【2014届高考物理易错题查漏补缺】专题18牛顿运动定律总结
高中物理重点基础:牛顿运动定律知识点总结
高中物理重点基础:牛顿运动定律知识点总结高中物理的学习是我们日后在工作生活中的必备知识之一,而牛顿运动定律便是其中最重要的一部分。
牛顿运动定律是描述物体运动状态的基本规律,它由三个定律组成,分别是惯性定律、动力学基本定律和作用反作用定律。
下面我们将逐一介绍这三个定律的知识点,帮助大家在复习阶段更好地理解和掌握。
一、惯性定律惯性定律,又称牛顿第一定律,是物理学基础中最基本的原理之一。
它的描述是:任何物体都具有保持自身静止或匀速直线运动状态的趋势,并且只有当受到外力的作用时,才会发生状态的改变。
这条定律实际上是描述物体的惯性,即体现了物体保持运动状态的倾向。
在学习惯性定律时,我们常常会遇到一些概念,如牛顿惯性参照系、静止摩擦力等。
牛顿惯性参照系是指观察过程中作为参照的“静止参照系”,而静止摩擦力则是受到物体表面阻力而产生的力,同时也是许多物理问题的重点。
此外,在学习惯性定律时我们还会了解到牛顿的经典实验——惯性车实验,这一实验将惯性定律的内容完美地展现在我们眼前。
二、动力学基本定律相比于第一定律而言,第二定律无疑更加实用、更加具有操作性。
牛顿第二定律,又称为动力学基本定律,可以定义为:物体在受到外力作用下,其加速度的大小与作用力成正比,与物体的质量成反比。
其公式为F=ma,其中F代表作用力,m代表质量,a代表加速度,这个公式是物理学习中非常重要的一条知识点。
在学习动力学基本定律的过程中,我们会接触到一些概念,如“自由体图”、“惯性系”、“空气阻力”等。
自由体图是一种将物体从系中切割下来并画出各个受力图向量的方法,惯性系则是比牛顿惯性参照系更深刻的概念,它是指质点在外力作用下仍保持匀速直线运动状态的参照系。
而空气阻力则是一种常见的阻力,特别是在高速的情况下,空气阻力会有着非常明显的影响。
三、作用反作用定律作用反作用定律,又称牛顿第三定律,是描述物体相互作用的基本规律。
它的基本描述是:相互作用的两个物体之间的力大小相等、方向相反,作用力和反作用力处于同一条直线上。
高中物理牛顿定律知识点
高中物理牛顿定律知识点高中物理牛顿定律知识点在平日的学习中,说起知识点,应该没有人不熟悉吧?知识点就是学习的重点。
还在苦恼没有知识点总结吗?以下是店铺为大家整理的高中物理牛顿定律知识点,仅供参考,欢迎大家阅读。
1、牛顿第一定律:(1)内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
(2)理解:①它说明了一切物体都有惯性,惯性是物体的固有性质、质量是物体惯性大小的量度(惯性与物体的速度大小、受力大小、运动状态无关)。
②它揭示了力与运动的关系:力是改变物体运动状态(产生加速度)的原因,而不是维持运动的原因。
③它是通过理想实验得出的,它不能由实际的实验来验证。
2、牛顿第二定律:内容:物体的加速度a跟物体所受的合外力F成正比,跟物体的质量m成反比,加速度的方向跟合外力的方向相同。
3、牛顿第三定律:(1)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上。
(2)理解:①作用力和反作用力的同时性。
它们是同时产生,同时变化,同时消失,不是先有作用力后有反作用力。
②作用力和反作用力的性质相同。
即作用力和反作用力是属同种性质的力。
③作用力和反作用力的相互依赖性。
它们是相互依存,互以对方作为自己存在的前提。
④作用力和反作用力的不可叠加性。
作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两力的作用效果不能相互抵消。
4、牛顿运动定律的适用范围:对于宏观物体低速的运动(运动速度远小于光速的运动),牛顿运动定律是成立的,但对于物体的`高速运动(运动速度接近光速)和微观粒子的运动,牛顿运动定律就不适用了,要用相对论观点、量子力学理论处理。
怎样才能理解一条物理规律1、明确形成规律的依据、方法和过程。
这不仅对可以帮助我们体会人类的科学发展规律,对我们形成合理的知识体系也是及其重要的。
2、明确规律的物理意义及其表述。
包括:该规律在物理学中的地位和作用,明确该规律所反映的物理本质,明确规律表达中的关键词句,明确规律的数学公式的物理含义等等。
高中物理 牛顿运动定律总结
高中物理牛顿运动定律总结(一)牛顿第一定律(即惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
(1)理解要点:①运动是物体的一种属性,物体的运动不需要力来维持。
②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。
③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。
④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。
(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。
①惯性是物体的固有属性,与物体的受力情况及运动状态无关。
②质量是物体惯性大小的量度。
③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量M2/严格相等。
mF r G④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。
(二)牛顿第二定律1. 定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比。
=2. 公式:F m a合理解要点:是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消①因果性:F合失;都是矢量,方向严格相同;②方向性:a与F合③瞬时性和对应性:a为某时刻某物体的加速度,F是该时刻作用在该物体上的合外合力。
(三)力的平衡1. 平衡状态指的是静止或匀速直线运动状态。
特点:a=0。
2. 平衡条件F0。
共点力作用下物体的平衡条件是所受合外力为零,即∑=3. 平衡条件的推论(1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向;(2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点力;(3)物体在三个共点力作用下处于平衡状态时,图示这三个力的有向线段必构成闭合三角形。
高三物理牛顿运动定律知识点总结
高三物理《牛顿运动定律》知识点总结★1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止。
运动是物体的一种属性,物体的运动不需要力来维持。
定律说明了任何物体都有惯性。
不受力的物体是不存在的。
牛顿第一定律不能用实验直接验证。
但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律。
牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2.惯性:物体保持匀速直线运动状态或静止状态的性质。
惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关。
因此说,人们只能"利用"惯性而不能"克服"惯性。
质量是物体惯性大小的量度。
★★★★3.牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F合=ma 牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础。
对牛顿第二定律的数学表达式F合=ma,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。
牛顿第二定律揭示的是力的瞬间效果。
即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度。
牛顿第二定律F合=ma,F合是矢量,ma也是矢量,且ma与F合的方向总是一致的。
F合可以进行合成与分解,ma也可以进行合成与分解。
4.★牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
牛顿运动定律知识点总结
牛顿运动定律知识点总结牛顿运动定律是经典力学的基础,由艾萨克·牛顿在 1687 年于《自然哲学的数学原理》一书中总结提出。
这一定律体系对后来的物理学发展产生了深远影响,下面我们来详细总结一下牛顿运动定律的相关知识点。
一、牛顿第一定律牛顿第一定律,也被称为惯性定律。
其内容是:任何物体都要保持匀速直线运动或静止的状态,直到外力迫使它改变运动状态为止。
从这个定律中,我们可以得出几个重要的概念。
首先是惯性的概念。
惯性是物体保持原有运动状态的性质。
质量是衡量物体惯性大小的唯一量度,质量越大,惯性越大,物体的运动状态就越难改变。
例如,一辆重型卡车和一辆小型轿车,在相同的外力作用下,重型卡车更难改变其运动状态,就是因为它的质量大,惯性大。
其次,牛顿第一定律揭示了力的作用。
力不是维持物体运动的原因,而是改变物体运动状态的原因。
当物体不受力或者所受合力为零时,它将保持静止或匀速直线运动;当物体受到力的作用时,其运动状态就会发生改变。
想象一下,在光滑水平面上滑行的冰球,如果没有摩擦力和其他外力的作用,它将一直匀速直线滑行下去。
二、牛顿第二定律牛顿第二定律是定量描述力与运动关系的定律。
其表达式为:F =ma ,其中 F 表示物体所受的合力,m 是物体的质量,a 是物体的加速度。
这个定律表明,物体的加速度与作用在它上面的合力成正比,与物体的质量成反比。
当合力为零时,加速度也为零,物体将保持匀速直线运动或静止状态。
当合力不为零时,加速度的方向与合力的方向相同。
比如,我们用力推一个质量较大的箱子,如果推力较小,箱子的加速度就小,运动状态改变得就慢;如果推力较大,箱子的加速度就大,运动状态改变得就快。
在实际生活中,汽车的加速、刹车等都是牛顿第二定律的应用。
汽车发动机提供的牵引力越大,汽车的加速度就越大,加速就越快;刹车时,制动力越大,汽车减速就越快。
另外,牛顿第二定律还可以用于计算物体在不同受力情况下的加速度和运动状态。
高考物理纠错笔记牛顿运动定律含解析
牛顿运动定律一、不能用物理规律解题不能用牛顿运动定律解题,或不善于用牛顿运动定律解复杂问题,遇到难题想当然地进行分析.二、不清楚模型的分析关键1.弹簧模型和绳线(杆)模型,尤其是其弹力突变问题。
在因为某部分断裂而导致的弹簧或绳线(杆)连接体失去一部分约束时,弹簧的弹力不会突变,而是缓慢变化,而绳线(杆)的弹力会发生突变,变化情况需要具体进行运动分析和受力分析。
2.不会分析超重和失重。
超重和失重的“重"指的是物体本身受到的重力,当支持面对物体向上的作用力(测量工具的测量值,即视重)大于或小于实际的重力时,就是超重或失重。
若不能抓住分析关键——超重物体的加速度向上、失重物体的加速度向下,就容易分析错误。
三、运动状态分析和受力分析问题1.未明确分析的对象。
多分析或少分析受力,导致运动状态的分析错误。
2.对运动状态的分析错误。
运动状态的分析要点是速度和加速度,速度关系决定相对运动关系,涉及物体间的相互作用力的分析,加速度则可根据牛顿第二定律列式,直接计算力的大小和有无。
四、复杂问题、难题的分析1.临界问题的分析关键是找到临界条件。
不能只注重表面的关键词“相等"、“恰好”等,还要挖掘隐含的临界条件,如加速度相等、弹力为零、静摩擦力达到最大、摩擦力为零(即将反向)等.2.多物体相互牵连(不一定有直接的牵连关系)要注意,只有部分直接牵连的物体(具有相同的运动状态)才能用整体法,其他情况一般需要明确物体间的受力关系隔离分析,物体间的相互作用力可能大小相等,但速度不同,也可能具有相同的速度,但加速度不同。
3.分析多过程问题切忌急躁,应根据速度和加速度的关系逐个过程进行分析,多过程问题的分析关键就是分析清楚速度相等、速度为零、加速度相等和加速度为零这四种情况,它们往往是多过程中各子过程的分界点。
4.复杂模型,如传送带往返问题、快–板模型,应结合以上3点的注意事项进行综合分析.下列说法正确的是A.在水平面上运动的物体最终停下来,是因为水平方向没有外力维持其运动的结果B.运动的物体惯性大,静止的物体惯性小C.作用力与反作用力可以作用在同一物体上D.物体所受的合外力减小,加速度一定减小,而速度不一定减小本题易错选A,原因是没意识到运动状态不需要力来维持。
高考物理牛顿运动定律考点归纳
高考物理牛顿运动定律考点归纳考点一:对牛顿运动定律的理解1.对牛顿第一定律的理解1揭示了物体不受外力作用时的运动规律2牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关3肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因4牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例5当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律2.对牛顿第二定律的理解1揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性2牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态3加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度3.对牛顿第三定律的理解1力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力2指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同考点二:应用牛顿运动定律时常用的方法、技巧1.理想实验法2.控制变量法3.整体与隔离法4.图解法5.正交分解法6.关于临界问题处理的基本方法是:根据条件变化或过程的发展,分析引起的受力情况的变化和状态的变化,找到临界点或临界条件更多类型见错题本考点三:应用牛顿运动定律解决的几个典型问题1.力、加速度、速度的关系1物体所受合力的方向决定了其加速度的方向,合力与加速度的关系,合力只要不为零,无论速度是多大,加速度都不为零2合力与速度无必然联系,只有速度变化才与合力有必然联系3速度大小如何变化,取决于速度方向与所受合力方向之间的关系,当二者夹角为锐角或方向相同时,速度增加,否则速度减小2.关于轻绳、轻杆、轻弹簧的问题1轻绳①拉力的方向一定沿绳指向绳收缩的方向②同一根绳上各处的拉力大小都相等③认为受力形变极微,看做不可伸长④弹力可做瞬时变化2轻杆①作用力方向不一定沿杆的方向②各处作用力的大小相等③轻杆不能伸长或压缩④轻杆受到的弹力方式有:拉力、压力⑤弹力变化所需时间极短,可忽略不计3轻弹簧①各处的弹力大小相等,方向与弹簧形变的方向相反②弹力的大小遵循的关系③弹簧的弹力不能发生突变3.关于超重和失重的问题1物体超重或失重是物体对支持面的压力或对悬挂物体的拉力大于或小于物体的实际重力2物体超重或失重与速度方向和大小无关。
最新整理高三物理高中物理《牛顿运动定律》知识点归纳.docx
最新整理高三物理高中物理《牛顿运动定律》知识点归纳高中物理《牛顿运动定律》知识点归纳高中物理知识点1.对牛顿第一定律的理解(1)揭示了物体不受外力作用时的运动规律(2)牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关(3)肯定了力和运动的关系:力是改变物体运动状态的原因,不是维持物体运动的原因(4)牛顿第一定律是用理想化的实验总结出来的一条独立的规律,并非牛顿第二定律的特例(5)当物体所受合力为零时,从运动效果上说,相当于物体不受力,此时可以应用牛顿第一定律高中物理知识点2.对牛顿第二定律的理解(1)揭示了a与F、m的定量关系,特别是a与F的几种特殊的对应关系:同时性、同向性、同体性、相对性、独立性(2)牛顿第二定律进一步揭示了力与运动的关系,一个物体的运动情况决定于物体的受力情况和初始状态(3)加速度是联系受力情况和运动情况的桥梁,无论是由受力情况确定运动情况,还是由运动情况确定受力情况,都需求出加速度高中物理知识点3.对牛顿第三定律的理解(1)力总是成对出现于同一对物体之间,物体间的这对力一个是作用力,另一个是反作用力(2)指出了物体间的相互作用的特点:“四同”指大小相等,性质相等,作用在同一直线上,同时出现、消失、存在;“三不同”指方向不同,施力物体和受力物体不同,效果不同高中物理知识点:用牛顿运动定律解决问题高中物理知识点1、根据物体的受力情况确定物体的运动情况。
其解题基本思路是:利用牛顿第二定律F合=ma求出物体的加速度a;再利用运动学的有关公式求出速度vt和位移s等。
高中物理知识点2、根据物体的运动情况确定物体的受力情况。
其解题基本思路是:分析清楚物体的运动情况,选用运动学公式求出物体的加速度,再利用牛顿第二定律求力。
3、应用牛顿运动定律结合运动学公式解决力和运动关系的一般步骤是:(1)确定研究对象;(2)分析研究对象的受力情况:必要时画受力示意图;(3)分析研究对象的运动情况,必要时画运动过程简图;高中物理知识点(4)利用牛顿第二定律或运动学公式求加速度;(5)利用运动学公式或牛顿第二定律进一步求解要求的物理量;(6)运用牛顿第三定律进一步说明所求的物理量与其他量的关系。
高中物理必修一:牛顿运动定律知识点总结
高中物理必修一:牛顿运动定律知识点总结一、对牛顿运动定律的理解基础知识汇总1.牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
2.惯性:物体保持原来的匀速直线运动状态或静止状态的性质。
(1)惯性大小只与物体的质量有关;(2)惯性是物体的固有属性,不是力。
3.牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
作用力和反作用力的性质相同,作用在两个物体上。
4.作用力和反作用力与平衡力的区别:作用力和反作用力“异体、同存、同性质”,而平衡力是“同体”。
5.牛顿第二定律:a=F/m。
6.牛顿第二定律具有“四性”:矢量性、瞬时性、同体性、独立性。
对牛顿第一定律、第三定律的考查1.考查对牛顿第一定律和惯性的理解(1)惯性是物体保持原有运动状态不变的一种性质。
物体在不受外力或所受的合外力为零时,惯性表现为使物体保持原来的运动状态不变(静止或匀速直线运动)。
(2)牛顿第一定律是惯性定律,它指出一切物体都有惯性,惯性只与质量有关。
2.考查对力与运动的关系的理解(1)力是改变物体运动状态的原因(运动状态指物体的速度),不是维持物体运动的原因。
(2)产生加速度的原因是力。
3.考查牛顿第三定律区别作用力和反作用力与平衡力:一对平衡力作用在同一物体上,一对作用力和反作用力作用在两个物体上。
1.合成法求合外力物体只受两个力的作用而产生加速度,利用矢量合成法则;两个力方向相同或相反时,加速度与物体运动方向在同一直线上,合成法更简单。
2.正交分解法与牛顿第二定律的结合应用物体受到两个以上的力的作用而产生加速度时,常用正交分解法解题。
(1)分解力求物体受力问题把力正交分解在沿加速度方向和垂直于加速度方向上,在沿加速度的方向列方程Fx=ma,在垂直于加速度方向列方程Fy=0求解。
(2)分解加速度求解受力问题分析物体受力,建立直角坐标系,将加速度a分解为ax和ay,根据牛顿第二定律得Fx=max,Fy=may求解。
高中物理重点基础:牛顿运动定律知识点总结
高中物理重点基础:牛顿运动定律知识点总结牛顿运动定律是高中物理的核心内容,是毋庸置疑的难点和重点,下面就是小编给大家带来的高中物理重点基础:牛顿运动定律知识点总结,希望能帮助到大家!知识结构核心知识牛顿第一定律一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
1. 明确物体具有惯性“一切物体总保持匀速直线运动状态或静止状态”,揭示了一切物体都具有惯性,即物体具有保持原来匀速直线运动状态或静止状态的性质,叫做惯性。
量度物体惯性大小的物理量是质量。
2. 明确力的含义“除非作用在它上面的力迫使它改变这种状态”,说明力的作用是改变物体的运动状态。
当物体受到的合外力为零时,物体就保持原来的状态(静止或匀速),若受到合外力,其状态一定发生变化。
牛顿第二定律物体的加速度跟作用力成正比,跟物体的质量成反比。
公式:F=ma1. 瞬时性牛顿第二定律表明了物体的加速度与物体所受合外力的瞬时对应关系,即加速度随着力的产生而产生、消失而消失、变化而变化。
2. 矢量性F=ma是一个矢量方程,任一瞬时,a的方向均与合外力的方向保持一致。
3. 同体性F=ma中F、m、a必须对应同一个物体或同一个系统。
牛顿第三定律两物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一条直线上。
区分一对作用力反作用力和一对平衡力共同点:大小相等、方向相反、作用在同一条直线上。
不同点:1. 作用力反作用力作用在两个不同物体上,而平衡力作用在同一个物体上;2. 作用力反作用力一定是同种性质的力,而平衡力可能是不同性质的力;3. 作用力反作用力一定是同时产生同时消失的,而平衡力中的一个消失后,另一个可能仍然存在。
超重和失重1. 超重物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象称为超重。
物体对支持物的压力大小等于物体受到的支持力,则以物体为研究对象,物体受到的支持力大于物体受到的重力,合外力向上,物体具有向上的加速度,如图甲所示。
高中考试资料牛顿运动定律易错点精解
牛顿运动定律易错点精解牛顿运动定律在高中物理考察中占比较大,此部分内容不算太难,题目往往也不算太复杂,但往往有同学因为没能把握牛顿运动定律的应用技巧、易错点而失分。
掌握牛顿运动定律易错点,是与其他同学拉开分数差距非常重要的一步。
在牛顿运动定律知识应用的过程中,同学们常犯的错误主要表现在:1、对物体受力情况不能进行正确的分析,其原因通常出现在对弹力和摩擦力的分析与计算方面,特别是对摩擦力(尤其是对静摩擦力)的分析;2、对运动和力的关系不能准确地把握,如在运用牛顿第二定律和运动学公式解决问题时,常表现出用矢量公式计算时出现正、负号的错误,其本质原因就是对运动和力的关系没能正确掌握,误以为物体受到什么方向的合外力,则物体就向那个方向运动。
下面以例题的形式对牛顿运动定律中的易错点进行归纳:例1、如图2-1所示,一木块放在水平桌面上,在水平方向上共受三个力,F1,F2和摩擦力,处于静止状态。
其中F1=10N,F2=2N。
若撤去力F1则木块在水平方向受到的合外力为()A.10N向左B.6N向右C.2N向左D.0【错解分析】错解:木块在三个力作用下保持静止。
当撤去F1后,另外两个力的合力与撤去力大小相等,方向相反。
故A正确。
造成上述错解的原因是不加分析生搬硬套运用“物体在几个力作用下处于平衡状态,如果某时刻去掉一个力,则其他几个力的合力大小等于去掉这个力的大小,方向与这个力的方向相反”的结论的结果。
实际上这个规律成立要有一个前提条件,就是去掉其中一个力,而其他力不变。
本题中去掉F1后,由于摩擦力发生变化,所以结论不成立。
【正确解答】由于木块原来处于静止状态,所以所受摩擦力为静摩擦力。
依据牛二定律有F1-F2-f=0此时静摩擦力为8N方向向左。
撤去F1后,木块水平方向受到向左2N的力,有向左的运动趋势,由于F2小于最大静摩擦力,所以所受摩擦力仍为静摩擦力。
此时-F2+f′=0即合力为零。
故D选项正确。
【小结】摩擦力问题主要应用在分析物体运动趋势和相对运动的情况,所谓运动趋势,一般被解释为物体要动还未动这样的状态。
高中物理牛顿运动定律基础知识点归纳总结
(每日一练)高中物理牛顿运动定律基础知识点归纳总结单选题1、一个倾角为θ=37°的斜面固定在水平面上,一个质量为m=1.0kg的小物块(可视为质点)以v0=4.0m/s的初速度由底端沿斜面上滑,小物块与斜面的动摩擦因数μ=0.25。
若斜面足够长,已知sin37°=0.6,cos37°=0.8,g 取10m/s2。
小物块返回斜面底端时的速度大小为()A.2 m/sB.2√2 m/sC.1 m/sD.3 m/s答案:B解析:物块上滑时,根据牛顿第二定律有mgsin37°+μmgsin37°=ma1设上滑的最大位移为x,根据速度与位移的关系式有v02=2a1x物块下滑时,根据牛顿第二定律有mgsin37°−μmgsin37°=ma2设物块滑到底端时的速度为v,根据速度与位移的关系式有v2=2a2x联立代入数据解得v=2√2m s⁄故ACD错误B正确。
故选B。
2、如图所示,我校女篮球队员正在进行原地纵跳摸高训练,以提高自已的弹跳力。
运动员先由静止下蹲一段位移,经过充分调整后,发力跳起摸到了一定的高度。
某运动员原地静止站立(不起跳)摸高为1.90m,纵跳摸高中,该运动员先下蹲,重心下降0.4m,经过充分调整后,发力跳起摸到了2.45m的高度。
若运动员起跳过程视为匀加速运动,忽略空气阻力影响,已知该运动员的质量m=60kg,g取10m/s2。
则下列说法中正确的是()A.运动员起跳后到上升到最高点一直处于超重状态B.起跳过程中运动员对地面的压力为1425NC.运动员起跳时地面弹力做功不为零D.运动员起跳时地面弹力的冲量为零答案:B解析:A.运动员起跳后到上升到最高点,先加速后减速,所以是先超重后失重,故A错误;B.运动员离开地面后做竖直上抛运动,根据v=√2gℎ1=√2×10×(2.45−1.90)m/s=√11m/s在起跳过程中,根据速度位移公式可知v2=2aℎ解得a=v22ℎ=112×0.4m/s2=13.75m/s2对运动员,根据牛顿第二定律可知F−mg=ma解得F=1425N故B正确;CD.运动员起跳时地面弹力没有位移,所以做功为零,有作用时间,冲量不为零,故CD错误。
高考物理专题力学知识点之牛顿运动定律易错题汇编附答案
高考物理专题力学知识点之牛顿运动定律易错题汇编附答案一、选择题1.质量为m的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为f,加速度为a=13g,则f的大小是()A.f=13mg B.f=23mgC.f=mg D.f=43 mg2.下列关于超重和失重的说法中,正确的是()A.物体处于超重状态时,其重力增加了B.物体处于完全失重状态时,其重力为零C.物体处于超重或失重状态时,其惯性比物体处于静止状态时增加或减小了D.物体处于超重或失重状态时,其质量及受到的重力都没有变化3.如图所示,A、B两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的摩擦力A.方向向左,大小不变B.方向向左,逐渐减小C.方向向右,大小不变D.方向向右,逐渐减小4.有时候投篮后篮球会停在篮网里不掉下来,弹跳好的同学就会轻拍一下让它掉下来.我们可以把篮球下落的情景理想化:篮球脱离篮网静止下落,碰到水平地面后反弹,如此数次落下和反弹.若规定竖直向下为正方向,碰撞时间不计,空气阻力大小恒定,则下列图象中可能正确的是( )A.B.C .D .5.如图所示,小球从高处落到竖直放置的轻弹簧上,则小球从开始接触弹簧到将弹簧压缩至最短的整个过程中( )A .小球的动能不断减少B .小球的机械能在不断减少C .弹簧的弹性势能先增大后减小D .小球到达最低点时所受弹簧的弹力等于重力6.质量为2kg 的物体做匀变速直线运动,其位移随时间变化的规律为222(m)x t t =+。
该物体所受合力的大小为( )A .2NB .4NC .6ND .8N7.跳水运动员从10m 高的跳台上腾空跃起,先向上运动一段距离达到最高点后,再自由下落进入水池,不计空气阻力,关于运动员在空中的上升过程和下落过程,以下说法正确的有( )A .上升过程处于超重状态,下落过程处于失重状态B .上升过程处于失重状态,下落过程处于超重状态C .上升过程和下落过程均处于超重状态D .上升过程和下落过程均处于完全失重状态8.如图所示,传送带保持v 0=1 m/s 的速度运动,现将一质量m =0.5 kg 的物体从传送带左端放上,设物体与传送带间动摩擦因数μ=0.1,传送带两端水平距离x =2.5 m ,则运动时间为( )A .1sB .2sC .3sD .4s9.如图所示,在水平地面上有一辆小车,小车内底面水平且光滑,侧面竖直且光滑。
高考物理专题力学知识点之牛顿运动定律易错题汇编及答案解析
高考物理专题力学知识点之牛顿运动定律易错题汇编及答案解析一、选择题1.如图所示,车沿水平地面做直线运动.一小球悬挂于车顶,悬线与竖直方向夹角为θ,放在车 厢后壁上的物体A ,质量为m ,恰与车厢相对静止.已知物体A 与车厢间动摩擦因数为μ,最 大静摩擦力等于滑动摩擦力.则下列关系式正确的是( )A .1tan θμ= B .tan θμ= C .tan gμθ= D .tan g θμ= 2.如图所示,质量m =1kg 、长L =0.8m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.现用F =5N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为( )(g 取10m/s 2)A .1JB .1.6JC .2JD .4J3.如图所示,质量为m 的小球用水平轻质弹簧系住,并用倾角θ=37°的木板托住,小球处于静止状态,弹簧处于压缩状态,则( )A .小球受木板的摩擦力一定沿斜面向上B .弹簧弹力不可能为34mg C .小球可能受三个力作用D .木板对小球的作用力有可能小于小球的重力mg4.甲、乙两球质量分别为1m 、2m ,从同一地点(足够高)同时静止释放.两球下落过程中所受空气阻力大小f 仅与球的速率v 成正比,与球的质量无关,即f=kv(k 为正的常量),两球的v−t 图象如图所示,落地前,经过时间0t 两球的速度都已达到各自的稳定值1v 、2v ,则下落判断正确的是( )A.甲球质量大于乙球B.m1/m2=v2/v1C.释放瞬间甲球的加速度较大D.t0时间内,两球下落的高度相等5.如图所示,质量为10kg的物体,在水平地面上向左运动,物体与水平地面间的动摩擦因数为0.2,与此同时,物体受到一个水平向右的拉力F=20N的作用,则物体的加速度为()A.0B.2m/s2,水平向右C.4m/s2,水平向右D.2m/s2,水平向左6.如图所示,倾角为θ的光滑斜面体始终静止在水平地面上,其上有一斜劈A,A的上表面水平且放有一斜劈B,B的上表面上有一物块C,A、B、C一起沿斜面匀加速下滑。
高中物理牛顿运动定律易错知识点总结
(每日一练)高中物理牛顿运动定律易错知识点总结单选题1、中国航天员王亚平在天宫一号空间实验室进行太空授课演示质量的测量实验。
实验通过舱壁打开的一个支架形状的质量测量仪完成。
测量过程如图所示,航天员甲把自己固定在支架一端,航天员乙将支架拉到指定位置释放,支架拉着航天员甲由静止返回舱壁。
已知支架能产生恒定的拉力F,光栅测速装置能测出支架复位时的速度v和所用的时间t,最终测出航天员甲的质量,根据提供的信息,以下说法正确的是()A.宇航员在火箭发射过程中处于失重状态B.航天员甲的质量为FtvC.天宫一号在太空中处于超重状态D.太空舱中,不可以利用弹簧测力计测拉力的大小答案:B解析:A.宇航员在火箭发射过程中,随火箭加速上升,具有向上的加速度,处于超重状态,A错误;B.支架复位过程,航天员甲的加速度为a=v t由牛顿第二定律可得F=Ma 联立解得M=Ft vB正确;C.天宫一号在太空中处于失重状态,C错误;D.太空舱中,可以利用弹簧测力计测拉力的大小,不受失重的影响,D错误。
故选B。
2、如图所示,小车放在水平地面上,甲、乙两人用力向相反方向拉小车,不计小车与地面之间的摩擦,下列说法正确的是()A.若小车向右运动,表明车拉甲的力大于甲拉车的力B.若小车静止不动,表明甲拉车的力与车拉甲的力是一对平衡力C.若小车匀速向右运动,车拉甲的力和车拉乙的力是一对平衡力D.无论小车运动状态如何,甲拉车的力总是与车拉甲的力大小相等,方向相反答案:D解析:ABD. 无论小车运动状态如何,车拉甲的力与甲拉车的力是一对作用力与相互作用力,总是大小相等,方向相反,选项D正确,AB错误;C. 车拉甲的力和车拉乙的力作用对象分别是甲和力,不是同一个受力对象,不是平衡力,选项C错误;故选D。
3、如图所示,一个倾角为θ=37∘的斜面固定在水平面上,斜面底端固定一垂直于斜面的挡板,一劲度系数为k=100 N/m的轻弹簧下端固定在挡板上,上端与物块A接触,物块A与物块B接触且均不粘连,弹簧与斜面平行,物块B通过与斜面平行的轻质细线跨过斜面顶端的定滑轮与物块C连接,物块A、B和C的质量均为1kg,物块A、B与斜面之间的动摩擦因数均为μ=0.25,且三个物块都可以视为质点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014届高考物理易错题查漏补缺专题18 牛顿运动定律总结(一)牛顿第一定律(即惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
(1)理解要点:①运动是物体的一种属性,物体的运动不需要力来维持。
②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。
③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。
④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。
(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。
①惯性是物体的固有属性,与物体的受力情况及运动状态无关。
②质量是物体惯性大小的量度。
③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量=2/严格相等。
m Fr GM④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。
(二)牛顿第二定律1. 定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比。
=2. 公式:F ma合理解要点:①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失;②方向性:a与F合都是矢量,方向严格相同;③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力。
(三)力的平衡1. 平衡状态指的是静止或匀速直线运动状态。
特点:a=0。
2. 平衡条件F0。
共点力作用下物体的平衡条件是所受合外力为零,即∑=3. 平衡条件的推论(1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向;(2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点力;(3)物体在三个共点力作用下处于平衡状态时,图示这三个力的有向线段必构成闭合三角形。
(四)牛顿第三定律两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,公式=-'。
可写为F F、、(在国际制单位中)(五)力学基本单位制:kg m s①确定研究对象;②分析研究对象的受力情况画出受力分析图并找出加速度方向;③建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余分解到两坐标轴上;④分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;⑤统一单位,计算数值。
3. 解决共点力作用下物体的平衡问题思路(1)确定研究对象:若是相连接的几个物体处于平衡状态,要注意“整体法”和“隔离法”的综合运用;(2)对研究对象受力分析,画好受力图;(3)恰当建立正交坐标系,把不在坐标轴上的力分解到坐标轴上。
建立正交坐标系的原则是让尽可能多的力落在坐标轴上。
(4)列平衡方程,求解未知量。
4. 求解共点力作用下物体的平衡问题常用的方法(1)有不少三力平衡问题,既可从平衡的观点(根据平衡条件建立方程求解)——平衡法,也可从力的分解的观点求解——分解法。
两种方法可视具体问题灵活运用。
(2)相似三角形法:通过力三角形与几何三角形相似求未知力。
对解斜三角形的情况更显优势。
(3)力三角形图解法,当物体所受的力变化时,通过对几个特殊状态画出力图(在同一图上)对比分析,使动态问题静态化,抽象问题形象化,问题将变得易于分析处理。
5. 处理临界问题和极值问题的常用方法涉及临界状态的问题叫临界问题。
临界状态常指某种物理现象由量变到质变过渡到另一种物理现象的连接状态,常伴有极值问题出现。
如:相互挤压的物体脱离的临界条件是压力减为零;存在摩擦的物体产生相对滑动的临界条件是静摩擦力取最大静摩擦力,弹簧上的弹力由斥力变为拉力的临界条件为弹力为零等。
临界问题常伴有特征字眼出现,如“恰好”、“刚刚”等,找准临界条件与极值条件,是解决临界问题与极值问题的关键。
例1. 如图1所示,一细线的一端固定于倾角为45°的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球。
当滑块以2g 加速度向左运动时,线中拉力T 等于多少?解析:当小球和斜面接触,但两者之间无压力时,设滑块的加速度为a'此时小球受力如图2,由水平和竖直方向状态可列方程分别为:T ma T mg cos 'sin 45450︒=︒-=⎧⎨⎩解得:a g '=由滑块A 的加速度a g a =>2',所以小球将飘离滑块A ,其受力如图3所示,设线和竖直方向成β角,由小球水平竖直方向状态可列方程T ma T mg sin ''cos ββ=-=⎧⎨⎩解得:()()T ma mg mg '=+=225例2. 如图4甲、乙所示,图中细线均不可伸长,物体均处于平衡状态。
如果突然把两水平细线剪断,求剪断瞬间小球A 、B 的加速度各是多少?(θ角已知)解析:水平细线剪断瞬间拉力突变为零,图甲中OA 绳拉力由T 突变为T',但是图乙中OB 弹簧要发生形变需要一定时间,弹力不能突变。
(1)对A 球受力分析,如图5(a ),剪断水平细线后,球A 将做圆周运动,剪断瞬间,小球的加速度a 1方向沿圆周的切线方向。
F mg ma a g 111==∴=sin sin θθ,(2)水平细线剪断瞬间,B 球受重力G 和弹簧弹力T 2不变,如图5(b )所示,则 F m g a g B 22=∴=tan tan θθ,小结:(1)牛顿第二定律是力的瞬时作用规律,加速度和力同时产生、同时变化、同时消失。
分析物体在某一时刻的瞬时加速度,关键是分析该瞬时前后的受力情况及其变化。
(2)明确两种基本模型的特点:A. 轻绳的形变可瞬时产生或恢复,故绳的弹力可以瞬时突变。
B. 轻弹簧(或橡皮绳)在两端均联有物体时,形变恢复需较长时间,其弹力的大小与方向均不能突变。
例3. 传送带与水平面夹角37°,皮带以10m/s 的速率运动,皮带轮沿顺时针方向转动,如图6所示。
今在传送带上端A 处无初速地放上一个质量为m kg =05.的小物块,它与传送带间的动摩擦因数为0.5,若传送带A 到B 的长度为16m ,g 取102m s /,则物体从A 运动到B 的时间为多少?解析:由于μθ=<=05075.tan .,物体一定沿传送带对地下移,且不会与传送带相对静止。
设从物块刚放上到皮带速度达10m/s ,物体位移为s 1,加速度a 1,时间t 1,因物速小于皮带速率,根据牛顿第二定律,a mg mg mm s 1210=+=sin cos /θμθ,方向沿斜面向下。
t v a s s a t m 1111121125====<,皮带长度。
设从物块速率为102m s /到B 端所用时间为t 2,加速度a 2,位移s 2,物块速度大于皮带速度,物块受滑动摩擦力沿斜面向上,有:a mg mg mm s s vt a t 2222222212=-==+sin cos /θμθ即1651012212222-=+⨯=t t t s ,(t s 210=-舍去) 所用总时间t t t s =+=122例4. 如图7,质量M kg =8的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N 。
当小车向右运动速度达到3m/s 时,在小车的右端轻放一质量m=2kg 的小物块,物块与小车间的动摩擦因数μ=02.,假定小车足够长,问: (1)经过多长时间物块停止与小车间的相对运动?(2)小物块从放在车上开始经过t s 030=.所通过的位移是多少?(g 取102m s /)解析:(1)依据题意,物块在小车上停止运动时,物块与小车保持相对静止,应具有共同的速度。
设物块在小车上相对运动时间为t ,物块、小车受力分析如图8:物块放上小车后做初速度为零加速度为a 1的匀加速直线运动,小车做加速度为a 2匀加速运动。
由牛顿运动定律:物块放上小车后加速度:a g m s 122==μ/ 小车加速度:()a F mg M m s 2205=-=μ/./v a t v a t11223==+由v v 12=得:t s =2(2)物块在前2s 内做加速度为a 1的匀加速运动,后1s 同小车一起做加速度为a 2的匀加速运动。
以系统为研究对象:根据牛顿运动定律,由()F M m a =+3得: ()a F M m m s 3208=+=/./ 物块位移s s s =+12()()s a t ms v t at m s s s m112212212124124484===+==+=//..例5. 将金属块m 用压缩的轻弹簧卡在一个矩形的箱中,如图9所示,在箱的上顶板和下底板装有压力传感器,箱可以沿竖直轨道运动。
当箱以a m s =202./的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为6.0 N ,下底板的传感器显示的压力为10.0 N 。
(取g m s =102/)(1)若上顶板传感器的示数是下底板传感器的示数的一半,试判断箱的运动情况。
(2)若上顶板传感器的示数为零,箱沿竖直方向运动的情况可能是怎样的?启迪:题中上下传感器的读数,实际上是告诉我们顶板和弹簧对m的作用力的大小。
对m受力分析求出合外力,即可求出m的加速度,并进一步确定物体的运动情况,但必须先由题意求出m的值。
解析:当a m s1220=./减速上升时,m受力情况如图10所示:mg N N mamN Ng akg kg +-==--=--=12121110610205.(1)N N N N NN22121025'''====,∴+-= N mg N120''故箱体将作匀速运动或保持静止状态。
(2)若N10"=,则()F N mg N NaFmm s合合(向上)=-≥-= =≥22105510"/即箱体将向上匀加速或向下匀减速运动,且加速度大小大于、等于102m s/。
例6. 测定病人的血沉有助于对病情的判断。
血液由红血球和血浆组成,将血液放在竖直的玻璃管内,红血球会匀速下沉,其下沉的速度称为血沉,某人血沉为v ,若把红血球看成半径为R 的小球,它在血浆中下沉时所受阻力f R v =6πη,η为常数,则红血球半径R =___________。
(设血浆密度为ρ0,红血球密度为ρ)解析:红血球受到重力、阻力、浮力三个力作用处于平衡状态,由于这三个力位于同一竖直线上,故可得 mg gV f =+ρ0 即ρπρππη⋅=⋅+43436303R g g R R v 得:()R vg=-920ηρρ1. 如图1所示,在原来静止的木箱内,放有A 物体,A 被一伸长的弹簧拉住且恰好静止,现突然发现A 被弹簧拉动,则木箱的运动情况可能是( ) A. 加速下降 B. 减速上升 C. 匀速向右运动 D. 加速向左运动2. 如图2所示,固定在水平面上的光滑半球,球心O 的正上方固定一个小定滑轮,细绳一端拴一小球,小球置于半球面上的A 点,另一端绕过定滑轮,如图所示。