新课标人教a版高中数学必修知识点总结

合集下载

新课标人教A版高一数学必修1知识点总结

新课标人教A版高一数学必修1知识点总结

高中数学必修1知识点第一章集合与函数概念1.1集合1.1.1集合的含义与表示1、集合的含义2、集合中元素的三个特性:⑴确定性⑵互异性⑶无序性3、集合的表示列举法描述法4、常用数集及其记法:整数集Z有理数集Q实数集R 非负整数集(即自然数集)N 正整数集N*或N+5、属于(∈)6、集合的分类⑴有限集⑵无限集⑶空集(Φ): 不含任何元素的集合1、子集(包含关系)反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊈B(或B⊉A)⑴A与B是同一集合(相等关系)⑵A是B的一部分(真子集)⑶空集是任何集合的子集,空集是任何非空集合的真子集Venn图A B2、集合A(A为非空集合)中有n个元素,则A的子集个数为2n,A的真子集个数为2n-1。

3、注意⑴任何一个集合是它本身的子集A⊆A⑵如果 A⊆B,B⊆C,那么A⊆C⑶如果A⊆B同时 B⊇A那么A=B1、并集A∪B (A∪A = A,A∪φ= A , A∪B = B∪A)A B2、交集A∩B (A∩A = A,A∩φ= φ, A∩B = B∩A)A B3、全集U4、补集5、性质⑴C U(C U A)=A ⑵(C U A)∩A=Φ⑶(C U A)∪A=U ⑷(C U A)∩(C U B)=C U(A∪B) ⑸(C U A)∪(C U B)=C U(A∩B)1.2.1函数的概念1、函数的概念(构成函数的三要素:定义域、对应关系和值域)⑴多对一自变量A(定义域)函数值B(值域)a db ec⑵一对一a db ec f2、定义域3、值域4、区间5、注意⑴没有指明函数y=f(x)的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合。

函数的定义域、值域要写成集合或区间的形式)⑵相同函数的判断方法:①定义域一致②表达式相同 (两点必须同时具备)⑶函数值域中的每一个数都有定义域中的一个或多个自变量与其对应(没有剩余)本节重难点1、求定义域(1)分母不为零(2)偶次根式的被开方数非负(3)对数函数真数部分大于0(4)指数、对数函数的底数大于0且不等于1 (5)y=tanx中x≠kπ+π/2(y=cotx中x≠kπ)(6)X0=1,x≠02、求值域(先考虑其定义域)1.2.2函数的表示法1、解析法2、图象法(列表—描点—连线)(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等判断一个图形是否是函数图象的依据:作垂直于x轴的直线与曲线至多有一个交点。

新课标人教A版高中数学知识点总结

新课标人教A版高中数学知识点总结

高中数学必修1知识点总结第一章集合与函数概念【1.1.1】集合的含义与表示1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N*或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.+(3)集合与元素间的关系对象a与集合M的关系是a e M,或者a电M,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集•②含有无限个元素的集合叫做无限集•③不含有任何元素的集合叫做空集(0).【1.1.2】集合间的基本关系(7)已知集合A有>个元素,则它有n个子集,它有n一个真子集,它有个非空子集,它有非空真子集.【1.1.3】集合的基本运算8)交集、并集、补集交集AQB{x I x e A,且x e B}(1)AA=A⑵An0=0⑶AnB匸AAQB u B并集AUB{x I x e A,或x e B}补集{x I x e U,且x电A}(1)AUA=A(2)AU0=A(3)AUB-AAUB-Bi An(C A)=02Au(c A)=UU U(AA B)=(C A)U(B)UUU【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集I x I<a(a〉0){x I一a<x<a}I x I>a(a〉0)x I x<-a或x>a}I ax+b l<c,I ax+b I>c(c〉0)把ax+b看成一个整体,化成丨x I<a,I x I>a(a〉0)型不等式来求解(2)一元二次不等式的解法判别式A=b2一4acA>0A=0A<0二次函数y=ax2+bx+c(a〉0)的图象\\//I\11V1111I tIV °卜\yO一元二次方程ax2+bx+c=0(a〉0)的根x=-1,2(其匸bx=x=—122a无实根1±Jb2一4ac2ahx<x)112ax2+bx+c〉0(a〉0)的解集{x I x<x或x〉x}「b、{x I x丰一——}2aRax2+bx+c<0(a〉0)的解集{x I x<x<x}1200〖1.2〗函数及其表示1.2.1】函数的概念1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作/:A T B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.2)区间的概念及表示法①设a,b是两个实数,且a<b,满足a§x§b的实数x的集合叫做闭区间,记做[a,b];满足a<x<b的实数x的集合叫做开区间,记做(a,b);满足a§x<b,或a<x§b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x>a,x>a,x§b,x<b的实数x的集合分别记做[a,),(a,),(—g,b],(—g,b).注意:对于集合{兀1a<x<b}与区间(a,b),前者a可以大于或等于b,而后者必须a<b.3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y=tan x中,x丰k兀+—(k G Z).2⑥零(负)指数幕的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数/[g(x)]的定义域应由不等式a§g(x)§b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y二f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2+b(y)x+c(y)二0,则在a(y)丰0时,由于x,y为实数,故必须有'二b2(y)-4a(y)-c(y)>°,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.6)映射的概念①设A、B是两个集合,如果按照某种对应法则/,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则/)叫做集合A到B的映射,记作f:A T B.②给定一个集合A到集合B的映射,且aG A,bG B•如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值X 、x ,当x<x 时,都12•1••2有f(x)〉f(x),那么就说•••12•f(x)在这个区间上是减函数•yo(1)利用定义y=f(x)(2)利用已知函数的 f(x )N. 单调性1f (X )(3)利用函数图象(在f(x)某个区间图 xx x象下降为减)12(4)利用复合函数(2)打““”函数f (x )-x+x (a >0)的图象与性质(3) /(x )分别在(一a 厂、2]、W'a ,+8)上为增函数,分别在S ,°)、(0,2]上为减函数.q 石£最大(小)值定义V -24a\② 在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y 二f [g (x )],令u 二g (x ),若y 二f (u )为增,u 二g (x )为增,则y 二f [g (x )]为增;若y 二f (u )为减,u 二g (x )为减,则y 二f [g (x )]为增;若y 二f (u )为增,u 二g (x )为减,则y 二f [g (x )]为减;若y 二f (u )为减,u 二g (x )为增,则y 二f [g (x )]为减. ①一般地,设函数y 二f (x )的定义域为1,如果存在实数M满足:(1)对于任意的x e 1f (x )<M ;(2)存在x 0e1,使得f (x 0)-M•那么,我们称M是函数/(x )记作f (x )二M .max②一般地,设函数y 二f (x )的定义域为I ,如果存在实数m 满足:(1)对于任意的x e 1,都有f (x )=m ;(2) 存在x 0e1,使得f (x 0)-m .那么,我们称m 是函数/(x )的最小值,记作f (x )-m .00max【1.3.2】奇偶性(4)函数的奇偶性 ①定义及判定方法函数的性质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个X ,都有f(—x)=—f(x),那么函数f(x)叫做奇函数.-a-(a,f (aj)KT .(1) 利用定义(要先判断定义域是否关于原点对称)(2) 利用图象(图象关于原点对称)jy(-a.0K/(j)-xi-—(d>0),都有如果对于函数f (x)定义域内(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)h、°左移h个单位>y=f(x+h)y=f(x)m>y=f(x)+k ②伸缩变换y=f(x)°<吧1申>y=f(①x)®>i,缩y=f(x)°申申申>y=Af(x)A>1,伸③对称变换y=f(x)原点>y=-f(-x)y=f(x)直线y=<>y=f-1(x)去掉申轴左边图象保留y轴右边图象,并作其关于y轴对称图象>y=f(I x l)y=f(x)<保留x轴上方图象<将x 轴下方图象翻折上去②若函数f(x)为奇函数,且在x=0处有定义,则f(°)-°.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幕函数、三角函数等各种基本初等函数的图象.①平移变换(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具•要重视数形结合解题的思想方法.第二章基本初等函数(I)〖2.1〗指数函数【2.1.1】指数与指数幕的运算(1)根式的概念①如果x n=a,aGR,xGR,n>1,且nGN,那么x叫做a的n次方根.当n是奇数时,a的n次方根用+③根式的性质:(na)n=a;当n为奇数时,n an=a;当n为偶数时,(a>0)(a<0)符号n'a表示;当n是偶数时,正数a的正的n次方根用符号na表示,负的n次方根用符号一n a表示;0的n次方根是0;负数a 没有n次方根.②式子na叫做根式,这里n叫做根指数,a叫做被开方数.当n为奇数时,a为任意实数;当n为偶数时,a、0.2)分数指数幂的概念m①正数的正分数指数幕的意义是:a n二nam(a>0,n e N,且n>1).0的正分数指数幕等于o.+m1m f1②正数的负分数指数幕的意义是:a一n=(一)n=n:(—)m(a>0,n e N,且n>1).0的负分数指数幕没a¥a+有意义.注意口诀:底数取倒数,指数取相反数.3)分数指数幂的运算性质①a r-a s=a r+s(a>0,r,s e R)②(a r)s=a r(a>0,r,s e R)③(ab)r=a r b r(a>0,b>0,r e R)【2.1.2】指数函数及其性质4)指数函数函数名称指数函数定义函数y-a x(a>0j i a丰1)叫做指数函数a>10<a<1V八y-ax/\y-a x y图象丿\y-1(0,1)(0,1)—”鼻,O x0x定义域R值域(0,+如过定点图象过定点(0,1),即当x=0时,y二1.奇偶性非奇非偶单调性在R上是增函数在R上是减函数①加法:log M +log N 二log(MN )aaa③数乘:n log M =log M n (n e R )aa②减法:lo g M -lo g N 二lo gaaa N④a lo g a N =Nn⑤log M n=logM(b 丰0,n e R )ab a〖2.2〗对数函数【2.2.1】对数与对数运算1)对数的定义①若a x 二N (a >0,且a 丰1),则x 叫做以a 为底N 的对数,记作x 二log N ,其中a 叫做底数,N 叫做真数.a② 负数和零没有对数. ③ 对数式与指数式的互化:x=lo g N o ax =N (a >0,a丰1,N >0).a2)几个重要的对数恒等式log1=0,log a =1,log a b =b .aa a3)常用对数与自然对数常用对数:l g N ,即lo g N ;自然对数:l nN ,即lo g N (其中e =2.71828...).10e(4)对数的运算性质如果a >°,a丰1,M >0,N >0,那么log N⑥换底公式:log N —b (b >0,且b丰1)a log ab2.2.2】对数函数及其性质设函数y二f(x)的定义域为A,值域为C,从式子y二f(x)中解出x,得式子x(y).如果对于y在C中的任何一个值,通过式子x=(y),x在A中都有唯一确定的值和它对应,那么式子x=(y)表示x是y的函数,函数X=9(y)叫做函数y=f(x)的反函数,记作X=f T(y),习惯上改写成y=f T(X).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y=f(x)中反解出x=f T(y);③将x=f-1(y)改写成y=f-1(x),并注明反函数的定义域.8)反函数的性质①原函数y=f(x)与反函数y=f-1(x)的图象关于直线y=x对称.②函数y=f(x)的定义域、值域分别是其反函数y=f-1(x)的值域、定义域.③若P a b)在原函数y=f(x)的图象上,则P'(b,a)在反函数y=f-1(x)的图象上.④一般地,函数y=f(x)要有反函数则它必须为单调函数.〖2.3〗幂函数1)幂函数的定义一般地,函数y二x a叫做幕函数,其中x为自变量,a是常数.关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限②过定点:所有的幕函数在(°,+8)都有定义,并且图象都通过点(i,i).③单调性:如果0,则幕函数的图象过原点,并且在[°,+8)上为增函数•如果0,则幕函数的图象在(°,+8)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当a为奇数时,幕函数为奇函数,当a为偶数时,幕函数为偶函数.当a=-(其中p,q互质,p和q GZ),p若p为奇数q为奇数时,则y=x p是奇函数,若p为奇数q为偶数时,则y=x p是偶函数,若p为偶数q为奇数时, ■q则y=XP是非奇非偶函数.⑤图象特征:幕函数y二x a,xG(°,+8),当a>1时,若°<x<1,其图象在直线y=x下方,若x>1,其图象在直线y=x上方,当a<1时,若°<x<1,其图象在直线y=x上方,若x>1,其图象在直线y=x下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:f(x)二ax2+bx+c(a丰°)②顶点式:f(x)二a(x-h)2+k(a丰°)③两根式: f(x)二a(x—x1)(x—x2)(a丰°)(2)求二次函数解析式的方法b 需,顶点坐标是②当a >0时,抛物线开口向上, 函数在Z ,-冷上递减’在[--2a ,+Q 上递增’当x 一2a 时' 2a 4a M (x ,0)M (x ,0),MM 曰x -x I 二I a I ① 已知三个点坐标时,宜用一般式.② 已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③ 若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求f (x )更方便.3)二次函数图象的性质 ①二次函数/(x )二ax 2+bx +c (a 丰0)的图象是一条抛物线,对称轴方程为x 二一b4ac -b 22a'4a4ac -b 2bb 、min (X )=石;当。

高中数学人教A版必修第一册知识点总结

高中数学人教A版必修第一册知识点总结

高中数学人教A版必修第一册知识点总结本册教材是高中数学人教版A版(2024)的必修第一册,总共包括了四个单元:集合与常用逻辑、函数与方程、数列与数学归纳法、几何与向量。

接下来将对这四个单元的知识点进行总结。

一.集合与常用逻辑1.集合与元素-集合的表示方法:列举法、描述法、条件法-集合之间的关系:相等、含于、相交、并集、交集、互补集2.集合的运算-并集、交集、差集、补集-嵌套集合的化简-运算律:交换律、结合律、分配律3.常用逻辑关系-全称量词、存在量词-逻辑运算:与、或、非-条件命题、充分条件、必要条件4.命题及命题的逻辑运算-命题的分类:命题主体、命题联结词、命题陈述、命题基础-命题的逻辑运算:否定、合取、析取、蕴含、等价二.函数与方程1.函数的概念-自变量、因变量、函数值-射影函数、指示函数2.函数的表示方法-函数的解析式-函数的图像3.函数的性质-定义域、值域、对应法则、单调性、奇偶性、周期性-奇函数、偶函数-反函数4.一次函数-一次函数的解析式及图像-平移变换、伸缩变换5.二次函数-二次函数的解析式及图像-平移变换、伸缩变换-最值、对称轴、零点及判别式三.数列与数学归纳法1.数列的概念-有限数列、无限数列、数列的一般表示2.等差数列-等差数列的概念及公式-等差数列前n项和公式-通项公式的推导3.等比数列-等比数列的概念及公比-等比数列前n项和公式-通项公式及其推导4.递推数列-递推数列的概念及表示-递推公式5.数学归纳法-数学归纳法三个步骤:证明基础、证明步骤、加强归纳前提四.几何与向量1.向量的概念-向量的定义、表示方法、相等与运算-向量的数量表示-零向量、单位向量2.向量的线性运算-加法、减法、数乘-加减法运算律、数乘运算律3.向量的坐标表示-坐标运算、线性变换4.向量的数量积-向量的点乘、模长及其性质-向量的夹角及性质5.平面向量的应用-共线向量、垂直向量、平行向量-向量在直角坐标系中的投影-多边形面积与向量运算-向量与几何问题的应用以上是《高中数学人教A版(2024)必修第一册》的知识点总结。

新课标人教A版高中数学全部知识点归纳总结

新课标人教A版高中数学全部知识点归纳总结

高三第一轮复习资料(注意保密)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。

必修3:算法初步、统计、概率。

必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

必修5:解三角形、数列、不等式。

以上是每一个高中学生所必须学习的。

上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。

不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。

此外,基础内容还增加了向量、算法、概率、统计等内容。

选修课程有4个系列:系列1:由2个模块组成。

选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。

选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。

选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。

系列3:由6个专题组成。

选修3—1:数学史选讲。

选修3—2:信息安全与密码。

选修3—3:球面上的几何。

选修3—4:对称与群。

选修3—5:欧拉公式与闭曲面分类。

选修3—6:三等分角与数域扩充。

选修4—1:几何证明选讲。

选修4—2:矩阵与变换。

选修4—3:数列与差分。

选修4—4:坐标系与参数方程。

选修4—5:不等式选讲。

选修4—6:初等数论初步。

选修4—7:优选法与试验设计初步。

选修4—8:统筹法与图论初步。

选修4—9:风险与决策。

选修4—10:开关电路与布尔代数。

2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 必修1数学知识点第一章:集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

2023年新教材高中人教A版数学必修第一册知识点(8页)全文

2023年新教材高中人教A版数学必修第一册知识点(8页)全文

新教材高一数学必修第—册知识点第一章 集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母表示,元素三大性质:互异性,确定性,无 ,,,c b a 序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母表示. ,,,C B A 3集合相等:两个集合的元素一样,记作.B A ,B A =4元素与集合的关系:①属于:;②不属于:.A a ∈A a ∉5常用的数集及其记法:自然数集;正整数集;整数集;有理数集;实数集.N +N N 或*Z Q R 6集合的表示方法:①列举法:把集合中的全部元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中全部具有共同特征的元素所组成的集合表示为的方法; )(x P x })(|{x P A x ∈③图示法(图):用平面上封闭曲线的内部代表集合的方法.Venn 7集合间的根本关系:子集:对于两个集合,如果集合中任意一个元素都是集合中的元素,就B A ,A B 称集合为集合的子集,记作,读作包含于;真子集:如果,但存在元素,且A A A B B A ⊆B x ∈A x ∉,就称集合是集合的真子集,记作,读作真包含于.A B A B A B 8空集:不含任何元素的集合,用表示,空集的性质,空集是任何集合的子集,是任何集合的真子∅集.9集合的根本运算:并集;交集; },|{B x A x x B A ∈∈=或 },|{B x A x x B A ∈∈=且 补集(为全集,全集是含有所研究问题中涉及的全部元素). },|{A x U x x A C U ∉∈=且U 运算性质:;;;;B A B B A ⊆⇔= B A A B A ⊆⇔= A A =∅ ∅=∅ A ,.∅==∅=U C U C A A C C U U U U ,,)()()()(),()()(B A C B C A C B A C B C A C U U U U U U ==10充分条件与必要条件:一般地,“假设p ,则q 〞为真命题,p 可以推出q ,记作,称p 是q 的q p ⇒充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:假设,则p 是q 的充分不必要q q p ,⇒p 条件;假设,则p 是q 的必要充分不条件;假设,则p 是q 的充要条件;p p q ,⇒q q p ⇔假设,,则p 是q 的既不充分也不必要条件. pq q p 11全称量词及全称量词命题:短语“全部的〞,“任意一个〞在逻辑中叫做全称量词,并用符号表∀示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个〞,“至少有一个〞在逻辑中叫做存在量词,并用符号∃表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否认:全称量词命题的否认是存在量词命题;存在量词命题的否认是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质: ①对称性;②传递性;③可加性a b b a >⇔<,a b b c a c >>⇒>;④可乘性,;a b a c b c >⇒+>+,0a b c ac bc >>⇒>,0a b c ac bc ><⇒<⑤同向可加性;⑥同向可乘性; ,a b c d a c b d >>⇒+>+0,0a b c d ac bd >>>>⇒>⑦可乘方性;()0,1n n a b a b n n >>⇒>∈N >⑧可开方性.⑨可倒数性. )0,1a b n n >>⇒>∈N >ba b a 110<⇒>>2重要不等式:假设,则,当且仅当时等号成立.R b a ∈,ab b a 222≥+b a =3根本不等式:假设,,则,即,当且仅当时等号成立. 0a >0b >a b +≥2a b+≥b a =4不等式链:假设,,则,当且仅当时等号成立;一正0a >0b >ba ab b a b a 1122222+≥≥+≥+b a =二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最gao 次数是的不等式. 26第三章 函数的概念与性质1函数的概念:一般地,设是非空的实数集,如果对于集合中的任意一个数x ,按照某种确定的B A ,A 对应关系,在集合中都有唯—确定的数y 与它对应,那么就称为从集合到集合的一f B B A f →:A B 个函数,记作,其中,x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对A x x f y ∈=),(A 应的y 值叫做函数值,函数值的集合叫做函数的值域,值域是集合的子集. }|)({A x x f ∈B 2函数的三要素:定义域、对应关系、值域. 求函数定义域的原则:(1)假设为整式,则其定义域是;()f x R (2)假设为分式,则其定义域是使分母不为0的实数集合;()f x (3)假设是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合; ()f x (4)假设,则其定义域是; ()0f x x =}{0x x ≠(5)假设,则其定义域是;()()0,1x f x a a a =>≠R (6)假设,则其定义域是; ()()log 0,1a f x x a a =>≠}{0x x >(7)假设,则其定义域是;x x f tan )(=},2|{Z k k x x ∈+≠ππ求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数. 6函数的单调性:(1)单调递增:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x <函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x >函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间. 8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数的定义域为,如果存在实数满足:,都有)(x f y =I M I x ∈∀;使得,那么称是函数的最大(小)值. ))(()(M x f M x f ≥≤I x ∈∃0M x f =)(0M10函数的奇偶性:偶函数:一般地,设函数的定义域为,如果,都有,且,那么函)(x f y =I I x ∈∀I x ∈-)()(x f x f =-数叫做偶函数;偶函数的图象关于y 轴对称;偶函数满足;)(x f y =|)(|)()(x f x f x f ==-奇函数:一般地,设函数的定义域为,如果,都有,且,那么)(x f y =I I x ∈∀I x ∈-)()(x f x f -=-函数叫做奇函数;奇函数的图象关于原点对称;假设奇函数的定义域中有零,则其函数图象必过原点,即)(x f y =.(0)0f =11幂函数:一般地,函数叫做幂函数,其中是自变量,是常数. αx y =x α12幂函数的性质:()f x x α=①全部的幂函数在都有定义,并且图象都通过点;()0,+∞()1,1②如果,则幂函数的图象过原点,并且在区间上是增函数;0α>[)0,+∞③如果,则幂函数的图象在区间上是减函数,在第—象限内,当从右边趋向于原点时,0α<()0,+∞x 图象在轴右方无限地逼近轴,当趋向于时,图象在轴上方无限地逼近轴; y y x +∞x x ④在直线的右侧,幂函数图象“指大图高〞; 1=x ⑤幂函数图象不出现于第四象限. 第四章 指数函数与对数函数1n 次方根与分数指数幂、指数幂运算性质(1)假设,则;; n x a =))n x n=⎪⎩为奇数为偶数()()a n a n ⎧⎪=⎨⎪⎩为奇数为偶数(3);(4);na =*0,,,1)m na a m n N n =>∈>且(5);*0,,1)m naa m n N n -=>∈>,且(6)的正分数指数幂为,的负分数指数幂没有意义.000(7);()0,,r s r sa a a a r s R +⋅=>∈(8);()()0,,r s rsa a a r s R =>∈(9).()()0,0,,rrrab a b a b r s R =⋅>>∈2对数、对数运算性质(1);(2); ()log 0,1xa a N x N a a =⇔=>≠()log 100,1a a a =>≠(3);(4);;()log 10,1a a a a =>≠()log 0,1a Na N a a =>≠(5);()log 0,1m a a m a a =>≠(6);()log ()log log 0,1,0,0a a a MN M N a a =+>≠M >N >(7); ()log log log 0,1,0,0aa a MM N a a N=->≠M >N >(8);()log log 0,1,0n a a M n M a a =⋅>≠M >(9)换底公式; ()log log 0,1,0,0,1log c a c bb a a bc c a=>≠>>≠(10); ()log log 0,1,,*m na a nb b a a n m N m =>≠∈(11);()1log log 0,1,0,aa M a a M n R n=>≠>∈(12). ()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠3指数函数及其性质:)1,0(≠>=a a a y x 且①定义域为; ②值域为;③过定点;(),-∞+∞()0,+∞()0,1④单调性:当时,函数在上是增函数;当时,函数在上是减函数; 1a >()f x R 01a <<()f x R ⑤在y 轴右侧,指数函数的图象“底大图高〞. 4对数函数及其性质:)1,0(log ≠>=a a x y a 且①定义域为;②值域为;③过定点;()0,+∞(),-∞+∞()1,0④单调性:当时,函数在上是增函数;当时,函数在上是减函1a >()f x ()0,+∞01a <<()f x ()0,+∞数;⑤在直线的右侧,对数函数的图象“底大图低〞.1=x 5指数函数与对数函数互为反函数,它们的图象关于直线对称. x a y =)1,0(log ≠>=a a x y a 且x y =6不同函数增长的差异:线性函数模型的增长特点是直线上升,其增长速度不变;指数)0(>+=k b kx y 函数模型的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸〞状)1(>=a a y x 态;对数函数模型的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长)1(log >=a x y a 速度平缓;幂函数模型的增长速度介于指数函数和对数函数之间.)0(>=n x y n 7函数的零点:在函数的定义域内,使得的实数叫做函数的零点.)(x f y =0)(=x f x 8零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,且有,()f x [],a b ()()0f a f b ⋅<那么函数在区间内至少有一个零点,即存在,使得,这个也就是方程()y f x =(),a b (),c a b ∈()0f c =c 的根.()0f x =9二分法:对于区间上图象连续不断且的函数,通过不断把它的零点所在],[b a ()()0f a f b ⋅<)(x f y =区间一分为二,使得区间的两个端点逐渐逼近零点,进而得到零点近似值的方法.10给定准确度,用二分法求函数零点近似值的步骤: ε)(x f y =0x ⑴确定零点的初始区间,验证; 0x [],a b ()()0f a f b ⋅<⑵求区间的中点;[],a b c ⑶计算,并进一步确定零点所在的区间; )(c f ①假设,则就是函数的零点;0)(=c f c ②假设(此时),则令; 0)()(<c f a f ),(0c a x ∈c b =③假设(此时),则令;0)()(<b f c f ),(0b c x ∈c a =⑷推断是否到达准确度:假设,则得到零点的近似值(或);否则重复上面的⑵至⑷. εa b ε-<a b 第五章 三角函数1任意角的分类:按终边的旋转方向分: ⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第αx α几象限角.第—象限角的集合为;{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为;{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为; {}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z角的终边不在任何一个象限,就称这个角不属于任何一个象限 α终边在轴非负半轴的角的集合; x },2|{Z k k ∈=παα终边在轴非正半轴的角的集合; x },2|{Z k k ∈+=ππαα终边在轴非负半轴的角的集合;y },22|{Z k k ∈+=ππαα终边在轴非正半轴的角的集合;y },22|{Z k k ∈+-=ππαα终边在轴的角的集合;x },|{Z k k ∈=παα终边在轴的角的集合;y },2|{Z k k ∈+=ππαα终边在坐标轴的角的集合; },2|{Z k k ∈=παα2终边相同的角:与角终边相同的角的集合为.α{}360,k k ββα=⋅+∈Z 3弧度制:长度等于半径长的弧所对的圆心角叫做弧度.14角度与弧度互化公式:,,.2360π=1180π=180157.3π⎛⎫=≈ ⎪⎝⎭5扇形公式:半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.假设扇形r αl αlrα=的圆心角为,半径为,弧长为,周长为,面积为,则,,()αα为弧度制r l C S l r α=2C r l =+.21122S lr r α==6三角函数的概念:设是一个任意大小的角,的终边上任意一点P 的坐标是,它与原点的距αα(),x y离是,则,,. ()0r r =>sin y r α=cos x r α=()tan 0yx xα=≠7三角函数的符号:一全正二正弦三正切四余弦. 8记忆特别角的三角函数值:α 15 30 45 60 75 90 120 135 150180 270 360 α 12π 6π 4π 3π 125π 2π 32π 43π 65π π 23ππ2 αsin 426- 21 22 23 426+ 1 23 22 210 1-0 αcos 426+ 23 22 21 426-0 21- 22- 23-1-01 αtan 32- 1 3 32+不存在 3- 1- 33-0 不存在9同角三角函数的根本关系:,;()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=- .()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫==⎪⎝⎭10诱导公式口诀:奇变偶不变,符号看象限.,,.()()1sin 2sin k παα+=()cos 2cos k παα+=()()tan 2tan k k παα+=∈Z ,,. ()()2sin sin παα+=-()cos cos παα+=-()tan tan παα+=,,.()()3sin sin αα-=-()cos cos αα-=()tan tan αα-=-,,. ()()4sin sin παα-=()cos cos παα-=-()tan tan παα-=-,.,. ()5sin cos 2παα⎛⎫-=⎪⎝⎭cos sin 2παα⎛⎫-= ⎪⎝⎭()6sin cos 2παα⎛⎫+= ⎪⎝⎭cos sin 2παα⎛⎫+=- ⎪⎝⎭11三角函数的图象与性质:sin y x = cos y x =tan y x =图象定义域RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R 函数性质12两角和差的正弦、余弦、正切公式:(1);(2); ()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=-(3);(4);()sin sin cos cos sin αβαβαβ-=-()sin sin cos cos sin αβαβαβ+=+(5);()tan tan tan 1tan tan αβαβαβ--=+()()tan tan tan 1tan tan αβαβαβ-=-+(6). ()tan tan tan 1tan tan αβαβαβ++=-()()tan tan tan 1tan tan αβαβαβ+=+-13二倍角公式:(1);(2);sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-(,);(3);2cos 21cos 2αα+=21cos 2sin 2αα-=22tan tan 21tan ααα=-14半角公式:(1);(2);(3);(4)2cos 12sin αα-±=2cos 12cos αα+±=αααcos 1cos 12tan +-±=αααααcos 1sin sin cos 12tan +=-=15辅助角公式:.的终边上在角点其中ϕϕϕ),(,tan ),sin(cos sin 22b a abx b a x b x a =±+=±16函数的图象与性质:b x A y ++=)sin(ϕω图象变换:先平移后伸缩:函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x =ϕ的图象;再将函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐()sin y x ϕ=+()sin y x ϕ=+1ω标不变),得到函数的图象;再将函数的图象上全部点的纵坐标伸长(缩()sin y x ωϕ=+()sin y x ωϕ=+短)到原来的倍(横坐标不变),得到函数的图象. A ()sin y x ωϕ=A +先伸缩后平移:函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函sin y x =1ω最值当时,22x k ππ=+()k ∈Z ;当max1y =22x k ππ=-时,.()k ∈Z min 1y =-当时,()2x k k π=∈Z ;当max 1y =2x k ππ=+时,.()k ∈Z min 1y =-既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数奇函数单调性在 2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数;在()k ∈Z 32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数.()k ∈Z 在上是[]()2,2k k k πππ-∈Z 增函数;在[]2,2k k πππ+上是减函数.()k ∈Z 在,22k k ππππ⎛⎫-+ ⎪⎝⎭上是增函数.()k ∈Z 对称性对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心 (),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z 对称中心 (),02k k π⎛⎫∈Z⎪⎝⎭无对称轴数的图象;再将函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x ω=sin y x ω=ϕω的图象;再将函数的图象上全部点的纵坐标伸长(缩短)到原来的倍(横()sin y x ωϕ=+()sin y x ωϕ=+A 坐标不变),得到函数的图象. ()sin y x ωϕ=A +五点法画图函数的性质:()()sin 0,0y x ωϕω=A +A >>①定义域为R ;②值域为;③单调性:依据函数的单调区间求函数的单调区间; ],[A A -x y sin =④奇偶性:当时,函数是奇函数;当时,函数Z k k ∈=,πϕ()sin y x ωϕ=A +Z k k ∈+=,2ππϕ是偶函数;⑤周期:;⑥对称性:依据函数的对称性研究函数的对称()sin y x ωϕ=A +ωπ2=T x y sin =性12π17函数的应用B x A y ++=)sin(ϕω①振幅:A ;②周期:;③频率:;④相位:;⑤初相:.2πωT =12f ωπ==T x ωϕ+ϕ⑥最值:函数,当时,取得最小值为 ;当时,取得最大值为B x A y ++=)sin(ϕω1x x =min y 2x x =maxy ,则,,.()max min 12y y A =-()max min 12y y B =+()21122x x x x T=-<。

高中数学人教A版必修第一册知识点总结

高中数学人教A版必修第一册知识点总结

高中数学新教材必修第一册知识点总结第一章集合与常用逻辑用语1.1集合的概念1.集合的描述:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集.2.集合的三个特性:(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”、“线”、“面”等概念一样,都只是描述性地说明.(2)整体性:集合是一个整体,暗含“所有”、“全部”、“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物等. 3.集合中元素的三个特性:(1)确定性:对于给定的集合,它的元素必须是确定的.即按照明确的判断标准(不能是模棱两可的)判断给定的元素,或者在这个集合里,或者不在这个集合里,二者必居其一. (2)互异性:一个给定的集合中的元素是互不相同的.也就是说集合中的元素是不能重复出现的.(3)无序性:集合中的元素排列无先后顺序,任意调换集合中的元素位置,集合不变. 4.集合的符号表示通常用大写的字母A,B,C,…表示集合,用小写的字母a,b,c表示集合中的元素.5.集合的相等当两个集合的元素是一样时,就说这两个集合相等.集合A与集合B相等记作A B=.6.元素与集合之间的关系(1)属于:如果a是集合A中的元素,就说a属于集合A,记作a A∈,读作a属于A. (2)不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a A∉,读作a不属于A.7.集合的分类(1)有限集:含有有限个元素的集合叫做有限集.如方程21x=的实数根组成的集合.(2)无限集:含有无限个元素的集合叫做无限集.如不等式10x->的解组成的集合.8.常用数集及其记法.(1)正整数集:全体正整数组成的集合叫做正整数集,记作*N或N+(2)自然数集:全体非负整数组成的集合叫做自然数集,记作N.(3)整数集:全体整数组成的集合叫做整数集,记作Z.(4)有理数集:全体有理数组成的集合叫做有理数集,记作Q.(5)实数集:全体实数组成的集合叫做实数集,记作R.9.集合表示的方法(1)自然语言:用文字叙述的形式描述集合的方法.如所有正方形组成的集合,所有实数组成的集合.例如,三角形的集合.(2)列举法:把集合的元素一一列举出来表示集合的方法叫做列举法.其格式是把集合的元素一一列举出来并用逗号隔开,然后用花括号括起来.例如,我们可以吧“地球上的四大洋”组成的集合表示为{太平洋,大西洋,印度洋,北冰洋},把“方程(1)(2)0x x -+=的所有实数根”组成的集合表示为{1,2}-.(3)描述法:通过描述集合所含元素的共同特征表示集合的方法叫做描述法.一般格式为{()}x p x ,其中x 是集合中的元素代表,()p x 则表示集合中的元素所具有的共同特征.例如,不等式73x -<的解集可以表示为{73}{10}x R x x R x ∈-<=∈<.1.2集合间的基本关系1. 子集一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记为A B ⊆或(B A ⊇) 读作集合A 包含于集合B (或集合B 包含集合A ). 集合A 是集合B 的子集可用V e n n 图表示如下:或关于子集有下面的两个性质: (1)自反性:A A ⊆;(2)传递性:如果A B ⊆,且B C ⊆,那么A C ⊆. 2.真子集如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A是集合B 的真子集,记为A B ⊂≠(或B A ⊃≠), 读作集合A 真包含于集合B (或集合B 真包含集合A ). 集合A 是集合B 的真子集可用V e n n 图表示如右.3.集合的相等如果集合A B ⊆,且B A ⊆,此时集合A 与集合B 的元素是 一样的,我们就称集合A 与集合B 相等,记为 A B =.集合A 与集合B 相等可用V e n n 图表示如右. 4.空集我们把不含任何元素的集合叫做空集,记为∅.我们规定空集是任何一个集合的子集,空集是任何一个非空集合的真子集,即 (1)A ∅⊆(A 是任意一个集合); (2)A ⊂∅≠(A ≠∅).1.3集合的运算1.并集自然语言:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作A B ⋃(读作“A 并B ”).符号语言: {,}A B x x A x B ⋃=∈∈或. 图形语言:(5) A =BA (4)B B(3)A (2)A 与B 没有有公共元素(1)A 与B 有公共元素,相互不包含理解:x A ∈或x B ∈包括三种情况:x A ∈且x B ∉;x B ∈且x A ∉;x A ∈且x B ∈. 并集的性质:(1)A B B A ⋃=⋃; (2)A A A ⋃=; (3)A A ⋃∅=;(4)()()A B C A B C ⋃⋃=⋃⋃; (5)A A B ⊆⋃,B A B ⊆⋃; (6)A B B A B ⋃=⇔⊆. 2.交集自然语言:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ⋂(读作“A 交B ”). 符号语言: {,}A B x x A x B ⋂=∈∈且. 图形语言:BA(5)A=B,A B=A=B(4)B A,A B=B(3)A B,A B=AA B(2)A 与B 没有公共元素,A B=(1)A 与B 有公共元素,且互不包含理解:当A 与B 没有公共元素时,不能说A 与B 没有交集,只能说A 与B 的交集是∅. 交集的性质:(1)A B B A ⋂=⋂; (2)A A A ⋂=; (3)A ⋂∅=∅;(4)()()A B C A B C ⋂⋂=⋂⋂; (5)A B A ⋂⊆,A B B ⋂⊆; (6)A B A A B ⋂=⇔⊆.3.补集(1)全集的概念:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U . (2)补集的概念自然语言:对于一个集合A ,由属于全集U 且不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记为UA .符号语言: {,}UA x x U x A =∈∉且图形语言:补集的性质 (1)()UA A ⋂=∅; (2)()UA A U ⋃=;(3)()()()UU UA B A B ⋃=⋂; (4)()()()U U UA B A B ⋂=⋃.1.4充分条件与必要条件1.充分条件与必要条件 一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p q ⇒, 并且说p 是q 的充分条件,q 是p 的必要条件. 在生活中, q 是p 成立的必要条件也可以说成是: q ⌝⇒p ⌝(q ⌝表示q 不成立),其实,这与p q ⇒是等价的.但是,在数学中,我们宁愿采用第一种说法. 如果“若p ,则q ”为假命题,那么由p 推不出q ,记作/p q ⇒.此时,我们就说p 不是q 的充分条件,q 不是p 的必要条件.2.充要条件如果“若p ,则q ”和它的逆命题“若q 则p ”均是真命题,即既有p q ⇒,又有q p ⇒就记作p q ⇔.此时,我们就说p 是q 的充分必要条件,简称为充要条件.显然,如果p 是q 的充要条件,那么q 也是p 的充要条件.概括地说,如果p q ⇔,那么p 与q 互为充要条件. “p 是q 的充要条件”,也说成“p 等价于q ”或“q 当且仅当p ”等.1.5全称量词与存在量词1.全称量词与存在量词 (1)全称量词 短语“所有的”,“任意一个”在逻辑中通常叫做全称量词,并用符号“"”表示.常见的全称量词还有“一切”,“每一个”,“任给”,“所有的”等.含有全称量词的命题,叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为x M ∀∈,()p x ,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词 短语“存在一个”,“至少有一个”在逻辑中通常叫做存在量词,并用符号“$”表示.常见的存在量词还有“有些”,“有一个”,“对某个”,“有的”等. 含有存在量词的命题,叫做存在量词命题.存在量词命题“存在M 中的元素x ,使()p x 成立”可用符号简记为x M∃∈,()p x ,读作“存在M 中的元素x ,使()p x 成立”. 2.全称量词命题和存在量词命题的否定 (1)全称量词命题的否定 全称量词命题:x M ∀∈,()p x ,它的否定:x M∃∈,()p x ⌝.全称量词命题的否定是存在量词命题. (2)存在量词命题的否定 存在量词命题:x M∃∈,()p x ,它的否定:x M ∀∈,()p x ⌝.存在量词命题的否定是全称量词命题.第二章 一元二次函数、方程和不等式2.1等式性质与不等式性质1.比较原理a b a b >⇔->;0a b a b =⇔-=; 0a b a b <⇔-<.2.等式的基本性质 性质1 如果a b =,那么b a =;性质2 如果a b =,b c =,那么a c =; 性质3 如果a b =,那么a c b c ±=±; 性质4 如果a b=,那么a c b c =;性质5 如果a b =,0c ≠,那么a b c c=.3.不等式的基本性质性质1 如果a b >,那么b a <;如果b a <,那么a b >.即a b b a >⇔<性质2 如果a b >,b c >,那么a c >.即a b >,b c >a c ⇒>.性质3 如果a b >,那么a c b c +=+.由性质3可得,()()a b c a b b c b a c b +>⇒++->+-⇒>-.这表明,不等式中任何一项可以改变符号后移到不等号的另一边.性质4 如果a b >,0c >,那么a c b c >;如果a b >,0c <,那么a c b c <. 性质5 如果a b >,c d >,那么a c b d +>+. 性质6 如果0a b >>,0c d >>,那么a c b d >. 性质7 如果0a b >>,那么nna b >(n N ∈,2n ≥).2.2 基本不等式1.重要不等式,a b R ∀∈,有222a ba b +≥,当且仅当a b =时,等号成立. 2.基本不等式如果0a >,0b >,则2a b +≤,当且仅当a b =时,等号成立.2a b +叫做正数a ,b 的算术平均数叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数. 3.与基本不等式相关的不等式 (1)当,a b R ∈时,有22a b a b +⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立.(2)当0a >,0b >时,有211a b≤+当且仅当a b =时,等号成立. (3)当,a b R ∈时,有22222a b a b ++⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立.4.利用基本不等式求最值已知0x >,0y >,那么(1)如果积x y 等于定值P ,那么当x y =时,和x y +有最小值; (2)如果和x y +等于定值S ,那么当x y =时,积x y 有最大值214S .2.3 二次函数与一元二次方程、不等式1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.第三章 函数的概念与性质3.1 函数的概念及其表示1.函数的概念设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的的数y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作()y f x =,x A ∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{|(})f x x A ∈叫做函数的值域,显然,值域是集合B 的子集. 2.区间:设a ,b 是两个实数,而且a b <,我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[,]a b ; (2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(,)a b ;(3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为:[,)a b , (,]a b .这里的实数a ,b 都叫做相应区间的端点.(4)实数集R 可以表示为(,)-∞+∞,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞” 读作“正无穷大”.满足x a ≥,x a >,x b ≤,x b <的实数x 的集合,用区间分别表示为[,)a +∞ ,(,)a +∞(,]b -∞,(,)b -∞.这些区间的几何表示如下表所示.注意:(1)“∞”是一个趋向符号,表示无限接近,却永远达不到,不是一个数. (2)以“-∞”或“+∞”为区间的一端时,这一端点必须用小括号. 3.函数的三要素 (1)定义域; (2)对应关系;(3)值域.值域随定义域和对应关系的确定而确定. 4.函数的相等如果两个函数的定义域和对应关系分别相同,那么就说这两个函数是同一个函数. 5.函数的表示方法 (1)解析法用数学表达式表示两个变量之间的对应关系的方法叫做解析法.解析法是表示函数的一种重要的方法,这种表示法从“数”的方面简明、全面地概括了变量之间的数量关系. (2)图象法用图象表示两个变量之间的对应关系的方法叫做图象法.图象法直观地表示了函数值随自变量值改变的变化趋势,从“形”的方面刻画了变量之间的数量关系.说明:将自变量的一个值0x 作为横坐标,相应的函数值0()f x 作为纵坐标,就得到坐标平面上的一个点00(,())x f x .当自变量取遍函数的定义域A 中的每一个值时,就得到一系列这样的点,所有这些点组成的图形就是函数()y f x =的图象.函数()y f x =的图象在x 轴上的射影构成的集合就是函数的定义域,在y 轴上的射影构成的集合就是函数的值域. 函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等. (3)列表法通过列表来表示两个变量之间的对应关系的方法叫做列表法.例如,初中学习过的平方表、立方表都是表示函数关系的. 6.分段函数(1)分段函数的概念有些函数在其定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.如(1),0,(),0x x f x x x x -<⎧==⎨≥⎩ , (2)22,0,(),0x x f x x x ⎧≤⎪=⎨->⎪⎩. 说明:①分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.②分段函数在书写时用大括号把各段函数合并写成一个函数的形式.并且必须指明各段函数自变量的取值范围.③分段函数的定义域是自变量所有取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.④分段函数的值域是各段函数在对应自变量的取值范围内值域的并集. (2)分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一坐标系中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的端点是空心点还是实心点,组合到一起就得到整个分 段函数的图象.3.2 函数的基本性质函数的性质是指在函数变化过程中的不变性和规律性. 1.单调性与最大(小)值 (1)增函数设函数()f x 的定义域为I ,区间D ⊆I .如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x <,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递增时,我们就称它是增函数.(2)减函数设函数()f x 的定义域为I ,区间D ⊆I.如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x >,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递减时,我们就称它是减函数. (3)单调性、单调区间、单调函数如果函数()y f x =在区间D 上单调递增或单调递减,那么就说函数()y f x =在区间D 上具有(严格的)单调性,区间D 叫做()y f x =的单调区间.如果函数在某个区间上具有单调性,那么就称此函数在这个区间上是单调函数. (4)证明函数()f x 在区间D 上单调递增或单调递减,基本步骤如下: ①设值:设12,x x D ∈,且 12x x <;②作差:12()()f x f x - ;③变形:对12()()f x f x -变形,一般是通分,分解因式,配方等.这一步是核心 ,要注意变形到底;④判断符号,得出函数的单调性. (5)函数的最大值与最小值①最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么我们称M 是函数()y f x =的最大值.②最小值:设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥; (2)存在0x I ∈,使得0()f x m =. 那么我们称m 是函数()y f x =的最小值. 2.奇偶性 (1)偶函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=,那么函数()f x 就叫做偶函数.关于偶函数有下面的结论:①偶函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为偶函数的一个必要条件;②偶函数的图象关于y 轴对称.反之也成立; ③偶函数在关于原点对称的两个区间上的增减性相反. (2)奇函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数.关于奇函数有下面的结论:①奇函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为奇函数的一个必要条件;②奇函数的图象关于坐标原点对称.反之也成立;③如果奇函数当0x =时有意义,那么(0)0f =.即当0x =有意义时,奇函数的图象过坐标原点;④奇函数在关于原点对称的两个区间上的增减性相同.3.3幂函数1.幂函数的概念 一般地,形如yxα=(R α∈,α为常数)的函数称为幂函数.对于幂函数,我们只研究1α=,2,3,12,1-时的图象与性质.2.五个幂函数的图象和性质3.4函数的应用(一)略.第四章 指数函数与对数函数4.1 指数1.n 次方根与分数指数幂 (1)方根如果nx a =,那么x 叫做a 的n 次方根,其中1n >,且*n N ∈.①当n 是奇数时,正数的n 次方根是正数,负数的n 方根是负数.这时,a 的n 表示.②当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n 次负的n 次方根用符号. 正的n 次方根与负的n 次方根可以合x 12xx -1并写成0a>). 负数没有偶次方根.0的任何次方根都是0,记作0=.根式,这里n叫做根指数,a叫做被开方数. 关于根式有下面两个等式:n a=;,,a na n⎧⎪=⎨⎪⎩为奇数为偶数..2.分数指数幂(1)正分数指数幂mna=0a>,m,*n N∈,1n>).0的正分数指数幂等于0.(2)负分数指数幂11=mnmnaa-=0a>,m,*n N∈,1n>).0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①r s r sa a a+=(0a>,r,s Q∈);②()r s rsa a=(0a>,r,s Q∈);③()r r ra b a b=(0a>,0b>,r Q∈).3. 无理数指数幂及其运算性质(1)无理数指数幂的概念当x是无理数时,x a是无理数指数幂.我们可以通过有理数指数幂来认识无理数指数幂.当x 的不足近似值m和过剩近似值n逐渐逼近x时,m a和n a都趋向于同一个数,这个数就是x a.所以无理数指数幂x a(0a>,x是无理数)是一个确定的数.(2)实数指数幂的运算性质整数指数幂的运算性质也适用于实数指数幂,即对于任意实数r,s,均有下面的运算性质.①r s r sa a a+=(0a>,r,s R∈);②()r s rsa a=(0a>,r,s R∈);③()r r ra b a b=(0a>,0b>,r R∈).4.2 指数函数1.指数函数的概念函数xy a=(0a>,且1a≠)叫做指数函数,其中指数x是自变量,定义域是R.2.指数函数的图象和性质一般地,指数函数xy a=(0a>,且1a≠)的图象和性质如下表所示:4.3 对数1.对数的概念一般地,如果xa N =(0,1)a a >≠,那么数x 叫做以a 为底N 的对数,记作N x alog=.其中a 叫做对数的底数,N 叫做真数. 当0a >,且1a ≠时,lo g N xa a N x =⇔=. 2. 两个重要的对数(1)常用对数:以10为底的对数叫做常用对数,并把10lo g N 记为lg N .(2)自然对数:以e (e 是无理数, 2.71828e =…)为底的对数叫做自然对数,并把lo g e N 记作ln N .3. 关于对数的几个结论 (1)负数和0没有对数; (2)lo g 10a =; (3)lo g 1a a =.4. 对数的运算如果0a >,且1a ≠,0M >,0N >,那么(1)lo g ()lo g lo g a a a M N M N =+; (2)lo g lo g lo g a a a M M N N=-;(3)lo g lo g na a Mn M =(n R ∈).5. 换底公式lo g lo g lo g c a c bb a=(0a >,且1a ≠,0b >,0c >,1c ≠). 4.4 对数函数1. 对数函数的概念一般地,函数lo g a y x =(0a >,且1a ≠)叫做对数函数,其中x 是自变量,定义域是(0,)+∞.2.对数函数的图象和性质3. 反函数指数函数x y a =(0a >,且1a ≠)与对数函数lo g a y x =(0a >,且1a ≠)互为反函数,它们的定义域与值域正好互换.互为反函数的两个函数的图象关于直线y x =对称. 4. 不同函数增长的差异对于对数函数lo g a y x =(1a >)、一次函数y k x =(0k >)、指数函数xy b =(1b >)来说,尽管它们在(0,)+∞上都是增函数,但是随着x 的增大,它们增长的速度是不相同的.其中对数函数lo g a y x =(1a >)的增长速度越来越慢;一次函数y k x =(0k >)增长的速度始终不变;指数函数x y b =(1b >)增长的速度越来越快.总之来说,不管a (1a >),k (0k >),b (1b >)的大小关系如何,xy b =(1b >)的增长速度最终都会大大超过y k x =(0k >)的增长速度;y k x =(0k >)的增长速度最终都会大大超过lo g a y x=(1a >)的增长速度.因此,总会存在一个0x ,当0x x >时,恒有lo g xa bk x x >>.4.5 函数的应用(二)1. 函数的零点与方程的解 (1)函数零点的概念对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.函数()y f x =的零点就是方程()0f x =的实数解,也是函数()y f x =的图象与x 轴的公共点的横坐标.所以方程()0f x =有实数解⇔函数()y f x =有零点⇔函数()y f x =的图象与x 轴有公共点.(2)函数零点存在定理如果函数()y f x =在区间[,]a b 上的图象是一条连续不断的曲线,且有()()0f a f b <,那么,函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的解. 2. 用二分法求方程的近似解对于在区间[,]a b 上图象连续不断且()()0f a f b <的函数()y f x =,通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精确度ε,用二分法求函数()y f x =零点0x 的近似值的一般步骤如下: (1)确定零点0x 的初始区间[,]a b ,验证()()0f a f b <. (2)求区间(,)a b 的中点c .(3)计算()f c ,并进一步确定零点所在的区间:①若()0f c =(此时0x c =),则c 就是函数的零点; ②若()()0f a f c <(此时0(,)x a c ∈),则令b c =; ③若()()0f c f b <(此时0(,)x c b ∈),则令a c =.(4)判断是否达到精确度ε:若a b ε-<,则得到零点的近似值a (或b );否则重复步骤(2)~(4).由函数零点与相应方程解的关系,我们可以用二分法来求方程的近似解. 3. 函数模型的应用用函数建立数学模型解决实际问题的基本过程如下:这一过程包括分析和理解实际问题的增长情况(是“对数增长”“直线上升”还是“指数爆炸”);根据增长情况选择函数类型构建数学模型,将实际问题化归为数学问题;通过运算、推理、求解函数模型;用得到的函数模型描述实际问题的变化规律,解决有关问题.在这一过程中,往往需要利用信息技术帮助画图、运算等.。

高中数学新教材人教A版(2019)必修第一册知识点与公式大全

高中数学新教材人教A版(2019)必修第一册知识点与公式大全

高中数学新教材人教(2019)版必修第一册知识点与公式大全第一章 集合与常用逻辑用语 1.1集合的概念及其表示1 集合的含义及表示*⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪∈∉⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩确定性集合中元素的特征 互异性无序性 集合与元素的关系 : 列举法 集合的表示 描述法常见的数集 N N Z Q R2,,A B B A A B A B A A A A B A B A B οοφ≠⊆⊆=⎧⊆⊆⊆⎪⎪⎨⎪⎪⊆≠⊂⎩1定义:A=B2若且则子集: , 集合相等: 集合间的基本关系真子集: 若且 则 空集φ的特殊性: 空集是任何集合的子集,任何非空集合的真子集*结论 含有n 个元素的集合,其子集的个数为2n ,真子集的个数为21n -3集合的基本运算{}{}{}|||U A B x x A x B A B x x A x B C A x x U x A ⎧⋃=∈∈⎪⋂=∈∈⎨⎪=∈∉⎩并集:或 交集:且 补集:且在集合运算中常借助于数轴和文氏图(*注意端点值的取舍) *结论 (1)A A A ⋃= A A A ⋂=, A A φ⋃= A φφ⋂= (2)A B B A B ⋃=⊆若则 A B A A B ⋂=⊆若则4.充分条件、必要条件与充要条件的概念(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).(4)全称量词命题“()x p M x ,∈∀”的否定是存在量词命题“()x p M x ⌝∈∃,” (5)存在量词命题“()x p M x ,∈∃”的否定是全称量词命题“()x p M x ⌝∈∀,”第二章 一元二次函数、方程、不等式 1.一元二次不等式的概念及形式(1).概念:把只含有一个未知数,并且知数的最高次数是2的不等式,称为一元二次不等式. (2).形式:①ax 2+bx +c >0(a ≠0); ②ax 2+bx +c ≥0(a ≠0); ③ax 2+bx +c <0(a ≠0); ④ax 2+bx +c ≤0(a ≠0).2.三个“二次”之间的关系:3.分式不等式的解法定义:分母中含有未知数,且分子、分母都是关于x 的多项式的不等式称为分式不等式. 解法:等价转化法解分式不等式 f (x )g (x )>0⇔f (x )g (x )>0,f (x )g (x )<0⇔f (x )·g (x )<0. 4.基本不等式(或)均值不等式:ab ba ≥+2基本不等式的变形与拓展1.(1)若R b a ∈,,则ab b a 222≥+;(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”).2.(1)若00a ,b >>,则ab ba ≥+2;(2)若00a ,b >>,则ab b a 2≥+(当且仅当b a =取“=”); (3)若00a ,b >>,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”). 3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x+≤-(当且仅当1x =-时取“=”);若0x ≠,则12xx+≥,即12x x +≥或12x x +≤-(当且仅当b a =时取“=”).4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”);若0ab ≠,则2a b b a +≥,即2a bb a +≥或2a bb a+≤-(当且仅当b a =时取“=”). 5.一个重要的不等式链:2112a b a b+≤≤≤+.第三章函数的概念与性质3.1函数与映射的相关概念注意:判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点. (2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (3)构成函数的三要素:函数的三要素为定义域、值域、对应关系.(4)函数的表示方法函数的表示方法有三种:解析法、列表法、图象法. 解析法:一般情况下,必须注明函数的定义域;列表法:选取的自变量要有代表性,应能反映定义域的特征; 图象法:注意定义域对图象的影响. 3.2函数的三要素(1).函数的定义域函数的定义域是使函数解析式有意义的自变量的取值范围,常见基本初等函数定义域的要求为:(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}.(2).函数的解析式(1)函数的解析式是表示函数的一种方式,对于不是y=f(x)的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法(或配凑法)求出的解析式,不注明定义域往往导致错误.(3).函数的值域函数的值域就是函数值构成的集合,熟练掌握以下四种常见初等函数的值域:(1)一次函数y=kx+b(k为常数且k≠0)的值域为R.(2)反比例函数kyx=(k为常数且k≠0)的值域为(−∞,0)∪(0,+∞).(3)二次函数y=ax2+bx+c(a,b,c为常数且a≠0),当a>0时,二次函数的值域为24[,)4ac ba-+∞;当a<0时,二次函数的值域为24(,]4ac ba--∞.求二次函数的值域时,应掌握配方法:2 224()24b ac b y ax bx c a xa a-=++=++.3.3分段函数分段函数的概念若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,则这种函数称为分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.3.4函数基本性质1函数的单调性(1)定义:设[]2121,,xxbaxx≠∈⋅那么:1212,()()x x f x f x<<⇔[]1212()()()0x x f x f x-->⇔0)()(2121>--xxxfxf[]b axf,)(在⇔上增函数;1212,()()x x f x f x<>⇔[]1212()()()0x x f x f x--<⇔0)()(2121<--xxxfxf[]baxf,)(在⇔上减函数.(2)判定方法:1ο定义法(证明题) 2ο图像法3ο复合法(3)定义法:用定义来证明函数单调性的一般性步骤:1ο设值:任取12,x x为该区间内的任意两个值,且12x x<2ο做差,变形,比较大小:做差12()()f x f x-,并利用通分,因式分解,配方,有理化等方法变形比较12(),()f x f x大小3ο下结论(说函数单调性必须在其单调区间上)(4)常见函数利用图像直接判断单调性:一次函数,二次函数,反比例函数,指对数函数,幂函数,对勾函数(5)复合法:针对复合函数采用同增异减原则(6)单调性中结论:在同一个单调区间内:增+增=增:增—减=增:减+减=减:减—增=增若函数)(xf在区间[]ba,为增函数,则—)(xf,)(1xf在[]ba,为减函数(7)单调性的应用:①求值域;②解不等式;③求参数范围;④比较大小.特别提醒:求单调区间时,一是勿忘定义域,二是在多个单调区间之间不一定能添加符号“”和“或”只能用“和”;三是单调区间应该用区间表示,不能用集合或不等式表示.2 函数的奇偶性(1)定义:若()f x定义域关于原点对称1ο若对于任取x的,均有()()f x f x-=则()f x为偶函数2ο若对于任取x的,均有()()f x f x-=-则()f x为奇函数((3)判定方法:1ο定义法(证明题)2ο图像法3ο口诀法(4)定义法: 证明函数奇偶性步骤:1ο求出函数的定义域观察其是否关于原点对称(前提性必备条件)2ο由出发()f x-,寻找其与()f x之间的关系3ο下结论(若()()f x f x-=则()f x为偶函数,若()()f x f x-=-则()f x为奇函数函数)口诀法:奇函数+奇函数=奇函数:偶函数+偶函数=偶函数奇函数⨯奇函数=偶函数:奇函数⨯偶函数=奇函数:偶函数⨯偶函数=偶函数具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称。

新课标人教A版高中数学必修2知识点总结

新课标人教A版高中数学必修2知识点总结

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形. (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高中数学新课标人教a版必修一

高中数学新课标人教a版必修一

高中数学新课标人教a版必修一高中数学新课标人教A版必修一的内容涵盖了高中数学的基础知识点,旨在帮助学生建立扎实的数学基础,培养数学思维和解决问题的能力。

以下是该课程的主要学习内容:1. 集合与函数- 集合的概念:集合的定义、表示方法、子集、并集、交集、补集等。

- 函数的概念:函数的定义、表示方法、函数的单调性、奇偶性、周期性等。

- 函数的基本性质:定义域、值域、函数的图像、函数的极值等。

2. 不等式- 不等式的基本性质:不等式的性质、不等式的解法、不等式的证明等。

- 一元二次不等式:一元二次不等式的解法、图像等。

- 绝对值不等式:绝对值不等式的性质、解法等。

3. 三角函数- 三角函数的定义:正弦、余弦、正切等三角函数的定义。

- 三角函数的基本性质:周期性、奇偶性、单调性等。

- 三角函数的图像:正弦函数、余弦函数、正切函数的图像。

- 三角恒等变换:和差公式、倍角公式、半角公式等。

4. 数列- 数列的概念:数列的定义、表示方法。

- 等差数列:等差数列的定义、通项公式、求和公式。

- 等比数列:等比数列的定义、通项公式、求和公式。

- 数列的极限:数列极限的概念、性质、求法等。

5. 解析几何- 直线:直线的方程、直线与直线的位置关系、直线与圆的位置关系等。

- 圆:圆的方程、圆与圆的位置关系、圆与直线的位置关系等。

- 椭圆、双曲线、抛物线:这些圆锥曲线的定义、标准方程、性质等。

6. 立体几何- 空间直线与平面:空间直线与平面的位置关系、平面与平面的位置关系等。

- 多面体:多面体的定义、性质、体积计算等。

- 旋转体:旋转体的定义、性质、体积计算等。

7. 概率与统计- 随机事件:随机事件的定义、概率的计算等。

- 离散型随机变量:离散型随机变量的定义、分布列、期望、方差等。

- 统计初步:数据的收集、整理、描述等。

这些内容不仅为学生提供了高中数学的基础知识,而且通过各种实际问题的应用,帮助学生理解数学在现实生活中的应用和重要性。

新课标人教A版高一数学必修知识点总结归纳大全

新课标人教A版高一数学必修知识点总结归纳大全

精心整理高中数学必修1知识点第一章集合与函数概念一、集合有关概念:1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:(1说明:(2)(3)(4)3}(1(2(Ⅱ)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x∈R|x-3>2}或{x|x-3>2}(3)图示法(文氏图):4、常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R5、“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a611.反之:集合A2结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B A B B A且⇔⊆⊆①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A⊂B(或B⊃A)③如果A⊆B,B⊆C,那么A⊆C④如果A⊆B同时B⊇A那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算1.的交集.记作A2、做A,B3B=B∪A.4、(1(2记作:S S(3)性质:⑴C U(C U A)=A⑵(C U A)∩A=Φ⑶(C U A)∪A=U(4)(C U A)∩(C U B)=C U(A∪B)(5)(C U A)∪(C U B)=C U(A∩B)二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.组的(3)义的x(2(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

人教A版高中数学核心知识点梳理(必修1、2)

人教A版高中数学核心知识点梳理(必修1、2)

高一上学期知识点梳理第一章、集合与函数概念§1.1.1、集合1、集合三要素:确定性、互异性、无序性。

2、常见集合:正整数集合:*N 或+N ; 整数集合:Z 有理数集合:Q ; 实数集合:R . §1.1.2、集合间的基本关系1、一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A是集合B 的子集。

记作B A ⊆.2、如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.空集是任何非空集合的真子集.4、如果集合A 中含有n 个元素,集合A 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n –2个. §1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .{|,}A B x x A x B =∈∈或2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .{|,}A B x x A x B =∈∈且 3、全集、补集:{|,}UC A x x U x U =∈∉且 4、A B A A B B =⇔=⇔⊆A B (讨论) §1.2.1、函数的概念1、一个函数的构成要素为:定义域、对应关系、值域.2、如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. 3、求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1;(5)如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是使各部分都有意义的x 的值组成的集合;(6)指数为零底不可以等于零;(7)实际问题中的函数的定义域还要保证实际问题有意义 §1.2.2、函数的表示法 解析法、图象法、列表法. 求解析式的方法:1. 换元法2.配凑法3.待定系数法4.方程组法如果已知函数解析式的构造时,可用待定系数法;已知复合函数f [g (x )]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)。

新课标人教A版高一数学必修知识点总结

新课标人教A版高一数学必修知识点总结

高中数学必修1知识点 第一章 集合与函数概念一、集合有关概念:1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:〔1〕元素确实定性; 〔2〕元素的互异性; 〔3〕元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是公平的,没有先后顺序,因此判定两个集合是否一样,仅需比拟它们的元素是否一样,不需考查排列顺序是否一样。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 〔1〕用大写英文字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} 〔2〕集合的表示方法:列举法与描述法。

〔Ⅰ〕列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

〔Ⅱ〕描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①言语描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x ∈R| x-3>2}或{x| x-3>2} 〔3〕图示法〔文氏图〕: 4、常用数集及其记法:非负整数集〔即自然数集〕记作:N正整数集 N*或 N+ 整数集 Z 有理数集Q 实数集 R 5、“属于〞的概念集合的元素通常用小写的英文字母表示,如:a 是集合A 的元素,就说a 属于集合A 记作 a ∈A ,相反,a 不属于集合A 记作 a ∉A 6、集合的分类:1.有限集 含有有限个元素的集合2.无限集 含有无限个元素的集合3.空集 不含任何元素的集合 二、集合间的根本关系 1.“包含〞关系———子集对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说两集合有包含关系,称集合A 为集合B 的子集,记作A ⊆B注意: 有两种可能〔1〕A 是B 的一局部,;〔2〕A 与B 是同一集合。

新课标人教A版高中数学必修1知识点总结

新课标人教A版高中数学必修1知识点总结

高中数学必修1知识点总结第一章集合与函数概念【】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是a M∈,或者a M∉,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【】集合的基本运算 (8)交集、并集、补集x B ∈∅=∅B A ⊆ B B ⊆x B ∈A A =A ∅=B A ⊇ B B ⊇补集UA{|,}x x U x A ∈∉且1()U A A =∅ 2()U A A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式 解集||(0)x a a <> {|}x a x a -<<||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式0∆> 0∆= 0∆<()()()UU U A B A B =()()()UU U A B A B =24b ac∆=-二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R20(0) ax bx c a++<>的解集12{|}x x x x<<∅∅〖〗函数及其表示【】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a xb <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2++=,则在()0a y xb y xc y()()()0a y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B 以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,a Ab B那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖〗函数的基本性质【】单调性与最大(小)值(1)函数的单调性①定义及判定方法如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< .x.2.时,都有f(x...1.)>f(x.....2.).,那么就说f(x)在这个区间上是减函数....y=f(X)yxo x x2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=为减,则[()]y f g x=为减;若()y f u=[()]y f g x=为减.(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,]a-∞、,)a+∞]a上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【】奇偶性(4)函数的奇偶性①定义及判定方法函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 〖补充知识〗函数的图象 (1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖〗指数函数【】指数与指数幂的运算 (1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n 次方根用n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 【】指数函数及其性质(4)指数函数〖〗对数函数 【】对数与对数运算(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-=③数乘:log log ()n a a n M M n R =∈ ④logaNa N =⑤log log (0,)bn a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=. (7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qp y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k1<x1≤x2<k2⇔⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2⇔f(k1)f(k2)<0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2⇔此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a=++≠在闭区间[,]p q上的最值设()f x在区间[,]p q上的最大值为M,最小值为m,令01() 2x p q=+.(Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q =b a()M f p = 0<时)2a ()f p ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x 0x 0x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

【知识点总结】高中数学人教A版必修第一册知识点总结

【知识点总结】高中数学人教A版必修第一册知识点总结

高中数学新教材人教A版必修第一册知识点总结专题01 集合与常用的逻辑用语 (3)知识点一集合的概念 (3)知识点二集合间的关系 (4)知识点三集合的基本运算 (5)知识点四充分条件与必要条件 (5)知识点五全称量词与存在量词 (6)专题02 一元二次方程、函数与不等式 (7)知识点一不等式的性质 (7)知识点二基本不等式 (7)知识点三二次函数与一元二次方程、不等式 (8)专题03 函数的概念与性质 (9)知识点一函数的概念与分段函数 (9)知识点二函数的三要素 (10)知识点三函数的单调性 (12)知识点四函数的奇偶性 (14)知识点六幂函数 (16)专题04指数函数与对数函数的概念、简单性质 (17)知识点一指数运算、对数运算与幂运算 (17)知识点二指数函数与对数函数的概念及图像 (18)知识点三比较大小(常与0、1、-1作比较) (18)知识点四函数的零点 (19)专题05 指数型与对数型复合函数的性质 (20)知识点一复合函数简单的单调性与奇偶性问题 (20)知识点二复合函数的单调性 (20)知识点三复合函数的最大值与最小值 (21)知识点四最值问题(含有参数) (22)知识点五恒成立问题 (22)专题06 三角函数的图像与性质 (23)知识点一任意角和弧度制 (23)知识点二常用的角的集合表示方法 (23)知识点三弧度与弧度制 (24)知识点四三角函数定义 (25)知识点五三角函数在各象限的符号 (26)知识点六特殊角的三角函数值: (26)知识点七同角三角函数的关系与诱导公式 (26)知识点八两角和与差公式的基本应用 (27)知识点九辅助角公式 (27)知识点十二倍角公式 (27)知识点十一降幂公式 (27)知识点十二基本三角函数的图像与性质(正弦、余弦与正切) (28)知识点十三函数y=Asin(ωx+φ)的图像 (29)知识点十四三角函数的实际应用 (30)专题07 三角函数的综合运用 (30)专题01 集合与常用的逻辑用语知识点一集合的概念1.集合的有关概念(1)集合的描述:我们把研究对象称为元素,把一些元素组成的总体叫做集合.元素通常用小写字母a,b,c,⋯表示,集合通常用大写字母A,B,C,⋯表示.(2)集合元素的特性:确定性:集合中的元素是确定的,即给定一个元素可以判断该元素在或者不在该集合中。

人教A版高中数学必修1知识点总结

人教A版高中数学必修1知识点总结

人教A版高中数学必修1知识点总结
高中数学必修1主要涵盖了数与式、函数与方程、平面几何等内容。

下面我将对这些知识点进行总结:
一、数与式
1.整式与分式:整式包括常数项、一次项、二次项等;分式包括真分式、假分式等。

2.代数式的运算:包括加法、减法、乘法、除法的运算法则;指数与
乘方的运算法则。

3.类指数:零次指数、分数指数、负整数指数的运算规则;类指数函
数图象。

4.分式的运算:分式的加减乘除法运算法则;负指数律。

二、函数与方程
1.函数:函数的概念与性质;函数的图象、定义域与值域。

2.函数的表示法:函数的自变量与因变量;函数的映射关系与解析式。

3.线性函数:线性函数的性质与图象;线性函数的应用。

4.幂函数:幂函数的概念与性质;幂函数的图象。

5.函数的运算:函数的和、差、积、商的性质;复合函数的性质与解法。

6.一元一次方程:一元一次方程的定义与定解;一元一次方程的解法。

7.一元二次方程:一元二次方程的定义与定解;一元二次方程的解法。

8.二元一次方程:二元一次方程的解法;二元一次方程表示的直线。

三、平面几何
1.平面几何基础:点、直线、线段、角、面的定义;一次、二次、三次等距变换的性质。

2.平面图形:多边形的种类与性质;正多边形的性质;圆的性质与常见公式。

3.相似三角形:相似三角形的判定与性质;相似三角形的性质。

4.三角形:三角形的内角和定理与外角和定理;直角三角形的勾股定理与勾股数。

5.圆与圆的位置关系:切线的概念与性质;公切线与内切圆、外切圆的关系。

人教A版数学必修一知识点

人教A版数学必修一知识点

人教A版数学必修一知识点
数学必修一可以说是学生初次接触高中数学知识的一门课程,内容相对较为基础。

下面是一些数学必修一的重点知识点:
一、二次函数及其图像
1.二次函数的定义及性质:二次函数的一般形式、顶点、对称轴、最值、图像等;
2.二次函数的图像变换:平移、伸缩、翻转;
3.二次函数的解析式推导与图像综合分析;
4.二次函数的应用:最大值、最小值、模型的建立与解决。

二、三角函数及其图像
1.角度与弧度制之间的转换;
2.正弦函数、余弦函数的图像、特性及应用;
3.正切函数、余切函数的图像、特性及应用;
4.三角函数的复合函数及其图像;
5.三角函数的图像变换:平移、伸缩、翻转等。

三、数列与数列极限
1.等差数列的通项公式、前n项和公式;
2.求等差数列的通项公式及前n项和公式;
3.等比数列的通项公式、前n项和公式;
4.求等比数列的通项公式及前n项和公式;
5.数列极限及其性质。

四、数列的应用与递推关系
1.数列的表示方式:通项公式、递推关系式;
2.几何数列、斐波那契数列及其应用;
3.数列的模型建立:等差、等比、递推等;
4.递归数列及其应用。

五、三角函数的应用
1.角度的计算:全角、半角的计算,角度的加减;
2.三角函数的性质及推导;
3.三角函数的应用:平面角、立体角、变速运动等。

六、概率与统计
1.事件及其运算:事件的包含、互斥、对立等;
2.概率及其性质:基本事件、复合事件的计算;
3.试验与事件模型的建立:样本空间、随机事件、概率等;
4.随机变量及其概率分布;
5.统计与数据分析:频数分布表、频数分布图。

高中数学人教A版必修一第一章知识点总结及题型

高中数学人教A版必修一第一章知识点总结及题型

高中数学人教A版必修一第一章知识点总结及题型高中数学必修一第一章知识点及题型一、第一章第一单元集合---知识点总结知识点一:集合的概念集合是研究对象的统称,用小写拉丁字母a,b,c等表示元素,一些元素的集合称为集合或集,用大写拉丁字母A,B,C等表示,不含任何元素的集合称为空集,记为∅。

知识点二:集合与元素的关系如果a是集合A的元素,就称a属于集合A,记作a∈A;如果a不是集合A中的元素,就称a不属于集合A,记作a∉A。

知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。

集合可分为有限集和无限集,有限集含有有限个元素,无限集含有无限个元素。

知识点四:集合的表示方法集合的表示方法有列举法和描述法。

列举法是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法;描述法是用集合所含元素的特征表示集合的方法。

知识点五:集合与集合的关系集合A中的所有元素都是集合B中的元素时,称集合A是集合B的子集,记作A⊆B;如果A是B的子集,但存在元素不属于B,则称A是B的真子集,记作A⊂B。

子集的性质包括空集是任意集合的子集、任何集合都是它本身的子集、如果A是B的子集,B是C的子集,则A是C的子集。

知识点六:集合的运算集合的运算包括交集和并集。

集合A与B的并集是由A 和B中所有元素组成的集合,记作A∪B;集合A与B的交集是A和B中共有的元素组成的集合,记作A∩B。

3.交集与并集的性质交集的运算性质:A∩B = B∩A (交换律)A∩A = A (恒等律)A∩∅ = ∅(零律)A⊆B ⇔ A∩B = A (吸收律)并集的运算性质:A∪B = B∪A (交换律)A∪A = A (恒等律)A∪∅ = A (零律)A⊆B ⇔ A∪B = B (吸收律)A∪B = B∪A = {x | x∈A或x∈B} (定义)符号语言、图形语言和自然语言都可以用来表示集合的交集和并集。

4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''E D C B A P -几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

1.2空间几何体的三视图和直观图(1)定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

(2)画三视图的原则:长对齐、高对齐、宽相等 (3)直观图:斜二测画法 (4)斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

(5)用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rlS π=圆锥侧面积')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥''1()3V S S S S h =++台 ''2211()()33V S S S S h r rR R h π=+=++圆台(4)球体的表面积和体积公式:V 球=343R π ; S球面=24R π第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 (1)平面① 平面的概念: A.描述性说明; B.平面是无限伸展的;② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC 。

③ 点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉点与直线的关系:点A 的直线l 上,记作:A ∈l ; 点A 在直线l 外,记作A ∉l ; 直线与平面的关系:直线l 在平面α内,记作l ⊂α;直线l 不在平面α内,记作l ⊄α。

(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

(即直线在平面内,或者平面经过直线) 应用:检验桌面是否平; 判断直线是否在平面内D CBAα用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂ (3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 (4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a ,记作α∩β=a 。

符号语言:,P A B A B l P l ∈⇒=∈ 公理3的作用:①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系:相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点。

2 公理4:平行于同一条直线的两条直线互相平行。

符号表示为:设a 、b 、c 是三条直线a ∥bc ∥b强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。

公理4作用:判断空间两条直线平行的依据。

3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。

2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系:(1)直线在平面内 —— 有无数个公共点(2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a ∩α=A a ∥α2.2.直线、平面平行的判定及其性质 2.2.1 直线与平面平行的判定共面直线=>a ∥c 2π1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:A αb β => a∥αa∥b2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

符号表示:a βB βa∩b = P β∥αa∥αb∥α2、判断两平面平行的方法有三种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。

2.2.3 — 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。

简记为:线面平行则线线平行。

符号表示:a∥αa β a∥bα∩β= b作用:利用该定理可解决直线间的平行问题。

2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。

符号表示:α∥βα∩γ= a a∥bβ∩γ= b作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1、定义如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

如图,直线与平面垂直时,它们唯一公共点P叫做垂足。

LΑ P2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

注意点: a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。

2.3.2平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形A梭 l βBα2、二面角的记法:二面角α-l-β或α-AB-β3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。

2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

本章知识结构框图第三章直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:()()22122221PP x x y y =-+-给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即)(00x x k y y -=-3.2.1 直线的点 斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y +=3.2.2 直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠y-y1/y-y2=x-x1/x-x22、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。

相关文档
最新文档