和伪代码。
最后对全文做总结,并对图的遍历算法在未来如何应用的问题进行了展望。
【关键词】深度优先遍历 ;宽度优先遍历【中图分类号】G63 【文献标识码】A 【文章编号】2095-3089(2018)40-0222-021.引言遍历算法是目前计算机领域中的一个重要的研究方向,一个问题的求解就是从最开始的状态,利用已经存在的规则和条件改变当前状态,直到把当前状态变为最终目的状态,把中间出现的状态全部连接起来,变成一条遍历路径的过程。
通过图的遍历,我们可以找到这条路径[1]。
图的遍历算法主要有两种,一种是按照深度优先的顺序展开遍历的算法,也就是深度优先遍历[2];另一种是按照宽度优先的顺序展开遍历的算法,也就是宽度优先遍历[3]。
宽度优先遍历是沿着图的深度遍历图的所有节点,每次遍历都会沿着当前节点的邻接点遍历,直到所有点全部遍历完成。
如果当前节点的所有邻接点都遍历过了,则回溯到上一个节点,重复这一过程一直到已访问从源节点可达的所有节点为止。
如果还存在没有被访问的节点,则选择其中一个节点作为源节点并重复以上过程,直到所有节点都被访问为止。
利用图的深度优先搜索可以获得很多额外的信息,也可以解决很多图论的问题。
宽度优先遍历又名广度优先遍历。
通过沿着图的宽度遍历图的节点,如果所有节点均被访问,算法随即终止。
宽度优先遍历的实现一般需要一个队列来辅助完成。
深度优先遍历算法和广度优先遍历算法实验小结
深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。
深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。
它们在解决图的连通性和可达性等问题上具有重要的应用价值。
本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。
二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。
深度优先遍历算法通常使用栈来实现。
以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。
广度优先遍历算法通常使用队列来实现。
以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。
具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。
深度遍历和广度遍历例题
深度遍历和广度遍历例题(原创实用版)目录1.深度遍历和广度遍历的定义与特点2.深度遍历和广度遍历的实现方法与算法3.深度遍历和广度遍历的应用场景与优缺点比较4.深度遍历和广度遍历的例题解析正文一、深度遍历和广度遍历的定义与特点深度遍历,简称 DFS(Depth First Search),是一种遍历图的算法。
它的特点是从某个起始节点开始,尽可能深地搜索相邻节点,直到遇到死路或者已经访问过的节点为止。
然后回溯到上一个节点,继续搜索其他相邻节点。
这种遍历方式可以尽可能地优先探索深层次的节点。
广度遍历,简称 BFS(Breadth First Search),也是一种遍历图的算法。
它的特点是从某个起始节点开始,逐层遍历相邻节点。
首先访问起始节点,然后将其标记为已访问,接着遍历与起始节点相邻的所有节点,并将这些节点标记为已访问。
接下来,从这些已访问的节点中选择一个未访问的节点作为新的起始节点,继续遍历其相邻节点。
这种遍历方式可以保证所有与起始节点同层级的节点都被访问到。
二、深度遍历和广度遍历的实现方法与算法深度遍历的实现方法通常采用递归或者栈(Stack)数据结构。
以递归为例,我们从起始节点开始,访问当前节点并将其标记为已访问。
然后判断当前节点是否有未访问的相邻节点,如果有,则选择一个未访问的相邻节点作为新的起始节点,继续进行深度遍历。
如果当前节点没有未访问的相邻节点,则回溯到上一个节点,继续搜索其他相邻节点。
广度遍历的实现方法通常采用队列(Queue)数据结构。
我们首先将起始节点加入队列,并将其标记为已访问。
然后从队列中取出一个节点,访问该节点并将其所有未访问的相邻节点加入队列,标记为已访问。
接着,我们继续从队列中取出节点并访问,直到队列为空或者所有节点都被访问为止。
三、深度遍历和广度遍历的应用场景与优缺点比较深度遍历通常用于寻找某个目标节点是否存在于图中,或者寻找从起始节点到目标节点的一条路径。
它的优点是空间复杂度较低,只需要记录当前节点及其相邻节点的信息。
离散数学中的图的遍历与最短路径
离散数学是数学的一个重要分支,研究离散结构与离散量的关系。
在离散数学当中,图是一个重要的概念,它用来描述事物之间的关系。
图的遍历与最短路径是图论中的两个重要问题,它们在计算机科学和网络通信等领域有广泛的应用。
图的遍历是指通过某种策略,按某个顺序访问图的所有节点。
在图的遍历过程中,我们需要使用一种数据结构来记录已经访问过的节点,并按照某种规则来选择下一个要访问的节点。
常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索是一种递归的搜索算法,它会首先访问一个节点的所有邻接节点,然后再依次递归访问这些节点的邻接节点,以此类推,直到没有未访问的邻接节点。
深度优先搜索能够完整地遍历图中的每个节点,并且可以用来解决一些需要遍历整个图的问题,例如判断图的连通性或寻找图的割点。
广度优先搜索是一种非递归的搜索算法,它从图的某个起始节点开始,先访问该节点的所有邻接节点,然后再依次访问这些邻接节点的邻接节点,以此类推,直到遍历完整个图。
广度优先搜索能够找到最短路径,因为它首先访问的是距离起始节点最近的节点,然后再访问离起始节点更远的节点。
因此,广度优先搜索常用于寻找最短路径或解决一些需要在有限步数内找到目标节点的问题。
最短路径是图论中的一个常见问题,它用于寻找两个节点之间最短的路径。
在有向图中,最短路径可以使用Dijkstra算法或Bellman-Ford算法来求解。
Dijkstra算法通过维护一个距离数组来记录起始节点到其他节点的距离,并通过选择路径距离最短的节点来更新距离数组,直到找到最短路径。
Bellman-Ford算法则利用动态规划的思想,通过多次循环来更新距离数组,直到没有更新为止。
在无向图或有向无环图中,最短路径可以使用广度优先搜索来求解。
广度优先搜索能够找到距离起始节点最近的节点,并且同时能够记录节点之间的路径。
因此,在广度优先搜索过程中,我们可以使用一个数组来记录节点之间的路径,并根据起始节点到目标节点的路径来回溯,从而找到最短路径。
图的深度优先遍历算法及运用
5 结 语
通 过上述探 讨 ,基 本理清 了 图的深度优 先遍历 算法 的学
出 2者 的关系 ,如果没有直系关系 ,请输出一 。
分析 :这道题 目可 以建模 为树模 型 ,但 这里 用 图的深度 优先遍历算法加 以变化来实现 。 思想 :由于要求 的问题有两种情况 :A是 B的 *hl A ci d或 是 B的 * aet p rn;为 了表示 方 向性 ,邻 接矩 阵元素值 为 1 表示
l odds( t 1 v i f i nu
{
, / 标记该结点 已访问
mak d [】 = t e re u r ; u
fr( t o i n v=0 v<V; + ) ; V +
/ / 探测与 U相连且未被访 问的结点
i ma U 【] = re&& mak d 【】 = a e f( t[】 v =t u r e v =fl ) s
一
4 深度优 先 思想 运用
深度优先思想 主要体现在 重要 的算法策 略—— 回溯法 中。 回溯法被称 为万能 的解题方法 。它主要 通过 在解空 间 中使 用 深度优先思想来完成约束满足问题和路径求解 问题的实现。
其核 心代码 非常类似 深度优先遍 历算 法的代码 。通 常可 以用 该方法解决小规模的 N C问题。 P 这些 更为深 入的学 习和思考 I I 够扩大 知识 面 ,提高 解  ̄ I I 决 问题 的能力 。这就是数据结构课程学习的第三个阶段 :思。
辈 ,则在关 系上加一 个 get 。输入包 含多 组测试 用例 , ra一 每
组用例首先包含 2个整数 n (< n = 6 0 = < 2 )和 m (< 5 ), 0 m< 0 分
别 表示 有 n个亲属关 系和 m个问题, 然后 接下来 是 n行的形式 如 A C的字符串 ,表示 A的父母亲分别是 B和 C B ,如果 A的 父母 亲信息不全 ,则用一 代替 ,例如 A C,再 然后 是 m行形式 — 如F A的字符 串 ,表示 询 问 F和 A的关 系 。当 n和 m 为 0时 结束输 入 。如果询 问的 2个人 是直 系亲属 ,请按 题 目描述输