人教版高中数学必修五数列基础知识要点总结

合集下载

数学必修五知识点

数学必修五知识点

高中数学必修5知识点第一章、数列一、基本概念1、数列:按照一定次序排列的一列数.2、数列的项:数列中的每一个数.3、数列分类:有穷数列:项数有限的数列.无穷数列:项数无限的数列.递增数列:从第2项起,每一项都不小于它的前一项的数列.10n n a a +-> 递减数列:从第2项起,每一项都不大于它的前一项的数列.10n n a a +-< 常数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.4、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.5、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.二、等差数列1、定义:(1)文字表示:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差. (2)符号表示:11(2)(1)n n n n a a d n a a d n -+-=≥-=≥或2、通项公式:若等差数列{}n a 的首项是1a ,公差是d ,则()11n a a n d =+-.通项公式的变形:①()n m a a n m d =+-;②n ma a d n m-=-.通项公式特点:1()na dn a d =+-),为常数,(m k m kn a n +=是数列{}n a 成等差数列的充要条件。

3、等差中项若三个数a ,A ,b 组成等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.即a 、b 、c 成等差数列<=>2a cb +=4、等差数列{}n a 的基本性质),,,(*∈N q p n m 其中 (1)q p n m a a a a q p n m +=++=+,则若。

(2)d m n a a m n )(-=- (3)m n m n n a a a +-+=2 5、等差数列的前n 项和的公式公式:①()12n n n a a S +=;②()112n n n S na d -=+. 公式特征:21()22nd dS n a n =+-是一个关于n 且没有常数项的二次函数形式 等差数列的前n 项和的性质:①若项数为()*2nn ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S a S a +=奇偶. ②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶 (其中n S na =奇,()1n S n a =-偶).③n S ,2n n S S -,32n n S S -成等差数列. 6、判断或证明一个数列是等差数列的方法:①定义法:)常数)(*+∈=-N n d a a n n (1⇒{}n a 是等差数列②中项法:)221*++∈+=N n a a a n n n (⇒{}n a 是等差数列③通项公式法:),(为常数b k bkn a n +=⇒{}n a 是等差数列④前n 项和公式法:),(2为常数B A BnAn S n +=⇒{}n a 是等差数列三、等比数列1、定义:(1)文字表示:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比. (2)符号表示:1n na q a +=(常数) 2、通项公式 (1)、若等比数列{}n a 的首项是1a ,公比是q ,则11n n a a q -=.(2)、通项公式的变形:①n mn m a a q-=;②n mnma qa -=. 3、等比中项:在a 与b 中插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.注意:a 与b 的等比中项可能是G ±。

高一必修五数学数列全章知识点(完整版)

高一必修五数学数列全章知识点(完整版)

高一数学数列知识总结知识网络二、知识梳理一、看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).二、看数列是不是等比数列有以下两种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a )三、在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得m s 取最大值. (2)当1a <0,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得m s 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

四.数列通项的常用方法:(1)利用观察法求数列的通项.(2)利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n n n(;②{}n a 等差、等比数列{}n a 公式.(3)应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)造等差、等比数列求通项:① q pa a n n +=+1;②nn n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.第一节通项公式常用方法题型1 利用公式法求通项例1:1.已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

2.已知n S 为数列{}n a 的前n 项和,求下列数列{}n a 的通项公式:⑴ 1322-+=n n S n ; ⑵12+=nn S .总结:任何一个数列,它的前n 项和n S 与通项n a 都存在关系:⎩⎨⎧≥-==-)2()1(11n S S n S a n n n 若1a 适合n a ,则把它们统一起来,否则就用分段函数表示. 题型2 应用迭加(迭乘、迭代)法求通项例2:⑴已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式;⑵已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式.总结:⑴迭加法适用于求递推关系形如“)(1n f a a n n +=+”; 迭乘法适用于求递推关系形如“)(1n f a a n n ⋅=+“;⑵迭加法、迭乘法公式:① 11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=----- ② 1122332211a a aa a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=----- . 题型3 构造等比数列求通项例3已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.总结:递推关系形如“q pa a n n +=+1” 适用于待定系数法或特征根法:①令)(1λλ-=-+n n a p a ;② 在q pa a n n +=+1中令pqx x a a n n -=⇒==+11,∴)(1x a p x a n n -=-+; ③由q pa a n n +=+1得q pa a n n +=-1,∴)(11-+-=-n n n n a a p a a .例4已知数列{}n a 中,nn n a a a 32,111+==+,求数列{}n a 的通项公式.总结:递推关系形如“nn n q pa a +=+1”通过适当变形可转化为: “q pa a n n +=+1”或“nn n n f a a )(1+=+求解.例5已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.总结:递推关系形如“n n n a q a p a ⋅+⋅=++12”,通过适当变形转化为可求和的数列. 强化巩固练习1、已知n S 为数列{}n a 的前n 项和, )2,(23≥∈+=+n N n a S n n ,求数列{}n a 的通项公式.2、已知数列{}n a 中,)(0)1()2(,211++∈=+-+=N n a n a n a n n ,求数列{}n a 的通项公式. 小结:数列通项的常用方法:⑴利用观察法求数列的通项;⑵利用公式法求数列的通项;⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+(4)构造等差、等比数列求通项:①q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.3、数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a 。

高一数学必修5:数列(知识点梳理)

高一数学必修5:数列(知识点梳理)

第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。

高中数学必修5 第二章 数列 知识整理

高中数学必修5 第二章  数列 知识整理

第二章 数列2.1 数列1.数列(1)数列的概念按照一定次序排列的一列数称为数列。

数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…,所以,数列的一般形式可以写成:123,,,,,n a a a a ……,简记为{}n a 。

其中数列{}n a 的第n 项n a 也叫做数列的通项。

注意:①数列中每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。

所以,数列的一般形式可以写成123,,,,n a a a a …,简记为{}n a 。

如:数列1,2,3,4,…,可以简记为{n}。

②数列中的数是按一定次序排列的。

因此,如果组成两个数列的数相同而排列次序不同,那么它们就不是相同的数列。

如:数列1,2,3,4,5与5,4,3,2,1是不同的数列。

③数列的定义中,并没有规定数列中的数必须不同。

因此,同一个数在数列中可以重复出现。

如:1,1,1,1,1,1,---…;2,2,2,2,2,…等。

④{}n a 与n a 是不同的概念。

{}n a 表示数列123,,,,,n a a a a ……,而n a 仅表示数列{}n a的第n 项。

⑤从映射函数的观点看,数列可以看做是一个定义域为正整数N +(或它的有限子集{1,2,3,,}n …)的数与自变量从小到大依次取值时对应的一列函数值,这里的函数是一种特殊函数:它的自变量只能取正整数,由于数列的值是函数值,序号是自变量,数列的通项公式也就是相应函数的解析式。

可以将序号为横坐标,相应的像为纵坐标,通过描点画图来表示一个数列,从数列的图像表示可以直观的看出数列的变化情况。

(2)数列的分类①按照数列的项数的多少可分为:有穷数列与无穷数列。

项数有限的数列叫有穷数列,项数无限的数列叫无穷数列。

②按照数列的每一项随序号变化的情况可分为:递增数列、递减数列、常数列、摆动数列。

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。

前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。

3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。

数学必修五知识点总结

数学必修五知识点总结

数学必修五知识点总结1、数列概念①数列是一种特殊的函数。

其特殊性主要表现在其定义域和值域上。

数列可以看作一个定义域为正整数集N某或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。

其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

等差数列1、等差数列通项公式an=a1+(n—1)dn=1时a1=S1n≥2时an=Sn—Sn—1an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b2、等差中项由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。

这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷23、前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]①Sn=an+an—1+an—2+······+a1=an+(an—d)+(an—2d)+······+[an—(n—1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n—1)d÷2Sn=dn2÷2+n(a1—d÷2)亦可得a1=2sn÷n—an=[sn—n(n—1)d÷2]÷nan=2sn÷n—a1有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+14、等差数列性质一、任意两项am,an的关系为:an=am+(n—m)d它可以看作等差数列广义的通项公式。

人教版高一数学必修5--第二章数列总结

人教版高一数学必修5--第二章数列总结

人教版高一数学必修5--第二章数列总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN人教版高一数学必修5第二章数列总结1、数列的基本概念(1)定义:按照一定的次序排列的一列数叫做数列.(2)通项公式:如果数列{a n }的第n 项a n 与n 之间的函数关系可以用一个公式表示,这个公式就叫做这个数列的通项公式.(3)递推公式:如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它前一项a n -1(或前几项)间的关系可用一个公式来表示,那么这个公式就叫做这个数列的递推公式.通项公式与递推公式,是给出一个数列的两种主要方法.2、主要公式(1)通项公式a n 与前n 项和公式S n 间的关系: a n =⎩⎨⎧S 1n =1S n -S n -1n ≥2.(2)等差数列a n =a 1+(n -1)d =a m +(n -m )d .S n =12n (a 1+a n ),S n =na 1+12n (n -1)d . A =a +b2(等差中项). (3)等比数列a n =a 1q n -1,a n =a m ·q n -m .S n =⎩⎨⎧na 1 q =1a 1-a n q 1-q =a 11-qn 1-qq ≠1.G =±ab (等比中项).3.主要性质(1)若m +n =p +q (m 、n 、p 、q ∈N *), 在等差数列{a n }中有:a m +a n =a p +a q ; 在等比数列{a n }中有:a m ·a n =a p ·a q .(2)等差(比)数列依次k 项之和仍然成等差(比).专题一 数列的通项公式的求法1.观察法 根据下面数列的前几项,写出数列的一个通项公式.(1)1,1,57,715,931,…;2.定义法等差数列{a n}是递增数列,前n项和为S n,且a1,a3,a9成等比数列,S5=a25.求数列{a n}的通项公式.3.前n项和法(1)已知数列{a n}的前n项和S n=n2+3n+1,求通项a n;(2)已知数列{a n}的前n项和S n=2n+2,求通项a n.4.累加法已知{a n}中,a1=1,且a n+1-a n=3n(n∈N*),求通项a n.5.累乘法已知数列{a n},a1=13,前n项和S n与a n的关系是S n=n(2n-1)a n,求通项a n.6.辅助数列法已知数列{a n}满足a1=1,a n+1=3a n+2(n∈N*).求数列{a n}的通项公式.7.倒数法已知数列{a n}中,a1=1,a n+1=a na n+1(n∈N*).求通项a n.专题二数列的前n项和的求法1.分组转化求和法如果一个数列的每一项是由几个独立的项组合而成,并且各独立项也可组成等差或等比数列,则该数列的前n项和可考虑拆项后利用公式求解.求和:S n=112+214+318+…+(n+12n).2.裂项求和法对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项法”,分式的求和多利用此法.可用待定系数法对通项公式进行拆项,相消时应注意消去项的规律,即消去哪些项,保留哪些项,常见的拆项公式有:(1)1n n+k=1k·(1n-1n+k);(2)若{a n}为等差数列,公差为d,则1a n·a n+1=1d(1a n-1a n+1);(3)1n+1+n=n+1-n等.3.错位相减法若数列{a n}为等差数列,数列{b n}是等比数列,由这两个数列的对应项乘积组成的新数列为{a n b n},当求该数列的前n项的和时,常常采用将{a n b n}的各项乘以等比数列{b n}的公比q,然后错位一项与{a n b n}的同次项对应相减,即可转化为特殊数列的求和,所以这种数列求和的方法称为错位相减法.已知数列{a n}中,a1=3,点(a n,a n+1)在直线y=x+2上.(1)求数列{a n}的通项公式;(2)若b n=a n·3n,求数列{b n}的前n项和T n.4.分段求和法如果一个数列是由各自具有不同特点的两段构成,则可考虑利用分段求和.已知数列{a n}的前n项和为S n,且a n+S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=3+log4a n,设T n=|b1|+|b2|+…+|b n|,求T n.附注:常用结论1)1+2+3+...+n =2) 1+3+5+...+(2n-1) =3)三、等差、等比数列的对比(1)判断数列的常用方法看数列是不是等差数列有以下三种方法:①②2()③(为常数).看数列是不是等比数列有以下四种方法:①②(,)③(为非零常数).④正数列{}成等比的充要条件是数列{}()成等比数列.(2)等差数列与等比数列对比小结:等差数列等比数列定义1.1.公式2.2.性质1.,称为与的等差中项2.若(、、、),则3.,,成等差数列4.1.,称为与的等比中项2.若(、、、),则3.,,成等比数列4. ,(3)在等差数列{}中,有关Sn 的最值问题:1),时,有最大值;,时,有最小值;2)最值的求法:①若已知,可用二次函数最值的求法();②若已知,则最值时的值()可如下确定或。

人教版高一年级数学必修五数列知识点

人教版高一年级数学必修五数列知识点

【一】1.數列的函數理解:①數列是一種特殊的函數。

其特殊性主要表現在其定義域和值域上。

數列可以看作一個定義域為正整數集N*或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。

②用函數的觀點認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。

圖像法;c.解析法。

其中解析法包括以通項公式給出數列和以遞推公式給出數列。

③函數不一定有解析式,同樣數列也並非都有通項公式。

2.通項公式:數列的第N項an與項的序數n之間的關係可以用一個公式an=f(n)來表示,這個公式就叫做這個數列的通項公式(注:通項公式不)。

數列通項公式的特點:(1)有些數列的通項公式可以有不同形式,即不。

(2)有些數列沒有通項公式(如:素數由小到大排成一列2,3,5,7,11,...)。

3.遞推公式:如果數列{an}的第n項與它前一項或幾項的關係可以用一個式子來表示,那麼這個公式叫做這個數列的遞推公式。

數列遞推公式特點:(1)有些數列的遞推公式可以有不同形式,即不。

(2)有些數列沒有遞推公式。

有遞推公式不一定有通項公式。

注:數列中的項必須是數,它可以是實數,也可以是複數。

【二】1.等差數列通項公式an=a1+(n-1)dn=1時a1=S1n≥2時an=Sn-Sn-1an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b2.等差中項由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。

這時,A叫做a與b的等差中項(arithmeticmean)。

有關系:A=(a+b)÷23.前n項和倒序相加法推導前n項和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an) ∴Sn=n(a1+an)÷2等差數列的前n項和等於首末兩項的和與項數乘積的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差數列性質一、任意兩項am,an的關係為:an=am+(n-m)d它可以看作等差數列廣義的通項公式。

高三数学必修五《数列的概念与简单表示法》知识点总结

高三数学必修五《数列的概念与简单表示法》知识点总结

高三数学必修五《数列的概念与简单表示法》知识点总结高三数学必修五《数列的概念与简单表示法》知识点总结1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,与数列,4,3,2,1是不同的数列(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n()次序对于数列讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别如:2,3,4,,6这个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,,6}中元素不论按怎样的次序排列都是同一个集合2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列在写数列时,对于有穷数列,要把末项写出,例如数列1,3,,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,,7,9,…或1,3,,7,9,…,2n-1,…,它就表示无穷数列(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是唯一的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非唯一如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N*或它的有限子集{1,2,…,n}为定义域的函数的表达式(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式如2的不足近似值,精确到1,01,001,0001,0000 1,…所构成的数列1,14,141,1414,1414 2,…就没有通项公式(4)有的数列的通项公式,形式上不一定是唯一的,正如举例中的:()有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不唯一4.数列的图象对于数列4,,6,7,8,9,10每一项的序号与这一项有下面的对应关系:序号:1 2 3 4 6 7项:4 6 7 8 9 10这就是说,上面可以看成是一个序号集合到另一个数的集合的映射因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N*(或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值这里的函数是一种特殊的函数,它的自变量只能取正整数由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式数列是一种特殊的函数,数列是可以用图象直观地表示的数列用图象表示,可以以序号为横坐标,相应的项为纵坐标,描点画图表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.递推数列一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,,6,7,8,9,10①数列①还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。

最新人教版高中数学必修五《数列》基础知识要点总结

最新人教版高中数学必修五《数列》基础知识要点总结
(4)形如 形式可用待定系数法。
4、数列求和的常用方法
①公式求和法:公式法是数列求和的最常用方法之一,可直接利用等差数列、等比数列的求和公式,也可利用常见的求前 项和的公式,如: ;
据调查,大学生对此类消费的态度是:手工艺制品消费比“负债”消费更得人心。在等比数列 公比为 中,若 , ,则 , , ,…, ,…构成一个公比为 的等比数列。
8、性质4
若数列 与 分别是公差为 和 的等差数列,则数列 ( , 是常数)是公差为 的等差数列。
若 和 分别是公比为 和 的等比数列,则数列 , 仍是等比数列,它们的公比分别为 , 。
②根据数列项的大小变化分——递增数列、递减数列、常数列、摆动数列
5、数列的递推公式
如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式。
6、数列前n项和的定义
一般地,我们称 为数列 的前 项和,用 表示,即
二、等差数列与等比数列
当 时, 或
11、前n项和的性质1
①当 时, ,是关于 的一个缺少常数项的一次函数,数列 图象是直线 上一群孤立的点;
②当 时, ,是关于 的一个缺少常数项的二次函数,数列 图象是抛物线 上一群孤立的点。
①当 时, ,数列 的图象是函数 上的一群孤立的点;
②当 时, ,设 ,则 ,此时,数列 的图象是函数 的图象上一群孤立的点。
9、等差(比)数列的单调性
①若 ,则 为递增数列;
②若 ,则 为递减数列;
③若 ,则 为常数列。
①当 时, 为常数列;
②当 时, 为摆动数列;
③当 , 时, 为递增数列;
④当 , 时, 为递减数列;

人教版高中数学必修五《数列》基础知识要点总结

人教版高中数学必修五《数列》基础知识要点总结
②根据数列项的大小变化分——递增数列、递减数列、常数列、摆动数列
5、数列的递推公式
如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式。
6、数列前n项和的定义
一般地,我们称 为数列 的前 项和,用 表示,即
二、等差数列与等比数列
已知三个数成等比数列,且已知三个数之积时,一般设此三个数分别为 , , ,其中 为公比。
若已知四个数成等比数列及这个四个数的积时,一般不设为 , , , ,因为这种设法使得四个数的公比为 ,就漏掉了公比为负数的情形,造成漏解。
2、求数列最大(小)值的方法
一般方法——解不等式 ;或
特别地,若 为等差数列, 为它的前n项的和时,求 的最大(小)值可以利用①二次函数的性质;② 中项的符号。
3、求数列通项的常用方法
①观察法:根据数列的前几项归纳出数列的通项公式;
②公式法:利用 求通项公式
③根据递推公式求通项公式:
(1)迭代法:对于形如 型的递推公式,采取逐次降低“下标”数值的反复迭代方式,最终使 与初始值 (或 )建立联系的方法就是迭代法.
(2)累加法:形如 的递推公式可用 求出通项;






4、等差(比)数列的通项公式


③ ,其中 、 是常数



5、性质1
在等差数列 中,若已知 与 ,其中 ,则该数列的公差 。
若等比数列 中,公比是 ,则 。
6、性质2
在等差数列 中,若 且 、 、 、 ,则 。
特别地、在等差数列 中,若 且 、 、 ,则 。
在等比数列 中,若 ( , , , ),则 。

2023数学必修五数列知识点提纲

2023数学必修五数列知识点提纲

2023数学必修五数列知识点提纲数学必修五数列学问点提纲1.等差数列通项公式an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b 则得到an=kn+b2.等差中项由三个数a,A,b组成的等差数列可以堪称最简洁的等差数列。

这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷23.前n项和倒序相加法推导前n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]② 由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1好玩的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差数列性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈Nx 、若m,n,p,q∈Nx且m+n=p+q,则有am+an=ap+aq四、对任意的k∈Nx有Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

整理人教版高中数学必修五《数列》基础知识要点总结

整理人教版高中数学必修五《数列》基础知识要点总结

第二章数列第二章数列(人教A版必修5 )2.3 等差数列的前n项和(第一课时)教材分析本节课教学内容是人教A版必修五第二章的第三节“等差数列的前n项和”(第一课时).本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式的推导,可以让学生进一步掌握从特殊到一般的研究问题方法.学情分析在本节课之前学生已经学习了等差数列的通项公式及基本性质,也对高斯算法有所了解,这都为倒序相加法的教学提供了基础.高斯的算法与一般的等差数列求和还有一定的距离,如何从首尾配对法引出倒序相加法,这是学生学习的障碍.因此,在本节教学中,让学生融入问题情境中,经历知识的形成和发展,通过观察、活动、探究、交流、反思,来认识和理解等差数列的求和内容;在学法上,引导学生去联想、探索,同时鼓励学生大胆猜想;在教法上,充分调动学生的积极性,发挥学生的主体地位.教学目标【知识与技能】1.理解等差数列前n项和公式的推导过程,并掌握其公式;2.掌握等差数列的五个量a1,d,n,a n,S n的关系,能由其中的三个求另两个;3.了解倒序相加法的原理.【过程与方法】1.通过公式的推导过程,体验从特殊到一般的研究方法;2.培养学生观察、归纳、反思的能力.【情感、态度与价值观】通过有关内容在实际生活中的应用,使学生再一次感受数学来源于生活,又服务于生活的实际性,引导学生要善于观察生活,从生活中发现问题,并用数学知识解决问题.重点:探索并掌握等差数列的前n项和公式;会用等差数列的前n项和公式解决一些简单的问题.难点:等差数列前n项求和公式推导思路的获得.教学过程:课前准备工作:在上课之前的三分钟,让学生观看《泰姬陵》视频.(让数学课堂赋予人文历史的气息,缩短数学与现实的距离.)1.创设情景,引入课题师:刚才大家观看了《泰姬陵》的介绍,传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道这个图案一共花了多少颗宝石吗?(教师用投影仪展示三角形图案)生:通过观察发现实质是求和:1+2+3+…+100=?师:该问题事实上是求一个等差数列的前n项和的问题.(由此展开新课) 2.新知探究【知识链接1】数列的前n项和的定义:一般地,称为数列的前n项的和,用表示,即.练一练:对任意数列{a},S1=________________________,S6=________________________.n问题1:传说泰姬陵陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见前面的示意图),奢靡之程度可见一斑.你知道这个图案一共花了多少颗圆宝石吗?【知识链接2】德国数学家高斯在10岁时就给出的解法:(1+100)+(2+99)+……+(50+51)=101×50=5050.高斯的算法实际上解决了求等差数列1,2,3,…,n,…前100项的和的问题.思考:高斯的思路有什么特点?(首尾配对求和)问题2: 等差数列1,2,3,…,n,…的前n项和怎么求?由 1 + 2 + … + n-1 + nn + n-1 + … + 2 + 1(n+1)+(n+1)+ … +(n+1)+(n+1)可知上面这种加法叫“倒序相加法”.问题3: 对于一般等差数列{an},首项为a1,公差为d,如何推导它的前n项和公式Sn呢?∵S n=a1+a2+a3+⋯+a n−1+a nS n=a n+a+a n−2+⋯+a2+a1(两式相加)∴2S n=(a1+a n)+(a2+a n−1)+(a3+a n−2)+⋯+(a n+a1)又∵a1+a n=a2+a n−1=⋯=a n+a1所以Sn =n(a1+a n)2.(公式一)思考:Sn有其他表示形式吗?把代入中,就可以得到(公式二)练一练:1. 已知a1=−4,a8=−18,求S8.2. 已知a1=5,d=6,求S10.3.新知应用例题已知一个等差数列{an}的前10项的和是310,前20项的和是1220,由这些条件可以确定这个等差数列的前n项和的公式吗?解:方法一:由题意可知S10=310,S20=1200代入公式2,得{10a1+45d=310,|解方程组,得a1=4,d=6.所以,S n=3n2+n.方法二:由S10=10(a1+a10)2=310,得a1+a10=62,①S20=10(a1+a20)2=1220,所以a1+a20=122.②②-①,得10d=60,所以d=6.代入①,得a1=4,所以,S n=3n2+n.(说明:方法二教师可以点拨一下)【高考链接】:(2016全国卷1理)已知等差数列{an}的前9项的和为27,且a10=8,则a100=(C)A.100B.99C.98D.974.课堂练习1. 在等差数列{a n}中, a1=20,a n=54,S=999,求n.2.(2017兰州市第一次诊断)设S n为等差数列{a n}的前n项和,若a3+a5+a7=24,则S9=()A. 36B. 72C. 144D. 2885.课堂小结师同学们,本节课我们学习了哪些数学内容?生①等差数列的前n项和公式1:Sn =n(a1+a n)2,①等差数列的前n项和公式2:S n=na1+n(n−1)d2.师 通过等差数列的前n 项和公式内容的学习,我们从中体会到哪些数学的思想方法?生 ①通过等差数列的前n 项和公式的推导我们了解了数学中一种求和的重要方法——“倒序相加法”.①“知三求二”的方程思想,即已知其中的三个变量,可利用构造方程或方程组求另外两个变量. 6. 作业1. 课后练习:(见导学案)2. 课后习题:习题2.3A 组2、4、5.3. 板书设计八、教后反思整理丨尼克本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。

高一年级数学必修五数列知识点

高一年级数学必修五数列知识点

高一年级数学必修五数列知识点1.数列的函数理解:①数列是第二种特殊的函数。

其特殊性主要表现在其定义域和上。

集是数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下整数有三种表示方法,数列也不例外,通常也有几种表示方法:a.列表法;b。

图像法;c.解析法。

其中解析法包含以通项公式以数列和给出递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

2.通项公式:数列的第N项an与项的序数n之间的关系婚姻关系可以用一个公式an=f(n)来表示,这个公式就叫做这个无理数的等式通项公式(注:通项公式不)。

数列通项公式的特点:(1)有所不同有些数列的通项公式可以有不同形式,即不。

(2)有些数列没有配分函数公式(如:素数雷米雷蒙县排成一列2,3,5,7,11,...)。

3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以之前用一个式子来表示,那么式子这个公式叫做这个数列的递推公式。

无理数递推公式特点:(1)有些数列的递推公式可以有不同形式,即不。

(2)有些数列没有递推公式。

有递推公式不一定有通项公式。

注:数列中的项必须是单次,它可以是实数,也可以是复数。

【二】1.等差数列通项式子an=a1+(n-1)dn=1时a1=S1n≥2时an=Sn-Sn-1an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b2.等差中项由三个数a,A,b组合而成的等差数列可以堪称最简单的等差数列。

这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷23.前n项和倒序相加法推导前在n项和公式:Sn=a1+a2+a3+·····+an=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①Sn=an+an-1+an-2+······+a1=an+(an-d)+(an-2d)+······+[an-(n-1)d]②由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n 个)=n(a1+an)∴Sn=n(a1+an)÷2等差数列的前n项和等于首末两项的和四分之三与项数行列式的一半:Sn=n(a1+an)÷2=na1+n(n-1)d÷2Sn=dn2÷2+n(a1-d÷2)亦可得a1=2sn÷n-an=[sn-n(n-1)d÷2]÷nan=2sn÷n-a1有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+14.等差数列性质一、任意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义数乘的通项公式。

高中数学必修五 等差等比数列以及基础知识点总结

高中数学必修五 等差等比数列以及基础知识点总结

高中数学必修五 等差等比数列基础知识点(一)知识归纳: 1.概念与公式:①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2)1(2)(11d n n na a a n S n n -+=+=②等比数列:1°.定义若数列q a a a nn n =+1}{满足(常数),则}{n a 称等比数列;2°.通项公式:;11kn k n n qa qa a --==3°.前n 项和公式:),1(1)1(111≠--=--=q qq a q q a a S n n n 当q=1时.1na S n =2.简单性质:①首尾项性质:设数列,,,,,:}{321n n a a a a a1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =⋅=⋅=⋅--n n n a a a a a a ②中项及性质:1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2ba A +=2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ⋅=⋅ ④顺次n 项和性质:1°.若}{n a 是公差为d 的等差数列,∑∑∑=+=+=nk nn k nn k kkkaa a 121312,,则组成公差为n 2d 的等差数列;2°. 若}{n a 是公差为q 的等比数列,∑∑∑=+=+=nk nn k nn k kkkaa a 121312,,则组成公差为q n 的等比数列.(注意:当q =-1,n 为偶数时这个结论不成立)⑤若}{n a 是等比数列,则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2n q 的等比数列.⑥若}{n a 是公差为d 的等差数列,1°.若n 为奇数,则,,:(21+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶数项的和);2°.若n 为偶数,则.2ndS S =-奇偶 二、巩固习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n(B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( ) (A )21(B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列 (C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n(B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z--=-,则 ( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( )(A )97 (B )78(C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为 ( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是 ( )A .数列{}n a 是等差数列的充要条件是q pn a n+=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n++=2,如果此数列是等差数列,那么此数列也是等比数列C .数列{}n a 是等比数列的充要条件1-=n nab aD .如果一个数列{}n a 的前n 项和c ab S n n+=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n na S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、 解答题 17、已知数列{}n a 是公差d 不为零的等差数列,数列{}nb a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。

必修五人教版-数列知识点(经典)

必修五人教版-数列知识点(经典)

数列概念与等差数列1.数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….3.数列的一般形式,或简记为,其中是数列的第n项下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?如:项↓↓↓↓↓序号1234 5这个数的第一项与这一项的序号可用一个公式:来表示其对应关系即:只要依次用1,2,3…代替公式中的n,就可以求出该数列相应的各项,结合上述其他例子,练习找其对应关系4.数列的通项公式如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:⑴并不是所有数列都能写出其通项公式;⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是,也可以是.⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第n项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数,当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1)、f(2)、f(3)、f(4)…,f(n),…6.数列的分类1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6.是有穷数列无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列递推公式:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式递推公式也是给出数列的一种方法.2)类比函数的单调性数列可分为递增数列、递减数列、常数列和摆动数列.数列的单调性可通过函数的单调性获得,还可以考察相邻项的大小,即的符号.学习中注意与函数的联系与差别.7.等差数列一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示).⑴公差d一定是由后项减前项所得,而不能用前项减后项来求;⑵对于数列{},若-=d (与n无关的数或字母),n≥2,n∈N,则此数列是等差数列,d 为公差.8.等差数列的通项公式【或】等差数列定义是由一数列相邻两项之间关系而得.若一等差数列的首项是,公差是d,则据其定义可得:即:即:即:……由此归纳等差数列的通项公式可得:∴已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项.由上述关系还可得:即:则:=即等差数列的第二通项公式∴d=①公式特征(通式)等差数列的通项公式是关于的一次(或零次)多项式,一次项系数为公差②几何意义点共线(直线的斜率为)变形:.当时,增;当时,减;当时,常数列注:等差数列公差d的不同表示方法:①d=-②d=③d=.3、等差数列性质:①(通项公式的推广)②若,则特别地,③若项数(下标)成等差,则对应项也成等差④若,成等差,则也成等差9.等差数列前n项和公式(1)运用倒序相加的方法推导公式(1)又(2)由(1)+(2)得:,将代入得:.(2)运用通项公式和求和公式,准确计算:在中,熟练运用方程思想,“知三求二”.(3)应用二次函数的性质研究等差数列的前n项和问题.(4)会处理已知求的一般性问题.本周典型例题:一、数列概念1.根据数列前4项,写出它的通项公式:(1)1,-1,1,-1,1,-1;(2)1,4,7,10,13,16(3);(4)(5)1,0,1,0,1,0;(6)0,.分析:[1]求通项公式即找出与间的函数关系;[2]归纳法:从特殊到一般;[3]联想学过的基本数列.解:(1) 1 2 3 4 5 6:1 -1 1 -1 1 -1 ;(2) 1 2 3 4 5 6: 1 4 7 10 13 16 .(3)[法1]先看分母,再看分子,联想常用数列,符号单独处理.1 2 3 4 5的分母:9 25 49 81 121的分子:8 24 48 80 120 或;得到通项公式为;[法2]先不看符号,把每一项拆开,拆为两数的差,找出规律.(略)基本方法:[1]分子分母可分别看;[2]系数单独处理;[3]因式分解;[4]常用数列.注意:将(3)发展:①分母的因式变为不同因式;②分子与分母不相关;(4) 1 2 3 4 5的分母:1 3 9 27 81,的分子:通项公式为:.(5) 1 2 3 4 5: 1 .另解:,类似于函数的分段表达式.发展为:1,3,1,3,1,3;发展为:.(6) 1 2 3 4 5 6的分母:1 2 4 8 16 32的分子:0 5 8 17 24 37分段表达:.点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求.2.数列中,已知,(1)写出,,;(2)是否是数列中的项?若是,是第几项?解析:(1)∵,∴,,;(2)令,解方程得,∵,∴,即为该数列的第15项.点评:该题考察数列通项的定义,会判断数列项的归属.二、数列的递推公式3.如图,一粒子在区域上运动,在第一秒内它从原点运动到点,接着按图中箭头所示方向在x轴、y轴及其平行方向上运动,且每秒移动一个单位长度.(1)设粒子从原点到达点时,所经过的时间分别为,试写出的通项公式;(2)求粒子从原点运动到点时所需的时间;(3)粒子从原点开始运动,求经过2004秒后,它所处的坐标.解析:(1)由图形可设,当粒子从原点到达时,明显有……∴=,.,.,,即.(2)有图形知,粒子从原点运动到点时所需的时间是到达点所经过得时间再加(44-16)=28秒,所以秒.(3)由2004,解得,取最大得n=44,经计算,得=1980<2004,从而粒子从原点开始运动,经过1980秒后到达点,再向左运行24秒所到达的点的坐标为(20,44).点评:从起始项入手,逐步展开解题思维.由特殊到一般,探索出数列的递推关系式,这是解答数列问题一般方法,也是历年高考命题的热点所在.4.(1)已知数列适合:,,写出前五项并写出其通项公式;(2)用上面的数列,通过等式构造新数列,写出,并写出的前5项.解:(1),,,,,……,;(2),,,,,.点评:会根据数列的前几项写出数列的一个通项公式,了解递推公式是给出数列的又一种重要方法,能根据递推公式写出数列的前几项.三、数列的单调性和最值5.已知数列的通项公式是,判断此数列是递增、递减还是摆动数列?发展:试分析这个数列有没有最大项?如果有,求出这个最大项.答案:当时,是递增数列;当时,,当时,是递减数列.6.(1)数列的通项公式为,若数列是递增的,则实数的取值范围是_____________.(2)数列的通项公式为,则取到最大值时,.解:(1)(2)当时,且单调递增,当时,,,则当时,取到最大值为.点评:数列去最大值问题,借鉴函数思想,判断变化趋势(结合单调性).四、等差数列的概念、通项公式及性质7.(1)等差数列中,若,求的值;(2).(3)等差数列中,,公差,若前6项均为正数,第7项起为负数求其公差分析(1)基本思想:化简!下标和性质;(也可以回归到关于的方程).解:(1)180;(2)33(3),,8.为等差数列,且,求.一般地,为等差数列,且,求.解:(法1)设首项为,公差为.由已知:(法2)由性质1入手解决.;(法3)(看作的一次函数,利用三点共线求出.)(法4)9.设S n是数列{a n}的前n项和,且S n=n2,则{a n}是()A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列答案:B;解法一:a n=∴a n=2n-1(n∈N)又a n+1-a n=2为常数,≠常数∴{a n}是等差数列,但不是等比数列.解法二:如果一个数列的和是一个常数项为零的关于n的二次函数,则这个数列一定是等差数列.点评:本题主要考查等差数列、等比数列的概念和基本知识,以及灵活运用递推式a n=S n-S n-1的推理能力.但不要忽略a1,解法一紧扣定义,解法二较为灵活.10.在数列中,,.设.证明:数列是等差数列;证明:(法1),又,则对于都成立,则数列是等差数列.(法2).11.数列中,,,又数列为等差数列,则_____________.解析:12.设是公差为正数的等差数列,若,,则()A.B.C.D.解析:,,将代入,得,从而.选B.点评:应用等差数列的通项公式将因式转化为只含首项和公差的式子,变元减少,因式就容易处理了.13.已知数列为等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)证明解析:(1)(I)解:设等差数列的公差为d.由即d=1.所以即(II)证明因为,所以点评:该题通过求通项公式,最终通过通项公式解释复杂的不等问题,属于综合性的题目,解题过程中注意观察规律.五、等差数列的性质及变形公式14.(1)设{a n}(n∈N*)是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0 B.a7=0C.S9>S5 D.S6与S7均为S n的最大值(2)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130B.170 C.210D.260解析:(1)答案:C;由S5<S6得a1+a2+a3+…+a5<a1+a2+…+a5+a6,∴a6>0,又S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,由S7>S8,得a8<0,而C选项S9>S5,即a6+a7+a8+a9>02(a7+a8)>0,由题设a7=0,a8<0,显然C选项是错误的.(2)答案:C解法一:由题意得方程组,视m为已知数,解得,∴.解法二:设前m项的和为b1,第m+1到2m项之和为b2,第2m+1到3m项之和为b3,则b1,b2,b3也成等差数列.于是b1=30,b2=100-30=70,公差d=70-30=40.∴b3=b2+d=70+40=110∴前3m项之和S3m=b1+b2+b3=210.解法三:取m=1,则a1=S1=30,a2=S2-S1=70,从而d=a2-a1=40.于是a3=a2+d=70+40=110.∴S3=a1+a2+a3=210.点评:本题考查等差数列的基本知识,及灵活运用等差数列解决问题的能力,解法二中是利用构造新数列研究问题,等比数列也有类似性质.解法三中,从题给选择支获得的信息可知,对任意变化的自然数m,题给数列前3m项的和是与m无关的不变量,在含有某种变化过程的数学问题,利用不变量的思想求解,立竿见影.六、等差数列的前n项和公式15.(1)若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有()A.13项B.12项C.11项D.10项(2)设数列{a n}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是()A.1 B.2 C.4D.6(3)设S n是等差数列{a n}的前n项和,若=,则=()A.B.C.D.解析:(1)答案:A设这个数列有n项∵∴∴n=13(2)答案:B前三项和为12,∴a1+a2+a3=12,∴a2==4a1·a2·a3=48,∵a2=4,∴a1·a3=12,a1+a3=8,把a1,a3作为方程的两根且a1<a3,∴x2-8x+12=0,x1=6,x2=2,∴a1=2,a3=6,∴选B.(3)答案为A.点评:本题考查了数列等差数列的前n项和公式的运用和考生分析问题、解决问题的能力.16.设{a n}为等差数列,S n为数列{a n}的前n项和,已知S7=7,S15=75,T n为数列{}的前n项和,求T n.解析:设等差数列{a n}的公差为d,则S n=na1+n(n-1)d.∴S7=7,S15=75,∴即解得a1=-2,d=1.∴=a1+(n-1)d=-2+(n-1).∵,∴数列{}是等差数列,其首项为-2,公差为,∴T n=n2-n.等比数列及其前n项和1. 定义:(“比”蕴含:,进而)2. 几何意义及与函数的联系:对正项等比数列,位于一条指数型曲线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、求数列通项的常用方法
①观察法:根据数列的前几项归纳出数列的通项公式;
②公式法:利用 求通项公式
③根据递推公式求通项公式:
(1)迭代法:对于形如 型的递推公式,采取逐次降低“下标”数值的反复迭代方式,最终使 与初始值 (或 )建立联系的方法就是迭代法.
(2)累加法:形如 的递推公式可用 求出通项;
2、等差(比)中项
由三个数 , , 组成的等差数列可以看成最简单的等差数列。这时, 叫做 与 的等差中项.
若 与 的等差中项,则 。
如果在 , 两个数中间插入一个数 ,使 , , 成等比数列。这时, 叫做 与 的等比中项.
①、 与 是两个同号的非零实数
②、若 是 与 的等比中项,则
3、判断等差(比)数列的方法
③裂项相消法:把数列的通项裂成两项之差后求和,正负项相消,剩下首尾若干项.使用此方法时必须搞清楚消去了哪些项,保留了哪些项,一般未被消去的项有前后对称的特点.如:
(1) ,(2) ,
(3) ,(4) 。
④倒序相加法:当把一个数列倒过来排序,与原数列对应项相加后有公因式可提,且余下的项容易求和,这时一般可用倒序相加法求其前 项和.
已知三个数成等比数列,且已知三个数之积时,一般设此三个数分别为 , , ,其中 为公比。
若已知四个数成等比数列及这个四个数的积时,一般不设为 , , , ,因为这种设法使得四个数的公比为 ,就漏掉了公比为负数的情形,造成漏解。
2、求数列最大(小)值的方法
一般方法——解不等式 ;或
特别地,若 为等差数列, 为它的前n项的和时,求 的最大(小)值可以利用①二次函数的性质;② 中项的符号。
第二章 《数列》基础知识小结
一、数列的概念与表示方法
1、数列的概念
按照一定顺序排列的一列数叫做数列。
2、数列的通项公式
如果数列的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.
3、通项公式的作用
①求数列中任意一项;
②检验某数是否是该数列中的一项.
பைடு நூலகம்4、数列的分类
①根据数列项数的多少分——有穷数列、无穷数列
等差数列
等比数列
1、定义
一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.
一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比。公比通常用字母 表示。
②当 时, ,设 ,则 ,此时,数列 的图象是函数 的图象上一群孤立的点。
12、前n项和的性质2
等差数列前 项和的性质2:等差数列 的公差为 ,前 项和为 ,那么数列 , , , ( )是等差数列,其公差等于 。
等比数列 的公比为 ,前 项和为 ,那么数列 , , , ( )是等比数列,其公比等于 。
若 和 分别是公比为 和 的等比数列,则数列 , 仍是等比数列,它们的公比分别为 , 。
9、等差(比)数列的单调性
①若 ,则 为递增数列;
②若 ,则 为递减数列;
③若 ,则 为常数列。
①当 时, 为常数列;
②当 时, 为摆动数列;
③当 , 时, 为递增数列;
④当 , 时, 为递减数列;
⑤当 , 时, 为递减数列;
(3)累乘法:形如 的递推公式可用 求出通项;
(4)形如 形式可用待定系数法。
4、数列求和的常用方法
①公式求和法:公式法是数列求和的最常用方法之一,可直接利用等差数列、等比数列的求和公式,也可利用常见的求前 项和的公式,如: ;
②错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项的乘积构成,则求此数列的前 项和时一般采用(乘公比 )错位相减法.如若公比是字母,须对 或 进行讨论.
⑥当 , 时, 为递增数列。
10、等差(比)数列的前n项和公式


当 时, ;
当 时, 或
11、前n项和的性质1
①当 时, ,是关于 的一个缺少常数项的一次函数,数列 图象是直线 上一群孤立的点;
②当 时, ,是关于 的一个缺少常数项的二次函数,数列 图象是抛物线 上一群孤立的点。
①当 时, ,数列 的图象是函数 上的一群孤立的点;
②根据数列项的大小变化分——递增数列、递减数列、常数列、摆动数列
5、数列的递推公式
如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式。
6、数列前n项和的定义
一般地,我们称 为数列 的前 项和,用 表示,即
二、等差数列与等比数列
⑤分组求和法:有些数列,通过适当拆项或分组后,可得到几个等差或等比数列,这样就可利用公式法进一步求和了.
⑥已知等差数列 ,求数列 的方法。
特别地,等比数列 中,若 ( , , ),则 。
7、性质3
等差数列 的公差为 ,若 、 、 ,则 , , ,…, ,…构成一个公差 为等差数列(其中 与 为常数)。
在等比数列 公比为 中,若 , ,则 , , ,…, ,…构成一个公比为 的等比数列。
8、性质4
若数列 与 分别是公差为 和 的等差数列,则数列 ( , 是常数)是公差为 的等差数列。
13、前n项和的性质3
等差数列 的前 项和为 ,项数为 ( )项,则① ,② ,③ ;
等差数列 的前 项和为 ,项数为 ( )项,则① ,② ,③ .
在等比数列中,若项数为 ( ),则
三、典型题型小结
1、三(四)个数成等差(比)的设法
四个数成等差数列常设为 , , , ,公差为 。若三个数成等差数列常设为 , , ,公差为 。






4、等差(比)数列的通项公式


③ ,其中 、 是常数



5、性质1
在等差数列 中,若已知 与 ,其中 ,则该数列的公差 。
若等比数列 中,公比是 ,则 。
6、性质2
在等差数列 中,若 且 、 、 、 ,则 。
特别地、在等差数列 中,若 且 、 、 ,则 。
在等比数列 中,若 ( , , , ),则 。
相关文档
最新文档