常微分方程第二版答案第三章

合集下载

常微分方程教程_丁同仁(第二版)_习题解答_2

常微分方程教程_丁同仁(第二版)_习题解答_2
常微分方程教程丁同仁第二版习题解答2常微分方程第二版答案常微分方程第二版常微分方程教程第二版常微分方程丁同仁常微分方程习题集微分方程习题常微分方程习题常微分方程习题解偏微分方程习题集
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
习题 4-1 1.求解下列微分方程 1) 2 y = p + 4 px + 2 x
y = xp + f ( p )
(p =
dy ) (1) dx
dp =0 dx
dp =0 dx
即 p = c时 (2)
代入(1)得(1)的通解
y = cx + f (c)
它的 C—判别式为
y = cx + f (c) x + f ' (c ) = 0
由此得
Λ:x = − f '(c)) = ϕ (c ) , y = −cf '(c) + f (c) = ψ (c )
1 = dy 2 cos t 5
5 1 ( 2 sin t ) = d 2 cos t
5 dt 从而得 2
x=
5 2
t+c 5 t + c , y = 2 sin t 2
x 因此方程的通解为 =
消去参数 t,得通解
= y
2 sin
2 (x − C) 5 dy = 0 ,显然 dx
对于方程除了上述通解,还有 y = ± 2 ,
检验知
y = 2x +
Fy' ( x, y, p) = 1 ,
" Fpp ( x, y , p ) = 2 p ,
Fp' ( x, y, p) =−1 + p 2

常微分方程教程_丁同仁(第二版)_习题解答

常微分方程教程_丁同仁(第二版)_习题解答

y (0) = 1 ;
解:原方程即为:
dy x = dx , 3 y 1+ x2
ቤተ መጻሕፍቲ ባይዱ
-6-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
1 −2 y = 1+ x2 + c , 2 3 因为 y (0) = 1 , 所以 c = − , 2
两边积分得: − 所以原方程满足初值问题的解为: 2 1 + x +
3而当2bc时原方程不是恰当方程s?s22s?1ds2dt0tts?s22s?1qts2tt所以解pts则?p1?2s?q1?2s22?t?stt?p?q即原方程为恰当方程?y?x两边积分得s?s2ct10xfx2y2dxyfx2y2dy0其中f?是连续的可微函数解pxyxfx2y2qxyyfx2y2则?q?p2xyf?2xyf??x?y所以?p?q即原方程为恰当方程?y?x两边积分得fx2y2dxc即原方程的解为fx2y2c其中f为f的原积分3常微分方程教程第二版丁同仁等编高等教育出版社参考答案习题221
积分得:
1 ln y = x + c , a

y = ce ax
② y = 0 也是方程的解. 积分曲线的简图如下:
y
-7-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
(3).
dy = 1− y2 ; dx
解:①当 y ≠ ±1 时,
原方程即为:
dy = dx (1 − y 2 )
(5)
dy = (cos x cos 2 y ) 2 dx
解:①当 cos 2 y ≠ 0 时 原方程即为:
dy = (cos x) 2 dx 2 (cos 2 y )

《常微分方程》东师大第二版习题答案

《常微分方程》东师大第二版习题答案
2 2
dy y y = 2( ) − ( ) 2 dx x x y du 令 u = ,有 u + x = 2u − u 2 x dx
积分,得 ln
整理为 (
1 1 dx − )du = u u −1 x
(u ≠ 0,1)
u = ln c1 x u −1
即u =
c1 x c1 x − 1
代回变量,得通解 x( y − x) = cy, (4) xy ′ − y = x tan
6
积分,得
1+ ω = cξ 4 (1 − ω ) 5
2 2 5 2 2
代回原变量,得原方程的通解为 ( x − y − 1) = c( x + y − 3)
4 1.4 习 题 1.
1 解下列方程. (1)
dy + 2 xy = 4 x dx
2 dy ̃ = Ce − x . + 2 xy = 0 的通解为 y dx
−2
− x = −e − 2 e x y 为所求的解。 y
4.求解方程 x 1 − y dx + y 1 − x dy = 0 解: x = ±1 ( −1 ≤ y ≤ 1), y = ±1 ( −1 ≤ x ≤ 1) 为特解, 当 x ≠ ±1, y ≠ ±1 时,
2
2
x
1− x
2
dx +
y
1− y2
ln sin y cos x = c1 ,
积分,得 ln sin y = − ln cos x + c1 , 即 sin y cos x = ± e
c1
= c, c ≠ 0
2.求下列方程满足给定初值条件的解: (1)
dy = y ( y − 1), y (0) = 1 dx y = 1 为特解,当 y ≠ 0, y −1 = x + c1 , y y ≠ 1 时, (

常微分方程教程_丁同仁(第二版)_习题解答

常微分方程教程_丁同仁(第二版)_习题解答

7. (
y + x 2 )dx + (ln x − 2 y )dy = 0 x y 2 解: P ( x, y ) = + x Q ( x, y ) = ln x − 2 y, x ∂P 1 ∂Q 1 = , = , ∂y x ∂x x
所以

∂P ∂Q ,即 原方程为恰当方程 = ∂y ∂x
则(
y dx + ln xdy ) + x 2 dx − 2 ydy = 0 x x3 + y ln x − y 2 = C. 3
4. 跟踪: 设某 A 从 xoy 平面上的原点出发, 沿 x 轴正方向前进; 同时某 B 从点开始跟踪 A, 即 B 与 A 永远保持等距 b.试求 B 的光滑运动轨迹. 解:设 B 的运动轨迹为 y = y ( x) ,由题意及导数的几何意义,则有
dy y ,所以求 B 的运动轨迹即是求此微分方程满足 y (0) = b 的解. =− 2 dx b − y2

2 sin 3 y − 3 cos 2 x = c
因为
π
π
, 所以
c = 3.
-5-

常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
所以原方程满足初值问题的解为: 2 sin 3 y − 3 cos 2 x = 3 .
(2). xdx + ye − x dy = 0 ,
y (0) = 1 ;
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
则 ax 2 dx + (by 2 dx + cxydy) = 0
两边积分得:
ax 3 + bxy 2 = C. 3

常微分方程知到章节答案智慧树2023年齐鲁师范学院

常微分方程知到章节答案智慧树2023年齐鲁师范学院

常微分方程知到章节测试答案智慧树2023年最新齐鲁师范学院第一章测试1.二阶微分方程的含有两个任意常数的解一定是通解。

()参考答案:错2.满足初值条件的解称为是微分方程的特解。

()参考答案:对3.一阶微分方程的通解表示平面上的一条曲线。

( )参考答案:错4.不是线性微分方程的方程一定是非线性微分方程。

( )参考答案:对5.函数为任意常数是方程的通解。

( )参考答案:对第二章测试1.一阶非齐次线性微分方程的任意两个解之差必为相应的齐次线性微分方程的解。

()参考答案:对2.微分方程()参考答案:二阶线性微分方程3.微分方程的满足的特解为()参考答案:4.微分方程的通解为()参考答案:5.若一阶微分方程有积分因子,则积分因子一定是唯一的。

()参考答案:错第三章测试1.所有的微分方程都可以通过初等积分法求得其通解。

()参考答案:错2.要求得一阶微分方程的特解,应该给定一个初值条件。

()参考答案:对3.李普希兹条件是一阶微分方程初值问题解存在唯一的充要条件。

()参考答案:错4.存在唯一性定理中解的存在区间是唯一的。

()参考答案:错5.微分方程初值问题的解只要存在就一定唯一。

()参考答案:错第四章测试1.若函数在区间上线性相关,则在上它们的伏朗斯基行列式。

()参考答案:错2.如果方程的解在区间上线性无关,则在这个区间的任何点上都不等于零,即()参考答案:对3.由n阶齐线性方程的n个解构成的伏朗斯基行列式或者恒等于零。

( )参考答案:对4.n阶齐线性方程可以有n+1个线性无关的解。

()参考答案:错5.是方程的通解。

()参考答案:对第五章测试1.如果矩阵,维列向量是可微的,则()参考答案:对2.向量是初值问题在区间上的解。

()参考答案:对3.设是矩阵,则。

()参考答案:对4.如果向量函数在区间线性相关,则它们的伏朗斯基行列式,。

( )参考答案:对5.如果,在区间上是的两个基解矩阵,那么,存在一个非奇异常数矩阵,使得在区间上。

第3章习题答案 常微分方程教程+第二版+丁同仁+李承志+答案和练习

第3章习题答案 常微分方程教程+第二版+丁同仁+李承志+答案和练习

习 题 3-11. (1) 解: ,||),(αy y x f = 有α|||)0,(),(|y x f y x f =-,令 ,||)(αr r F =有⎰⎰--==1110010||11||)(r r r r r dr r F dr ααα, 当 01<-α, 即 1>α 时, ∞=--→αα10||11limr r , 所以 0)0(=y 的解唯一。

当 01=-α 时,1100|||ln )(r r r r F dr =⎰,而 ∞=→||ln lim 0r r ,所以 0)0(=y 的解唯一。

当 10<<α 时, 可解方程知其解不唯一。

所以当10<<α, 其解不唯一; 1≥α, 其解唯一。

(2). 解: 因为0|l n |l i m 0=→y y y ,所以dxdy在 ),(+∞-∞ 连续. 设 |||ln |)(r r r F =, 有∞=⎰1)(r r F dr(01>r 为常数),所以方程的解唯一.2. 解: 构造毕卡序列, 令 1),(++=y x y x f , dx x y x f x y xn n ⎰=+01))(,()(,因为 0)0(=y ,所以 x x dx x f x y x +==⎰20121)0,()(,x x x dx x x x f x y x ++=+=⎰2302261)21,()(, x x x x dx y x f x y x +++==⎰23402331!41),()(,…………………………………………… x x x n x n dx y x f x y n n xn n +++++==+-⎰!22!2)!1(1),()(211 ,22)!22!2)!1(1(lim )(lim 21--=+++++=+∞→∞→x e x x x n x n x y x n n n n n , 所以 22--=x e y x为方程的解. 3. 证明: 反证法设初始问题(E)有两个解, )(x y 和)(1x y , 且 0010)()(y x y x y ==,01x x >∃, 使 )()(111x y x y >, 令 )()(,sup{110x y x y x x x =<≤=μ根据μ 的定义与y 的连续性可知,对),(1x x μ∈∀,)()(1x y x y >, 令 )()()(1x y x y x r -=, 令 )()()(1x y x y x r -=, 有 0)(=μr , 有))(,())(,(1x y x f x y x f dxdr-=, 因为 ),(y x f 对 y 是递减的, 所以0<dxdr, 对 ),(1x x μ∈∀, 所以 0)()(=<μr x r , 对 ),(1x x μ∈∀, 又由y 的连续性, 可得 )()(111x y x y <,矛盾!习 题 3-31.证明:令)()(),(x b y x a y x f +=, 显然),(y x f+∞<<∞-∈y I x S ,:内连续, 且满足不等式|)(||||)(||),(|x b y x a y x f +≤,其中令 0|)(|)(≥=x a x A , 0|)(|)(≥=x b x B , 由已知有 )(x A ,)(x B 在I x ∈上是连续的, 则由定理5, 知 )(x y y = 的最大存在区间为I2. (1) 解:令 221),(yx y x f +=,则 ),(y x f 在区域 }0,{1≠+∞<<-∞=y x G 上连续,或 },00{2+∞<<-∞+∞<<<<-∞=y x x G 上连续。

常微分方程教程_丁同仁(第二版)_习题解答_4

常微分方程教程_丁同仁(第二版)_习题解答_4

对 应 于 λ1 = 7 所 有 的 特 征 向 量
1 7 x v1 = 1 ,则 v 2 = 1 那么对应的实值解为 y1 = 1 e ;
对应 λ 2 = −2 的特征向量
v1 v1 5 4 v1 = ( 2 ) 0 满足 即 + A E 5 4 = 0 ,取 v1 = 4 ,则 v v v 2 2 2
λ1 = −4 , λ1 = λ 2 = −1 。
,特征向量应满足
3 1 0 v1` 0 3 0 v 2 = 0 1 0 0 v 3
3 1 0 1 0 0 又 0 3 0 → 0 1 0 (只能进行行变换) 1 0 0 0 0 0
cos t s int 因 此 Φ (t ) 中方程组的一个基 又 det = [Φ (t )] = 1 ≠ 0 , − s int cos t
解矩阵。故方程组的通解为
y1 cos t s int = + c2 c1 − s int cos t y2
-1-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
′ = y3 y1 ′ = y2 (3)程组的分量形式为: y 2 y′ = y 1 3
解 ①+③得 解 ①-③得 解之得
① ② ③
d ( y1 + y 3 ) = y1 + y 3 dt d ( y1 − y3 ) =y1 − y3 dt = y1 − y3 k2 e − t
dy dx
(1)任意一个特解,则 y1 ( x) + ϕ ( x), y 2 ( x) + ϕ ( x), , y n ( x) + ϕ ( x) 是(1)的 n+1 个线性无关解.这是因为,若存在常数 k1 , k 2 , k n , k n +1 使得

常微分方程答案-第三章

常微分方程答案-第三章

习题1. 求方程2dyx y dx=+通过点(0,0)的第三次近似解。

解:()2,f x y x y =+,令00()0x y ϕ==,则()()()0210001,2x xx x y f x x dx xdx x ϕϕ=+==⎰⎰()()()02252010111,2220x xx x y f x x dx x x dx x x ϕϕ⎡⎤⎛⎫=+=+=+⎢⎥⎪⎝⎭⎢⎥⎣⎦⎰⎰()()()030222525811,1111112202201604400xx xx y f x x dxx x x dx x x x x ϕϕ=+⎡⎤⎛⎫=++=+++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎰⎰为所求的第三次近似解。

3. 求初值问题()22,:11,1,10dy x y R x y dxy ⎧=-+≤≤⎪⎨⎪-=⎩(1) …的解的存在区间,并求第二次近似解,给出在解的存在空间的误差估计。

解:因为()22,f x y x y =-,1a b ==,()(),max ,4x y RM f x y ∈==,所以1min ,4bh a M ⎛⎫== ⎪⎝⎭,从而解得存在区间为114x +≤,即5344x -≤≤-。

又因为()22,f x y x y =-在R 上连续,且由22f y y L ∂∂=≤=可得(),f x y 在R 上关于y 满足Lipschitz 条件,所以Cauchy 问题(1)在5344x -≤≤-有唯一解()y x ϕ=。

令00()0x y ϕ==,则()()()()02310011,13x xx x y f x x dx x dx x ϕϕ-=+==+⎰⎰ ()()()()02347232011111,1342931863xxx x x x x x y f x x dx x x dx ϕϕ-⎡⎤⎛⎫=+=-+=-+--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⎰⎰误差为:()()()()32121!24Lh M x x L ϕϕ-≤=+10. 给定积分方程()()()(),bax f x K x d ϕλξϕξξ=+⎰ (*)其中()f x 是[],a b 上的已知连续函数,(),K x ξ是a x b ≤≤,a b ξ≤≤上的已知连续函数。

常微分第三章第4节(奇解)

常微分第三章第4节(奇解)

y cx f (c)
' x f ( p) 0 ' 如果 x f ( p) 0,则 y xp f ( p) 消去 p 得到方程的另一个解。
这里
c 是任意常数。
25
注意,求得此解的过程正好与从通解
y cx f (c)
可以验证,此解的确是通解 中求包络的过程一样。 的包络。
注1:包络一定包含在 c-判别曲线中。 注2:c-判别曲线不一定为包络。
2 充分但不必要。 2 x y 0
15
C 判别曲线法求方程奇解的一般步骤: (1)求出方程的通解(积分曲线族); (2)求积分曲线族的 c 判别曲线;
(3)检验 c 判别曲线是否为包络,若是,则 为方程的奇解。
16
y 1
其中
容易求得原方程的通解为 y sin( x c)
c 为任意常数。而 y 1 是通解的包络。
所以此两直线都是方程的奇解。
22
例4
求方程
dy dy 2 y 2x ( ) 的奇解。 dx dx
y 2 xp p 2 解 从 2 x 2 p 0
消去
这是克莱罗方程,因而它的通解是 1 y cx c 1
27
y2 4x
O
图(3.5)
28
例6
求一曲线,使在其上每一点的切线截割坐
标轴而成的直角三角形的面积都等于2 。 y A
O 图(3.6)
B
x
29
依题意有ab 4,而
dy 2 dy 得 ( y x ) 4 dx dx
现在求曲线族的包络,亦即微分方程的奇解。
30
y 2c c 2 x 从 中消去 c 得微分方程的奇解 1 cx 0

[理学]常微分方程教程_丁同仁第二版_习题解答

[理学]常微分方程教程_丁同仁第二版_习题解答

∂y x ∂x x
∂y ∂x
则 ( y dx + ln xdy) + x2dx − 2 ydy = 0 x
两边积分得: x3 + y ln x − y 2 = C. 3
8. (ax2 + by 2 )dx + cxydy = 0 (a,b和c为常数)
解: P(x, y) = ax2 + by 2 , Q(x, y) = cxy,
两边积分得: (2 + y)e x + xy 2 = C.
7. ( y + x2 )dx + (ln x − 2 y)dy = 0 x
解: P(x, y) = y + x2 Q(x, y) = ln x − 2 y, x
则 ∂P = 1 , ∂Q = 1 , 所以 ∂P = ∂Q ,即 原方程为恰当方程
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-对恰当方程求解:
1. (3x2 −1)dx + (2x + 1)dy = 0
解: P(x, y) = 3x2 −1, Q(x, y) = 2x + 1 ,
则 ∂P = 0 , ∂Q = 2 ,所以 ∂P ≠ ∂Q 即,原方程不是恰当方程.
则 ∂P = 2by, ∂Q = cy, 所以 当 ∂P = ∂Q ,即 2b = c 时, 原方程为恰当方程
∂y
∂x
∂y ∂x
-2-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
则 ax2dx + (by 2dx + cxydy) = 0
两边积分得: ax3 + bxy 2 = C. 3
∂y
∂x

常微分方程教程丁同仁第二版解答完整版

常微分方程教程丁同仁第二版解答完整版

习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解:1.(3x 2 −1)dx +(2x +1)dy =0 解:P (x , y ) =3x 2 −1,Q (x , y ) =2x +1 ,则∂∂P y =0 ,∂∂Q x =2 ,所以∂∂P y ≠∂∂Q x即,原方程不是恰当方程.2.(x +2y )dx +(2x +y )dy =0 解:P (x , y ) =x +2y , Q (x , y ) =2x −y , 则∂∂P y =2, ∂∂Q x =2, 所以∂∂P y =∂∂Q x,即原方程为恰当方程则xdx +(2ydx +2xdy ) −ydy =0,2 2两边积分得:x +2xy −y =C . 2 23.(ax +by )dx +(bx +cy )dy =0 (a,b 和c 为常数).解:P (x , y ) =ax +by , Q (x , y ) =bx +cy , 则∂∂P y =b , ∂∂Q x =b , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则axdx +bydx +bxdy cydy =0,()+两边积分得:ax 2 +bxy +cy 2=C . 2 24.(ax −by )dx +(bx −cy )dy =0(b ≠0) 解:P (x , y ) =ax −by , Q (x , y ) =bx −cy ,则∂∂P y=−b , ∂∂Q x =b , 因为 b ≠0, 所以∂∂P y ≠∂∂Q x ,即,原方程不为恰当方程5.(t 2 +1)cos udu +2 t sin udt =0 解:P (t ,u ) =(t 2 +1)cos u , Q (t ,u ) =2t sin u 则∂∂P t =2t cos u , ∂∂Q x =2t cos u , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则(t 2 cos udu +2t sin udt ) +cos udu =0,两边积分得:(t 2 +1)sin u =C .6.( ye x +2e x +y 2)dx +(e x +2xy )dy =0 解:P (x , y =ye x +2e x +y 2, Q (x , y ) =e x +2xy ,则∂∂P y =e x +2y , ∂∂Q x =e x +2y , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则2e x dx +[(ye x +y 2)dx +(e x +2xy )dy ] =0,两边积分得:(2 +y )e x +xy 2 =C .7.( y +x 2)dx +(ln x −2y )dy =0 x 解:P (x , y ) =y +x 2 Q (x , y ) =ln x −2y ,x则∂∂P y =1 x , ∂∂Q x =1 x , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则( ydx +ln xdy ) +x 2 dx −2ydy =0 x 3两边积分得:x 3+y ln x −y 2 =C .8.(ax 2+by 2)dx +cxydy =0(a ,b 和c 为常数) 解:P (x , y ) =ax 2 +by 2, Q (x , y ) =cxy ,则∂∂P y =2by , ∂∂Q x =cy , 所以当∂∂P y =∂∂Q x,即2b =c 时,原方程为恰当方程则ax 2 dx +(by 2 dx +cxydy ) =0 3两边积分得:ax +bxy 2 =C .3而当2b ≠c 时原方程不是恰当方程.9.2s −1 ds +s −2 s 2 dt =0 t t解:P (t , s ) =2s −1, Q (t , s ) =s −2 s 2,t t则∂∂P t =1−t 22s , ∂∂Q s =1−t22s , 所以∂∂P y =∂∂Q x ,即原方程为恰当方程,两边积分得:s −s 2=C .t10.xf (x 2 +y 2)dx +yf (x 2 +y 2)dy =0, 其中f (⋅)是连续的可微函数.解:P (x , y ) =xf (x 2 +y 2 ), Q (x , y ) =yf (x 2 +y 2 ), 则∂∂P y =2xyf ′, ∂∂Q x =2xyf ′, 所以∂∂P y =∂∂Q x,即原方程为恰当方程,两边积分得:∫f (x 2 +y 2)dx =C ,即原方程的解为F (x 2 +y 2) =C (其中F 为f 的原积分).习题2-2 1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::dy x 2(1) dx =y解:原方程即为:ydy =x 2 dx 两边积分得:3y 2 −2x 3 =C , y ≠0 .dy x 2(2) dx =y (1+x )3 2解:原方程即为:ydy =1+x x 3dx 两边积分得:3y 2 −2ln1+x 3=C , y ≠0,x ≠−1 .(3) dy +y 2 sin x =0dx解:当y ≠0时原方程为:dy +sin xdx =0y2 两边积分得:1+(c +cos x ) y =0 .又y=0也是方程的解,包含在通解中,则方程的通解为1+(c +cos x ) y =0 .dy 22(4) dx=1+x +y +xy ;解:原方程即为:1+dy y 2=)(1+x dx 2两边积分得:arctgy =x +x 2+c ,即y =tg (x +x 22+c ) .(5) dy =(cos x cos 2y )2 dx解:①当cos 2y ≠0 时原方程即为:(cos dy 2y )2 =(cos x )2 dx 两边积分得:2tg 2y −2x −2sin 2 x =c .②cos 2y =0,即y =k π+π也是方程的解.( k ∈N )2 4 (6) x dy =1−y 2 dx解:①当y ≠±1时dydx 原方程即为:1−y 2 =x两边积分得:arcsin y −ln x =c .②y =±1也是方程的解. dy x −e −x(7).dx =y +e y解.原方程即为:( y +e y )dy =(x −e −x )dx 2 2两边积分得:y +e y =x +e −x +c ,22原方程的解为:y 2 −x 2 +2(e y −e −x ) =c .2. 解下列微分方程的初值问题.(1) sin 2xdx +cos3ydy =0, y (π) =π;2 3解:两边积分得:−cos 22x +sin 33y =c ,即2sin 3y −3cos 2x =c 因为y (π2) =π3,所以 c =3.所以原方程满足初值问题的解为:2sin 3y −3cos 2x =3.x (2).xdx +ye −dy =0 ,y (0) =1;解:原方程即为:xe x dx +ydy =0 ,两边积分得:(x −1)e xdx +y 22dy =c ,因为y (0) =1,所以c =−12,所以原方程满足初值问题的解为:2(x −1)e x dx +y 2 dy +1 =0 .(3).dr =r ,r (0) =2 ;d θ解:原方程即为:dr =d θ,两边积分得:ln r −θ=c ,r因为r (0) =2 ,所以c =ln 2 ,所以原方程满足初值问题的解为:ln r −θ=ln 2 即r =2e θ.dy ln x (4).dx =1+y2, y (1) =0;解:原方程即为:(1+y 2)dy =ln x dx , 两边积分得:y 3x x ln y ++−x =c ,3因为y (1) =0 ,所以c =1, 3 所以原方程满足初值为:y x x ln y ++−x =1 3 2 dy 3(5).1+x dx=xy ,y (0) =1;dy x 解:原方程即为:y 3 =1+x 2 dx ,2两边积分得:−12y −2 =1+x +c ,因为y (0) =1,所以c =−3 ,2 所以原方程满足初值问题的解为:21+x 2 +y1 =3 .2 3. 解下列微分方程,并作出相应积分曲线的简图.(1).dy =cos x dx解:两边积分得:y =sin x +c .积分曲线的简图如下:(2).dxdy =ay ,(常数a ≠0 );解:①当y ≠0时,原方程即为:aydy =dx 积分得:a 1ln y =x c +,即y =ce ax (c >0) ②y =0也是方程的解.积分曲线的简图如下:y(3).dy =1−y 2 ;dx解:①当y ≠±1时,1+y 原方程即为:(1−dy y 2)=dx 积分得:ln =2x +c ,1−y 即y =ce 2 x −1 .ce 2 x +1②y =±1也是方程的解.积分曲线的简图如下:dy n 1(4).dx=y ,(n =3,1, 2) ;解:①当y ≠0时,1 dy ⅰ) n =3, 2 时,原方程即为yn =dx ,积分得:x +1y 1−n =c .n −1ⅱ) n =1时,原方程即为dy y=dx 积分得:ln y =x +c ,即y =ce x(c >0) .②y =0也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为y =y (x ),由题意及导数的几何意义,则有dy y dx b 2 −y2 ,所以求B 的运动轨迹即是求此微分方程满足y (0) =b 的解.=−解之得:x =12 b ln b b +−b b 22 +−y y 22 −b 2 −y 2 .5. 设微分方程dy =f ( y ) (2.27),其中f(y) 在y =a 的某邻域(例如,区间y −a <ε)dx 内连续,而且f ( y )=0 ⇔y =a ,则在直线y =a 上的每一点,方程(2.27)的解局部唯一,±εdy 当且仅当瑕积分=∞(发散).∫a a f ( y )证明:( ⇒)首先经过域R 1:−∞<x <+∞, a −ε≤y <a 和域R 2:−∞<x <+∞,a <y ≤a +ε内任一点( x 0, y 0)恰有方程(2.13)的一条积分曲线,它由下式确定dy =x −x 0 . (*)∫y y 0 f ( y )这些积分曲线彼此不相交. 其次,域R 1( R 2)内的所有积分曲线∫f dy ( y )=x +c 都可由其中一条,比如∫f dy ( y ) =x +c 0 沿着x 轴的方向平移而得到。

常微分方程教程_丁同仁(第二版)_习题解答

常微分方程教程_丁同仁(第二版)_习题解答
所以
解: P (t , s ) =

∂P 1 − 2 s ∂Q 1 − 2 s = 2 , = 2 , ∂t ∂s t t
∂P ∂Q , 即原方程为恰当方程, = ∂y ∂x
两边积分得:
s − s2 =C. t
10. xf ( x 2 + y 2 )dx + yf ( x 2 + y 2 )dy = 0, 其中 f (⋅) 是连续的可微函数. 解: P ( x, y ) = xf ( x 2 + y 2 ), Q ( x, y ) = yf ( x 2 + y 2 ), 则
4. 跟踪: 设某 A 从 xoy 平面上的原点出发, 沿 x 轴正方向前进; 同时某 B 从点开始跟踪 A, 即 B 与 A 永远保持等距 b.试求 B 的光滑运动轨迹. 解:设 B 的运动轨迹为 y = y ( x) ,由题意及导数的几何意义,则有
dy y ,所以求 B 的运动轨迹即是求此微分方程满足 y (0) = b 的解. =− 2 dx b − y2
1 + (c + cos x) y = 0 .
(4)
dy = 1 + x + y 2 + xy 2 ; dx
解:原方程即为:
dy = (1 + x)dx 1+ y2
x2 两边积分得: arctgy = x + + c, 2

y = tg ( x +
x2 + c) . 2
-4-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
积分得: ln
1+ y = 2x + c , 1− y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题3—11. 判断下列方程在什么区域上保证初值解存在且唯一.1)y x y sin '+=; 2)31'-=xy ; 3)y y ='.解 1)因为y x y x f sin ),(+=及y y x f y cos ),('=在整个xOy 平面上连续,所以在整个xOy 平面上满足存在唯一性定理的条件,因此在整个xOy 平面上初值解存在且唯一.2)因为31),(-=xy x f 除y 轴外,在整个xOy 平面上连续,0),('=y x f y 在在整个xOy 平面上有界,所以除y 轴外,在整个xOy 平面上初值解存在且唯一.3)设y y x f =),(,则⎪⎪⎩⎪⎪⎨⎧<-->=∂∂,0,21,0,21),(y yy y y y x f 故在0≠y 的任何有界闭区域上,),(y x f 及yy x f ∂∂),(都连续,所以除x 轴外,在整个xOy 平面上初值解存在且唯一. 2. 求初值问题⎪⎩⎪⎨⎧=--=,0)1(,22y y x dxdy R :1,11≤≤+y x . 的解的存在区间.并求第二次近似解,给出在解的存在区间的误差估计.解 设22),(y x y x f -=,则4),(max ),(==∈y x f M Ry x ,1,1==b a ,所以41)41,1min(),min(===M b a h . 显然,方程在R 上满足解的存在唯一性定理,故过点)0,1(-的解的存在区间为:411≤+x . 设)(x ϕ是方程的解,)(2x ϕ是第二次近似解,则0)1()(0=-=y x ϕ,3131)0(0)(3121-=-+=⎰-x dx x x xϕ,4211931863])3131([0)(34712322+-+--=--+=⎰-x x x x dx x x x xϕ.在区间411≤+x 上,)(2x ϕ与)(x ϕ的误差为 322)!12()()(h ML x x +≤-ϕϕ. 取22),(max max ),(),(=-=∂∂=∈∈y y y x f L Ry x R y x ,故241)41()!12(24)()(322=+⨯≤-x x ϕϕ.3. 讨论方程3123y dx dy =在怎样的区域中满足解的存在唯一性定理的条件.并求通过点)0,0(O 的一切解.解 设3123),(y y x f =,则3221-=∂∂y y f )0(≠y .故在0≠y 的任何有界闭区域上),(y x f 及y y x f ∂∂),(都是连续的,因而方程在这种区域中满足解的存在唯一性定理的条件.显然,0=y 是过)0,0(O 的一个解.又由3123y dx dy =解得23)(C x y -±=.其中0≥-C x . 所以通过点)0,0(O 的一切解为0=y 及,,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧-=.,,)(,023C x C x C x y >≤⎪⎩⎪⎨⎧--=如图. 4. 试求初值问题1++=y x dxdy,0)0(=y , 的毕卡序列,并由此取极限求解.解 按初值问题取零次近似为0)(0=x y ,一次近似为2121)10()(x x ds s x y x+=++=⎰, 二次近似为 3220261]1)21([)(x x x ds s s s x y x ++=+++=⎰, 三次近似为 432320324131]1)61([)(x x x x ds s s s s x y x+++=++++=⎰, 四次近似为 !5)!5!4!3!2(2!5134131)(5543254324x x x x x x x x x x x x x y --++++=+⨯+++=,五次近似为 !6)!6!5!4!3!2(2)(6654325x x x x x x x x x y --+++++=,一般地,利用数学归纳法可得n 次近似为)!1()!1(!4!3!22)(11432+--⎥⎦⎤⎢⎣⎡++++++=++n x x n x x x x x x y n n n 2)!1()!1(!4!3!21211432-+--⎥⎦⎤⎢⎣⎡+++++++=++n x x n x x x x x n n , 所以取极限得原方程的解为22)()(lim --==+∞→x e x y x y x n n .5. 设连续函数),(y x f 对y 是递减的,则初值问题),(y x f dxdy=,00)(y x y =的右侧解是唯一的. 证 设)(1x y ϕ=,)(2x y ϕ=是初值问题的两个解,令)()()(21x x x ϕϕϕ-=,则有0)(000=-=y y x ϕ.下面要证明的是当0x x ≥时,有0)(≡x ϕ.用反证法.假设当0x x ≥时,)(x ϕ不恒等于0,即存在01x x ≥,使得0)(1≠x ϕ,不妨设0)(1>x ϕ,由)(x ϕ的连续性及0)(0=x ϕ,必有100x x x <≤,使得0)(0=x ϕ,0)(>x ϕ,10x x x ≤<.又对于],[10x x x ∈,有00201)()(y x x ==ϕϕ,⎰+=xx dxx x f y x 0)](,[)(101ϕϕ,⎰+=xx dx x x f y x 0)](,[)(202ϕϕ,则有)()()(21x x x ϕϕϕ-=⎰-=xx dx x x f x x f 0)]}(,[)](,[{21ϕϕ,10x x x ≤<.由0)()()(21>-=x x x ϕϕϕ(10x x x ≤<)以及),(y x f 对y 是递减的,可以知道:上式左端大于零,而右端小于零.这一矛盾结果,说明假设不成立,即当0x x ≥时,有0)(≡x ϕ.从而证明方程的右侧解是唯一的.习题3—31. 利用定理5证明:线性微分方程)()(x b y x a dxdy+= (I x ∈) )1( 的每一个解)(x y y =的(最大)存在区间为I ,这里假设)(),(x b x a 在区间I 上是连续的.证 )()(),(x b y x a y x f +=在任何条形区域{}∞<<-∞≤≤y x y x ,),(βα(其中I ∈βα,)中连续,取[])(max ,x a M x βα∈=,[])(max ,x b N x βα∈=,则有N y M x b y x a y x f +≤+≤)()(),(.故由定理5知道,方程)1(的每一个解)(x y y =在区间],[βα中存在,由于βα,是任意选取的,不难看出)(x y 可被延拓到整个区间I 上.2. 讨论下列微分方程解的存在区间: 1))1(-=y y dx dy ; 2))sin(xy y dx dy =; 3)21y dxdy +=. 解 1)因)1(),(-=y y y x f 在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.这个方程的通解为xCey -=11.显然0=y ,1=y 均是该方程在),(∞-∞上的解.现以0=y ,1=y 为界将整个xOy 平面分为三个区域来讨论.ⅰ)在区域1R {}10,),(<<+∞<=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与0=y ,1=y 两直线相交,因而解的存在区间为),(∞-∞.又在1R 内,0),(<y x f ,则方程满足00)(y x y =的解)(x y ϕ=递减,当-∞→x 时,以1=y 为渐近线,当+∞→x 时,以0=y 为渐近线.ⅱ)在区域2R {}1,),(>+∞<=y x y x 中,对任意常数0>C ,由通解可推知,解的最大存在区间是)ln ,(C --∞,又由于0),(>y x f ,则对任意200),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当-∞→x 时,以1=y 为渐近线,且每个最大解都有竖渐近线,每一条与x 轴垂直的直线皆为某解的竖渐近线.ⅲ)在区域3R {}0,),(<+∞<=y x y x 中,类似2R ,对任意常数0>C ,解的最大存在区间是),ln (+∞-C ,又由于0),(>y x f ,则对任意300),(R y x ∈,方程满足00)(y x y =的解)(x y ϕ=递增.当+∞→x 时,以0=y 为渐近线,且每个最大解都有竖渐近线.其积分曲线分布如图( ).2)因)sin(),(xy y y x f =在整个xOy 平面上连续,且满足不等式y xy y y x f ≤=)sin(),(,从而满足定理5的条件,故由定理5知,该方程的每一个解都以+∞<<∞-x 为最大存在区间.3)变量分离求得通解)tan(C x y -=,故解的存在区间为)2,2(ππ+-C C .3.设初值问题)(E :2)(2)32(y x e y y dxdy+--=,00)(y x y = 的解的最大存在区间为b x a <<,其中),(00y x 是平面上的任一点,则-∞=a 和+∞=b 中至少有一个成立.证明 因2)(2)32(),(y x ey y y x f +--=在整个xOy 平面上连续可微,所以对任意初始点),(00y x ,方程满足初始条件00)(y x y =的解存在唯一.很显然3=y ,1-=y 均是该方程在),(∞-∞上的解.现以3=y ,1-=y 为界将整个xOy 平面分为三个区域来进行讨论.ⅰ)在区域1R {}31,),(<<-+∞<<∞-=y x y x 内任一点),(00y x ,方程满足00)(y x y =的解存在唯一.由延伸定理知,它可以向左、右延伸,但不能与3=y ,1-=y 两直线相交,因而解的存在区间为),(∞-∞.这里有-∞=a ,+∞=b .ⅱ)在区域2R {}1,),(-<+∞<<∞-=y x y x 中,由于0)1)(3(),(2)(>+-=+y x e y y y x f ,积分曲线单调上升.现设),(000y x P 位于直线1-=y 的下方,即10-<y ,则利用)(E 的右行解的延伸定理,得出)(E 的解Γ可以延伸到2R 的边界.另一方面,直线1-=y 的下方,积分曲线Γ是单调上升的,并且它在向右延伸时不可能从直线1-=y 穿越到上方.因此它必可向右延伸到区间+∞<<x a .故至少+∞=b 成立.类似可证,对3R {}3,),(>+∞<<∞-=y x y x ,至少有-∞=a 成立.4. 设二元函数),(y x f 在全平面连续.求证:对任何0x ,只要0y 适当小,方程),()(22y x f e y dxdyx -= )1( 的满足初值条件00)(y x y =的解必可延拓到+∞<≤x x 0.证明 因为),(y x f 在全平面上连续,令),()(),(22y x f e y y x F x-=,则),(y x F 在全平面上连续,且满足0),(),(≡-≡xxe x F e x F .对任何0x ,选取0y ,使之满足00xe y <.设方程)1(经过点),(00y x 的解为)(x y ϕ=,在平面内延伸)(x y ϕ=为方程的最大存在解时,它的最大存在区间为),[0βx ,由延伸定理可推知,或+∞=β或为有限数且+∞=-→)(lim 0x x ϕβ.下证后一种情形不可能出现.事实上,若不然,则必存在β<x ,使βϕe x >)(.不妨设βϕe x >)(.于是必存在),(00βx x ∈,使0()x x e ϕ=,x e x <)(ϕ(00x x x <≤).此时必有0)(00'>=≥x x x x e dxde x ϕ,但0),())(,()(00000'===x x e x F x x F x ϕϕ,从而矛盾.因此,+∞=β,即方程)1(的解)(x y ϕ=(00)(y x y =)必可延拓到+∞<≤x x 0.。

相关文档
最新文档