高考高职单招数学模拟试题(带答案)

合集下载

2023年山东高职单招数学模拟题

2023年山东高职单招数学模拟题

山东高职单招数学模拟题(1)第1题:设集合M={-1,0,1},N={-1,1},则.)A.M..B.M⊂.C.M=.D.N⊂M第3题:函数y=sinx旳最大值是.)A.-.B..C..D.2第4题:设a>0,且|a|<b,则下列命题对旳旳是.)A.a+b<.B.b-a>.C.a-b>.D.|b|<a第5题:一种四面体有棱.)条A..B..C..D.12第6题:“|x-1|<2成立”是“x(x-3)<0成立”旳.)A.充足而不必要条.B.必要而不充足条件C.充足必要条.D.既不充足也不必要条件:第9题:在等差数列{an}中,已知a5+a7=18,则a3+a9.()A.1.B.1.C.1.D.20第10题:将5封信投入3个邮筒,不一样旳投法共有.)A.53.B.35.C.3.D.15种第11题:(1+2x)5旳展开式中x2旳系数是.)A.8.B.4.C.2.D.10第12题:甲乙两人进行一次射击,甲击中目旳旳概率为0.7,乙击中旳概率为0.2,那么甲乙两人都没击中旳概率为.)A.0.2.B.0.5..C.0.0..D.0.86第13题:函数y=x2在x=2处旳导数是.)A..B..C..D.4第15题:假如双曲线旳焦距为6,两条准线间旳距离为4,那么双曲线旳离心率为.)第16题:已知集合,M={2,3,4},N={2,4,6,8},则M∩N=.)。

A.{2.B..{2,4.C.{2,3,4,6,8.D.{3,6,8}第17题:设原命题“若p则.”真而逆命题假,则p是q旳(.)A.充足不必要条.B.必要不充足条.C.充要条.D.既不充足又不必要条件第18题:不等式x <x²旳解集为.)A.{x|x>1.B.{x|x<0.C.{x|0<x<1.D.{x|x<0或x>1}第19题:数列3,a,9为等差数列,则等差中项a等于.)A.-.B..C.-.D.6[第20题:函数y=3x+2旳导数是.)A.y=3.B.y=.C.y=.D.3[第21题:从数字1、2、3中任取两个数字构成无反复数字旳两位数旳个数是.)A.2.B.4.C.6.D.8个第24题:在同一直角坐标系中,函数y=x+.与函数y=ax旳图像也许是.)第25题:函数y=loga(3x−2)+2旳图像必过定点.)语..第1题:在过去旳四分之一世纪里,这种力量不仅增大到了令人不安旳程度,并且其性质亦发生了变化。

2022年浙江高职单招数学试卷附答案

2022年浙江高职单招数学试卷附答案

2022年浙江省单独考试招生文化考试数学试题卷(满分150分,考试时间120分钟)一、单项选择题(本大题共20小题,1―12小题每小题2分,13―20小题每小题3分)1、若集合A={x1-5<x<2},B={x1-3<x<3},则AI B=()A.{x1-3<x<2}B.{x1-5<x<2}C.{x1-3<x<3}D.{x-5<x<3}2、已知集A={l,2,3},B={1,3},则Al B=()A.{2}B.{1,2}C.{1,3}D.{1,2,3}3.若,,则的坐标是A. B. C. D.以上都不对4.在等差数列中,已知,且,则与的值分别为A.,B.,C.,D.,5.设,“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件6.函数的图象如图所示,则最大、最小值分别为A. B.C. D.7.设,,,其中为自然对数的底数,则,,的大小关系是A.B. C. D.8.设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是A. B. C.D.9.命题p :a=1,命题q :2(1)0a -=.p 是q 的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件10.在△ABC 中,向量表达式正确的是()A.AB BC CA +=B.AB CA BC -=C.AB AC CB-= D.AB BC CA ++= 11.如图,在数轴上表示的区间是下列哪个不等式的解集()A.260x x --≤ B.260x x --≥ C.15||22x -≥D.302x x -+≥12.已知椭圆方程:224312x y +=,下列说法错误的是()A.焦点为(0,-1),(0,1)B.离心率12e =C.长轴在x 轴上D.短轴长为2313.下列函数中,满足“在其定义域上任取x1,x2,若x1<x2,则f (x1)>f (x2)”的函数为()A.3y x=B.32x y =-C.1()2xy -= D.ln y x=14.掷两枚骰子(六面分别标有1至6的点数)一次,掷出点数和小于5的概率为()A.16 B.18 C.19D.51815.已知圆锥底面半径为4,侧面面积为60,则母线长为()A.152B.15C.152pD.15p16.函数y =sin2x 的图像如何平移得到函数sin(23y x p=+的图像()A.向左平移6p个单位 B.向右平移6p个单位C.向左平移3p个单位D.向右平移3p个单位17.设动点M 到1( 0)F 的距离减去它到2F 的距离等于4,则动点M 的轨迹方程为()A.22 1 (2)49x y x -=-≤B.22 1 (2)49x y x -=≥C.221 (2)49y x y -=≥ D.22 1 (x 3)94x y -=≥18.已知函数()3sin f x x x =,则()12f p=()A.B. C. D.19.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有()A.480种B.240种C.180种D.144种20.如图在正方体ABCD ‐A ′B ′C ′D ′中,下列结论错误的是()A.A ′C ⊥平面DBC ′B.平面AB ′D ′//平面BDC ′C.BC ′⊥AB ′D.平面AB ′D ′⊥平面A ′AC二、填空题(本大题共7小题,每小题4分,共28分)21.点A(2,-1)关于点B(1,3)为中心的对称点坐标是__________.22.设3 0 ()32 0x x f x x x ìï=í-ïî,≤,>,求f [f (-1)]=_____.23.已知A(1,1)、B(3,2)、C(5,3),若AB CA l =,则λ为_____.24.双曲线2212516y x -=的两条渐近线方程为_______________.25.已知1sin()3p a -=,则cos2α=_____.26.若x <-1,则函数1()21f x x x =--+的最小值为_____.27.设数列{an}的前n 项和为Sn ,若a1=1,an+1=2Sn (n ∈N*),则S4=_____.三、解答题(本大题共9小题,共74分)28.(本题满分6分)计算:133cos 3)27lg0.012p +-++29.(本题满分7分)等差数列{an}中,a2=13,a4=9.(1)求a1及公差d ;(4分)(2)当n 为多少时,前n 项和Sn 开始为负?(3分)30.(本题满分8分)如下是“杨辉三角”图,由于印刷不清在“▯”处的数字很难识别.(1)第6行两个“15”中间的方框内数字是多少?(2分)(2)若2)n x 展开式中最大的二项式系数是35,从图中可以看出n 等于多少?该展开式中的数项等于多少?(6分)31.(本题满分8分)如图平行四边形ABCD 中,AB =3,AD =2,AC =4.(1)求cos ∠ABC ;(4分)(2)求平行四边形ABCD 的面积.(4分)32.(本题满分9分)在△ABC 中,3sin 5A =,5cos 13B =.(1)求sinB ,并判断A 是锐角还是钝角;(5分)(2)求cosC.(4分)33.(本题满分9分)如图PC ⊥平面ABC ,AC =BC =2,PC =,∠BCA =120°.(1)求二面角P ‐AB ‐C 的大小;(5分)(2)求锥体P ‐ABC 的体积.(4分)34.(本题满分9分)当前,“共享单车”在某些城市发展较快.如果某公司要在某城市发展“共享单车”出租自行车业务,设一辆自行车(即单车)按每小时x 元(x ≥0.8)出租,所有自行车每天租出的时间合计为y (y >0)小时,经市场调查及试运营,得到如下数据(见表):(1)观察以上数据,在我们所学的一次函数、反比例函数、二次函数、指数函数中回答:y 是x 的什么函数?并求出此函数解析式;(5分)若不考虑其它因素,x 为多少时,公司每天收入最大?(4分)35.(本题满分9分)过点(-1,3)的直线l 被圆O :2242200x y x y +---=截得弦长8.(1)求该圆的圆心及半径;(3分)(2)求直线l 的方程.(6分)36.(本题满分9分)1992年巴塞罗那奥运会开幕式中,运动员安东尼奥·雷波洛以射箭方式点燃主会场的圣火成为历史经典.如图所示,如果发射点A 离主火炬塔水平距离AC =60m ,塔高BC =20m.已知箭的运动轨迹是抛物线,且离火炬塔水平距离EC =20m 处达到最高点O.(1)若以O 为原点,水平方向为x 轴,1m 为单位长度建立直角坐标系.求该抛物线的标准方程;(5分)(2)求射箭方向AD (即与抛物线相切于A 点的切线方向)与水平方向夹角θ的正切值.(4分)答案一、单项选择题1.A 2.C3.B4.A5.A6.D7.C8.C9.A10.C11.D12.C13.B14.A15.D 16.A17.B18.A19.B20.C二、填空题21.(0,7)22.-123.12-24.54y x=±25.7926.527.27三、解答题28.629.(1)115a =,2d =-;(2)当17n =时,前n 项和n S 开始为负。

高职单招数学模拟题押题试卷附答案

高职单招数学模拟题押题试卷附答案

高职单招数学模拟题押题试卷附答案(一)一、单项选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个备选答案中,选出一个正确答案)1、A ≠ф是A∩B=ф的( )A.充分条件B.必要条件C.充要条件D.无法确定2、若f(x)=a2+bx(ab≠0),且f(2) = f(3),则f(5)等于( )A.1B.-1C.0D.23、己知|x-3|<a的解集是{x|-3<x<9},则a=()A.-6B.6C.±6D.04、对于数列0,0,0,...,0,...,下列表述正确的是()A.是等比但不是等差数列B.既是等差又是等比数列C.既不是等差又不是等比数列D.是等差但不是等比数列5、若a0.6<a0.4,则a的取值范围为()A.a>1B.0C.a>0D.无法确定6、在△ABC中,“x2 =1”是“x =1”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7、在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是( )A.30°B.60°C.45°D.90°8、设函数f(x) = x2+1,则f(x)是( )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数9、己知向量a = (2,1),b =(-1,2),则a,b之间的位置关系为( )A.平行B.不平行也不垂直C.垂直D.以上都不对10、若函数f(x) = kx + b,在R上是增函数,则( )A.k>0B.k<0C.b<0D.b>1-5、ACBDB 6-10、BCBCA 11、2/12、2x+3y+1=0 13、6 14、2 15、x2+2 16、1417、20 18、919、22、23、24、。

高职单独招生考试数学卷(答案解析) (1)

高职单独招生考试数学卷(答案解析) (1)

2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.直线l :230x y +-=与圆C:22240x y x y ++-=的位置关系是()A.相交切不过圆心B.相切C.相离D.相交且过圆心2.双曲线22149x y -=的离心率e=()A.23B.32C.2D.33.已知角β终边上一点(4,3)P -,则cos β=()A.35-B.45C.34-D.544.已知两点(2,5),(4,1)M N --,则直线MN 的斜率k =()A.1B.1- C.12D.12-5.函数2sin cos 2y x x =+的最小值和最小正周期分别为()A.1和2πB.0和2πC.1和πD.0和π6.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是()A. B.C.D.7.抛物线上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为()A.6B.3C.7D.58.若,且a为第四象限角,则的值等于()A. B. C. D.9、设集合M={O,1,2},N={O,1},则M∩N=()A.{2}B.{0,1}c.{0,2}D.{0,1,2}10、不等式|x-1|<2的解集是()A.x<3B.x>-1C.x<-1或x>3D.-1<x<311、函数y=-2x+1在定义域R内是()A.减函数B.增函数C.非增非减函数D.既增又减函数12、设则a,b,c的大小顺序为()A、a>b>cB、a>c>bC、b>a>cD、c>a>b13、已知a=(1,2),b=(x1),当a+2b与2a-b共线时,x值为()A.5B.3C、1/3D、0.514、已知{an}为等差数列,a2+a:=12,则as等于()A.1B.8C.6D.515、已知向量a=(2,1),b=(3,入),且a丄b,则入=()A.-6B.5C.1.5D、-1.516、点(0,5)到直线y=2x的距离为()A、2.5B.C.1.5D、17、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.16种C.18种D.8种18、设集合M={x|0<x<1},集合N={x|-1<x<1},则()(A)M∩N=M(B)MUN=N(C)M∩N=N(D)M∩N=M∩N19、已知函数f(x)的图象与函数y=sinx的图象关于y轴对称,则f(x)=()(A)-cosx(B)cosx(C)-sinx(D)sinx20.圆的一般方程为x2+y2-8x+2y+13=0,则其圆心和半径分别为()A.(1,-1),4B.(4,-1),2C.(-4,1),4D.(-1,1),2二、填空题(共10小题,每小题3分;共计30分)1.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.2.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则∁U(A∪B)=_____.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.4、已知51cos sin =+αα,则=⋅ααcos sin ______.5、在等比数列{}n a 中,若673=a a ,则=⋅⋅⋅8642a a a a ______.6、已知角α终边上一点)1,1(P ,则=+ααcos sin ______.7、函数2()13sin f x x =-的最小正周期为______.8、若“[0,],tan 4x x mπ∀∈≤”是真命题,则实数m 的最小值为______.9、已知角α终边上一点P (3,-4),则=+ααan t sin ______.10、过点P(-2,-3),倾斜角是45°的直线方程是______.三、大题:(满分30分)1、甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.2、已知数列{a n }满足a 1=1,a n+1{a n +1,n 为奇数a n +2,n 为偶数(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和参考答案:一、选择题:1-5题答案:DCBBD 6-10题答案:ADDBD 11-15题答案:ABDCA 16-20题答案:BABCB 部分答案解析:1、答案.D 【解析】圆的方程化为标准方程:22(1)(2)5x y ++-=,圆心到直线的距离d ==,即直线与圆相交且过圆心.2、答案.C【解析】由双曲线的方程可知2,3,a b c ===,2c e a ==.3、答案.B【解析】由余弦函数的定义可知4cos 5β==.4、答案.B 【解析】5(1)124k --==---.5、答案.D 【解析】1cos 211cos 2cos 2222x y x x -=+=+,最小正周期T =π,最小值为0.二、填空题:1、3﹣4i ;2、{5};3、30;4、2512-;5、36;6、2;7、 ;8、1;9、1532-;10、x-y-1=0。

【高职招考】数学模拟卷 6及答案解析

【高职招考】数学模拟卷 6及答案解析

高职招考模拟卷6第Ⅰ卷(选择题 共70分)一、选择题:本大题共14小题,每小题5分,共70分,在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答题卷的相应位置。

1.在△ABC 中,13,5,sin ,3a b A === 则sin B =( )A .15B .59C .3D .12.如图是某学生的8次地理单元考试成绩的茎叶图,则这组数据的中位数和平均数分别是( ) A .83和85 B .83和84 C .82和84 D .85和853. 复数21(1)1i i+-+的虚部是( ) A .52i -B .52-C .32i -D .32-4. 已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )A .64B .81C .128D .2435. 若直线l 不平行于平面a ,且l a ⊄,则( )A. a 内所有直线与l 异面B. a 内不存在与l 平行的直线C.a 内存在唯一的直线与l 平行D. a 内的直线与l 都相交 6.要得到函数)12cos(+=x y 的图象,只要将函数x y 2cos =的图象( ) A. 向左平移1个单位 B. 向右平移1个单位C. 向左平移12个单位 D. 向右平移12个单位 7. 若{}n a 为等差数列,n S 是其前n 项的和,且11223S π=,则6tana =( ). C..3-8.如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12.则该几何体的俯视图可以是( )9.在长为12cm 的线段AB 上任取一点C. 现作一矩形,邻边长分别等于线段AC,CB 的长,则该矩形面积大于20cm 2的概率为( )A. 16B. 13C. 23D. 4510.设抛物线28y x =上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A .4B .6C .8D .1211.若函数⎩⎨⎧>≤+=1,lg 1,1)(2x x x x x f ,则()10f f =⎡⎤⎣⎦( ) A. lg101 B. 2 C. 1 D. 012.已知变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则z=3x+y 的最大值为( )A.12B.11C.3D.-1A B C D13.圆22:2440C x y x y +--+=的圆心到直线3440x y ++=的距离是( ) A .2B .2C .3D .314.对具有线性相关关系的变量x ,y ,测得一组数据如下表:x 2 4 5 6 8 y2040607080根据上表,利用最小二乘法得它们的回归直线方程为10.5y x a ∧∧=+,据此模型来预测当x=20时,y 的估计值为( ) A .212.5 B .211.5C .210.5D .210第Ⅱ卷(非选择题 共80分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的相应位置。

单招数学模拟试题及答案

单招数学模拟试题及答案

单招数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 若函数f(x) = x^2 - 4x + 3,求f(5)的值。

A. 8B. 18C. 28D. 383. 已知等差数列的首项a1=3,公差d=2,求第10项的值。

A. 23B. 25C. 27D. 294. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π5. 已知三角形ABC,∠A=30°,∠B=45°,求∠C的度数。

A. 75°C. 105°D. 120°6. 一个长方体的长、宽、高分别为2米、3米和4米,求其体积。

A. 24立方米B. 26立方米C. 28立方米D. 30立方米7. 已知方程x^2 - 5x + 6 = 0,求x的值。

A. 2, 3B. 1, 6C. 3, 4D. 2, 48. 一个数的平方根是4,求这个数。

A. 16B. 8C. 12D. 209. 已知正弦函数sin(x) = 1/2,求x的值(x在第一象限)。

A. π/6B. π/4C. π/3D. 5π/610. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6D. 8二、填空题(本题共5小题,每小题4分,共20分)11. 若一个数的平方是25,那么这个数是________。

12. 一个圆的直径为10,那么这个圆的周长是________。

13. 已知三角形的面积是18平方米,高是6米,求底边的长度。

14. 一个等腰三角形的两个底角相等,如果其中一个底角是40°,那么顶角的度数是________。

15. 一个直角三角形的斜边长度是10,一个锐角是30°,求对边的长度。

三、解答题(本题共3小题,每小题10分,共30分)16. 解不等式:3x + 5 > 14 - 2x。

河北省高职单招考试数学模拟卷(答案解析)

河北省高职单招考试数学模拟卷(答案解析)

河北省高职单招考试数学模拟卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1 B.[)0,+∞ C.(){}1,1 D.()0,+¥3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.944.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或 D.{}|03x x <<5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种B.36种C.24种D.18种7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()xf xg x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞ B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae -=+在定义域上是奇函数”的充分不必要条件11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.14.如图,在正方体''''ABCD A B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.15.在()()5122x x -+展开式中,4x 的系数为______.16.关于x 的方程ln 10xkx x--=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.河北省高职单招考试数学模拟卷答案解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】利用复数除法运算求得z ,从而求得z ,由此得到z 对应的坐标,进而求得z 在复平面内对应的点所在象限.【详解】因为()()()2(1)2221322255i i i i i i iz i i i -+++--+--+====--⨯+,所以3155z i =--,z 对应点为31,55⎛⎫-- ⎪⎝⎭,所以z 在复平面内对应的点位于第三象限.故选:C.【点睛】本小题主要考查复数的除法运算,共轭复数,考查复数对应点所在象限的判断,属于基础题目.2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1B.[)0,+∞C.(){}1,1 D.()0,+¥【答案】B 【解析】【分析】先求出集合,A B ,即可求出交集.【详解】{}|21A x y x R ==-= ,{}[)2|0,B y y x ===+∞,[)0,A B ∴=+∞ .故选:B.【点睛】本题考查函数定义域和值域的求法,考查集合交集运算,属于基础题.3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.94【答案】A【分析】根据4124yx -⎛⎫= ⎪⎝⎭可得24x y +=,之后利用基本不等式得到2112(2)(2222x y xy x y +=⋅≤=,从而求得结果.【详解】因为(),0,x y ∈+∞,且421224yx y --⎛⎫== ⎪⎝⎭,所以42x y -=-,即24x y+=,所以有2112(2)(2222x y xy x y +=⋅≤=,当且仅当22x y ==时取得最大值2,故选:A.【点睛】该题考查的是有关应用基本不等式求最值的问题,涉及到的知识点有利用基本不等式求积的最大值,属于简单题目.4.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或D.{}|03x x <<【答案】C 【解析】【分析】由题意得0a <,利用韦达定理找到,,a b c 之间的关系,代入所求不等式即可求得.【详解】不等式20ax bx c ++>的解集为{}|12x x -<<,则1x =与2x =是方程20ax bx c ++=的两根,且0a <,由韦达定理知121b a -=-+=,122ca=-⨯=-,即=-b a ,2c a =-,则不等式()()2112a x b x c ax ++-+<可化简为()()21122a x a x a ax +---<,整理得:230ax ax -<,即(3)0ax x -<,由0a <得0x <或3x >,故选:C.【点睛】本题主要考一元二次不等式,属于较易题.5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-【答案】D 【解析】【分析】根据三角函数的导函数和已知定义,依次对其求导,观察得出4()(),n n f x f x n N +=∈,可得解.【详解】1()sin f x x = ,()''1()sin cos f x x x ∴==,'12()()cos f x f x x ==,()23'()(cos )sin f x f x x x '===-,()34'()(sin )cos f x f x x x '==-=-,()45'()(cos )sin f x f x x x '==-=,由此可知:4()(),n n f x f x n N +=∈,24201()()cos f x f x x ∴==-.故选:D.【点晴】本题考查三角函数的导数,依次求三角函数的导数找到所具有的周期性是解决此问题的关键,属于中档题.6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种【答案】B 【解析】【分析】根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有1233339C C =⨯=,其余的分到乙村,若甲村有2外科,1名护士,则有2133339C C =⨯=,其余的分到乙村,则总共的分配方案为2×(9+9)=2×18=36种,故选B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()x f x g x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 【答案】A 【解析】【分析】设()f x x α=,代入点求出α,再求出()g x 的导数()g x ',令()0g x '>,即可求出()g x 的递增区间.【详解】设()f x x α=,代入点122⎛⎫ ⎪ ⎪⎝⎭,则122α⎛⎫= ⎪ ⎪⎝⎭,解得2α=,()2x x g x e∴=,则()2222()x x xxx x xe x e g x e e --'==,令()0g x '>,解得02x <<,∴函数()g x 的递增区间为()0,2.故选:A.【点睛】本题考查待定系数法求幂函数解析式,考查利用导数求函数的单调区间,属于基础题.8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭【答案】A 【解析】【分析】由题意变量分离转为231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,求出最大值即可得到实数m 的取值范围.【详解】由题意,()2f x m >-+可得212mx mx m ->-+-,即()213m x x +>-,当[]1,3x ∈时,[]211,7x x -+∈,所以231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,当1x =时21x x -+有最小值为1,则231x x -+有最大值为3,则3m >,实数m 的取值范围是()3,+∞,故选:A【点睛】本题考查不等式恒成立问题的解决方法,常用变量分离转为求函数的最值问题,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--【答案】ABC 【解析】【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为()()()2122211i 1i 12i i z i i --====-++-,对于A:z 的虚部为1-,正确;对于B:模长z =,正确;对于C:因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D:z 的共轭复数为1i +,错误.故选:ABC.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件【答案】BD 【解析】【分析】根据不等式的性质可判断A;根据含有量词的否定可判断B;根据基本不等式的适用条件可判断C;根据奇函数的性质可判断D.【详解】对于A,当1a >时,可得11a<,故“1a >”是“11a<”的充分条件,故A 错误;对于B,由特称命题的否定是存在改任意,否定结论可知B 选项正确;对于C,若0ab <时,2b a a b +≤-=-,故C 错误;对于D,当1a =时,1()1xx e f x e -=+,此时()()f x f x -=-,充分性成立,当()1xxa e f x ae -=+为奇函数时,由1()1x x xx a e ae f x ae e a-----==++,()()f x f x -=-可得1a =±,必要性不成立,故D 正确.故选:BD.【点睛】本题考查充分条件与必要条件,考查命题及其关系以及不等关系和不等式,属于基础题.11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小【答案】ACD【分析】根据二项式系数的性质即可判断选项A;由n 为奇数可知,展开式中二项式系数最大项为中间两项,据此即可判断选项BC;由展开式中第6项的系数为负数,且其绝对值最大即可判断选项D.【详解】对于选项A:由二项式系数的性质知,11()a b -的二项式系数之和为1122048=,故选项A 正确;因为11()a b -的展开式共有12项,中间两项的二项式系数最大,即第6项和第7项的二项式系数最大,故选项C 正确,选项B 错误;因为展开式中第6项的系数是负数,且绝对值最大,所以展开式中第6项的系数最小,故选项D 正确;故选:ACD【点睛】本题考查利用二项式定理求二项展开式的系数之和、系数最大项、系数最小项及二项式系数最大项;考查运算求解能力;区别二项式系数与系数是求解本题的关键;属于中档题、常考题型.12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED ⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 【答案】AC【解析】A 中利用折前折后不变可知PD AD =,根据222PD CD PC +=可证CD PD ⊥,可得线面垂直,进而证明面面垂直;B 选项中AED ∠不是直角可知,PD ED 不垂直,故PC ED ⊥错误;C 中二面角P DC B --的平面角为PDE ADE ∠=∠,故正确;D 中PC 与平面PED 所成角为CPD ∠,计算其正切值即可.【详解】A 中,PD AD ===,在三角形PDC 中,222PD CD PC +=,所以PD CD ⊥,又CD DE ⊥,可得CD ⊥平面PED ,CD ⊂平面EBCD ,所以平面PED ⊥平面EBCD ,A 选项正确;B 中,若PC ED ⊥,又ED CD ⊥,可得ED ⊥平面PDC ,则ED PD ⊥,而EDP EDA ∠=∠,显然矛盾,故B 选项错误;C 中,二面角P DC B --的平面角为PDE ∠,根据折前着后不变知=45PDE ADE ∠=∠︒,故C 选项正确;D 中,由上面分析可知,CPD ∠为直线PC 与平面PED 所成角,在t R PCD V 中,2tan 2CD CPD PD ∠==,故D 选项错误.故选:AC【点睛】本题主要考查了线面垂直的判定,二面角,线面角的求法,属于中档题.三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.【答案】2【解析】【分析】ξ的可能值为1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】ξ的可能值为1,2,3,则()124236115C C p C ξ===;()214236325C C p C ξ⋅===;()3436135C p C ξ===.故分布列为:ξ123p 153515故()1311232555E ξ=⨯+⨯+⨯=.故答案为:2.【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.14.如图,在正方体''''ABCDA B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.【答案】90︒【解析】【分析】取CC '中点E ,连接ME ,连接ED 交D N '于F ,可知即DFN ∠为异面直线AM 与'D N 所成的角,求出即可.【详解】取CC '中点E ,连接ME ,连接ED 交D N '于F ,在正方体中,可知ME BC AD ∥∥,∴四边形AMED 是平行四边形,AM ED ∴ ,即DFN ∠为异面直线AM 与'D N 所成的角,可知在Rt ECD △和Rt NDD ' 中,,,90EC ND CD DD ECD NDD ''==∠=∠= ,ECD NDD '∴≅ ,CED FND ∴∠=∠,90CED EDC ∠+∠= ,90FND FDN ∴∠+∠= ,90DFN ∴∠= ,即异面直线AM 与'D N 所成的角为90 .故答案为:90 .【点睛】本题考查异面直线所成角的求法,属于基础题.15.在()()5122x x -+展开式中,4x 的系数为______.【答案】80【解析】【分析】将原式化为()()5521212x x x -+-,根据二项式定理,求出()512x -展开式中3x ,4x 的系数,即可得出结果.【详解】()()()()55512221212x x x x x -+=-+-,二项式()512x -的展开式的第1r +项为()152rr r r T C x +=-,令3r =,则()333345280T C x x =-=-,令4r =,则()444455280T C x x =-=,则()()5122x x -+展开式中,4x 的系数为2808080⨯-=.故答案为:80.【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于基础题型.16.关于x 的方程ln 10x kx x --=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.【答案】21,1e e +⎡⎫⎪⎢⎣⎭【解析】【分析】分离参数,构造函数2ln 1(),(0,]x f x x e x x =+∈,利用导数讨论()f x 的单调性,再结合关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,即可求出k 的取值范围.【详解】ln 10x kx x --= ,2ln 1x k x x ∴=+,设2ln 1(),(0,]x f x x e x x =+∈,312ln ()x x f x x --∴=',设()12ln ,(0,]g x x x x e =--∈,2()10g x x∴=--<',即()g x 在(]0,e 是减函数,又(1)0g =,∴当01x <<时,()0>g x ,即()0f x '>,当1x e <<时,()0<g x ,即()0f x '<,()f x ∴在()0,1为增函数,在()1,e 为减函数,当0x →时,()f x →-∞,21()(1)1,e e f f e =+=,关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,由上可知211e k e +< ,∴实数k 的取值范围为21,1e e +⎡⎫⎪⎢⎣⎭.故答案为:21,1e e +⎡⎫⎪⎢⎣⎭.【点睛】本题考查利用导数解决方程根的问题,属于较难题.。

四川高职单招数学试题(附答案)

四川高职单招数学试题(附答案)

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.二 .数学 单项选择(共10小题,计30分)1.设集合{}{}0,1,2,0,1M N ==,则MN =( )A .{}2 B.{}0,1 C.{}0,2 D .{}0,1,2 2. 不等式的解集是( )A.x<3 B.x >-1 C .x <-1或x>3 D.-1<x<3 3.已知函数()22x f x =+,则(1)f 的值为( ) A.2 B.3 C.4 D .6 4. 函数12+-=x y 在定义域R 内是( )A. 减函数B. 增函数C. 非增非减函数 D. 既增又减函数 5. 设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>6.已知a (1,2)=,b (),1x =,当2a +b 与2a -b 共线时,x 值为( ) A. 1 B.2 C .13 D .127. 已知{a n}为等差数列,a 2+a8=12,则a 5等于( ) A.4 ﻩB.5 C.6 ﻩ D.78.已知向量a (2,1)=,b (3,)λ=,且a ⊥b,则λ=( ) A .6- B.6 C.32 D .32- 点)5,0(到直线x y 2=的距离为(ﻩﻩ)21<-xA.25 B.5 C .23ﻩﻩD.2510. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 ﻩﻩﻩ B .10种 C .9种 ﻩﻩD .8种二、填空题:本大题共5小题,每小题5分,共25分 11.(5分)(2014•四川)复数= _________ .12.(5分)(2014•四川)设f(x)是定义在R 上的周期为2的函数,当x∈[﹣1,1)时,f(x )=,则f()= _________ .13.(5分)(2014•四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 _________ m.(用四舍五入法将结果精确到个位.参考数据:s in67°≈0.92,cos67°≈0.39,si n37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)(2014•四川)设m ∈R,过定点A 的动直线x+my=0和过定点B 的动直线mx﹣y﹣m+3=0交于点P(x ,y).则|PA|•|PB|的最大值是 _________ .15.(5分)(2014•四川)以A 表示值域为R 的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M ,M ].例如,当φ1(x)=x 3,φ2(x)=s inx 时,φ1(x )∈A ,φ2(x)∈B .现有如下命题: ①设函数f(x)的定义域为D,则“f(x)∈A ”的充要条件是“∀b ∈R ,∃a ∈D,f(a )=b ”; ②函数f(x)∈B的充要条件是f(x )有最大值和最小值;③若函数f(x ),g (x )的定义域相同,且f (x)∈A,g (x )∈B ,则f (x)+g (x )∉B. ④若函数f (x)=aln(x+2)+(x>﹣2,a ∈R )有最大值,则f (x)∈B.其中的真命题有 _________ .(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题12分)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列。

2022年湖南省衡阳市普通高校高职单招数学自考模拟考试(含答案)

2022年湖南省衡阳市普通高校高职单招数学自考模拟考试(含答案)

2022年湖南省衡阳市普通高校高职单招数学自考模拟考试(含答案) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.设S n为等差数列{a n}的前n项和,S8=4a3,a7=-2,则a9等于()A.-6B.-4C.-2D.22.下表是某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,用最小二乘法得到y关于x的线性回归方程y^=0.7x+a,则a=()A.0.25B.0.35C.0.45D.0.553.贿圆x2/7+y2/3=1的焦距为()A.4B.2C.2D.24.A.B.C.D.5.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为()A.1/100B.1/20C.1/99D.1/506.函数y=-(x-2)|x|的递增区间是()A.[0,1]B.(-∞,l)C.(l,+∞)D.[0,1)和(2,+∞)7.(1 -x)4的展开式中,x2的系数是( )A.6B.-6C.4D.-48.已知log N10=,则N的值是()A.B.C.100D.不确定9.若输入-5,按图中所示程序框图运行后,输出的结果是()A.-5B.0C.-1D.110.“x=1”是“x2-1=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11.A.B.C.D.12.已知互相垂直的平面α,β交于直线l若直线m,n满足m⊥a,n⊥β则()A.m//LB.m//nC.n⊥LD.m⊥n13.函数y =的定义域是( )A.(-2,2)B.[-2,2)C.(-2,2]D.[-2,2]14.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.60015.已知点A(1,-3)B(-1,3),则直线AB的斜率是()A.B.-3C.D.316.A.(1,2)B.(3,4)C.(0,1)D.(5,6)17.过点A(-1,0),B(0,-1)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=018.已知sin2α<0,且cosa>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限19.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-1120.直线L过(-1,2)且与直线2x-3y+5=0垂直,则L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=0二、填空题(20题)21.22.23.24.已知一个正四棱柱的底面积为16,高为3,则该正四棱柱外接球的表面积为_____.25.26.log216 + cosπ + 271/3= 。

2023年高职单独招生考试数学试卷(含答案) (1)

2023年高职单独招生考试数学试卷(含答案) (1)

2023年对口单独招生统一考试数学试卷(满分120分,考试时间90分钟)一、选择题:(本题共20小题,每小题2.5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设A ∈0, 则满足}1,0{=B A 的集合A , B 的组数是 ( )A .1组B .2组C .4组D .6组2.若|log |)(,10x x f a a =<<且函数, 则下列各式中成立的是( )A .)41()31()2(f f f >>B .)31()2()41(f f f >>C .)2()31()41(f f f >>D .)41()2()31(f f f >>3.在ABC ∆中, 如果1019cos ,23sin ==B A , 则角A 等于 ( )A .3πB .32π C .3π或32π D .656ππ或 4.已知数列)(lim ,131}{242n n n n n a a a a S a +++-=∞→ 那么满足的值为 ( )A .21B .32 C .1 D .-25.直线0601210122=+--++=y x y x mx y 与圆有交点, 但直线不过圆心, 则∈m ( ) A .)34,1()1,43(B .]34,1()1,43[C .]34,43[D .)34,43(6.如图, 在正三角形ABC ∆中, D 、E 、F 分别为各边的中点, G 、H 、I 、J 分别为AF , AD , BE , DE 的中点, 将ABC ∆沿DE ,EF , DF 折成三棱锥以后, GH 与IJ 所成角的度数为 ( ) A .90° B .60° C .45°D .0°7.已知以y x ,为自变量的目标函数)0(>+=k y kx ω的可行域如图阴影部分(含边界), 若使ω取最大值时的最优解有无穷 多个, 则k 的值为( ) A .1B .23C .2D .48. 已知集合A={-1,0,1},集合B={x|x <3,x ∈N},则A ∩B=( ) A. {-1,1,2} B. {-1,1,2,3} C. {0,1,2} D. {0,1}9. 已知数列:23456 34567,,,,,…按此规律第7项为( )A. 78B. 89C.78D.8910. 若x ∈R ,下列不等式一定成立的是( )A. 52x x<B. 52x x >C. 20x > D. 22(1)1xx x >11、已知f(12x -1)=2x +3,f(m)=8,则m 等于( )A 、14B 、-14C 、32D 、-32 12、函数y =lg x +lg(5-2x)的定义域是( )A 、)25,0[B 、⎥⎦⎤⎢⎣⎡250,C 、)251[,D 、⎥⎦⎤⎢⎣⎡251,13、函数y =log2x -2的定义域是( )A 、(3,+∞)B 、[3,+∞)C 、(4,+∞)D 、[4,+∞)14、函数12--=x x y 的图像是 ( ) A.开口向上,顶点坐标为)(45,21-的一条抛物线; B.开口向下,顶点坐标为)(45,21-的一条抛物线; C.开口向上,顶点坐标为)(45,21-的一条抛物线; D.开口向下,顶点坐标为)(45,21-的一条抛物线;15、函数()35x x x f +=的图象关于( )A 、y 轴对称B 、直线y =-x 对称C 、坐标原点对称D 、直线y =x 对称16、下列函数中,在区间(0,+∞)上为增函数的是( ) A 、y =x +1 B 、y =(x -1)2 C 、y =2-x D 、y =log0.5(x +1)17、已知函数x x f =)(,点),4(b P 在函数图像上,则=b ( ) A 、-4 B 、3 C 、-2 D 、2 18、不等式532≤-x 的解集是( )A 、()4,1-B 、()()∞+-∞-,,41 C 、[]4,1- D 、 ()()∞+--∞-,,14 19、不等式()()073>+x x -的解集是( )A 、 ()73,-B 、 ()7,3-C 、 ),3()7,(+∞--∞D 、 ),7()3,(+∞--∞ 20、不等式31<-x 的解集是( )A 、(-2,4)B 、(-1,3)C 、 ),4()2,(+∞--∞D 、 ),1()3,(+∞--∞ 一、填空题:(本题共2小题,每小题10分,共20分.)1、若实数y x .满足不等式组⎪⎩⎪⎨⎧≥-≤-≥+0422y x y x y x , 则y x +2的最小值是2、在等差数列{}n a 中,已知172,35a S ==,则等差数列{}n a 的公差d =_______.二、解答题:(本题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 1.设)(x f 是定义在),0(+∞上的增函数,当),0(,+∞∈b a 时,均有)()()(b f a f b a f +=⋅,已知1)2(=f .求:(1))1(f 和)4(f 的值;(2)不等式2()2(4)f x f <的解集 . 2.已知函数1)6sin(cos 4)(-+=πx x x f ,求求)(x f 的最小正周期;(2)求)(x f 在区间]4,6[ππ-上的最大值和最小值.3. 已知函数b b x a x x f 2)1()(22--++=,且)2()1(x f x f -=-,又知x x f ≥)(恒成立. 求:(1) )(x f y =的解析式;(2)若函数[]1)(log )(2--=x x f x g ,求函数g(x)的单调区间. 4、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若a =3c ,b =,cosB =,求c 的值;(2)若=,求sin (B+)的值.参考答案: 一、选择题1-5:DCACB 6-10:BADBB 二、填空题 1.参考答案.4 【解析】试题分析:根据题意可知,实数y x .满足不等式组⎪⎩⎪⎨⎧≥-≤-≥+0422y x y x y x 对应的区域如下图,当目标函数z=2x+3y 在边界点(2,0)处取到最小值z=2×2+3×0=4. 故答案为:4考点:简单线性规划的运用。

2023年高职单独招生考试数学试卷(含答案) (2)

2023年高职单独招生考试数学试卷(含答案) (2)

2023年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.首项系数为1的二次函数()y f x =在1x =处的切线与x 轴平行,则()A.()()20f f >B.()()20f f <C.()()22f f >-D.()()22f f <-2.已知定义在[]1,1-上的函数()y f x =的值域为[]0,2-,则函数(cos )f x 的值域为()A.[]1,1-B.[]1,3--C.[]0,2-D.无法确定3.设f 1(x )是函数f (x )的导数,y =f 1(x )的图象如图甲所示,则y =f (x )的图象最有可能是图()中的图象:4.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有()A、140种B、120种C、35种D、34种5.若把英语单词“hello”的字母顺序写错了,则可能出现的错误的种数是()A.119B.59C.120D.606.E,F 是随圆12422=+y x 的左、右焦点,l 是椭圆的一条准线,点P 在l 上,则∠EPF 的最大值是()A.15°B.30°C.60°D.45°7.关于甲、乙、丙三人参加高考的结果有下列三个正确的判断:①若甲未被录取,则乙、丙都被录取;②乙与丙中必有一个未被录取;③或者甲未被录取,或者乙被录取,则三人中被录取的是()A.甲B.丙C.甲与丙D.甲与乙8、若集合{}1,1M =-,{}2,1,0N =-,则M N = ()A、{0,-1}B、{1}C、{-2}D、{-1,1}9、设A,B 是两个集合,则“A B A = ”是“A B ⊆”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件10、设集合A={0,2,a},B={1,a2},若A∪B={0,1,2,5,25},则a 的值为()A、0B、1C、2D、511、“1=x ”是“0122=+-x x ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件12、“2)1(+=n n a n ”是“0)2(log 21<+x ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件13、设b a ,为正实数,则“1>>b a ”是“0log log 22>>b a ”的()A、充要条件B、充分不必要条件C、必要不充分条件D、既不充分也不必要条件14、0=b 是直线b kx y +=过原点的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15、方程4322(log =x 的解为()A.4=x B.2=x C.2=x D.21=x 16、设b a ,是实数,则“0>+b a ”是“0>ab ”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件17、已知x x x f 2)(2+=,则)2(f 与)21(f 的积为()A、5B、3C、10D、818、“ααcos sin =”是“02cos =α”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件19、函数)32(log )(22-+=x x x f 的定义域是()A、[]1,3-B、()1,3-C、(][)+∞-∞-,13, D、()()+∞-∞-,13, 20、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是()A、c b a <<B、b c a <<C、ca b <<D、ac b <<二、填空题(共10小题,每小题3分;共计30分)1.设函数f (x)=x|x﹣a|,若对于任意的x1,x2∈[2,+∞),x1≠x2,不等式恒成立,则实数a 的取值范围是_______.2.已知平面向量,,满足||=1,||=2,,的夹角等于,且()•()=0,则||的取值范围是_______.3、已知函数()f x =223,1lg(1),1x x x x x ⎧+-≥⎪⎨⎪+<⎩,则((3))f f -=______.4、不等式2340x x --+>的解集为______.(用区间表示)5、不等式422<-xx的解集为______..(用区间表示)6、函数()35lg -=x y 的定义域是______.(用区间表示)7、函数y=)9(log 2-x 的定义域是______.(用集合表示)8、不等式062<--x x 的解集是______.(用集合表示)9、不等式0125>--x 的解集为______.(用集合表示)10、已知函数)1(log )(2-=x x f ,若f(α)=1,则α=______.三、大题:(满分30分)1、如下图,四棱锥P ABCD -中侧面PAB 为等边三角形且垂直于底面ABCD ,AB BC ⊥,//BC AD ,12AB BC AD ==,E 是PD 的中点.(1)证明:直线//CE 平面PAB ;(2)求二面角B PC D --的余弦值.2、在平面直角坐标系xOy 中,己知点F 1(-√17,0),F 2(√17,0),点M 满足|MFt|-|MF2|=2.记M的轨迹为C.(1)求C的方程;(2)设点T在直线x=12上,过T的两条直线分别交C于A,B两点和P,Q两点,且|TA|·|TB|=|TP|·|TQ|,求直线AB的斜率与直线PQ的斜率之和参考答案:一、选择题:1-5题答案:CCBDB6-10题答案:BDBCD11-15题答案:ABACA16-20题答案:DCADC二、填空题:1、(﹣∞,2];2、[7−32,7+32];3、0;4、(-4,1);5、(-1,2);6、⎪⎭⎫⎢⎣⎡∞+,54;7、}9{>x x;8、{}32<<-xx;9、}32{><x x x 或;10、3。

高职高考数学试卷及答案

高职高考数学试卷及答案

一、选择题(每题5分,共30分)1. 已知函数f(x) = 2x - 3,则f(-1)的值为:A. -5B. -2C. 1D. 42. 下列各组数中,不是等差数列的是:A. 1, 4, 7, 10, ...B. 3, 6, 9, 12, ...C. 2, 4, 8, 16, ...D. 5, 10, 15, 20, ...3. 若a, b, c是等比数列,且a + b + c = 12,abc = 64,则b的值为:A. 4B. 8C. 16D. 324. 已知圆的方程为x² + y² - 4x - 6y + 9 = 0,则圆的半径为:A. 2B. 3C. 4D. 55. 下列函数中,在定义域内单调递增的是:A. y = x²B. y = -x²C. y = 2xD. y = -2x二、填空题(每题5分,共20分)6. 若log₂x + log₂(x + 2) = 3,则x的值为______。

7. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为______。

8. 已知数列{an}的前n项和为Sn,且S1 = 1,S2 = 3,则数列的通项公式an=______。

9. 已知等差数列{an}的公差为2,若a1 + a5 + a9 = 30,则a3的值为______。

10. 函数y = x² - 4x + 3的图像与x轴的交点坐标为______。

三、解答题(每题20分,共40分)11. (解答题)已知函数f(x) = x² - 4x + 3,求f(x)的图像的顶点坐标。

12. (解答题)已知等差数列{an}的前n项和为Sn,且S5 = 50,求该数列的通项公式。

四、附加题(30分)13. (附加题)已知数列{an}的前n项和为Sn,且S1 = 1,S2 = 3,S3 = 6,求该数列的通项公式an。

答案一、选择题1. B2. C3. A4. C5. C二、填空题6. 47. 75°8. an = n9. 510. (1, 0) 和 (3, 0)三、解答题11. 顶点坐标为(2, -1)。

2022年高考单招数学模拟题含答案

2022年高考单招数学模拟题含答案

2022年高考单招数学模拟题(时间:120分钟满分:150分)一.选择题(本题共20小题,每小题3分,共60分)1.下表是某班数学单元测试的成绩单:全部同学的学号组成集合A ,其相应的数学分数组成集合B ,集合A 中的每个学号与其分数相对应.下列说法:①这种对应是从集合A 到集合B 的映射;②从集合A 到集合B 的对应是函数;③数学成绩按学号的顺序排列:135,128,135,…,108,94,97组成一个数列,以上说法正确的是()A.①②B.①③C.②③D.①②③2.已知向量()()7,,1,3k b a =-=,若b a+与b a23-平行,则实数k 等于()A.21- B.22C.19D.203.在等差数列{}n a 中,已知1263=+a a ,那么它的前8项和等于()A.60B.30C.56D.484.已知数据321,,a a a 的方差为2,则数据32,32,32321+++a a a 的方差为()A.6B.12C.8D.95.某学校高二年级共有学生180人,他们来自机电、电子、市场营销三个专业.为检查学生的学习情况,决定采用分层抽样的方法进行抽样,已知从机电、电子、市场营销三个专业抽取的个体数组成一个等差数列,则电子专业的学生人数为()A.56B.60C.65D.486.如果圆柱与圆锥的底面直径、高和球的直径相等,则体积比球圆锥圆柱::V V V 为()A.2:1:3B.4:1:3C.4:3:6D.2:3:37.下列命题中正确的是()A.若a ∥α,βα⊥,则β⊥a B.若βα⊥,γβ⊥,则γα⊥C.若a α⊥,βα⊥,则a ∥βD.若α∥β,a α⊂,则a ∥β8.从4个不同的树种里选出3个品种,分别种植在三条不同的道路旁,不同的种植方法种数为()A.8B.16C.24D.309.平行于直线012=+-y x 且与圆522=+y x 相切的直线方程是()A.052=+-y x B.052=--y x C.052=±-y x D.052=±+y x 10.下图是某企业2000年至2003年四年来关于生产销售的一张统计图表(注:利润=销售额-生产成本).对这四年有以下几种说法:(1)该企业的利润逐年提高;(2)2000年-2001年该企业销售额增长率最快;(3)2001年-2002年该企业生产成本增长率最快;(4)2002年-2003年该企业利润增长幅度比2000年-2001年利润增长幅度大其中说法正确的是()A.(1)(2)(3)B.(1)(3)(4)C.(1)(2)(4)D.(2)(3)(4)参考答案一.选择题(本大题共20小题,每小题3分,共60分)12345678910DADCBADCCD二.填空题(本大题共5小题,每小题4分,共20分)11.已知数组a =()1,1,3--,b =()5,3,1,c =()2,1,2--,则(a-b)∙c =________.12.已知命题p:m≥1,命题q:,若p ,q 中有且仅有一个为真命题,则实数m 的取值范围是___。

福建省春季高考高职单招数学模拟试题(六)及答案

福建省春季高考高职单招数学模拟试题(六)及答案

福建省春季高考高职单招数学模拟试题(六)班级: 姓名: 座号:一、填空题(本大题满分56分)本大题共有14题,每个空格填对得4分,否则一律得零分. 1.函数()lg 2y x =-的定义域是 . 2.若集合{}1A x x =≥,{}24B x x =≤,则AB = .3.在ABC ∆中,若2tan 3A =,则sin A =4.若行列式24012x=,则x =5.若1sin 3x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则tan x = 。

6.61x x ⎛⎫+ ⎪⎝⎭的二项展开式的常数项为 7.两条直线1:320l x y -+=与2:20l x y -+=夹角的大小是8.若n S 为等比数列{}n a 的前n 项和,2580a a +=,则63S S =9.若椭圆C 焦点和顶点分别是双曲线22154x y -=的顶点和焦点,则椭圆C 的方程是 10.若点O 和点F 分别为椭圆2212x y +=的中心和左焦点,点P 为椭圆上的任意一点,则22OP PF +的最小值为11.根据如图所示的程序框图,输出结果i =12.2011年上海春季高考有8所高校招生,如果某3位同学恰好被其中2所高校录取,那么录取方法的种数为13.有一种多面体的饰品,其表面由6个正方形和8个正三角形组成(如图),AB 与CD 所成角的大小是 . 14.为求解方程510x-=的虚根,可以把原方程变形为()()432110x x x x x -++++=,再变DCBAG F EDC BA形为()()()221110x x ax x bx -++++=,由此可得原方程的一个虚根为二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.若向量()2,0a =,()1,1b =,则下列结论正确的是 ( )A.1a b ⋅= B.a b = C.()a b b -⊥ D.//a b 16.函数()412x xf x -=的图象关于 ( ) A.原点对称 B.直线y x =对称 C.直线y x =-对称 D.y 轴对称17.直线1:2l y k x ⎛⎫=+ ⎪⎝⎭与圆22:1C x y +=的位置关系为 ( ) A.相交或相切 B.相交或相离 C.相切 D.相交18.若123,,a a a均为单位向量,则13,33a ⎛=⎝⎭是(1233,a a a ++=的 ( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件三、解答题(本大题74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)向量()sin 21,cos a x x =-,()1,2cos b x =.设函数()f x a b =⋅.求函数()f x 的最小正周期及0,2x π⎡⎤∈⎢⎥⎣⎦时的最大值.20.(14分)某甜品店制作一种蛋筒冰激凌,其上部分是半球形,下半部分呈圆锥形(如图),现把半径为10cm 的圆形蛋皮等分成5个扇形,用一个蛋皮围成圆锥的侧面(蛋皮的厚度忽略不计),求该蛋筒冰激凌的表面积和体积(精确到0.01)21.(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.已知抛物线2:4F x y =. (1) ABC ∆的三个顶点在抛物线F 上,记ABC ∆的三边,,AB BC CA 所在直线的斜率分别为,,AB BC CA k k k ,若点A 在坐标原点,求AB BC CA k k k -+的值;(2) 请你给出一个以()2,1P 为顶点,且其余各顶点均为抛物线F 上的动点的多边形,写出多边形各边所在直线的斜率之间的关系式,并说明理由.说明:第(2)题将根据结论的一般性程度给与不同的评分.22.(本题满分16分)定义域为R ,且对任意实数12,x x 都满足不等式()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭的所有函数()f x 组成的集合记为M .例如()f x kx b M =+∈.(1) 已知函数(),0,1,02x x f x x x ≥⎧⎪=⎨<⎪⎩证明:()f x M ∈;(2) 写出一个函数()f x ,使得()f x M ∉,并说明理由;23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分8分, 第3小题满分6分.对于给定首项)00x a >>,由递推式112n n x x +⎛=+ ⎝()n +∈N 得到数列{}n x ,且对于任意的n +∈N ,都有n x ,用数列{}n x的近似值. (1) 取05x =,100a =,计算123,,x x x 的值(精确到0.01),归纳出n x ,1n x +的大小关系;(2) 当1n ≥时,证明()1112n n n n x x x x +--<-;(3) 当[]05,10x ∈时,用数列{}n x要求4110n n x x -+-<,请你估计n ,并说明理由.福建省春季高考高职单招数学模拟试题(六)参考答案1、【解】()2,+∞.函数()lg 2y x =-的定义域满足20x ->,即2x >,所以函数()lg 2y x =-的定义域为()2,+∞.2、【解】{}12x x ≤≤.{}{}2422B x x x =≤=-≤≤,所以AB ={}12x x ≤≤.3、【解】11.因为tan 03A =>,则A ∠是锐角,于是2221111tan 199cos A A+=+==, 则29cos 11A =,cos A =,sin tan cos 311A A A =⋅==. (或由29cos 11A =得22sin 11A =,因为sin 0A >,则sin 11A =.)4、【解】1.242214012xx =⨯-⨯=,则22x =,1x =. 5、【解】1arcsin3.因为1sin 3x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦,则1arcsin 3x =. 6、【解】20.61x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项为662166C C r r r r rr T x x x ---+==.令620r -=得3r =.所以61x x ⎛⎫+ ⎪⎝⎭的二项展开式的常数项为36C 20=.7、【解】12π.直线1l 的倾斜角为6π,直线2l 的倾斜角为4π,夹角为4612πππ-=. 8、【解】7-.设公比为q ,则4118a q a q =-,所以38q =-.63633118171S q q S q -==+=-+=--.9、【解】22194x y +=.双曲线22154x y -=的顶点和焦点坐标分别是()和()3,0±. 设椭圆C 的方程为22221x y a b +=,则由题设,3a ==2b =,所以椭圆C 的方程为22194x y +=.10、【解】2设(),P x y ,由()1,0F -得()2222221OP PF x y x y +=++++①因为点P 为椭圆上的任意一点,则2212x y =-,于是①式化为2222221212x OP PF x x ⎛⎫+=+++- ⎪⎝⎭223x x =++()212x =++.因为x ≤≤,而()212x ++图象的对称轴1x ⎡=-∈⎣,所以当1x =-时,22OP PF +有最小值为2.11、【解】7.根据如图所示的程序框图,所得的数据如下表所以输出的7i =.12、【解】168.第一步:从8所高校取2所高校的方法有28C 28=种,第二步:3位同学分配到2所高校的方法有2位同学被分配到同一所高校,所以有2132C C 6=种,所以录取方法的种数为286168⨯=种.13、【解】3π.AB 与CD 是正方形的边,则//AB EF ,//CD FG , 因为EF 和FG 是正三角形EFG 的两边,则AB 与CD 所成的角为3π. 14、【解中的一个.由题设,有()()43222111x x x x x ax x bx ++++=++++,即()()()432432121x x x x x a b x ab x a b x ++++=+++++++,对应相应项的系数得1,21a b ab +=⎧⎨+=⎩解得1,212a b ⎧=⎪⎪⎨+⎪=⎪⎩或121,2a b ⎧+=⎪⎪⎨⎪=⎪⎩解21102x x -++=,因为1004--∆=<,所以x =,同理,解21102x x +++=得中的一个.15、【解】2a b ⋅=,A不正确;2a =,2b =,则a b ≠,B不正确;()1,1a b -=-,()()()1,11,10a b b -⋅=-⋅=,所以()a b b -⊥,C正确;不存在实数λ,使a b λ=,D不正确.故选C.16、【解】()41222x x xxf x --==-,则()()f x f x -=-,其图象关于原点对称.故选A. 17、【解】解法1.因为直线l 过点1,02⎛⎫-⎪⎝⎭,而点1,02⎛⎫- ⎪⎝⎭在圆22:1C x y +=的内部,所以直线与圆相交.故选D.解法2.圆心为()0,0,半径为1,圆心到直线的距离为11212kd k =≤=<,所以直线与圆相交.故选D. 18、【解】若(1233,a a a ++=,当123a a a ==时,得13,3a ⎛= ⎝⎭,若13,3a ⎛= ⎝⎭,当()231,0a a ==,则(1233,a a a ++≠,所以13,33a ⎛=⎝⎭是(1233,a a a ++=的必要不充分条件.故选B.19、【解】()2sin 212cos f x a b x x =⋅=-+sin 2cos2x x =+24x π⎛⎫=+ ⎪⎝⎭.所以,函数()f x 的最小正周期22T ππ==.因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,444x πππ⎡⎤+∈⎢⎥⎣⎦,当242x ππ+=,即8x π=时,函数有最大值max y =20、【解】设圆锥的底面半径为r ,高为h .由题意,圆锥的侧面扇形的周长为121045ππ⋅⋅=()cm ,圆锥底面周长为2r π()cm ,则24r ππ=,2r =()cm.圆锥的==()cm ,圆锥的侧面扇形的面积为11410202S ππ=⨯⨯=()2cm ,半球的面积为 2214282S ππ=⨯⨯=.该蛋筒冰激凌的表面积122887.96S S Sπ=+=≈()2cm ;圆锥的体积为21123V π=⨯⨯()3cm ,半球的体积为3214162233V ππ=⨯⨯=()3cm , 所以该蛋筒冰激凌的体积为)1216157.803V V V π=+=≈()3cm .因此该蛋筒冰激凌的表面积约为287.96cm , 体积约为357.80cm .21、【解】(1) 设(),B B B x y ,(),C C C x y .则B C CB AB BC CA B B C Cy y y y k k k x x x x --+=-+- ()2222444B C C B B B C C x x x x x x x x -=-+-()104B BC C x x x x =-++=⎡⎤⎣⎦.(2) ① 研究PBC ∆.B C C P B P PB BC CP B P B C C Py y y y y y k k k x x x x x x ----+=-+---()()()222222444B C C P B PB P BC C P x x x x x x x x x x x x ---=-+---()()()14B P BC C P x x x x x x =+-+++⎡⎤⎣⎦12P x ==. ② 研究四边形PBCD .4444B C C D B P D PPB BC CD DP x x x x x x x x k k k k ++++-+-=-+-0= ③ 研究五边形PBCDE .PB BC CD DE EP k k k k k -+-+44444B C C D B P D E E P x x x x x x x x x x +++++=-+-+12Px ==. ④ 研究2n k =边形122kPP P (),2k k +∈≥N ,其中1P P =.()12233421211k k P P P P P P P P k k k k --+-+-()233421122114444k k P P P P P P P P x x x x x x x x -++++=-+-+-()1211104k P x -⎡⎤=+-=⎣⎦.⑤研究21n k =-边形1221k PP P -(),2k k +∈≥N ,其1P P =.()1223342112111k k P P P P P P P P k k k k ----+-+-()23342111221114444k k P P P P P P P P x x x x x x x x ---++++=-+-+-()12111114k P x --⎡⎤=+-=⎣⎦.⑥研究n 边形12n PP P (),3k n +∈≥N ,其中1P P =.()122334111n n P P P P P P P P k k k k --+-+-()2334121114444n P P P P P P Pn P x x x x x x x x -++++=-+-+-()()111111142n n P x --+-⎡⎤=+-=⎣⎦.22、【解】(1) 当120x x ≤≤时,()()1212121202244f x f x x x x x x x f ++++⎛⎫-=-=⎪⎝⎭,则不等式()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭成立;当120x x ≤≤时,()()1212121202222f x f x x x x x x x f ++++⎛⎫-=-= ⎪⎝⎭,则不等式()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭成立; 当120x x ≤≤,且1202x x +<时,()()1212121221120222224x xf x f x x x x x x f ++++⎛⎫-=-⋅=≥ ⎪⎝⎭,则 不等式()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭成立; 当120x x ≤≤,且1202x x +≥时,()()12121212112022224x x f x f x x x x x x f ++++⎛⎫-=-=-≥ ⎪⎝⎭,则 不等式()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭成立. 综合以上,不等式()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭成立.所以()f x M ∈ (2) 例如函数()2f x x =-,取11x =-,21x =,则()()121222f x f x x x f ++⎛⎫-⎪⎝⎭()()()110102f f f -+=-=-<. 所以()f x M ∉.也可以从()2f x x =-的图象看出,()()121222f x f x x x f ++⎛⎫>⎪⎝⎭,不满足()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭.所以()2f x x M =-∉.(3) 例如函数()2,1,, 1.x x f x x x ⎧≥⎪=⎨<⎪⎩满足()f x M ∈,()222lim lim 1n n f n n n n →∞→∞==,()lim lim 1n n f n n n n →∞→∞--==--. 23、【解】(1) 1234.74, 4.67, 4.65x x x ===,猜想1n n x x +<; (2) ()1112n n n n x x x x +----1111222n n n n n a x x x x x -⎛⎫=-+-+ ⎪ ⎪⎝⎭11122n n n a x x x -=-- 111111222n n n n a a x x x x ---⎛⎫=+-- ⎪ ⎪⎝⎭11122n na a x x -=-112n n n nx x ax x ---=①因为3n x a >,所以311110222n n n n n n n n nx a a a x x x x x x x x +⎛⎫⎛⎫--=-+=-=⋅> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以1n n x x +>.由①式,()11102n n n n x x x x +----=<,所以()1112n n n n x x x x +--<-. (3) 由(2)()()()()1121120121111102222n n n n n n n nx x x x x x x x x x +----<-<-<-<<-<-, 所以只要()4011102n x x --<即可,于是()401210n x x >-, 因为01012x x x ⎛⎫-=- ⎝,所以42log 1015.1n ⎛>≈ ⎝⎭.所以16n =.。

2022年河北省邢台市普通高校高职单招数学自考模拟考试(含答案)

2022年河北省邢台市普通高校高职单招数学自考模拟考试(含答案)

2022年河北省邢台市普通高校高职单招数学自考模拟考试(含答案) 学校:________ 班级:________ 姓名:________ 考号:________一、单选题(20题)1.已知a=(4,-4),点A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB2.(1 -x)4的展开式中,x2的系数是( )A.6B.-6C.4D.-43.设一直线过点(2,3)且它在坐标轴上的截距和为10,则直线方程为()A.B.C.D.4.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)5.设复数z满足z+i=3-i,则=()A.-1+2iB.1-2iC.3+2iD.3-2i6.A.B.C.D.7.{已知集合A={-1,0,1},B={x|-1≤x<1}则A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}8.等比数列{a n}中,若a2 =10, a3=20,则S5等于( )A.165B.160C.155D.1509.tan150°的值为()A.B.C.D.10.若集合M={3,1,a-1},N = {-2,a2},N为M的真子集,则a的值是( )A.-1B.1C.0D.11.A.B.{3}C.{1,5,6,9}D.{1,3,5,6,9}12.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/313.若等差数列{a n}中,a1=2,a5=6,则公差d等于()A.3B.2C.1D.014.设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15.现无放回地从1,2,3,4,5,6这6个数字中任意取两个,两个数均为偶数的概率是( )A.1/5B.1/4C.1/3D.1/216.设集合{x|-3<2x-1<3},集合B为函数y=lg(x-1)的定义域,则A∩B=( )A.(1,2)B.[1,2]C.[1,2)D.(1,2]17.若集合A={0,1,2,3,4},A={1,2,4},则A∪B=()A.|0,1,2,3,4}B.{1,2,3,4}C.{1,2}D.{0}18.已知A={x|x+1>0},B{-2,-1,0,1},则(C R A)∩B=( )A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}19.在等差数列{a n}中,若a2=3,a5=9,则其前6项和S6=()A.12B.24C.36D.4820.A.3B.4C.5D.6二、填空题(20题)21.等差数列的前n项和_____.22.在平面直角坐标系xOy中,直线2x+ay-1=0和直线(2a-1)x-y+1=0互相垂直,则实数a的值是______________.23.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f⑴=______.24.25.在等比数列{a n}中,a5 =4,a7 =6,则a9 = 。

2024年高职单独招生考试数学模拟试题及答案

2024年高职单独招生考试数学模拟试题及答案

2024年高职院校单独招生考试数学题库一、选择题1、若集合S={-2,0,2},则(A)A.2∈SB.-2∉S2、若集合S={a,b,c},则C.1∈S(A)A.a∈SB.b∉S3、若集合S={-2,0,2},则C.d∈S(A)A.-2∈SB.2∉S4、若集合S={-2,0,2},则C.1∈S(A)A.0∈SB.2∉SC.1∈S5、30︒=弧度(C)A.πB.3π C.π266、45︒=弧度(A)A.πB.4π C.π267、90︒=弧度(B)A.πB.3π C.π268、60︒=弧度(A)A.πB.3π C.π269、等差数列{a n}中,a1=1,a2=4,则A.7B.8C.9a3=(A)10、等差数列{a n}中,a1=2,a2=5A.7B.8C.9,则a3=(B)11、等差数列{a n}中,a1=-5,a2=-1,则A.3B.8C.9a3=(A)12、等差数列{a n}中,a1=1,a2=5A.7B.8C.9,则a3=(C)13、cosπ的值是(A)3A.1B.22 C.3 2214、sinπ的值是(C)3A.1B.22 C.3 2215、cosπ的值是(C)6A.1B.22 C.3 2216、sinπ的值是(B)4A.12B.22 C.3217、log216=(C)A.218、log39=B.3 C.4(A)A.219、log327=B.3 C.4(B)A.2B.3C.420、log381=(C)A.2B.3C.421、已知:sin α<0,tan α>0,则角α是(A )A.第三象限角B.第二象限角C.第四象限角22、已知:sin α>0,tan α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角23、已知:tan α<0,cos α>0,则角α是(C )A.第三象限角B.第二象限角C.第四象限角24、已知:tan α<0,cos α<0,则角α是(B )A.第三象限角B.第二象限角C.第四象限角25、直线y =x -1的倾斜角为(A )A.π B.4πC.π3626、直线y =x +8的倾斜角为(A )A.π B.4πC.π3627、直线y =x +5的倾斜角为(A )A.π B.4πC.π3628、直线y =-x +5的倾斜角为(A )A.3π B.4πC.π3629、实数12与3的等比中项为(B )A.-6B.±6C .630、实数1与16的等比中项为(B )A.-4B.±4C .431、实数2与32的等比中项为(B )A.-8B.±8C .832、实数4与9的等比中项为(B )A.-6B.±6C.633、已知正方体的边长是1,则正方体的体积为(A )A.1B.8C.2734、已知正方体的边长是2,则正方体的体积为(B)A.1B.8C.2735、已知正方体的边长是4,则正方体的体积为(A)A.64B.8C.2736、已知正方体的边长是3,则正方体的体积为(C)A.1B.8C.2737、已知角A为第一象限角,cos A=4,则sin A=5(B)A.2B.53 C.4 5538、已知角A为第二象限角,sin A=3,则cos A=5(C)A.-25B.-35C.-4539、已知角A为第一象限角,sin A=3,则cos A=5(C)A.2B.53 C.4 5540、已知角A为第一象限角,sin A=4,则cos A=5(B)A.2B.53 C.4 5541、不等式x<2的解集是(A)A.{x-2<x<2}B.{x x<-2或x>2}C.{x x<2}42、不等式x>3的解集是(B)A.{x x<-3}B.{x x<-3或x>3}C.{x x>3}43、不等式x≥3的解集是(B)3-2x⎪A.{x x ≤-3} B.{x x ≤-3或x ≥3} C.{x x ≥3}44、不等式x >4的解集是(B )A.{x x <-4}B.{x x <-4或x >4}C.{x x >4}45、下列函数为奇函数的是(B)A.y =x4B.y =1x 3C.y =4x +546、下列函数为奇函数的是(B )A.y =1x 4B.y =x 3C.y =4x +547、下列函数为偶函数的是(A )A.y =3x 4B.y =7xC.y =2x +148、下列函数为偶函数的是(A )A.y =-x2 B.y =1xC.y =2x +149、设f (x )=1,则f (1)=(B )A.2B.1C.1250、设f (x )=8,则f ⎛1⎫=2(C )⎝⎭A.2 B.1 C.451、设f (x )=1则f (2)=(B )3A.2 B.1 C.1252、设f (x )=1则f (53A.2B.1C.)=(C )133+2x53、若角α终边上一点P(-12,5),则tanα的值为(B)A.-1213B.-512C.-51354、若角α终边上一点P(-5,-12),则cosα的值为(C)A.-1213B.5 C.-5121355、若角α终边上一点P(12,-5),则tanα的值为(B)A.-1213B.-512C.-51356、若角α终边上一点P(-5,-12),则sinα的值为(A)A.-1213B.512C.-51357、若函数y=A.[-1,+∞)1-x,则其定义域为B.[1,+∞)C.(-∞,1](C)58、若函数y=A.[-2,+∞)2-x,则其定义域为B.[2,+∞)C.(-∞,2](C)59、若函数y=A.[-1,+∞)x+1,则其定义域为B.[1,+∞)C.(-∞,1](A)60、若函数y=A.[-1,+∞)x-1,则其定义域为B.[1,+∞)C.(-∞,1](B)二、填空题1、{a,b}∩{a,c}={a}2、{2,3}∩{2,4}={2}3、{x,y}∩{y,z}={y}4、{-1,2}∩{1,2}={2}3565、数列-4,1,6,的前五项和为306、数列1,4,7,的前五项和为357、数列2,5,8,的前五项和为408、数列-1,2,5,的前五项和为259、函数y =sin ⎛4x +π⎫的最小正周期是π ⎪⎝⎭10、函数y =sin ⎛2x -π⎫的最小正周期是π⎪⎝⎭11、函数y =cos ⎛x +π⎫的最小正周期是2π⎪⎝⎭12、函数y =⎛1x -π⎫的最小正周期是4πcos ⎪⎝26⎭13、若log 2x =5,则x =3214、若log 4x =3,则x =6415、若log 5x =2,则x =2516、若log 3x =4,则x =8117、已知:cot α=3,则2cot α-4=1cot α+1218、已知:cot α=1,则52-5cot α15+10cot α=719、已知:tan α=2,则tan α+1=15-tan α20、已知:tan α=2,则tan α+1=36+tan α821、在0︒~360︒之间,与760︒角的终边相同的角是40∘22、在0︒~360︒之间,与770︒角的终边相同的角是50∘223、在0︒~360︒之间,与400︒角的终边相同的角是40∘24、在0︒~360︒之间,与390︒角的终边相同的角是30∘25、若复数z =-3+5i ,则复数的虚部为526、若复数z =12+3i ,则复数的实部为1227、若复数z 1=3+6i ,z 2=-3+2i ,则z 1-z 2=28、若复数z 1=7-2i ,z 2=-3+5i ,则z 1+z 2=6+4i 4+3i 29、若圆的标准方程为(x +1)2+(y -5)2=16,则圆的面积为16π30、若圆的标准方程为x 2+y 2=3,则圆的面积为3π31、若圆的标准方程为(x +1)2+y 2=16,则圆的面积为32、若圆的标准方程为x 2+y 2=25,则圆的面积为25π16π33、数列1,2,3,4,的第n 项为n 2345n +134、数列1,1,1,1,的第n 项为11⨯235112⨯313⨯414⨯5n1n (n +1)、数列,,,,的第项为14916n 236、数列12,3,5,7468,的第n 项为2n -12n37、函数y =x 2+4x -5的图像与y 轴的交点坐标是(0,-5)38、函数y =x 2+2x +2的图像与y 轴的交点坐标是(0,2)39、函数y =x 2+4x -5的图像与x 轴的交点坐标是(-5,0),(1,0)40、函数y =x 2-2x +3的图像与y 轴的交点坐标是(0,3)三、解答题1、已知:设全集为实数集R ,A ={x -3<x ≤5},B ={x x ≤3},C ={x x >-1}求:A∩B,A∪B,A∩B∩C解:A∩B={x-3<x≤3}A∪B={x x≤5}A∩B∩C={x-1<x≤3}2、已知:设全集为实数集R,A={x2<x<7},B={x x>3},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x3<x<7}A∪B={x x>2}A∩B∩C={x3<x≤4}3、已知:设全集为实数集R,A={x-1≤x≤5},B={x x≥2},C={x x<3}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x≤5}A∪B={x x≥-1}A∩B∩C={x2≤x<3}4、已知:设全集为实数集R,A={x-1<x<7},B={x x≥2},C={x x≤4}求:A∩B,A∪B,A∩B∩C解:A∩B={x2≤x<7}A∪B={x x>-1}A∩B∩C={x2≤x≤4}5、已知:等差数列-2,2,6,.求:(1)公差d;(2)通项公式a n;(3)第9项a9;(4)前9项的和s9解:(1)d=4(2)a n=a1+(n-1)d=4n-6n (3)把n =9代入(2)得a 9=30(4)s =9(a 1+a 9)=9(-2+30)=1269226、已知:等比数列1,1,1,1,248求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =12(2)a n =()2n -1或a =1n 2n -1(3)把n =9代入(2)得a 9=1256a (1-q 6)⎛1⎫6⎪263(4)s =1=⎝⎭=61-q 1-13227、已知:等差数列-3,2,7,.求:(1)公差d ;(2)通项公式a n ;(3)第8项a 8;(4)前8项的和S 8解:(1)d =5(2)a n =a 1+(n -1)d =5n -8(3)把n =8代入(2)得a 8=32(4)s =8(a 1+a 8)=8(-3+32)=1168228、已知:等比数列1,3,9,27,求:(1)公比q ;(2)通项公式a n ;(3)第9项a 9;(4)前6项的和S 6解:(1)q =3(2)a =3n -1(3)把n =9代入(2)得a 9=38=6561a (1-q 6)(4)s 6=1=1-q1-361-3=3641-1。

高中单招数学试题及答案

高中单招数学试题及答案

高中单招数学试题及答案一、选择题(每题3分,共15分)1. 若函数f(x)=x^2-4x+3的零点为x1和x2,则x1+x2的值为:A. 1B. 2C. 3D. 4答案:B2. 在等差数列{an}中,若a1=1,a3=4,则a5的值为:A. 7B. 9C. 11D. 13答案:A3. 已知双曲线的方程为x^2/a^2 - y^2/b^2 = 1,其中a>0,b>0,若其渐近线方程为y=±2x,则a/b的值为:A. 1/2B. 1/√2C. √2D. 2答案:A4. 函数y=x^3-3x+1的单调递增区间为:A. (-∞, +∞)B. (-∞, 1)C. (1, +∞)D. (-∞, -1)∪(1, +∞)答案:D5. 已知三角形ABC的三边长分别为a、b、c,若a^2+b^2=c^2,且a=6,b=8,则c的值为:A. 10B. √13C. √70D. 2√7答案:A二、填空题(每题3分,共15分)6. 若sinA=3/5,且A为锐角,则cosA的值为_________。

答案:4/57. 已知等比数列{bn}的前n项和为S_n,若S_3=7,S_6=28,则S_9的值为_________。

答案:638. 函数y=x^2-6x+8的图象与x轴的交点个数为_________。

答案:29. 已知圆C的方程为(x-2)^2+(y-3)^2=25,圆心C到直线4x+3y-20=0的距离为_________。

答案:310. 已知向量a=(2, -3),b=(1, 2),则|a+b|的值为_________。

答案:√10三、解答题(共70分)11. (10分)解方程:x^2-5x+6=0。

答案:x=2或x=3。

12. (10分)证明:若a、b、c为等差数列,则a^2+c^2=2b^2。

答案:略。

13. (15分)已知函数f(x)=x^3-3x,求f(x)的单调区间和极值点。

答案:略。

14. (15分)已知双曲线的方程为x^2/9 - y^2/16 = 1,求其渐近线方程。

高考高职单招数学模拟试题3及答案.

高考高职单招数学模拟试题3及答案.

高职单招数学(007)liao【考试时间:2014年1月6日下午2:15——4:15,共120分钟】班级:姓名:座号:成绩:一、选择题:1.已知集合M={1,2,3,4},集合N={1,3,5},则MN等于()} C.{1,3 } D.{1,2,3,4,5} A.{2} B.{2,32.复数 1+i在复平面内对应的点在() iA第一象限 B.第二象限 C.第三象限 D.第四象限3. 已知命题p:∀x∈R,2x2+1>0,则()A.⌝p:∃x∈R,2x2+1≤0 C.⌝p:∃x∈R,2x2+1<0 B.⌝p:∀x∈R,2x2+1≤0D.⌝p:∀x∈R,2x2+1<0俯视图正(主)视侧(左)4. 一个空间几何体的三视图如右图所示,这个几何体的体积是() A. 2 B.4 C.6 D.8π)的图象,只要将函数y=2sinx的图象() 6ππ(A)向左平移个单位(B)向右平移个单位 66ππ(C)向左平移个单位(D)向右平移个单位 335. 要得到函数y=2sin(x+6.已知一个算法,其流程图如右图所示,则输出的结果是()D.81 A.3 B.9 C.277. 在空间中,下列命题正确的是()A.平行于同一平面的两条直线平行B.垂直于同一平面的两条直线平行C.平行于同一直线的两个平面平行D.垂直于同一平面的两个平面平行8.若AD为∆ABC的中线,现有质地均匀的粒子散落在∆ABC内,则粒子在∆ABD内的概率等于()4312 B. C. D. 54239. 计算sin240︒的值为()A.A.-11B.-C.D 2222⒑"tanα=1"是"α=π4"的()(A)必要而不充分条件(B)充分而不必要条件(C)充要条件(D)既不充分也不必要条件11. 下列函数中,在(0,+∞)上是减函数的是()A. y=1B. y=x2+1C. y=2xD. y=log3xx⒓已知直线的点斜式方程是y-2=x-1),那么此直线的倾斜角为()A.π6 B.π3 C.2π5π D. 36⎧x≥0⎪13.已知实数x、y满足⎨y≥0,则z=x+y的最小值等于()⎪x+4y≥4⎩A.0B.1C.4D.5二、填空题:本大题共4个小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考高职单招数学模拟试题时间120分钟 满分100分一、选择题(每题3分,共60分)1.已知集合{}0,1,2M =,{}1,4B =,那么集合A B 等于( )(A ){}1 (B){}4 (C){}2,3 (D ){}1,2,3,4 2.在等比数列{}n a 中,已知122,4a a ==,那么5a 等于(A)6 (B)8 (C)10 (D)16 3.已知向量(3,1),(2,5)==-a b ,那么2+a b 等于( )A.(-1,11) B . (4,7) C.(1,6) D(5,-4)4.函数2log (+1)y x =的定义域是( )(A)()0,+∞ (B) (1,+)-∞ (C) 1,+∞()(D)[)1,-+∞ 5.如果直线30x y -=与直线10mx y +-=平行,那么m 的值为( )(A) 3- (B) 13- (C) 13(D) 36.函数=sin y x ω的图象可以看做是把函数=sin y x 的图象上所有点的纵坐标保持不变,横坐标缩短到原来的12倍而得到,那么ω的值为( ) (A ) 4 (B) 2 (C)12(D) 37.在函数3y x =,2x y =,2log y x =,y =,奇函数的是( )(A)3y x = (B) 2x y = (C)2log y x =(D) y =8.11sin 6π的值为( ) (A) 2- (B) 12- (C) 12(D) 29.不等式23+20x x -<的解集是( )A.{}2x x > B.{}>1x x C .{}12x x <<D . {}1,2x x x <>或10.实数lg 4+2lg5的值为( ) (A) 2 (B) 5 (C) 10 (D) 2011.某城市有大型、中型与小型超市共1500个,它们的个数之比为1:5:9.为调查超市每日的零售额情况,需通过分层抽样抽取30个超市进行调查,那么抽取的小型超市个数为( )(A) 5 (B) 9 (C) 18 (D) 20 12.已知平面α∥平面β,直线m ⊂平面α,那么直线m 与平面β 的关系是( )A.直线m 在平面β内 B.直线m 与平面β相交但不垂直 C.直线m 与平面β垂直 D.直线m 与平面β平行 13.在ABC ∆中,3a =,2b =,1c =,那么A 的值是( )A .2πB .3π C.4π D.6π14.一个几何体的三视图如右图所示,该几何体的表面积是( )A.3π B.8π C . 12πD.14π15.当>0x 时,122x x +的最小值是( ) A. 1 B. 2 C .22 D. 416.从数字1,2,3,4,5中随机抽取两个数字(不允许重复),那么这两个数字的和是奇数的概率为( )A.45 B.35 C . 25D. 15 17.当,x y 满足条件10260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩时,目标函数z x y =+的最小值是( )(A ) 2 (B) 2.5 (C ) 3.5 (D)418.已知函数2,0,(),0.x x f x x x ⎧=⎨-<⎩≥如果0()2f x =,那么实数0x 的值为( )(A ) 4 (B) 0 (C) 1或4 (D) 1或-219.为改善环境,某城市对污水处理系统进行改造。

三年后,城市污水排放量由原来每年排放125万吨降到27万吨,那么污水排放量平均每年降低的百分率是( )(A) 50%(B) 40% (C) 30%(D) 20% 20.在△ABC中,)BC BA AC AC+⋅=2||(,那么△ABC的形状一定是()A. 等边三角形B. 等腰三角形C.直角三角形 D. 等腰直角三角形二、填空题(每题3分,共12分)21.已知向量(2,3),(1,)m==a b,且⊥a b,那么实数m的值为.22.右图是甲、乙两名同学在五场篮球比赛中得分情况的茎叶图.那么甲、乙两人得分的标准差S甲S乙(填<,>,=)23.某程序框图如下图所示,该程序运行后输出的a的最大值为.24.数学选修课中,同学们进行节能住房设计,在分析气候和民俗后,设计出房屋的剖面图(如图所示).屋顶所在直线的方程分别是1=+32y x和1=+56y x-,为保证采光,竖直窗户的高度设计为1m那么点A的横坐标是.三、解答题25.(7分)在三棱锥P-ABC中,侧棱PA⊥底面ABC,AB⊥BC,E,F分是否开始n=1=15a输出an=n+1n>3结束A x(m)O y(m)屋顶竖直窗户别是BC ,PC 的中点. (I)证明:EF ∥平面PAB ; (II)证明:EF ⊥BC.26.(7分)已知向量=(2sin ,2sin )x x a ,=(cos ,sin )x x -b ,函数()=+1f x ⋅a b .(I)如果1()=2f x ,求sin 4x 的值;(II)如果(0,)2x π∈,求()f x 的取值范围.27.(7分)已知图1是一个边长为1的正三角形,三边中点的连线将它分成四个小三角形,去掉中间的一个小三角形,得到图2,再对图2中剩下的三个小三角形重复前述操作,得到图3,重复这种操作可以得到一系列图形.记第n 个图形中所有剩下的.....小三角形的面积之和为n a ,所以去掉的.....三角形的周长之和为n b . (I) 试求4a ,4b ; (II) 试求n a ,n b .28.(7分)已知圆C 的方程是22+2+=0x y y m -.(I ) 如果圆C 与直线=0y 没有公共点,求实数m 的取值范围;(II ) 如果圆C 过坐标原点,直线l 过点P(0,) (0≤a ≤2),且与圆C 交于A,B 两点,对于每一个确定的a ,当△ABC 的面积最大时,记直线l 的斜率的平方为u ,试用含a 的代数式表示u ,试求u 的最大值.参考答案1、B2、C 3、B 4、B 5、A 6、B 7、A 8、B 9、C 10、A 11、C 12、D 13、B 14、B 15、B 16、B 17、A 18、D 19、B 20、C21、23- ; 22、> ;23、45;24、4.5;25、(I)证明:∵E,F分别是B C,PC 的中点,∴EF ∥PB.∵EF ⊄平面PAB, P B ⊂平面P AB,∴EF ∥平面PA B;(II)证明:在三棱锥P-ABC 中,∵侧棱PA ⊥底面ABC,PA ⊥BC .∵AB ⊥BC, 且PA∩AB =A ,∴BC ⊥平面P AB . ∵PB ⊂平面PAB,∴BC ⊥PB .由(I )知EF ∥PB ,∴EF ⊥BC .26、(I)解:∵=(2sin ,2sin )x x a ,=(cos ,sin )x x -b ,∴()=+1f x ⋅a b 2=2sin cos 2sin +1x x x -=sin 2cos2x x +.∵1()=2f x ,∴1in 2cos 2=2x x +,∴11+2sin 2cos 2=4x x .∴1sin 4=4x .(II)解:由(I )知()=sin 2cos 2f x x x +2+cos 2)22x x 2cos +cos 2sin )44x x ππ(2+)4x π.∵(0,)2x π∈∴5<2+<444x πππ∴sin (2+)124x π≤.∴()f x 的取值范围为(-.27、(I )解:457=,4=2568a b . (II)解:由图易知,后一个图形中剩下的三角形个数是前一个的3倍, ∴第n 个图形中剩下的三角形个数为13n -. 又∵后一个图形中剩下的三角形边长是前一个的12倍,∴第n 个图形中每个剩下的三角形边长是11()2n -,面积是11()44n -.∴13=()44n n a -. 设第n 个图形中所有剩下的小三角形周长为n c ,由图可知,=3n n c b -. 因为后一个图形中剩下的三角形边长是前一个的12倍, ∴第n 个图形中每个剩下的三角形边长是11()2n -,周长是113()2n -.∴13=3()2n n c -,从而13=3=3()32n n n b c ---.28、(I)解:由22+2+=0x y y m -可得:22+1=1x y m --().∵22+1=1x y m --()表示圆, ∴1>0m -,即<1m .又∵圆C与直线=0y 没有公共点,∴1<1m -,即>0m .综上,实数m 的取值范围是0<<1m . (II )解:∵圆C 过坐标原点,∴=0m .∴圆C的方程为22+1=1x y -(),圆心C (0,1),半径为1. 当=1a 时,直线l 经过圆心C ,△ABC 不存在,故[0,1)(1,2]a ∈. 由题意可设直线l 的方程为=+y kx a ,△A BC 的面积为S. 则S=12|CA|·|CB|·s in ∠ACB =12sin ∠ACB.∴当sin ∠AC B最大时,S取得最大值. 要使sin ∠A CB =2π,只需点C 到直线l.2. 整理得22=2(1)10k a --≥.解得12a ≤-或1+2a ≥ ①当2[0,1][1+,2]22a ∈-时,sin ∠A CB最大值是1.此时22=24+1k a a -,即2=24+1ua a -. ② 当2(1(1,1+22a ∈-时,∠ACB (,)2ππ∈. ∵=sin y x 是(,)2ππ上的减函数,∴当∠AC B最小时,sin ∠AC B最大.过C 作CD ⊥AB 于D ,则∠A CD=12∠A CB .∴当∠ACD 最大时,∠AC B最小. ∵sin ∠CAD =|CD|||CA =|CD |,且∠CA D(0,)2π∈, ∴当|CD |最大时,sin∠A CD 取得最大值,即∠CA D最大. ∵|CD|≤|CP|,∴当CP ⊥l 时,|CD |取得最大值|CP|. ∴当△AB C的面积最大时,直线l 的斜率=0k .∴=0u .综上所述,2224+1,[0,1][1+,2]22=20, (1(1,1+)22a a a u a ⎧-∈-⎪⎪⎨⎪∈-⎪⎩. i)2[0,1[1+,2]2a∈,2=24+1u a a -2=2(1)1a --,当=2a 或=0a 时,u 取得最大值1. i i)2(1(1,1+)22a ∈-,=0u .由i),ii)得u的最大值是1.。

相关文档
最新文档