欧姆定律的内容
人教版九年级物理《第17章-欧姆定律》知识点汇总整理
第一节电阻上的电流跟两端电压的关系当电阻一定时,导体中的电流跟导体两端的电压成正比。
当电压一定时,导体的电流跟导体的电阻成反比。
第二节欧姆定律及其应用1、欧姆定律内容:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。
(德国物理学家欧姆)公式:I = URR=UIU=IRU——电压——伏特(V);R——电阻——欧姆(Ω);I——电流——安培(A)使用欧姆定律时需注意:R=UI不能被理解为导体的电阻跟这段导体两端的电压成正比,跟导体中的电流成反比。
因为电阻是导体本身的一种性质,它的大小决定于导体的材料、长度、横截面积和温度,其大小跟导体的电流和电压无关。
人们只能是利用这一公式来测量计算导体的电阻而已。
第三节电阻的测量伏安法测量小灯泡的电阻【实验原理】R=U I【实验器材】电源、开关、导线、小灯泡、电流表、电压表、滑动变阻器。
【实验电路】【实验步骤】①按电路图连接实物。
②检查无误后闭合开关,使小灯泡发光,记录电压表和电流表的示数,代入公式R=U I 算出小灯泡的电阻。
③移动滑动变阻器滑片P 的位置,多测几组电压和电流值,根据R=U I ,计算出每次的电阻值,并求出电阻的平均值。
【实验表格】次数电压U/V 电流I/A 电阻R/Ω 平均值R/Ω123 【注意事项】①接通电源前应将开关处于断开状态,将滑动变阻器的阻值调到最大;②连好电路后要通过试触的方法选择电压表和电流表的量程;③滑动变阻器的作用:改变电阻两端的电压和通过的电流;保护电路。
欧姆定律导体中的电流i和导体两端的电压u成正比和导体的电阻r成反比即 (1)
欧姆定律导体中的电流I和导体两端的电压U成正比,和导体的电阻R成反比,即I=U/R这个规律叫做欧姆定律。
如果知道电压、电流、电阻三个量中的两个,就可以根据欧姆定律求出第三个量,即I=U/R,R=U/I,U=I×R在交流电路中,欧姆定律同样成立,但电阻R应该改成阻抗Z,即I=U/Z欧姆定律流过电路里电阻的电流,与加在电阻两端的电压成正比,与电阻的阻值成反比。
这就是欧姆定律。
电容电容是衡量导体储存电荷能力的物理量。
在两个相互绝缘的导体上,加上一定的电压,它们就会储存一定的电量。
其中一个导体储存着正电荷,另一个导体储存着大小相等的负电荷。
加上的电压越大,储存的电量就越多。
储存的电量和加上的电压是成正比的,它们的比值叫做电容。
如果电压用U表示,电量用Q表示,电容用C表示,那么C=Q/U电容的单位是法(F),也常用微法(uF)或者微微法(pF)做单位。
1F=106uF,1F=1012pF。
电容可以用电容测试仪测量,也可以用万用电表欧姆档粗略估测。
欧姆表红、黑两表笔分别碰接电容的两脚,欧姆表内的电池就会给电容充电,指针偏转,充电完了,指针回零。
调换红、黑两表笔,电容放电后又会反向充电。
电容越大,指针偏转也越大。
对比被测电容和已知电容的偏转情况,就可以粗略估计被测电容的量值。
在一般的电子电路中,除了调谐回路等需要容量较准确的电容以外,用得最多的隔直、旁路电容、滤波电容等,都不需要容量准确的电容。
因此,用欧姆档粗略估测电容量值是有实际意义的。
但是,普通万用电表欧姆档只能估测量值较大的电容,量值较小的电容就要用中值电阻很大的晶体管万用电表欧姆档来估测,小于几十个微微法的电容就只好用电容测试仪测量了。
容抗交流电是能够通过电容的,但是电容对交流电仍然有阻碍作用。
电容对交流电的阻碍作用叫做容抗。
电容量大,交流电容易通过电容,说明电容量大,电容的阻碍作用小;交流电的频率高,交流电也容易通过电容,说明频率高,电容的阻碍作用也小。
九年级物理第十七章欧姆定律重难点
九年级物理第十七章欧姆定律重难点第一节电阻上的电流跟两端电压的关系当电阻一定时,导体中的电流跟导体两端的电压成正比。
当电压一定时,导体的电流跟导体的电阻成反比。
第二节欧姆定律及其应用1、欧姆定律内容:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。
(德国物理学家欧姆)公式:I=U/R R=U/I U=IRU——电压——伏特(V);R——电阻——欧姆(Ω);I——电流——安培(A)使用欧姆定律时需注意:不能被理解为导体的电阻跟这段导体两端的电压成正比,跟导体中的电流成反比。
因为电阻是导体本身的一种性质,它的大小决定于导体的材料、长度、横截面积和温度,其大小跟导体的电流和电压无关。
人们只能是利用这一公式来测量计算导体的电阻而已。
2、电阻的串联和并联电路规律的比较注意:电路(串联、并联)中某个电阻阻值增大,则总电阻随着增大;某个电阻阻值减小,则总电阻随着减小。
1.第三节电阻的测量伏安法测量小灯泡的电阻【实验原理】【实验器材】电源、开关、导线、小灯泡、电流表、电压表、滑动变阻器。
【实验电路】【实验步骤】①按电路图连接实物。
②检查无误后闭合开关,使小灯泡发光,记录电压表和电流表的示数,代入公式算出小灯泡的电阻。
③移动滑动变阻器滑片P的位置,多测几组电压和电流值,根据,计算出每次的电阻值,并求出电阻的平均值。
【实验表格】【注意事项】①接通电源前应将开关处于断开状态,将滑动变阻器的阻值调到最大;②连好电路后要通过试触的方法选择电压表和电流表的量程;③滑动变阻器的作用:改变电阻两端的电压和通过的电流;保护电路。
全电路欧姆定律的内容和表达式
全电路欧姆定律是电学中最基本的定律之一,描述了电流、电阻和电压之间的关系。
其内容为:**在全电路中,电流与电源的电动势成正比,与内外电路的电阻之和成反比**。
全电路欧姆定律的表达式为:**I=E/(R+r)**,其中I表示电流,E 表示电源的电动势,R表示外电路电阻,r表示电源内阻。
所有单位均为国际单位制,即电流的单位是安培(A),电动势和电压的单位是伏特(V),电阻的单位是欧姆(Ω)。
这个定律说明,在一个闭合电路中,如果知道电源的电动势、内电路的电阻和外电路的电阻,就可以计算出电路中的电流。
反之,如果知道电路中的电流、电源的电动势和其中一个电阻(内电阻或外电阻),就可以求出另一个电阻。
需要注意的是,全电路欧姆定律只适用于线性电路,即电路中的元件(如电阻、电源等)都满足线性关系。
对于非线性电路,全电路欧姆定律不再适用。
【初中物理】初中物理知识点:欧姆定律及其应用
【初中物理】初中物理知识点:欧姆定律及其应用内容:通过导体的电流与导体两端的电压成正比,与导体的电阻成反比;公式:I=u/R,u为导线两端的电压,单位为V;R是导体的电阻,单位为ω;I是通过导体的电流,单位为a。
单位使用:当使用欧姆定律时,各种物理量的单位必须统一。
I的单位是a,u的单位是V,R的单位是ω解析“欧姆定律”:欧姆定律是电学的基本定律和核心内容。
这是贯穿整个电力系统的主线。
让我们从以下几个方面进行深入分析1.要理解欧姆定律的内容(1)欧姆定律成正比和成反比的结论是有条件的。
如果导体中的电流与导体两端的电压成正比,则条件是电阻相同,即电阻恒定;如果导体中的电流与导体的电阻成反比,则条件是导体两端的电压保持不变。
(2)注意顺序,不能反过来说,电阻一定时,电压跟电流成正比。
这里存在一个逻辑关系,电压是原因,电流是结果。
是因为导体两端加了电压,导体中才有电流,不是因为导体中通了电流才有了电压,因果关系不能颠倒。
同样,也不能说导体的电阻与通过导体的电流成反比。
我们知道电阻是导体本身的特性。
即使导体中没有电流,其电阻也不会改变,其电阻也不会因导体中电流的增加或减少而改变。
2.要知道欧姆定律的公式和单位欧姆定律的表达式,可变形为u=IR和R=,但这三个式子是有区别的。
(1),是欧姆定律的表达式,它反映了通过导体的电流的大小跟导体两端所加的电压这个外部原因和导体本身的电阻这个内部原因之间的因果关系。
(2) U=IR,当电流恒定时,导体两端的电压与其电阻成正比。
不能说当导体的电阻恒定时,导体两端的电压与通过的电流成正比,因为电压是形成电流的原因。
电压由电源决定,与I和R无关。
该公式在计算比率时适用,没有物理意义。
(3),这个公式也是一个数量变化,没有物理意义。
不要误解,导体的电阻与导体两端的电压成正比,与导体中的电流成反比。
一、公式中的u和R应采用国际单位制,即电流单位为安培,符号为a;电压单位为伏特,符号为V;电阻的单位是欧姆,符号ω。
闭合电路欧姆定律的应用
二、路端电压与负载的关系
▪ 1.由U=E-Ir I U :I U ▪ 2.两种特殊情况 ▪ (1).断路 I=0,U=E ▪ (2).短路 R=0 U=0 I=E/r ▪ 注意:短路电流很大,绝对不允许将电源两
端用导线直接连接在一起
三、几种典型问题
▪ 1.电路动态变化问题 ▪ 2.纯电阻电路计算 ▪ 3.非纯电阻电路计算
的电动势E= V,电池的内电阻r= 。 1996年,清华大学和香港大学的学生合作研制的太阳能汽车,是以太阳能电池将所接到的太阳光能转化为电能而提供给电动机来驱动
的,设车上太阳能电池接受太阳光能的面板面积S=8m2,太阳光照射时能向外提供U=120V的电压,并对车上电动机提供I=10A的电流 ,电动机的线圈电阻为R=4Ω.
电阻为R=4Ω.
Ω (1)该太阳能内阻r=1 ,则该
太阳能电池的电动势是多大? (2)该太阳能电池的输电效率是 多少? (3)电动机正常工作时电能转化为机械能的效率=?
8、我们都有过这样的体验:手电筒里的两节干电池 用久了以后,灯泡发红光,这就是我们常说的“电 池没电了”,有人为了“节约”,在手电筒里装一 节新电池和一节旧电池搭配使用,某同学为了检验 此人的做法是否合理,设计了下面实验: (1)该同学设计了如图甲所示的电路来分别测量新 旧干电池的电动势和内阻,并将测量结果描绘如图 乙所示的U-I图像,由图线可知,先电池电动势E1= V,内阻r1 ;旧电池电动势E2= V,内阻 R2= 。
V,电源的输出功率为 W。
5、如图所示,R为电阻箱, V为理想电压 表,当电阻箱读数为R1=2时,电压表读 数为U1=4V;当电阻箱读数为R2=5时, 电压表读数为U2=5V,求: (1)电源的电动势E和内阻r;
(2)当电阻箱R读数为多少时,电源的
解释欧姆定律
解释欧姆定律
欧姆定律(Ohm's law)是指在同一电路中,通过某段导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比。
该定律是由德国物理学家乔治·西蒙·欧姆1826年4月发表的《金属导电定律的测定》论文提出的。
科尔劳施使用Dellmann静电计在1849年研究了欧姆定律。
通过电流表测量电流,象限电位表测量电位差,则依据测量结果,导体的电流强度与电位差成正比。
随研究电路工作的进展,人们逐渐认识到欧姆定律的重要性,欧姆本人的声誉也大大提高。
为了纪念欧姆对电磁学的贡献,物理学界将电阻的单位命名为欧姆,以符号Ω表示。
闭合电路的欧姆定律
例1.在如图1所示的电路中,R1=14.0Ω, R2=9.0Ω,当开关S扳到位置1时,电流表 的示数为I1=0.20A;当开关S板到位置2时, 电流表的示数为I2=0.30A,求电源的电动 势和内电阻。
3、闭合电路欧姆定律内容:
注:
闭合电路中的电流跟电源的电动势成正比, 跟内、外电路的电阻之和成反比,
总 内
P总 E R r
(最后一个等号只适用于纯电阻电路)
电源的输出功率
ER ER E P 2 R r 4Rr 4r
当内外电阻相等时, 电源的输出出
Pm
R
E Pm 4r
2
O
r
例1.已知如图,E =6V,r =4Ω ,R1=2Ω , R2的阻值变化范围是0-10Ω 。求:①电 源的最大输出功率;②R1上消耗的最大 功率;③R2上消耗的最大功率。
闭合电路欧姆定律
一、闭合电路欧姆定律
在外电路中,正电荷在电场力的作用下由正 极移向负极,电势降低,降低多少,负载 两端就有多少电压。 内电路中:非静电力把正电荷由负极移到正 极。
2、闭合电路欧姆定律推导;
设电源的电动势为E,外电路电阻为R,内电路 电阻为r,闭合电路电流为I,在时间t内, 1)外电路中电能转化成的内能为Q外=I2Rt 2)内电路中电能转化成的内能为Q内=I2rt 3)非静电力做功: W=Eq=EIt 由能量守恒定律可知:W=Q外+Q内 即 EIt=IRt+Irt 所以有E=IR+Ir 变形得I=E/(R+r)
1)IR=U外是外电路上总的电势降落,习惯 叫做路端电压 2)Ir=U内则是内电路的电势降落 即E=U外+U内
则电动势等于内外电路电势降落之和
物理初三知识点
欧姆定律1.欧姆定律的内容:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。
2.欧姆定律的公式:RU I = 3.单位:I---安培( A ) U------伏特( V ) R-----欧姆 (Ω ) 4.变形公式:IR U = I U R =5.对欧姆定律的理解说明:(1)仅适用于纯电阻电路(即电流通过用电器工作时,消耗的电能全部转化成内能);(2)同体性(或同一性):I 、R 、U 对应的是同一导体或同一段电路,不同导体或不同段电 路不能混用;(3)同时性:I 、R 、U 对应的是同一导体或同一段电路的同一时刻,不同导体或不同段电 路的不同时刻不能混用;(4)同一导体(即R 一定),I 与U 成正比,不能说成U 与I 成正比;同一电压(即U 一定),I 与R 成反比,不能说成R 与I 成反比;(5)IU R =是电阻的计算式,它表示导体或一段电路的电阻可以由U 与I 计算出大小,而电阻是导体本身的一种属性,与导体的U 与I 两个量无关。
(6)运用欧姆定律对动态电路的分析方法:①根据串、并联电路的特点、定义等方法首先判断电路的连接情况;②明确电流表、电压表测哪部分电路;③判断电路的变化是由于开关的通断引起的,还是由于滑动变阻器滑片的移动引起的。
如果是由于开关的通断引起的,就要根据所给条件画出有效电路图,再根据欧姆定律分析电路的变化情况;如果是由于滑动变阻器滑片的移动引起的,要先判断滑动变阻器的哪一部分接入电路中,再根据欧姆定律分析电路的变化情况;导体和绝缘体导体和绝缘体导体:容易导电的物体。
如:各种金属,酸碱盐的水溶液,大地,人体等。
绝缘体:不容易导电的物体。
如:玻璃,陶瓷,橡胶,塑料。
半导体和超导体半导体:导电能力介于导体与绝缘体之间的材料。
如锗、硅、砷化镓。
超导现象:一些物质当温度下降到某一温度时,电阻会变为零,这种现象叫超导现象。
超导体:能够发生超导现象的物质,叫做超导体。
浮力的计算阿基米德原理:F浮=G排推导理解公式:F浮=G排= ρ液gv排适用于液体和气体1、影响浮力大小的因素:只与液体密度及排开液体的体积大小有关(注:与物体密度、物体体积、物体浸入的深度等外界条件无关)2、单位:牛顿( N )物体排开液体体积 V排和ρ液的确定(1)关于v排:(1)完全浸没:V排= V物(2)未完全浸没:V排=V入<V物(3)ρ液是指液体的密度,不要与浸入液体中的物体的密度混淆.物体所受浮力理论上与自身的密度无关.比热容比热容:单位质量的某种物质温度升高(降低)1℃时吸收(放出)的热量。
闭合电路的欧姆定律
闭合电路的欧姆定律【知识点归纳】(一)、闭合电路的欧姆定律:1、闭合电路的欧姆定律的内容:(1)闭合电路里的电流,跟电源的电动势成正比,跟整个电路的电阻成反比。
公式:I = rR E + ; (2)从闭合电路欧姆定律中,还可导出电路功率的表达式: EI = U I + U'I = I 2R + I 2r 。
(3)、定律的适用条件:外电路为纯电阻电路。
2、闭合电路欧姆定律的应用:路端电压变化的讨论:(1)当R 增大时,I 减小,U'=I r 减小,U 增大;当R ∞时,I = 0 ,U =E (最大);0 时 ,I = rE ,U = 0 ; (2)当R 减小时,U 减小,当R 3、闭合电路欧姆定律的应用(二)应用闭合电路的欧姆定律分析电路中有关电压、电流、电功率的方法;(1)分析电路中的电压、电流、电阻时,一般先由闭合电路欧姆定律确定电路的总电流、路端电压,再结合部分电路的欧姆定律分析各部分电路的参数。
(2)分析电源的电动势、内电阻时,可将(1)中的分析顺序逆进行。
(3)分析电路的功率(或能量)时可用公式EI = U I + U'I = I 2R + I 2r其中EI 为电源的总功率(或消耗功率),U I= I 2R 为电源的输出功率(或外电路的消耗功率);U'I= I 2r 为电源内部损耗功率,要注意区分。
【案例分析】一、 判断灯的亮暗例1、 四个灯泡连接如图所示,当电键S 2断开、S 1接通a 点时,灯泡L 1最亮,L 2和L 4最暗且亮度相同,当电键S 2闭合、S 1接通b 点时,下例亮度分析正确的是( )A. 灯泡L 1最亮,L 4最暗B. 灯泡L 2最亮,L 3最暗C. 灯泡L 3最亮,L 1最暗D.灯泡L 4最亮,L 1最暗二、 电压表和电流表示数的变化例2、 如图所示是一火警报警系统的部分电路示意图,其中R 2为用半导体正热敏材料制成的,电流表为值班室的显示器,a 、b 之间接报警器,当传感器R 2所在处出现火情时,显示器中的电流I 和报警器两端的电压U 的变化情况是( )A 、I 变大,U 变大B 、I 变小,U 变小C 、I 变小,U 变大D 、I 变大,U 变小例3、 如图所示的电路中,当滑动变阻器的滑动触片向 b 端移动时:A.伏特表 V 和安培表A 的读数都减小B.伏特表V 和安培表A 的读数都增大C.伏特表V 的读数增大,安培表A 的读数减小D.伏特表V 的读数减小,安培表A 的读数增大三、判断电路的故障例4、如图所示的电路中,灯泡LA和L B都是正常发光的,忽然灯泡L B比原来变暗了些,而灯泡L A比原来变亮了些,试判断电路中什么地方出现了断路故障(设只有一处出了故障)。
全电路欧姆定律与部分电路欧姆定律
全电路欧姆定律与部分电路欧姆定律解析一、部分电路欧姆定律与闭合电路欧姆定律的内容部分电路欧姆定律也就是初中学过的欧姆定律,内容表述为:导体中的电流跟导体两端的电压U 成正比,跟导体的电阻R 成反比。
用公式表述为:RU I =,上式可变形IU R =或IR U =,电路图如图1中的虚线部分所示。
闭合电路欧姆定律也叫全电路欧姆定律,其内容表述为:闭合电路的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。
用公式表述为:rR E I +=,上式可变形为Ir IR E +=或写成外内U U E +=,电路图如图2所示。
二、部分电路欧姆定律与闭合电路欧姆定律的比较1.相同点二者的相同点:两表达式中的R 一般指纯电阻(线性电阻),都既可应用于直流电路又可应用于交流电路。
2.不同点二者的不同点:(1)、部分电路欧姆定律中不涉及电源,而闭合电路欧姆定律应用于内、外电路组成的闭合回路,必有电源(电动势);(2)、部分电路欧姆定律常用于计算电路中某元件的电阻、电流与电压间的关系,而闭合电路欧姆定律则注重的是整个闭合电路的电阻、电流与电动势的关系;U图1 图2图3 图4(3)部分电路欧姆定律常表示某一个金属导体在温度没有显著变化的前提下,电阻是不变的,可用U I -图象(导体的伏安特性曲线)表示,如图3。
而闭合电路欧姆定律rR E I +=可变式为Ir IR E +=,即Ir E U -=,也可用I U -图象表示,如图4,这条向下倾斜的直线为电源的外特性曲线;当外电路断开时,也就是0=I ,Ir 也变为零,则E U =,这就是说,断路时的路端电压等于电源电动势;当电源两端短路时,外电阻0=R ,而rE I =0,根据图象可求电源的内阻。
跟踪练习1.下列说法中正确的是( )A .由IU R =知道,一段导体的电阻跟它两端的电压成正比,跟通过它的电流成反比B .比值IU 反映了导体阻碍电流的性质,即I U R = C .导体电流越大,电阻越小D .由R U I =知道,通过一段导体的电流跟加在它两端的电压成正比2、根据部分电路欧姆定律,下列判断中正确的是( )A.对欧姆定律适用的导体或器件,电流与电压不成正比,伏安特性曲线不是直线B.电流经过电阻时,沿电流方向电势要降低C.导体中的电压越大,电阻越大D.电阻是反映导体材料导电性能的物理量3.有一电池,当两端接Ω3的0.1;当再串联一只Ω3的电阻时,电流为A电阻时,路端电压为V6.3。
物理电学欧姆定律知识点
物理电学欧姆定律知识点物理电学欧姆定律知识点篇一1. I=U/R(欧姆定律:导体中的电流跟导体两端电压成正比,跟导体的电阻成反比)2. I=I1=I2=…=In (串联电路中电流的特点:电流处处相等)3. U=U1+U2+…+Un (串联电路中电压的特点:串联电路中,总电压等于各部分电路两端电压之和)4. I=I1+I2+…+In (并联电路中电流的特点:干路上的电流等于各支路电流之和)5. U=U1=U2=…=Un (并联电路中电压的特点:各支路两端电压相等。
都等于电源电压)6. R=R1+R2+…+Rn (串联电路中电阻的特点:总电阻等于各部分电路电阻之和)7. 1/R=1/R1+1/R2+…+1/Rn (并联电路中电阻的特点:总电阻的倒数等于各并联电阻的倒数之和)8. R并= R/n(n个相同电阻并联时求总电阻的公式)9. R串=nR (n个相同电阻串联时求总电阻的公式)10. U1:U2=R1:R2 (串联电路中电压与电阻的关系:电压之比等于它们所对应的电阻之比)11. I1:I2=R2:R1 (并联电路中电流与电阻的关系:电流之比等于它们所对应的电阻的反比)篇二电荷电荷也叫电,是物质的一种属性。
①电荷只有正、负两种。
与丝绸摩擦过的玻璃棒所带电荷相同的电荷叫正电荷;而与毛皮摩擦过的橡胶棒所带电荷相同的电荷叫负电荷。
②同种电荷互相排斥,异种电荷互相吸引。
③带电体具有吸引轻小物体的性质④电荷的多少称为电量。
⑤验电器:用来检验物体是否带电的仪器,是依据同种电荷相互排斥的原理工作的。
2、导体和绝缘体容易导电的物体叫导体,金属、人体、大地、酸碱盐的水溶液等都是是常见的导体。
不容易导电的物体叫绝缘体,橡胶、塑料、玻璃、陶瓷等是常见的绝缘体。
理解:导体和绝缘体的划分并不是绝对的,当条件改变时绝缘体也能变成导体,例如在常温下是很好的绝缘体的玻璃在高温下就变成了导体。
又如常态下,气体中可以自由移动的带电微粒(自由电子和正、负离子)极少,因此气体是很好的绝缘体,但在很强的电场力作用下,或者当温度升高到一定程度的时候,由于气体的电离而产生气体放电,这时气体由绝缘体转化为导体。
磁路的三个基本定律
磁路的三个基本定律一、磁路的欧姆定律1. 内容- 磁路中的磁通Φ(单位为韦伯,Wb)与磁动势F(单位为安匝,At)成正比,与磁阻R_m(单位为H^-1)成反比,即varPhi=(F)/(R_m)。
2. 相关概念- 磁动势F:磁动势是产生磁通的激励,等于线圈的匝数N与通过线圈的电流I 的乘积,即F = NI。
例如,一个线圈匝数为100匝,通过的电流为2A,则磁动势F=100×2 = 200安匝。
- 磁阻R_m:磁阻表示磁路对磁通的阻碍作用,它与磁路的长度l(单位为米,m)成正比,与磁路的横截面积S(单位为平方米,m^2)和磁导率μ(单位为亨/米,H/m)成反比,即R_m=(l)/(μ S)。
例如,对于一段长度l = 0.5m,横截面积S=0.01m^2,磁导率μ = 4π×10^-7H/m的磁路,其磁阻R_m=(0.5)/(4π×10^-7)×0.01≈3.98×10^7H^-1。
二、磁路的基尔霍夫第一定律(磁通连续性定律)1. 内容- 对于磁路中的任一闭合面,进入该闭合面的磁通等于离开该闭合面的磁通,即∑varPhi = 0。
2. 理解与示例- 这一定律类似于电路中的基尔霍夫电流定律。
例如,在一个有分支的磁路中,假设一个节点处有三条磁路分支,磁通分别为varPhi_1、varPhi_2和varPhi_3,如果规定进入节点为正,离开节点为负,则varPhi_1-varPhi_2-varPhi_3 = 0。
也就是说,磁通在磁路的节点处是连续的,不会凭空产生或消失。
三、磁路的基尔霍夫第二定律(安培环路定律的推广)1. 内容- 在磁路的任一闭合回路上,磁动势的代数和等于各段磁路磁压降(Hl,其中H为磁场强度,单位为安/米,A/m)的代数和,即∑ F=∑ Hl。
2. 相关概念与示例- 磁场强度H:磁场强度与磁导率μ和磁感应强度B(单位为特斯拉,T)的关系为B = μ H。
欧母定律内容
欧母定律内容
欧姆定律的内容是导体中的电流与导体两端的电压成正比,与导体的电阻成反比。
欧姆定律是由德国物理学家欧姆在19世纪初期经过大量实验得出的一条关于电路的重要定律。
欧姆定律有部分电路欧姆定律和全电路欧姆定律之分。
部分电路欧姆定律是指一段电路中的电流与这段电路两端的电压成正比,与这段电路的电阻成反比,即部分电路欧姆定律也称作外电路欧姆定律,公式为I=U/R、U=R*I、R=U/I。
全电路欧姆定律是指闭合电路中的电流与电源的电动势成正比,与电源的内阻和外电路电阻之和成反比,公式为U(电源的电动势)=外电路的电压+电流电源的内阻,外电路的电压=外电路的等效电阻电流。
2.2 欧姆定律、导体的电阻和U-I图像
欧姆定律、导体的电阻和U-I 图像精讲年级:高中 科目:物理 类型:选考 制作人:黄海辉知识点:欧姆定律、导体的电阻和U-I 图像 1.欧姆定律(1)内容:导体中的电流I 跟导体两端的电压U 成正比,跟导体的电阻R 成反比。
(2)公式:I =U R 。
(3)适用条件:适用于金属和电解液导电,适用于纯电阻电路。
2.导体的电阻 (1)电阻①定义式:R =UI 。
②物理意义:导体的电阻反映了导体对电流阻碍作用的大小,R 越大,阻碍作用越大。
(2)电阻定律①内容:同种材料的导体,其电阻跟它的长度成正比,与它的横截面积成反比,导体的电阻还与构成它的材料有关。
②表达式:R =ρlS 。
(3)电阻率①计算式:ρ=R Sl 。
②物理意义:反映导体的导电性能,是导体材料本身的属性。
③电阻率与温度的关系金属:电阻率随温度升高而增大; 半导体:电阻率随温度升高而减小。
3.U -I 图象和I -U 图象R1>R2R1<R2电阻随电压U的增大而增大电阻随电压U的增大而减小4.电阻的决定式和定义式的区别5.根据伏安特性曲线求电阻(1)图甲中,图线a、b表示线性元件,图乙中图线c、d表示非线性元件。
(2)图线a、b的斜率表示电阻的倒数,斜率越大,电阻越小,故R a<R b(如图甲所示)。
(3)图线c的电阻随电压的增大而减小,图线d的电阻随电压的增大而增大(如图乙所示)。
(4)伏安特性曲线上每一点的电压坐标与电流坐标的比值即R=UI对应这一状态下的电阻。
要特别注意R≠ΔU ΔI。
(1)在温度一定的条件下,导体的电阻大小由长度、横截面积及材料决定,与电压、电流无关,若考虑温度,导体的电阻率会随着温度的变化而变化。
(2)若U-I图线为直线。
求电阻R时可用直线的斜率ΔUΔI来计算。
若U-I图线为曲线,电阻跟曲线的斜率无关,只能依据曲线对应点的坐标比值UI计算求解。
【例1】关于导体的电阻和电阻率,下列说法中正确的是()A.由R=UI可知,导体的电阻与导体两端电压成正比,与流过导体的电流成反比B.由R=ρlS可知,导体的电阻与导体的长度成正比,与导体的横截面积成反比C.由ρ=RSl可知,导体的电阻率与导体的横截面积成正比,与导体的长度成反比D.由ρ=RSl可知导体的电阻越大,其电阻率越大解析导体的电阻是导体本身的性质,与两端电压和电流无关,选项A错,B 对;电阻率是材料本身的性质,只与材料和温度有关,与导体的长度和横截面积无关,选项C、D均错。
欧姆定律解释
欧姆定律解释
1. 控制变量法:保持电阻不变,改变电压,研究电流随电压的变化关系;保持电压不变改变电流,研究电流随电
阻的变化关系。
2. 研究电流与电压电阻的关系的电路图:
3. 电流与电压、电阻的关系: (1)电流与电压的关系:在电阻一定时,导体中的电流跟这段导体两端的电压成正比。
(2)电流跟电阻的关系:在电压不变时,导体中的电流与导体中的电阻成反比。
4. 欧姆定律的内容:导体中的电流跟导体两端的电压成正比,跟导体的电阻成反比。
5. 公式:R
U I =
(适用于纯电阻电路) 6. 伏安法测电阻(1)原理:R U I =变形:I U R = (2)电路图。