高考数学一轮复习第六章数列品味高考感悟考情理

合集下载

高考数学一轮复习 第六章 数列 第二节 等差数列及其前n项和讲义(含解析)-高三全册数学教案

高考数学一轮复习 第六章 数列 第二节 等差数列及其前n项和讲义(含解析)-高三全册数学教案

第二节 等差数列及其前n 项和突破点一 等差数列的基本运算[基本知识]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n n -12d =n a 1+a n 2.[基本能力]一、判断题(对的打“√”,错的打“×”)(1)若一个数列从第2项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) 答案:(1)× (2)√ (3)√ (4)√ 二、填空题1.若m 和2n 的等差中项为4,2m 和n 的等差中项为5,则m 与n 的等差中项是________. 答案:32.在等差数列{a n }中,a 2=3,a 3+a 4=9,则a 1a 6的值为________. 答案:143.已知{a n }是等差数列,且a 3+a 9=4a 5,a 2=-8,则该数列的公差是________. 答案:44.在等差数列{a n }中,已知d =2,S 100=10 000,则S n =________. 答案:n 2[典例感悟]1.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .12解析:选B 设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3(3a 1+3d )=2a 1+d +4a 1+6d ,即3a 1+2d =0.将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.2.(2019·山东五校联考)已知等差数列{a n }为递增数列,其前3项的和为-3,前3项的积为8.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d >0,∵等差数列{a n }的前3项的和为-3,前3项的积为8,∴⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+da 1+2d =8,∴⎩⎪⎨⎪⎧a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.∵d >0,∴a 1=-4,d =3,∴a n =3n -7. (2)∵a n =3n -7,∴a 1=3-7=-4, ∴S n =n -4+3n -72=n 3n -112.[方法技巧]解决等差数列基本量计算问题的思路(1)在等差数列{a n }中,a 1与d 是最基本的两个量,一般可设出a 1和d ,利用等差数列的通项公式和前n 项和公式列方程(组)求解即可.(2)与等差数列有关的基本运算问题,主要围绕着通项公式a n =a 1+(n -1)d 和前n 项和公式S n =n a 1+a n2=na 1+n n -12d ,在两个公式中共涉及五个量:a 1,d ,n ,a n ,S n ,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.[针对训练]1.已知数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,且a 3=2,a 9=12,则a 15=( )A .10B .30C .40D .20解析:选B 法一:设数列⎩⎨⎧⎭⎬⎫a n n 是公差为d 的等差数列,∵a 3=2,a 9=12,∴6d =a 99-a 33=129-23=23,∴d =19,a 1515=a 33+12d =2.故a 15=30.法二:由于数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,故2×a 99=a 33+a 1515,即a 1515=2×129-23=2,故a 15=30.2.(2018·信阳二模)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分五钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代一种质量单位),在这个问题中,甲得________钱.( )A.53 B .32 C.43D .54解析:选C 甲、乙、丙、丁、戊五人所得钱数依次设为成等差数列的a 1,a 2,a 3,a 4,a 5,设公差为d ,由题意知a 1+a 2=a 3+a 4+a 5=52,即⎩⎪⎨⎪⎧2a 1+d =52,3a 1+9d =52,解得⎩⎪⎨⎪⎧a 1=43,d =-16,故甲得43钱,故选C.3.(2018·菏泽二模)已知等差数列{a n }的前n 项和为S n ,n ∈N *,满足a 1+a 2=10,S 5=40.(1)求数列{a n }的通项公式;(2)设b n =|13-a n |,求数列{b n }的前n 项和T n . 解:(1)设等差数列{a n }的公差为d , 由题意知,a 1+a 2=2a 1+d =10,S 5=5a 3=40,即a 3=8,所以a 1+2d =8,所以⎩⎪⎨⎪⎧a 1=4,d =2,所以a n =4+(n -1)·2=2n +2.(2)令c n =13-a n =11-2n ,b n =|c n |=|11-2n |=⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n ≥6,设数列{c n }的前n 项和为Q n ,则Q n =-n 2+10n . 当n ≤5时,T n =b 1+b 2+…+b n =Q n =-n 2+10n .当n ≥6时,T n =b 1+b 2+…+b n =c 1+c 2+…+c 5-(c 6+c 7+…+c n )=-Q n +2Q 5=n 2-10n +2(-52+10×5)=n 2-10n +50.突破点二 等差数列的性质及应用[基本知识]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *). (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(5)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解.(6)若{a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.(8)若等差数列{a n }的项数为偶数2n ,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (9)若等差数列{a n }的项数为奇数2n +1,则 ①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n. [基本能力]1.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 解析:依题意,得a 2+a 4+a 6+a 8=(a 2+a 8)+(a 4+a 6)=2(a 3+a 7)=74. 答案:742.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________. 答案:23.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列前13项的和是________.答案:26[全析考法]考法一 等差数列的性质[例1] (1)(2019·武汉模拟)若数列{a n }为等差数列,S n 为其前n 项和,且a 1=2a 3-3,则S 9=( )A .25B .27C .50D .54(2)(2019·莆田九校联考)在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( )A .10B .15C .20D .40[解析] (1)设等差数列{a n }的公差为d ,a 1=2a 3-3=2a 1+4d -3, ∴a 5=a 1+4d =3,S 9=9a 5=27.(2)因为a 1,a 2 019为方程x 2-10x +16=0的两根,所以a 1+a 2 019=10. 由等差数列的性质可知,a 1 010=a 1+a 2 0192=5,a 2+a 2 018=a 1+a 2 019=10,所以a 2+a 1 010+a 2 018=10+5=15.故选B. [答案] (1)B (2)B [方法技巧]利用等差数列的性质求解问题的注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m =12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a m n -m ,S 2n -1=(2n -1)a n ,S n =n a 1+a n 2=n a 2+a n -12(n ,m ∈N *)等. [提醒] 一般地,a m +a n ≠a m +n ,等号左、右两边必须是两项相加,当然也可以是a m -n+a m +n =2a m .考法二 等差数列前n 项和最值问题等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用二次函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[例2] (2018·全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值. [解] (1)设{a n }的公差为d , 由题意得3a 1+3d =-15. 又a 1=-7,所以d =2.所以{a n }的通项公式为a n =2n -9. (2)法一:(二次函数法)由(1)得S n =n a 1+a n2=n 2-8n =(n -4)2-16,所以当n =4时,S n 取得最小值,最小值为-16. 法二:(通项变号法) 由(1)知a n =2n -9,则S n =n a 1+a n2=n 2-8n .由S n 最小⇔⎩⎪⎨⎪⎧a n ≤0,a n +1≥0,即⎩⎪⎨⎪⎧2n -9≤0,2n -7≥0,∴72≤n ≤92, 又n ∈N *,∴n =4,此时S n 的最小值为S 4=-16. [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)二次函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m . [集训冲关]1.[考法一]设S n 为公差不为零的等差数列{a n }的前n 项和,若S 9=3a 8,则S 153a 5等于( )A .15B .17C .19D .21解析:选A 因为S 9=a 1+a 2+…+a 9=9a 5=3a 8,即3a 5=a 8.又S 15=a 1+a 2+…+a 15=15a 8,所以S 153a 5=15a 8a 8=15.2.[考法一]在项数为2n +1的等差数列{a n }中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A .9B .10C .11D .12解析:选B ∵等差数列有2n +1项,∴S 奇=n +1a 1+a 2n +12,S 偶=n a 2+a 2n2.又a 1+a 2n +1=a 2+a 2n ,∴S 偶S 奇=n n +1=150165=1011,∴n =10. 3.[考法二]等差数列{a n }中,S n 为前n 项和,且a 1=25,S 17=S 9,请问:数列前多少项和最大?解:法一:∵a 1=25,S 17=S 9,∴17a 1+17×162d =9a 1+9×82d ,解得d =-2.∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212.∴当n =13时,S n 有最大值. 法二:∵a 1=25,S 17=S 9, ∴17a 1+17×162d =9a 1+9×82d ,解得d =-2. 从而S n =25n +n n -12(-2)=-n 2+26n=-(n -13)2+169. 故前13项之和最大.突破点三 等差数列的判定与证明[典例] (2019·济南一中检测)各项均不为0的数列{a n }满足a n +1a n +a n +22=a n +2a n ,且a 3=2a 8=15.(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n2n +6,求数列{b n }的前n 项和S n .[解] (1)证明:依题意,a n +1a n +a n +2a n +1=2a n +2a n ,两边同时除以a n a n +1a n +2,可得1a n +2+1a n=2a n +1,故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,设数列⎩⎨⎧⎭⎬⎫1a n 的公差为d .因为a 3=2a 8=15,所以1a 3=5,1a 8=10,所以1a 8-1a 3=5=5d ,即d =1,所以1a n =1a 3+(n -3)d =5+(n -3)×1=n +2,故a n =1n +2.(2)由(1)可知b n =a n 2n +6=12·1n +2n +3=12( 1n +2-1n +3 ),故S n =12( 13-14+14-15+…+1n +2-1n +3)=n6n +3. [方法技巧]等差数列的判定与证明方法 方法 解读适合题型定义法 对于数列{a n },a n -a n -1(n ≥2,n ∈N *)为同一常数⇔{a n }是等差数列解答题中的证明问题等差中项法 2a n -1=a n +a n -2(n ≥3,n ∈N *)成立⇔{a n }是等差数列通项公式法 a n =pn +q (p ,q 为常数)对任意的正整数n 都成立⇔{a n }是等差数列选择、填空题定中的判问题前n 项和公式法验证S n =An 2+Bn (A ,B 是常数)对任意的正整数n 都成立⇔{a n }是等差数列[提醒] 判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[针对训练](2019·沈阳模拟)已知S n 是等差数列{a n }的前n 项和,S 2=2,S 3=-6. (1)求数列{a n }的通项公式和前n 项和S n ;(2)是否存在正整数n ,使S n ,S n +2+2n ,S n +3成等差数列?若存在,求出n ;若不存在,请说明理由.解:(1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧2a 1+d =2,3a 1+3×22d =-6,∴⎩⎪⎨⎪⎧a 1=4,d =-6,∴a n =4-6(n -1)=10-6n ,S n =na 1+n n -12d =7n -3n 2.(2)由(1)知S n +S n +3=7n -3n 2+7(n +3)-3(n +3)2=-6n 2-4n -6,2(S n +2+2n )=2(-3n 2-5n +2+2n )=-6n 2-6n +4, 若存在正整数n 使得S n ,S n +2+2n ,S n +3成等差数列, 则-6n 2-4n -6=-6n 2-6n +4,解得n =5, ∴存在n =5,使S n ,S n +2+2n ,S n +3成等差数列.。

届数学一轮复习第六章数列第三节等比数列及其前n项和学案理含解析

届数学一轮复习第六章数列第三节等比数列及其前n项和学案理含解析

第三节等比数列及其前n项和[最新考纲][考情分析][核心素养]1.理解等比数列的概念。

2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系。

等比数列的基本运算,等比数列的判断与证明,等比数列的性质与应用仍是2021年高考考查的热点,三种题型都有可能出现,分值为5~12分.1.数学运算2.逻辑推理‖知识梳理‖1.等比数列的有关概念(1)定义①文字语言:从错误!第2项起,每一项与它的前一项的错误!比都等于错误!同一个常数.②符号语言:错误!错误!=q(n∈N*,q为非零常数).(2)等比中项:如果a,G,b成等比数列,那么错误!G叫做a 与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G26ab.2.等比数列的有关公式(1)通项公式:a n=错误!a1q n-1.(2)前n项和公式3.等比数列的性质(1)通项公式的推广:a n=a m·q n-m(m,n∈N*).(2)对任意的正整数m,n,p,q,若m+n=p+q,则错误!a m·a n =错误a p·a q.特别地,若m+n=2p,则a m·a n=a2p.(3)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列,即(S2m-S m)213S m(S3m-S2m)(m∈N*,公比q≠1).(4)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是错误!等比数列.(5)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为错误!q k.►常用结论1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),错误!,{a2,n},{a n·b n},错误!仍是等比数列.2.一个等比数列各项的k次幂仍组成一个等比数列,新公比是原公比的k次幂.3.{a n}为等比数列,若a1·a2·…·a n=T n,则T n,错误!,错误!,…成等比数列.4.当q≠0且q≠1时,S n=k-k·q n(k≠0)是{a n}成等比数列的充要条件,这时k=错误!.5.有穷等比数列中,与首末两项等距离的两项的积相等,特别地,若项数为奇数时,还等于中间项的平方.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.()(2)三个数a,b,c成等比数列的充要条件是b2=ac。

高考数学一轮复习 第六章 数列6

高考数学一轮复习 第六章 数列6

高考数学一轮复习 第六章 数列6.2 等差数列考试要求 1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.知识梳理1.等差数列的有关概念 (1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义表达式为a n -a n -1=d (常数)(n ≥2,n ∈N *). (2)等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+nn -12d 或S n =na 1+a n2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)S 2n -1=(2n -1)a n .(6)等差数列{a n }的前n 项和为S n ,⎩⎨⎧⎭⎬⎫S n n 为等差数列.常用结论1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).这里公差d =2A . 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)等差数列{a n }的单调性是由公差d 决定的.( √ )(2)若一个数列每一项与它的前一项的差都是常数,则这个数列是等差数列.( × ) (3)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ )(4)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ ) 教材改编题1.已知等差数列{a n }中,a 2=3,前5项和S 5=10,则数列{a n }的公差为( ) A .-1 B .-52C .-2D .-4答案 A解析 设等差数列{a n }的公差为d , ∵S 5=5a 3=10, ∴a 3=a 2+d =2, 又∵a 2=3,∴d =-1.2.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 5=________. 答案 903.已知{a n }是等差数列,其前n 项和为S n ,若a 3=2,且S 6=30,则S 9=________. 答案 126解析 由已知可得⎩⎪⎨⎪⎧a 1+2d =2,2a 1+5d =10,解得⎩⎪⎨⎪⎧a 1=-10,d =6.∴S 9=9a 1+9×82d =-90+36×6=126.题型一 等差数列基本量的运算例1 (1)(2022·包头模拟)已知等差数列{a n }中,S n 为其前n 项和,S 4=24,S 9=99,则a 7等于( )A .13B .14C .15D .16 答案 C解析 ∵⎩⎪⎨⎪⎧ S 4=24,S 9=99,∴⎩⎪⎨⎪⎧4a 1+6d =24,9a 1+36d =99,解得⎩⎪⎨⎪⎧a 1=3,d =2.则a 7=a 1+6d =15.(2)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则下列结论正确的有________.(填序号) ①a 2+a 3=0; ②a n =2n -5; ③S n =n (n -4); ④d =-2.答案 ①②③解析 S 4=4×a 1+a 42=0,∴a 1+a 4=a 2+a 3=0,①正确; a 5=a 1+4d =5, (*) a 1+a 4=a 1+a 1+3d =0,(**)联立(*)(**)得⎩⎪⎨⎪⎧d =2,a 1=-3,∴a n =-3+(n -1)×2=2n -5, ②正确,④错误;S n =-3n +n n -12×2=n 2-4n ,③正确.教师备选1.已知等差数列{a n }的前n 项和为S n ,若a 3=5,S 4=24,则a 9等于( ) A .-5 B .-7 C .-9 D .-11答案 B解析 ∵a 3=5,S 4=24, ∴a 1+2d =5,4a 1+6d =24, 解得a 1=9,d =-2, ∴a n =11-2n , ∴a 9=11-2×9=-7.2.已知{a n }是公差不为零的等差数列,且a 1+a 10=a 9,则a 1+a 2+…+a 9a 10=________.答案278解析 ∵a 1+a 10=a 9,∴a 1+a 1+9d =a 1+8d ,即a 1=-d , ∴a 1+a 2+…+a 9=S 9=9a 1+9×82d =27d , a 10=a 1+9d =8d ,∴a 1+a 2+…+a 9a 10=278.思维升华 (1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,n ,d ,a n ,S n ,知道其中三个就能求出另外两个(简称“知三求二”).(2)确定等差数列的关键是求出两个最基本的量,即首项a 1和公差d .跟踪训练1 (1)记S n 为等差数列{a n }的前n 项和.若a 3+a 6=24,S 6=48,则下列选项正确的是( ) A .a 1=-2 B .a 1=2 C .d =3 D .d =-3答案 A解析 因为⎩⎪⎨⎪⎧a 3+a 6=2a 1+7d =24,S 6=6a 1+15d =48,所以⎩⎪⎨⎪⎧a 1=-2,d =4.(2)(2020·全国Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=______. 答案 25解析 设等差数列{a n }的公差为d , 则a 2+a 6=2a 1+6d =2. 因为a 1=-2,所以d =1. 所以S 10=10×(-2)+10×92×1=25.题型二 等差数列的判定与证明例2 (2021·全国甲卷)已知数列{a n }的各项均为正数,记S n 为{a n }的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n }是等差数列;②数列{S n }是等差数列;③a 2=3a 1. 注:若选择不同的组合分别解答,则按第一个解答计分. 解 ①③⇒②.已知{a n }是等差数列,a 2=3a 1. 设数列{a n }的公差为d ,则a 2=3a 1=a 1+d ,得d =2a 1, 所以S n =na 1+nn -12d =n 2a 1. 因为数列{a n }的各项均为正数, 所以S n =n a 1,所以S n +1-S n =(n +1)a 1-n a 1=a 1(常数),所以数列{S n }是等差数列. ①②⇒③.已知{a n }是等差数列,{S n }是等差数列. 设数列{a n }的公差为d , 则S n =na 1+nn -12d =12n 2d +⎝⎛⎭⎫a 1-d 2n . 因为数列{S n }是等差数列,所以数列{S n }的通项公式是关于n 的一次函数,则a 1-d2=0,即d =2a 1,所以a 2=a 1+d =3a 1. ②③⇒①.已知数列{S n }是等差数列,a 2=3a 1, 所以S 1=a 1,S 2=a 1+a 2=4a 1. 设数列{S n }的公差为d ,d >0,则S 2-S 1=4a 1-a 1=d ,得a 1=d 2, 所以S n =S 1+(n -1)d =nd , 所以S n =n 2d 2,所以a n =S n -S n -1=n 2d 2-(n -1)2d 2=2d 2n -d 2(n ≥2),是关于n 的一次函数,且a 1=d 2满足上式,所以数列{a n }是等差数列. 高考改编已知数列{a n }中,a 1=1,前n 项和为S n ,且满足nS n +1-(n +1)S n -32n 2-32n =0,证明:数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,并求{a n }的通项公式.解 因为nS n +1-(n +1)S n -32n 2-32n =0,所以nS n +1-(n +1)S n =32n (n +1),所以S n +1n +1-S n n =32,S 11=a 1=1,所以数列⎩⎨⎧⎭⎬⎫S n n 是以1为首项,32为公差的等差数列,S n n =32n -12, 所以S n =32n 2-12n ,当n ≥2时, a n =S n -S n -1 =32n 2-12n -⎣⎡⎦⎤32n -12-12n -1 =3n -2,当n =1时,上式也成立, 所以a n =3n -2. 教师备选(2022·烟台模拟)已知在数列{a n }中,a 1=1,a n =2a n -1+1(n ≥2,n ∈N *),记b n =log 2(a n +1). (1)判断{b n }是否为等差数列,并说明理由; (2)求数列{a n }的通项公式. 解 (1){b n }是等差数列,理由如下: b 1=log 2(a 1+1)=log 22=1,当n ≥2时,b n -b n -1=log 2(a n +1)-log 2(a n -1+1) =log 2a n +1a n -1+1=log 22a n -1+2a n -1+1=1,∴{b n }是以1为首项,1为公差的等差数列. (2)由(1)知,b n =1+(n -1)×1=n ,∴a n +1=2n b=2n , ∴a n =2n -1.思维升华 判断数列{a n }是等差数列的常用方法 (1)定义法:对任意n ∈N *,a n +1-a n 是同一常数.(2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1. (3)通项公式法:对任意n ∈N *,都满足a n =pn +q (p ,q 为常数). (4)前n 项和公式法:对任意n ∈N *,都满足S n =An 2+Bn (A ,B 为常数). 跟踪训练2 已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.解 (1)由题意可得a 2-2a 1=4, 则a 2=2a 1+4, 又a 1=1,所以a 2=6.由2a 3-3a 2=12,得2a 3=12+3a 2, 所以a 3=15.(2)由已知得na n +1-n +1a nn n +1=2,即a n +1n +1-a nn=2, 所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差为d =2的等差数列,则a nn =1+2(n -1)=2n -1, 所以a n =2n 2-n . 题型三 等差数列的性质 命题点1 等差数列项的性质例3 (1)已知数列{a n }满足2a n =a n -1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 3+a 4等于( ) A .6 B .7 C .8 D .9答案 B解析 因为2a n =a n -1+a n +1, 所以{a n }是等差数列,由等差数列性质可得a 2+a 4+a 6=3a 4=12, a 1+a 3+a 5=3a 3=9, 所以a 3+a 4=3+4=7.(2)(2022·崇左模拟)已知等差数列{a n }的前n 项和为S n ,且a 3+a 4+a 5+a 6+a 7=150,则S 9等于( ) A .225 B .250 C .270 D .300 答案 C解析 等差数列{a n }的前n 项和为S n , 且a 3+a 4+a 5+a 6+a 7=150, ∴a 3+a 4+a 5+a 6+a 7=5a 5=150, 解得a 5=30,∴S 9=92(a 1+a 9)=9a 5=270.命题点2 等差数列前n 项和的性质例4 (1)已知等差数列{a n }的前n 项和为S n ,若S 10=10,S 20=60,则S 40等于( ) A .110 B .150 C .210 D .280答案 D解析 因为等差数列{a n }的前n 项和为S n ,所以S 10,S 20-S 10,S 30-S 20,S 40-S 30也成等差数列. 故(S 30-S 20)+S 10=2(S 20-S 10), 所以S 30=150.又因为(S 20-S 10)+(S 40-S 30)=2(S 30-S 20), 所以S 40=280.(2)等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n =2n -13n -2,则a 11b 6+b 10+a 5b 7+b 9的值为________. 答案2943解析a 11b 6+b 10+a 5b 7+b 9=a 11+a 52b 8=2a 82b 8=a 8b 8,∴a 8b 8=S 2×8-1T 2×8-1=S 15T 15=2×15-13×15-2=2943. 延伸探究 将本例(2)部分条件改为若a 2+a 8b 4+b 6=57,则S 9T 9=________.答案 57解析a 2+a 8b 4+b 6=2a 52b 5=a 5b 5=57, ∴S 9T 9=9a 1+a 929b 1+b 92=9a 59b 5=a 5b 5=57. 教师备选1.若等差数列{a n }的前15项和S 15=30,则2a 5-a 6-a 10+a 14等于( ) A .2 B .3 C .4 D .5解析 ∵S 15=30,∴152(a 1+a 15)=30,∴a 1+a 15=4, ∴2a 8=4,∴a 8=2.∴2a 5-a 6-a 10+a 14=a 4+a 6-a 6-a 10+a 14=a 4-a 10+a 14=a 10+a 8-a 10=a 8=2.2.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 020,S 2 0202 020-S 2 0142 014=6,则S 2 023等于( )A .2 023B .-2 023C .4 046D .-4 046答案 C解析 ∵⎩⎨⎧⎭⎬⎫S n n 为等差数列,设公差为d ′,则S 2 0202 020-S 2 0142 014=6d ′=6,∴d ′=1, 首项为S 11=-2 020,∴S 2 0232 023=-2 020+(2 023-1)×1=2, ∴S 2 023=2 023×2=4 046.思维升华 (1)项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1). ②S 2n -1=(2n -1)a n .③依次k 项和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列.跟踪训练3 (1)(2021·北京){a n }和{b n }是两个等差数列,其中a k b k (1≤k ≤5)为常值,若a 1=288,a 5=96,b 1=192,则b 3等于( ) A .64 B .128 C .256 D .512解析 由已知条件可得a 1b 1=a 5b 5,则b 5=a 5b 1a 1=96×192288=64,因此,b 3=b 1+b 52=192+642=128.(2)(2022·吕梁模拟)已知S n 为等差数列{a n }的前n 项和,满足a 3=3a 1,a 2=3a 1-1,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为( ) A.552 B .55C.652 D .65答案 C解析 设等差数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+2d =3a 1,a 1+d =3a 1-1,所以a 1=1,d =1, 所以S n =n +n n -12=nn +12, 所以S n n =n +12,所以S n +1n +1-S n n=n +1+12-n +12=12,所以⎩⎨⎧⎭⎬⎫S n n 是以1为首项,12为公差的等差数列,数列⎩⎨⎧⎭⎬⎫S n n 的前10项和T 10=10+10×10-12×12=652.课时精练1.(2022·信阳模拟)在等差数列{a n }中,若a 3+a 9=30,a 4=11,则{a n }的公差为( ) A .-2 B .2 C .-3 D .3 答案 B解析 设公差为d ,因为a 3+a 9=2a 6=30, 所以a 6=15,从而d =a 6-a 46-4=2.2.(2022·莆田模拟)已知等差数列{a n }满足a 3+a 6+a 8+a 11=12,则2a 9-a 11的值为( ) A .-3 B .3 C .-12 D .12 答案 B解析 由等差中项的性质可得, a 3+a 6+a 8+a 11=4a 7=12, 解得a 7=3, ∵a 7+a 11=2a 9, ∴2a 9-a 11=a 7=3.3.(2022·铁岭模拟)中国古代数学名著《张邱建算经》中有如下问题:今有十等人,每等一人,宫赐金以等次差降之(等差数列),上三人先入,得金四斤,持出;下四人后入,得金三斤,持出;中间三人未到者,亦依等次更给.则第一等人(得金最多者)得金斤数是( ) A.3726 B.3727 C.5239 D.5639答案 A解析 由题设知在等差数列{a n }中, a 1+a 2+a 3=4,a 7+a 8+a 9+a 10=3. 所以3a 1+3d =4,4a 1+30d =3, 解得a 1=3726.4.(2022·山东省实验中学模拟)已知等差数列{a n }的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为( ) A .28 B .29 C .30 D .31答案 B解析 设等差数列{a n }共有2n +1项, 则S 奇=a 1+a 3+a 5+…+a 2n +1, S 偶=a 2+a 4+a 6+…+a 2n , 该数列的中间项为a n +1,又S 奇-S 偶=a 1+(a 3-a 2)+(a 5-a 4)+…+(a 2n +1-a 2n )=a 1+d +d +…+d =a 1+nd =a n +1, 所以a n +1=S 奇-S 偶=319-290=29.5.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 3+a 8+a 13是一个定值,则下列各数也为定值的是( ) A .a 11 B .a 12 C .S 15 D .S 16 答案 C解析 由等差中项的性质可得a 3+a 8+a 13=3a 8为定值,则a 8为定值, S 15=15()a 1+a 152=15a 8为定值,但S 16=16()a 1+a 162=8()a 8+a 9不是定值.6.在等差数列{a n }中,若a 10a 9<-1,且它的前n 项和S n 有最大值,则使S n >0成立的正整数n的最大值是( )A .15B .16C .17D .14 答案 C解析 ∵等差数列{a n }的前n 项和有最大值, ∴等差数列{a n }为递减数列, 又a 10a 9<-1,∴a 9>0,a 10<0, 且a 9+a 10<0, 又S 18=18a 1+a 182=9(a 9+a 10)<0,S 17=17a 1+a 172=17a 9>0,∴使S n >0成立的正整数n 的最大值是17.7.(2019·北京)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________. 答案 0解析 设等差数列{a n }的公差为d ,∵⎩⎪⎨⎪⎧a 2=-3,S 5=-10, 即⎩⎪⎨⎪⎧a 1+d =-3,5a 1+10d =-10, ∴⎩⎪⎨⎪⎧a 1=-4,d =1,∴a 5=a 1+4d =0. 8.(2022·新乡模拟)一百零八塔,位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为________.答案 51解析 设该数列为{a n },依题意可知,a 5,a 6,…成等差数列,且公差为2,a 5=5, 设塔群共有n 层,则1+3+3+5+5(n -4)+n -4n -52×2=108,解得n =12(n =-8舍去).故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.9.(2021·全国乙卷)记S n 为数列{a n }的前n 项和,b n 为数列{S n }的前n 项积,已知2S n +1b n =2.(1)证明:数列{b n }是等差数列; (2)求{a n }的通项公式.(1)证明 因为b n 是数列{S n }的前n 项积, 所以n ≥2时,S n =b nb n -1,代入2S n +1b n =2可得,2b n -1b n +1b n =2,整理可得2b n -1+1=2b n , 即b n -b n -1=12(n ≥2).又2S 1+1b 1=3b 1=2,所以b 1=32, 故{b n }是以32为首项,12为公差的等差数列.(2)解 由(1)可知,b n =n +22,则2S n +2n +2=2,所以S n =n +2n +1, 当n =1时,a 1=S 1=32,当n ≥2时,a n =S n -S n -1=n +2n +1-n +1n =-1nn +1. 故a n=⎩⎨⎧32,n =1,-1nn +1,n ≥2.10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N *). (1)求数列{a n }的通项公式;(2)设T n =|a 1|+|a 2|+…+|a n |,求T n . 解 (1)∵a n +2-2a n +1+a n =0, ∴a n +2-a n +1=a n +1-a n ,∴数列{a n }是等差数列,设其公差为d , ∵a 1=8,a 4=2, ∴d =a 4-a 14-1=-2,∴a n =a 1+(n -1)d =10-2n ,n ∈N *.(2)设数列{a n }的前n 项和为S n ,则由(1)可得, S n =8n +nn -12×(-2)=9n -n 2,n ∈N *. 由(1)知a n =10-2n ,令a n =0,得n =5, ∴当n >5时,a n <0, 则T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =S 5-(S n -S 5)=2S 5-S n=2×(9×5-25)-(9n -n 2)=n 2-9n +40; 当n ≤5时,a n ≥0, 则T n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =9n -n 2,∴T n =⎩⎪⎨⎪⎧9n -n 2,n ≤5,n ∈N *,n 2-9n +40,n ≥6,n ∈N *.11.设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m 等于( ) A .3 B .4 C .5 D .6 答案 C解析 ∵数列{a n }为等差数列,且前n 项和为S n ,∴数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.∴S m -1m -1+S m +1m +1=2S mm , 即-2m -1+3m +1=0, 解得m =5,经检验为原方程的解.12.(2022·济宁模拟)设等差数列{a n }的前n 项和是S n ,已知S 14>0,S 15<0,则下列选项不正确的是( ) A .a 1>0,d <0 B .a 7+a 8>0C .S 6与S 7均为S n 的最大值D .a 8<0 答案 C解析 因为S 14>0, 所以S 14=14×a 1+a 142=7(a 1+a 14)=7(a 7+a 8)>0, 即a 7+a 8>0, 因为S 15<0,所以S 15=15×a 1+a 152=15a 8<0,所以a 8<0,所以a 7>0,所以等差数列{a n }的前7项为正数,从第8项开始为负数, 则a 1>0,d <0,S 7为S n 的最大值.13.(2020·新高考全国Ⅰ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为________.答案 3n 2-2n解析 方法一 (观察归纳法)数列{2n -1}的各项为1,3,5,7,9,11,13,…; 数列{3n -2}的各项为1,4,7,10,13,….观察归纳可知,两个数列的公共项为1,7,13,…,是首项为1,公差为6的等差数列, 则a n =1+6(n -1)=6n -5. 故前n 项和为S n =na 1+a n 2=n1+6n -52=3n 2-2n .方法二 (引入参变量法)令b n =2n -1,c m =3m -2,b n =c m ,则2n -1=3m -2,即3m =2n +1,m 必为奇数. 令m =2t -1,则n =3t -2(t =1,2,3,…). a t =b 3t -2=c 2t -1=6t -5,即a n =6n -5. 以下同方法一.14.(2022·东莞东方明珠学校模拟)已知等差数列{a n }的首项a 1=1,公差为d ,前n 项和为S n .若S n ≤S 8恒成立,则公差d 的取值范围是__________. 答案 ⎣⎡⎦⎤-17,-18 解析 根据等差数列{a n }的前n 项和S n 满足S n ≤S 8恒成立, 可知a 8≥0且a 9≤0, 所以1+7d ≥0且1+8d ≤0, 解得-17≤d ≤-18.15.定义向量列a 1,a 2,a 3,…,a n 从第二项开始,每一项与它的前一项的差都等于同一个常向量(即坐标都是常数的向量),即a n =a n -1+d (n ≥2,且n ∈N *),其中d 为常向量,则称这个向量列{a n }为等差向量列.这个常向量叫做等差向量列的公差向量,且向量列{a n }的前n 项和S n =a 1+a 2+…+a n .已知等差向量列{a n }满足a 1=(1,1),a 2+a 4=(6,10),则向量列{a n }的前n 项和S n =____________________. 答案⎝⎛⎭⎫n +n 22,n 2解析 因为向量线性运算的坐标运算,是向量的横坐标、纵坐标分别进行对应的线性运算,则等差数列的性质在等差向量列里面也适用,由等差数列的等差中项的性质知2a 3=a 2+a 4=(6,10),解得a 3=(3,5),则等差向量列{a n }的公差向量为d =a 3-a 12=3,5-1,12=3-1,5-12=2,42=(1,2), 由等差数列的通项公式可得等差向量列{a n }的通项公式为a n =a 1+(n -1)d =(1,1)+(n -1)(1,2)=(1,1)+(n -1,2n -2) =(1+n -1,1+2n -2)=(n ,2n -1),由等差数列的前n 项和公式,可得等差向量列{a n }的前n 项和S n =na 1+a n2=n [1,1+n ,2n -1]2=n1+n ,2n2=n +n 2,2n 22=⎝⎛⎭⎫n +n 22,n 2.16.在等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设{b n }=[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }的公差为d ,由题意得2a 1+5d =4,a 1+5d =3,解得a 1=1,d =25,所以{a n }的通项公式为a n =2n +35.(2)由(1)知,b n =⎣⎡⎦⎤2n +35,当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2<2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4<2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.。

高考数学一轮复习 第六章 数列 第四节 数列求和教案 理(含解析)苏教版-苏教版高三全册数学教案

高考数学一轮复习 第六章 数列 第四节 数列求和教案 理(含解析)苏教版-苏教版高三全册数学教案

第四节 数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n a 1+a n2=na 1+n n -1d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n n +12;②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1nn +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[小题体验]1.等比数列1,2,4,8,…中从第5项到第10项的和为________. 解析:由a 1=1,a 2=2,得q =2,∴S 10=1×1-2101-2=1 023,S 4=1×1-241-2=15,∴S 10-S 4=1 008. 答案:1 0082.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.答案:n 2+1-12n3.已知数列{}a n 的通项公式a n =1n +n +1,则该数列的前________项之和等于9.解析:由题意知,a n =1n +n +1=n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=9,解得n =99.答案:991.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项. [小题纠偏]1.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (3)=________.答案:27(87-1)2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 答案:(n -1)2n +1+23.求和:11×2+12×3+…+1n -1n=________.解析:原式=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =1-1n .答案:1-1n考点一 公式法求和 基础送分型考点——自主练透[题组练透]1.(2019·南师大附中月考)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是________日.解析:易知每日织布数量构成一个等差数列,设此数列为{}a n ,则a 1=5,a n =1,S n =90,所以n 5+12=90,解得n =30.答案:302.(2018·无锡期末)设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则数列{a n }的前4项和为________.解析:设数列{a n }的公比为q (q ≠1).由等比数列的性质可得a 1a 2a 3=a 32=-18,所以a 2=-12.因为a 2,a 4,a 3成等差数列,所以2a 4=a 2+a 3,即2a 2q 2=a 2+a 2q ,化简得2q 2-q -1=0,即(q -1)(2q +1)=0,解得q =-12或q =1(舍去).又因为a 1=a 2q=1,所以S 4=a 11-q 41-q=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:583.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得⎩⎪⎨⎪⎧ a 1+2d =2,3a 1+3×22d =92,化简得⎩⎪⎨⎪⎧a 1+2d =2,a 1+d =32,解得⎩⎪⎨⎪⎧a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 11-q n 1-q =1×1-2n1-2=2n-1.[谨记通法]几类可以使用公式法求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.考点二 分组转化法求和重点保分型考点——师生共研[典例引领](2018·天一中学检测)已知数列{a n }的首项a 1=3,通项a n =2n p +nq (n ∈N *,p ,q 为常数),且a 1,a 4,a 5成等差数列.求:(1)p ,q 的值;(2)数列{a n }前n 项和S n .解:(1)由a 1=3,得2p +q =3,①又由a 4=24p +4q ,a 5=25p +5q ,且a 1+a 5=2a 4, 得3+25p +5q =25p +8q ,② 由①②解得p =1,q =1. (2)由(1),知a n =2n+n .所以S n =(2+22+ (2))+(1+2+…+n )=21-2n1-2+n 1+n2=2n +1-2+n 2+n2.[由题悟法]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[即时应用]1.求数列1+1,1a +4,1a 2+7,1a 3+10,…,1an -1+(3n -2)的前n 项和.解:设数列的通项为a n ,前n 项和为S n ,则a n =1a n -1+(3n -2),∴S n =⎝⎛⎭⎪⎫1+1a +1a2+…+1a n -1+[1+4+7+…+(3n -2)].当a =1时,S n =n +n 1+3n -22=3n 2+n 2;当a ≠1时,S n =1-1a n1-1a+n1+3n -22=a n-1a n -a n -1+n3n -12. 2.(2018·南京四校联考)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . 因为a 3+a 8-(a 2+a 7)=2d =-6, 所以d =-3,所以a 2+a 7=2a 1+7d =-23,解得a 1=-1, 所以数列{a n }的通项公式为a n =-3n +2.(2)因为数列{a n +b n }是首项为1,公比为q 的等比数列, 所以a n +b n =qn -1,即-3n +2+b n =qn -1,所以b n =3n -2+q n -1.所以S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 考点三 错位相减法求和重点保分型考点——师生共研[典例引领](2018·徐州调研)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,n ∈N *.数列{b n }满足nb n +1-(n +1)b n =n (n +1),n ∈N *,且b 1=1.(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n ·b n ,数列{c n }的前n 项和为T n ,对任意的n ∈N *,都有T n ≤nS n -a ,求实数a 的取值范围.解:(1)当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1,所以数列{a n }是首项a 1=1,公比q =2的等比数列, 故数列{a n }的通项公式为a n =2n -1.由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1), 得b n +1n +1-b nn=1, 所以数列⎩⎨⎧⎭⎬⎫b n n 是首项b 1=1,公差d =1的等差数列,所以b n n=n , 故数列{b n }的通项公式为b n =n 2. (2)由(1)得c n =a n ·b n =n ·2n -1,于是T n =1×20+2×2+3×22+…+n ×2n -1, 所以2T n =1×2+2×22+3×23+…+n ×2n,两式相减得-T n =1+2+22+…+2n -1-n ×2n=1-2n1-2-n ×2n,所以T n =(n -1)·2n+1, 由(1)得S n =2a n -1=2n-1, 因为对∀n ∈N *,都有T n ≤nS n -a , 即(n -1)·2n+1≤n (2n-1)-a 恒成立, 所以a ≤2n-n -1恒成立, 记c n =2n -n -1, 所以a ≤(c n )min , 因为c n +1-c n =[2n +1-(n +1)-1]-(2n -n -1)=2n-1>0,从而数列{c n }为递增数列,所以当n =1时,c n 取最小值c 1=0,于是a ≤0, 所以实数a 的取值范围为(-∞,0].[由题悟法]用错位相减法求和的3个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[即时应用](2019·海门中学月考)已知数列{a n }的前n 项和为S n ,S n =n 2+n . (1)求{a n }的通项公式a n ;(2)若a k +1,a 2k ,a 2k +3(k ∈N *)恰好依次为等比数列{b n }的第一、第二、第三项,求数列⎩⎨⎧⎭⎬⎫n b n 的前n 项和T n .解:(1)当n =1时,a 1=S 1=12+1=2.当n ≥2时,a n =S n -S n -1=(n 2+n )-[(n -1)2+(n -1)]=2n . 当n =1时,符合上式, ∴a n =2n (n ∈N *).(2)由题意知a k +1,a 2k ,a 2k +3成等比数列,∴a 22k =a k +1·a 2k +3, 即(2·2k )2=2(k +1)·2(2k +3),解得k =3. ∴b 1=a 4=8,b 2=a 6=12,公比q =128=32,∴b n =8·⎝ ⎛⎭⎪⎫32n -1,∴n b n =18n ·⎝ ⎛⎭⎪⎫23n -1, ∴T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+2×⎝ ⎛⎭⎪⎫231+…+n ×⎝ ⎛⎭⎪⎫23n -1. ① ∴23T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231+2×⎝ ⎛⎭⎪⎫232+…+n -1×⎝ ⎛⎭⎪⎫23n -1+n ×⎝ ⎛⎭⎪⎫23n . ② ①-②,得13T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+⎝ ⎛⎭⎪⎫231+…+⎝ ⎛⎭⎪⎫23n -1-18×n ×⎝ ⎛⎭⎪⎫23n =38-3+n 8⎝ ⎛⎭⎪⎫23n ,则T n =98-9+3n 8⎝ ⎛⎭⎪⎫23n.考点四 裂项相消法求和 题点多变型考点——多角探明[锁定考向]裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.常见的命题角度有: (1)形如a n =1nn +k 型; (2)形如a n =1n +k +n型;(3)形如a n =n +1n 2n +22型.[题点全练]角度一:形如a n =1nn +k型 1.(2019·启东一中检测)在数列{}a n 中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{}b n 的前n 项和T n . 解:(1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1(n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n . 由题意得S n -1·S n ≠0, ∴1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列,∴1S n=1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 角度二:形如a n =1n +k +n型2.已知函数f (x )=x α的图象过点(4,2),令a n =1f n +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018=________.解析:由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.所以a n =1fn +1+f n =1n +1+n=n +1-n ,S 2 018=a 1+a 2+a 3+…+a 2 018=(2-1)+(3-2)+(4-3)+…+( 2 018-2 017)+( 2 019- 2 018)= 2 019-1. 答案: 2 019-1 角度三:形如a n =n +1n 2n +22型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n , 故b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n2-1n +22.T n =116⎣⎢⎡1-132+122-142+132-152+…+1n -12-1n +12+⎦⎥⎤1n2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116⎝ ⎛⎭⎪⎫1+122=564. [通法在握]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. [演练冲关](2018·镇江调研)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1= 12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 一抓基础,多练小题做到眼疾手快1.(2019·镇江调研)已知{}a n 是等差数列,S n 为其前n 项和,若a 3+a 7=8,则S 9=_______.解析:在等差数列{}a n 中,由a 3+a 7=8,得a 1+a 9=8, 所以S 9=a 1+a 9×92=8×92=36.答案:36 2.数列{1+2n -1}的前n 项和为________.解析:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.答案:n +2n-13.数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________. 解析:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100. 答案:1004.(2018·泰州期末)已知数列{}a n 的通项公式为a n =n ·2n -1,前n 项和为S n ,则S n =________.解析:∵a n =n ·2n -1,∴S n =1×1+2×2+3×22+…+n ×2n -1, 2S n =1×2+2×22+3×23+…+n ×2n,两式相减可得-S n =1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n,化简可得S n =(n -1)2n+1. 答案:(n -1)2n+15.已知等比数列{}a n 的公比q >1,且a 5-a 1=30,a 4-a 2=12,则数列⎩⎨⎧⎭⎬⎫a na n -1a n +1-1的前n 项和为________. 解析:因为a 5-a 1=30,a 4-a 2=12, 所以a 1(q 4-1)=30,a 1(q 3-q )=12, 两式相除,化简得2q 2-5q +2=0, 解得q =12或2,因为q >1, 所以q =2,a 1=2. 所以a n =2·2n -1=2n.所以a na n -1a n +1-1=2n2n-12n +1-1=12n -1-12n +1-1, 所以T n =1-13+13-17+…+12n -1-12n +1-1=1-12n +1-1.答案:1-12n +1-16.若数列{a n }满足a n -(-1)na n -1=n (n ≥2),S n 是{a n }的前n 项和,则S 40=________. 解析:当n =2k 时,即a 2k -a 2k -1=2k ,① 当n =2k -1时,即a 2k -1+a 2k -2=2k -1,② 当n =2k +1时,即a 2k +1+a 2k =2k +1,③ ①+②得a 2k +a 2k -2=4k -1, ③-①得a 2k +1+a 2k -1=1,S 40=(a 1+a 3+a 5+...+a 39)+(a 2+a 4+a 6+a 8+...+a 40)=1×10+(7+15+23+ (79)=10+107+792=440. 答案:440二保高考,全练题型做到高考达标1.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n 2+n .答案:n 2+n2.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析:由已知得b 1=a 2=-3,q =-4, 所以b n =(-3)×(-4)n -1,所以|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. 所以|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.答案:4n-13.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________.解析:根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案:74.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案:2n +1-25.(2019·宿迁调研)已知数列{}a n 中,a 1=1,a 2=3,若a n +2+2a n +1+a n =0对任意n ∈N *都成立,则数列{}a n 的前n 项和S n =________.解析:∵a 1=1,a 2=3,a n +2+2a n +1+a n =0, ∴a n +2+a n +1=-(a n +1+a n ),a 2+a 1=4.则数列{}a n +1+a n 是首项为4,公比为-1的等比数列, ∴a n +1+a n =4×(-1)n -1.当n =2k -1时,a 2k +a 2k -1=4×(-1)2k -2=4.∴S n =(a 1+a 2)+(a 3+a 4)+…+(a 2k -1+a 2k )=4k =2n . 当n =2k 时,a 2k +1+a 2k =-4.S n =a 1+(a 2+a 3)+…+(a 2k -2+a 2k -1)=1-4×(k -1)=5-4k =5-4×n +12=3-2n .∴S n =⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数.答案:⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数6.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由a i +1+a i +10×102-a i +k =185,得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<349≤i ≤439<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故此连续10项的和为200.答案:2007.(2019·邵阳模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 分得________钱.解析:由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E 所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 分得23钱.答案:238.已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________. 解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,所以a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,因为a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,所以a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2899.(2018·苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 的取值范围. 解:(1)当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5. 当n ≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1),所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n )-6(S n -1+n -1), 即(a n +1)(a n +1-a n -1)=6(a n +1).又a n >0,所以a n +1-a n -1=6,所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,故a n =⎩⎪⎨⎪⎧3n +a -3,n 为奇数,3n -1,n 为偶数.(2)当n 为奇数时,S n =12(3n +a -2)(n +1)-n ,由S n ≤n (3n +1),得a ≤3n 2+3n +2n +1恒成立,令f (n )=3n 2+3n +2n +1,则f (n +1)-f (n )=3n 2+9n +4n +2n +1>0,所以a ≤f (1)=4.当n 为偶数时,S n =12n (3n +a +1)-n ,由S n ≤n (3n +1)得,a ≤3(n +1)恒成立, 所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].10.(2019·宿迁中学调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解:(1)令n =1,得a 2=21+λ. 令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3, 所以a 3=2λ+4λ+12λ+1.由a 22=a 1a 3,得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=⎝ ⎛⎭⎪⎫n 2+32a n ,①当n ≥2时,S n -1+1=⎝ ⎛⎭⎪⎫n2+1a n -1,② ①-②得,a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是常数列,且为13,所以a n =13(n +2).代入①得S n =⎝ ⎛⎭⎪⎫n 2+32a n -1=n 2+5n 6. 三上台阶,自主选做志在冲刺名校1.(2018·启东检测)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =________尺.解析:依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为1×1-2n1-2=2n-1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n -1+2-12n -1=2n-12n -1+1. 答案:2n-12n -1+12.(2018·苏州高三暑假测试)等差数列{a n }的前n 项和为S n ,且a n -S n =n 2-16n +15(n ∈N *),若对任意n ∈N *,总有S n ≤S k ,则k 的值为________.解析:设等差数列{a n }的公差为d ,则a n -S n =a 1+(n -1)d -⎣⎢⎡⎦⎥⎤na 1+n n -12d =-d 2n 2+⎝ ⎛⎭⎪⎫32d -a 1n +a 1-d =n 2-16n +15,所以⎩⎪⎨⎪⎧-d2=1,32d -a 1=-16,a 1-d =15,解得⎩⎪⎨⎪⎧a 1=13,d =-2,所以S n =13n +n n -12×(-2)=-n 2+14n =-(n -7)2+49,所以(S n )max =S 7,所以S n ≤S 7对任意n ∈N *恒成立,所以k 的值为7.答案:73.(2019·南京一模)平面内的“向量列”{a n },如果对于任意的正整数n ,均有a n +1-a n =d ,则称此“向量列”为“等差向量列”,d 称为“公差向量”;平面内的“向量列”{b n },如果对于任意的正整数n ,均有b n +1=q ·b n (q ≠0),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列”{a n }是“等差向量列”,用a 1和“公差向量”d 表示a 1+a 2+…+a n ; (2)已知{a n }是“等差向量列”,“公差向量”d =(3,0),a 1=(1,1),a n =(x n ,y n ),{b n }是“等比向量列”,“公比”q =2,b 1=(1,3),b n =(m n ,k n ),求a 1·b 1+a 2·b 2+…+a n ·b n .解:(1)∵“向量列”{a n }是“等差向量列”, ∴a 1+a 2…+a n =n a 1+(1+2+…+n -1)d =n a 1+n n -12d.(2)∵a 1=(1,1),d =(3,0),∴a n =(3n -2,1). ∵b 1=(1,3),q =2,∴b n =(2n -1,3·2n -1).∴a n ·b n =(3n -2,1)·(2n -1,3·2n -1)=(3n -2)·2n -1+3·2n -1=(3n +1)·2n -1,设S n =a 1·b 1+a 2·b 2+…+a n ·b n , 则S n ==4·20+7·21+…+(3n +1)·2n -1,2S n =4·2+7·22+…+(3n +1)·2n, 两式相减可得,-S n =4+3(2+22+…+2n -1)-(3n +1)·2n=4+3·21-2n -11-2-(3n +1)·2n =(2-3n )·2n-2,∴a 1·b 1+a 2·b 2+…+a n ·b n =(3n -2)·2n+2.。

2020版高考数学一轮复习第六章数列第3讲等比数列及其前n项和教案理(含解析)新人教A版

2020版高考数学一轮复习第六章数列第3讲等比数列及其前n项和教案理(含解析)新人教A版

第3讲 等比数列及其前n 项和基础知识整合1.等比数列的有关概念 (1)定义如果一个数列从第□012项起,每一项与它的前一项的比等于□02同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的□03公比,通常用字母q 表示,定义的表达式为□04a n +1a n=q . (2)等比中项如果a ,G ,b 成等比数列,那么□05G 叫做a 与b 的等比中项,即G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒□06G 2=ab (ab ≠0). 2.等比数列的有关公式 (1)通项公式:a n =□07a 1q n -1.等比数列的常用性质(1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k.(5)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n.(6)等比数列{a n }满足⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }是递增数列;满足⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.1.(2019·四川成都检测)在等比数列{a n }中,已知a 3=6,a 3+a 5+a 7=78,则a 5=( ) A .12B .18答案 B解析 由题意,a 3+a 5+a 7=a 3(1+q 2+q 4)=78,所以1+q 2+q 4=13,解得q 2=3,所以a 5=a 3q 2=18.故选B.2.已知{a n }是等比数列,且a n >0,a 2a 4+2a 3a 5+a 4a 6=25,那么a 3+a 5的值为( ) A .5 B .10 C .15 D .20答案 A解析 根据等比数列的性质,得a 2a 4=a 23,a 4a 6=a 25, ∴a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2. 而a 2a 4+2a 3a 5+a 4a 6=25,∴(a 3+a 5)2=25, ∵a n >0,∴a 3+a 5=5.3.(2019·广西柳州模拟)设等比数列{a n }中,公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72答案 A 解析 S 4=a 1-q 41-q=15a 1,a 3=a 1q 2=4a 1,∴S 4a 3=154.故选A.4.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A .2 B .4 C .8 D .16答案 B解析 由a n a n +1=16n,得a n +1·a n +2=16n +1.两式相除得,a n +1·a n +2a n ·a n +1=16n +116n =16,∴q 2=16.∵a n a n +1=16n,可知公比为正数,∴q =4.5.等比数列{a n }的前n 项和为S n ,若a n >0,q >1,a 3+a 5=20,a 2a 6=64,则S 5=( ) A .31 B .36 C .42 D .48答案 A解析 由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且a n >0,q >1,得a 3=4,a 5=16,所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q =2.所以S 5=-251-2=31.故选A.6.(2019·长春模拟)设数列{a n }的前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,且a 2=-2,则a 7=( )A .16B .32答案 C解析 由题意得S n +2+S n +1=2S n ,得a n +2+a n +1+a n +1=0,即a n +2=-2a n +1,∴{a n }从第二项起是公比为-2的等比数列,∴a 7=a 2q 5=64.故选C.核心考向突破考向一 等比数列的基本运算例1 (1)(2019·汕头模拟)已知等比数列{a n }的前n 项和为S n ,S 3=3a 1+a 2,则S 4S 2=( )A .2B .3C .4D .5答案 B解析 设等比数列的公比为q ,由题意a 1+a 2+a 3=3a 1+a 2得a 3=2a 1(a 1≠0),∴q 2=a 3a 1=2,∴S 4S 2=1-q 41-q2=1+q 2=3.故选B.(2)(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. ①求{a n }的通项公式;②记S n 为{a n }的前n 项和.若S m =63,求m . 解 ①设{a n }的公比为q ,由题设得a n =qn -1.由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.②若a n =(-2)n -1,则S n =1--n3.由S m =63得(-2)m=-188,此方程没有正整数解. 若a n =2n -1,则S n =2n-1.由S m =63得2m=64,解得m =6. 综上,m =6.触类旁通等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)所求问题可迎刃而解.解决此类问题的关键是熟练掌握等比数列的有关公式,并灵活运用,在运算过程中,还应善于运用整体代换思想简化运算的过程.即时训练 1.已知等比数列{a n }的前n 项和为S n ,且a 2018=3S 2017+2018,a 2017=3S 2016+2018,则公比q 等于( )A .3B .13C .4D .14答案 C解析 由a 2018=3S 2017+2018,a 2017=3S 2016+2018,得a 2017q -3S 2017=2018,a 2017-3S 2016=2018,∴a 2017q -3S 2017=a 2017-3S 2016,∴a 2017(q -1)=3(S 2017-S 2016)=3a 2017,∴q =4.故选C.2.等比数列{a n }中,a 1+a 3=10,a 2+a 4=30,则数列{a n }的前5项和S 5=( ) A .81 B .90 C .100 D .121答案 D解析 ∵等比数列{a n }中,a 1+a 3=10,a 2+a 4=30, ∴公比q =a 2+a 4a 1+a 3=3010=3,∴a 1+9a 1=10,解得a 1=1,∴数列{a n }的前5项和S 5=-351-3=121.故选D.3.(2019·安徽皖江名校联考)已知S n 是各项均为正数的等比数列{a n }的前n 项和,若a 2·a 4=16,S 3=7,则a 8=________.答案 128解析 ∵a 2·a 4=a 23=16,∴a 3=4(负值舍去),∵a 3=a 1q 2=4,S 3=7,∴q ≠1,S 2=a 1-q 21-q=4q 2+q -q1-q=3,∴3q 2-4q-4=0,解得q =-23或q =2,∵a n >0,∴q =-23舍去,∴q =2,∴a 1=1,∴a 8=27=128.考向二 等比数列的性质角度1 等比数列项的性质例 2 (1)(2019·四川绵阳模拟)等比数列{a n }的各项均为正数,且a 1+2a 2=4,a 24=4a 3a 7,则a 5=( )A.116B.18 C .20 D.40答案 B解析 设等比数列的公比为q .由a 24=4a 3a 7,得a 24=4a 25,所以q 2=⎝ ⎛⎭⎪⎫a 5a 42=14,解得q =±12.又因为数列的各项均为正数,所以q =12.又因为a 1+2a 2=4,所以a 1+2a 1q =a 1+2a 1×12=4,解得a 1=2,所以a 5=a 1q 4=2×⎝ ⎛⎭⎪⎫124=18.故选B.(2)在等比数列{a n }中,公比a 1+a m =17,a 2a m -1=16,且前m 项和S m =31,则项数m =________.答案 5解析 由等比数列的性质知a 1a m =a 2a m -1=16,又a 1+a m =17,q >1,所以a 1=1,a m =16,S m =a 1-q m1-q=a 1-a m q 1-q =1-16q 1-q=31,解得q =2,a m =a 1q m -1=2m -1=16.所以m =5.触类旁通在等比数列的基本运算问题中,一般是利用通项公式与前n 项和公式,建立方程组求解,但如果灵活运用等比数列的性质“若m +n =p +q m ,n ,p ,q ∈N*,则有a m a n =a p a q ”,则可减少运算量,解题时,要注意性质成立的前提条件,有时需要进行适当变形.即时训练 4.(2019·福建三明模拟)已知数列{a n }是各项均为正值的等比数列,且a 4a 12+a 3a 5=15,a 4a 8=5,则a 4+a 8=( )A .15 B. 5 C .5 D .25答案 C解析 ∵a 4a 12+a 3a 5=15,∴a 24+a 28=15,又a 4a 8=5,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=25,又a 4+a 8>0,∴a 4+a 8=5.故选C.5.(2019·江西联考)在等比数列{a n }中,若a 2a 5=-34,a 2+a 3+a 4+a 5=54,则1a 2+1a 3+1a 4+1a 5=( ) A .1 B .-34C .-53D .43答案 C解析 因为数列{a n }是等比数列,a 2a 5=-34=a 3a 4,a 2+a 3+a 4+a 5=54,所以1a 2+1a 3+1a 4+1a 5=a 2+a 5a 2a 5+a 3+a 4a 3a 4=54-34=-53.故选C. 角度2 等比数列和的性质例3 (1)已知各项都是正数的等比数列{a n },S n 为其前n 项和,且S 3=10,S 9=70,那么S 12=( )A .150B .-200C .150或-200D .400或-50答案 A解析 解法一:由等比数列的性质知S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,∴(S 6-10)2=10(70-S 6),解得S 6=30或-20(舍去),又(S 9-S 6)2=(S 6-S 3)·(S 12-S 9),即402=20(S 12-70),解得S 12=150.故选A.解法二:设等比数列前n 项和为S n =A -Aqn,则⎩⎪⎨⎪⎧A -q 9=70,A-q3=10,两式相除得1+q 3+q 6=7,解得q 3=2或-3(舍去),∴A =-10.∴S 12=-10(1-24)=150.故选A.(2)已知等比数列{a n }的前10项中,所有奇数项之和为8514,所有偶数项之和为17012,则S =a 3+a 6+a 9+a 12的值为________.答案 585解析 设公比为q ,由⎩⎪⎨⎪⎧S偶S奇=q =2,S奇=a 1[1-q 25]1-q2=8514,得⎩⎪⎨⎪⎧a 1=14,q =2,∴S =a 3+a 6+a 9+a 12=a 3(1+q 3+q 6+q 9)=a 1q 2(1+q 3)(1+q 6)=585.触类旁通等比数列前n 项和的性质主要是若S n ≠0,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列. (2)注意等比数列前n 项和公式的变形.当q ≠1时,S n =a 1-q n1-q=a 11-q -a 11-q·q n,即S n =A -Aq n(q ≠1).利用等比数列的性质可以减少运算量,提高解题速度.解题时,根据题目条件,分析具体的变化特征,即可找到解决问题的突破口.即时训练 6.(2019·云南玉溪模拟)等比数列{a n }中,公比q =2,a 1+a 4+a 7+…+a 97=11,则数列{a n }的前99项的和S 99=( )A .99B .88C .77D .66答案 C解析 解法一:由等比数列性质知a 1,a 4,a 7,…,a 97是等比数列且其公比为q 3=8,∴a 1-8331-8=11,∴a 1(1-299)=-77,∴S 99=a 1-q 991-q=77.故选C.解法二:令S 0=a 1+a 4+a 7+…+a 97=11,S ′=a 2+a 5+a 8+…+a 98,S ″=a 3+a 6+a 9+…+a 99.由数列{a n }为等比数列,q =2易知S 0,S ′,S ″成等比数列且公比为2,则S ′=2S 0=22,S ″=2S ′=44,所以S 99=S 0+S ′+S ″=11+22+44=77.故选C.7.各项均为正数的等比数列{a n }的前n 项和为S n ,若S n =2,S 3n =14,则S 4n 等于( ) A .80 B .30 C .26D .16答案 B解析 由题意知公比大于0,由等比数列性质知S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…仍为等比数列.设S 2n =x ,则2,x -2,14-x 成等比数列.由(x -2)2=2×(14-x ),解得x =6或x =-4(舍去).∴S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…是首项为2,公比为2的等比数列.又∵S 3n =14,∴S 4n =14+2×23=30.故选B.考向三 等比数列的判定与证明例4 (1)(2018·全国卷Ⅰ)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a n n. ①求b 1, b 2, b 3;②判断数列{b n }是否为等比数列,并说明理由; ③求{a n }的通项公式. 解 ①由条件可得a n +1=n +na n .将n =1代入,得a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入,得a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.②{b n }是首项为1,公比为2的等比数列.由题设条件可得a n +1n +1=2a nn,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.③由②可得a n n=2n -1,所以a n =n ·2n -1.(2)(2019·安徽江南十校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4. ①证明:{S n -n +2}为等比数列; ②求数列{S n }的前n 项和T n .解 ①证明:当n =1时,a 1=S 1,S 1-2a 1=1-4,解得a 1=3.由S n -2a n =n -4可得S n -2(S n -S n -1)=n -4(n ≥2),即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2].因为S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. ②由①知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =-2n1-2+n n +2-2n =2n +3+n 2-3n -82.触类旁通判定一个数列为等比数列的常用方法(1)定义法:若a n +1a n=q (q 是常数),则数列{a n }是等比数列.等比中项法:若a 2n +1=a n a n +2n ∈N *,则数列{a n }是等比数列.通项公式法:若a n =Aq nA ,q 为常数,则数列{a n }是等比数列.即时训练 8.(2019·柳州模拟)已知数列{a n }的前n 项和为S n ,满足S n =2a n -2n (n ∈N *).(1)证明:{a n +2}是等比数列,并求{a n }的通项公式; (2)数列{b n }满足b n =log 2(a n +2),T n 为数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和,若T n <a 对任意正整数n 都成立,求a 的取值范围.解 (1)证明:因为S n =2a n -2n (n ∈N *) ①, 所以a 1=S 1=2a 1-2,得a 1=2.当n ≥2时,S n -1=2a n -1-2(n -1) ②.由①②两式相减得a n =2a n -1+2,变形得a n +2=2(a n -1+2).又因为a 1+2=4,所以{a n +2}是以4为首项,2为公比的等比数列,所以a n +2=4×2n-1,所以a n =4×2n -1-2=2n +1-2(n ≥2).又a 1=2也符合上述表达式,所以a n =2n +1-2(n ∈N *).(2)因为b n =log 2(a n +2)=log 22n +1=n +1,1b n b n +1=1n +n +=1n +1-1n +2, 所以T n =⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2=12-1n +2<12,依题意得a ≥12,即a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.。

江苏专版高考数学一轮复习第六章数列第三节等比数列教案文含解析苏教版

江苏专版高考数学一轮复习第六章数列第三节等比数列教案文含解析苏教版

江苏专版高考数学一轮复习第六章数列第三节等比数列教案文含解析苏教版第三节 等比数列1.等比数列的有关概念 (1)定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q . (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1qn -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·qn -m(n ,m ∈N *);(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *), 则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k. [小题体验]1.设S n 是等比数列{}a n 的前n 项和,若a 1=1,a 6=32,则S 3=________. 答案:72.在等比数列{a n }中,若a 1=1,a 3a 5=4(a 4-1),则a 7=________.解析:法一:设等比数列{a n }的公比为q ,因为a 1=1,a 3a 5=4(a 4-1),所以q 2·q 4=4(q 3-1),即q 6-4q 3+4=0,q 3=2,所以a 7=q 6=4.法二:设等比数列{a n }的公比为q, 由a 3a 5=4(a 4-1)得a 24=4(a 4-1),即a 24-4a 4+4=0,所以a 4=2,因为a 1=1,所以q 3=2,a 7=q 6=4.答案:43.(2018·南京学情调研)已知各项均为正数的等比数列{a n },其前n 项和为S n .若a 2-a 5=-78,S 3=13,则数列{a n }的通项公式a n =________.解析:设等比数列{a n }的公比为q (q >0),则由题意得⎩⎪⎨⎪⎧a 1q -a 1q 4=-78,a 11+q +q 2=13,两式相除得q 2-q -6=0,即q =3或q =-2(舍去),从而得a 1=1,所以数列{a n }的通项公式为a n = 3n -1.答案:3n -11.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.4.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.[小题纠偏]1.(2019·扬州质检)在等比数列{}a n 中,若a 3=7,前3项和S 3=21,则公比q =________.解析:由已知得⎩⎪⎨⎪⎧a 1q 2=7,a 1+a 1q +a 1q 2=21,则1+q +q2q2=3,整理得2q 2-q -1=0,解得q =1或q =-12.答案:1或-122.各项均为正数的等比数列{}a n 的前n 项和为S n ,若S 10=2,S 30=14,则S 40=_______. 解析:依题意有S 10,S 20-S 10,S 30-S 20,S 40-S 30仍成等比数列,则2(14-S 20)=(S 20-2)2,解得S 20=6.所以S 10,S 20-S 10,S 30-S 20,S 40-S 30,即为2,4,8,16,所以S 40=S 30+16=30.答案:30考点一 等比数列的基本运算重点保分型考点——师生共研 [典例引领]1.(2019·苏北四市调研)在各项均为正数的等比数列{}a n 中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.解析:设等比数列{}a n 的公比为q ,由a 2=1,a 8=a 6+2a 4得q 6=q 4+2q 2,q 4-q 2-2=0,解得q 2=2,则a 6=a 2q 4=4.答案:42.(2018·南通一调)设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=________. 解析:法一:设等比数列{a n }的首项为a 1,公比为q .显然q ≠1,由题意得⎩⎪⎨⎪⎧a 11-q 21-q=3,a11-q 41-q=15.解得⎩⎪⎨⎪⎧q =2,a 1=1或⎩⎪⎨⎪⎧q =-2,a 1=-3.所以S 6=a 11-q 61-q =1×1-261-2=63或S 6=a 11-q 61-q =-3×[1--26]1--2=63.法二:由S 2,S 4-S 2,S 6-S 4成等比数列可得(S 4-S 2)2=S 2(S 6-S 4),所以S 6=63. 答案:63[由题悟法]解决等比数列有关问题的2种常用思想 方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q1-q[即时应用]1.(2019·如东调研)设等比数列{}a n 的前n 项和为S n .若27a 3-a 6=0,则S 6S 3=________.解析:设等比数列的公比为q ,则a 6a 3=q 3=27, 所以S 6S 3=a 1+a 2+…+a 6a 1+a 2+a 3=1+a 4+a 5+a 6a 1+a 2+a 3=1+q 3+q 4+q 51+q +q2=1+q 3=28.答案:282.(2018·苏北四市期末)已知等比数列{a n }的前n 项和为S n ,若S 2=2a 2+3,S 3=2a 3+3,则公比q =________.解析:显然q ≠1,由题意得⎩⎪⎨⎪⎧a 11-q 21-q=2a 1q +3,a 11-q 31-q=2a 1q 2+3,整理得⎩⎪⎨⎪⎧a 11-q =3,a 11+q -q2=3,解得q =2.答案:2考点二 等比数列的判定与证明重点保分型考点——师生共研 [典例引领](2019·南京高三年级学情调研)已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a 2n }的前n 项和为T n ,且3T n =S 2n +2S n ,n ∈N *.(1)求a 1的值;(2)求证数列{a n }为等比数列,并求其通项公式;(3)若k ,t ∈N *,且S 1,S k -S 1,S t -S k 成等比数列,求k 和t 的值. 解:(1)由3T 1=S 21+2S 1,得3a 21=a 21+2a 1,即a 21-a 1=0. 因为a 1>0,所以a 1=1.(2)证明:因为3T n =S 2n +2S n , ① 所以3T n +1=S 2n +1+2S n +1, ② ②-①,得3a 2n +1=S 2n +1-S 2n +2a n +1. 因为a n +1>0,所以3a n +1=S n +1+S n +2, ③ 所以3a n +2=S n +2+S n +1+2, ④④-③,得3a n +2-3a n +1=a n +2+a n +1,即a n +2=2a n +1, 所以当n ≥2时,a n +1a n=2. 又由3T 2=S 22+2S 2,得3(1+a 22)=(1+a 2)2+2(1+a 2),即a 22-2a 2=0.因为a 2>0,所以a 2=2,所以a 2a 1=2, 所以对∀n ∈N *,都有a n +1a n=2成立,故数列{a n }是首项为1,公比为2的等比数列, 所以数列{a n }的通项公式为a n =2n -1,n ∈N *.(3)由(2)可知S n =2n-1.因为S 1,S k -S 1,S t -S k 成等比数列,所以(S k -S 1)2=S 1(S t -S k ),即(2k -2)2=2t -2k, 所以2t=(2k )2-3·2k+4,即2t -2=(2k -1)2-3·2k -2+1(*).由于S k -S 1≠0,所以k ≠1,即k ≥2. 当k =2时,2t=8,得t =3. 当k ≥3时,由(*),得(2k -1)2-3·2k -2+1为奇数, 所以t -2=0,即t =2,代入(*)得22k -2-3·2k -2=0,即2k=3,此时k 无正整数解.综上,k =2,t =3.[由题悟法]等比数列的4种常用判定方法[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.[即时应用](2018·苏州高三期中调研)已知数列{a n }的前n 项和是S n ,且满足a 1=1,S n +1=3S n +1 (n ∈N *).(1)求证:数列{a n }为等比数列,并求其通项公式; (2)在数列{b n }中,b 1=3,b n +1-b n =a n +1a n(n ∈N *),若不等式λa n +b n ≤n 2对n ∈N *有解,求实数λ的取值范围.解:(1)证明:因为S n +1=3S n +1,所以S n =3S n -1+1(n ≥2), 两式相减得a n +1=3a n (n ≥2),又当n =1时,由S 2=3S 1+1,得a 2=3,符合a 2=3a 1, 所以a n +1=3a n ,所以数列{a n }是以1为首项,3为公比的等比数列,通项公式为a n =3n -1. (2)因为b n +1-b n =a n +1a n=3, 所以{b n }是以3为首项,3为公差的等差数列, 所以b n =3+3(n -1)=3n ,所以λa n +b n ≤n 2,即3n -1·λ+3n ≤n 2,即λ≤n 2-3n3n -1对n ∈N *有解,设f (n )=n 2-3n3n -1(n ∈N *),因为f (n +1)-f (n )=n +12-3n +13n-n 2-3n 3n -1=-2n 2-4n +13n,所以当n ≥4时,f (n +1)<f (n ),当n <4时,f (n +1)>f (n ), 所以f (1)<f (2)<f (3)<f (4)>f (5)>f (6)>…, 所以f (n )max =f (4)=427,所以λ≤427,即实数λ的取值范围为⎝ ⎛⎦⎥⎤-∞,427. 考点三 等比数列的性质重点保分型考点——师生共研[典例引领]1.(2018·南京调研)已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=________.解析:由等差数列的性质,得a 6+a 8=2a 7.由a 6-a 27+a 8=0,可得a 7=2,所以b 7=a 7=2.由等比数列的性质得b 2b 8b 11=b 2b 7b 12=b 37=23=8.答案:82.设等比数列{}a m 的前n 项积为T n (n ∈N *),若a m -1a m +1-2a m =0,且T 2m -1=128,则m=________.解析:因为{}a m 为等比数列,所以a m -1·a m +1=a 2m .又a m -1·a m +1-2a m =0,所以得a m =2.因为T 2m -1=a 2m -1m,所以22m -1=128,解得m =4.答案:43.在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10=________.解析:因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158×⎝ ⎛⎭⎪⎫-89=-53.答案:-53[由题悟法]掌握运用等比数列性质解题的2个技巧(1)在等比数列的基本运算问题中,一般是列出a 1,q 满足的方程组求解,但有时运算量较大,如果可利用等比数列的性质,便可减少运算量,提高解题的速度,要注意挖掘已知和隐含的条件.(2)利用性质可以得到一些新数列仍为等比数列或为等差数列,例如:①若{a n }是等比数列,且a n >0,则{log a a n }(a >0且a ≠1)是以log a a 1为首项,log a q 为公差的等差数列.②若公比不为1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n.[即时应用]1.(2019·张家港调研)已知等比数列{}a n 的各项均为正数,且满足a 1a 9=4,则数列{log 2a n }的前9项之和为________.解析:∵a 1a 9=a 25=4,∴a 5=2,∴log 2a 1+log 2a 2+…+log 2a 9=log 2(a 1a 2…a 9)=log 2a 95=9log 2a 5=9. 答案:92.(2018·镇江调研)在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n =________.解析:设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12,可得q 9=3,a n -1a n a n +1=a 31q3n -3=324,因此q 3n -6=81=34=q 36,所以3n -6=36,即n =14. 答案:14一抓基础,多练小题做到眼疾手快1.(2019·如东中学检测)已知等比数列{a n }的公比q =-12,则a 1+a 3+a 5a 2+a 4+a 6=________.解析:a 1+a 3+a 5a 2+a 4+a 6=a 1+a 3+a 5q a 1+a 3+a 5=a 1+a 3+a 5-12a 1+a 3+a 5=-2.答案:-22.(2018·盐城期中)在等比数列{a n }中,已知a 1+a 2=1,a 3+a 4=2,则a 9+a 10=________.解析:设等比数列{a n }的公比为q ,则a 3+a 4=q 2(a 1+a 2),所以q 2=2,所以a 9+a 10=q 8(a 1+a 2)=16.答案:163.(2018·苏州期末)设各项均为正数的等比数列{}a n 的前n 项和为S n ,已知a 2=6,a 3-3a 1=12,则S 5=________.解析:∵a 2=6,a 3-3a 1=12,∴⎩⎪⎨⎪⎧a 1q =6,a 1q 2-3a 1=12且q >0,解得a 1=2,q =3, ∴S 5=21-351-3=242.答案:2424.在等比数列{a n }中,若a 1·a 5=16,a 4=8,则a 6=________. 解析:由题意得,a 2·a 4=a 1·a 5=16, 所以a 2=2,所以q 2=a 4a 2=4,所以a 6=a 4q 2=32. 答案:325.(2019·南京一模)若等比数列{}a n 的前n 项和为S n ,且a 1=1,S 6=3S 3,则a 7的值为________.解析:设等比数列{}a n 的公比为q , 因为a 1=1,S 6=3S 3, 当q =1时,不满足S 6=3S 3;当q ≠1时,可得q 6-1q -1=3q 3-1q -1,化简得q 3+1=3,即q 3=2, 所以a 7=a 1q 6=4. 答案:46.(2018·常州期末)已知等比数列{a n }的各项均为正数,且a 1+a 2=49,a 3+a 4+a 5+a 6=40,则a 7+a 8+a 99的值为________.解析:⎩⎪⎨⎪⎧a 1+a 2=a 11+q =49,a 3+a 4+a 5+a 6=a 1q 2+q 3+q 4+q 5=40,两式相除可得q 2+q 4=90,即q 2=-10(舍)或q 2=9.又a n >0,所以q =3,故a 1=19,所以a 7+a 8+a 9=34+35+36=1 053,即a 7+a 8+a 99=117.答案:117二保高考,全练题型做到高考达标1.(2018·徐州期末)设等比数列{}a n 的公比为q ,前n 项和为S n ,若S 2是S 3与S 4的等差中项,则实数q 的值为________.解析:∵S 2是S 3与S 4的等差中项, ∴2S 2=S 3+S 4,∴2a 3+a 4=0, 解得q =-2. 答案:-22.(2019·如皋模拟)已知数列{}a n 是正项等比数列,满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+a 4+a 5=2,则log 2(a 51+a 52+a 53+a 54+a 55)=________.解析:∵log 2a n +1=1+log 2a n , ∴log 2a n +1a n=1,可得q =2. ∵a 1+a 2+a 3+a 4+a 5=2, ∴log 2(a 51+a 52+a 53+a 54+a 55)=log 2[(a 1+a 2+a 3+a 4+a 5)q 50]=log 2251=51. 答案:513.设等比数列{}a n 的公比为q (0<q <1),前n 项和为S n .若存在m ∈N *,使得a m +a m +2=52a m +1,且S m =1 022a m +1,则m 的值为________. 解析:∵a m +a m +2=52a m +1,S m =1 022a m +1,∴⎩⎪⎨⎪⎧a 1q m -1+a 1q m +1=52a 1q m,a 11-q m1-q =1 022a 1q m,解得m =9,q =12.答案:94.(2018·启东检测)数列{a n }满足a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n-1}是等比数列,则λ=________.解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.因为数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:25.(2019·姜堰模拟)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=2728,则a 5a 3=________.解析:设等比数列{a n }的公比为q ,由S 3S 6=2728, 得q ≠1,a 11-q 31-q a 11-q 61-q =2728,化简得11+q 3=2728,解得q =13. 所以a 5a 3=q 2=19.答案:196.(2018·海安中学测试)在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m =________.解析:由等比数列的性质可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5.答案:57.已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项和S 9=________.解析:由已知,得a 2n +1=4a n a n +1-4a 2n , 即a 2n +1-4a n a n +1+4a 2n =(a n +1-2a n )2=0, 所以a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列, 故S 9=2×1-291-2=210-2=1 022.答案:1 0228.(2019·徐州调研)已知正项等比数列{}a n 的前n 项和为S n 且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为________.解析:因为S 8-2S 4=6,所以S 8-S 4=S 4+6.由等比数列的性质可得,S 4,S 8-S 4,S 12-S 8成等比数列,所以S 4(S 12-S 8)=(S 8-S 4)2,所以a 9+a 10+a 11+a 12=S 12-S 8=S 4+62S 4=S 4+36S 4+12≥24,当且仅当S 4=6时等号成立.故a 9+a 10+a 11+a 12的最小值为24. 答案:249.在公差不为零的等差数列{a n }中,a 1=1,a 2,a 4,a 8成等比数列. (1)求数列{a n }的通项公式;(2)设b n =2a n ,T n =b 1+b 2+…+b n ,求T n . 解:(1)设等差数列{a n }的公差为d , 则依题意有⎩⎪⎨⎪⎧a 1=1,a 1+3d2=a 1+d a 1+7d ,解得d =1或d =0(舍去), 所以a n =1+(n -1)=n . (2)由(1)得a n =n , 所以b n =2n, 所以b n +1b n=2, 所以{b n }是首项为2,公比为2的等比数列, 所以T n =21-2n1-2=2n +1-2.10.(2018·苏州高三期中调研)已知数列{a n }各项均为正数,a 1=1,a 2=2,且a n a n +3=a n +1a n +2对任意n ∈N *恒成立,记{a n }的前n 项和为S n .(1)若a 3=3,求a 5的值;(2)证明:对任意正实数p ,{a 2n +pa 2n -1}成等比数列;(3)是否存在正实数t ,使得数列{S n +t }为等比数列.若存在,求出此时a n 和S n 的表达式;若不存在,说明理由.解:(1)因为a 1a 4=a 2a 3,所以a 4=6, 又因为a 2a 5=a 3a 4,所以a 5=32a 4=9.(2)证明:由⎩⎪⎨⎪⎧a n a n +3=a n +1a n +2,a n +1a n +4=a n +2a n +3,两式相乘得a n a n +1a n +3a n +4=a n +1a 2n +2a n +3, 因为a n >0,所以a n a n +4=a 2n +2(n ∈N *), 从而{a n }的奇数项和偶数项均构成等比数列,设公比分别为q 1,q 2,则a 2n =a 2q n -12=2q n -12,a 2n -1=a 1q n -11=q n -11, 又因为a n +3a n +2=a n +1a n ,所以a 4a 3=a 2a 1=2=2q 2q 1,即q 1=q 2, 设q 1=q 2=q ,则a 2n +pa 2n -1=q (a 2n -2+pa 2n -3),且a 2n +pa 2n -1>0恒成立, 所以数列{a 2n +pa 2n -1}是首项为2+p ,公比为q 的等比数列.(3)法一:在(2)中令p =1,则数列{a 2n +a 2n -1}是首项为3,公比为q 的等比数列, 所以S 2k =(a 2k +a 2k -1)+(a 2k -2+a 2k -3)+…+(a 2+a 1)=⎩⎪⎨⎪⎧3k ,q =1,31-q k1-q ,q ≠1,S 2k -1=S 2k -a 2k =⎩⎪⎨⎪⎧3k -2q k -1,q =1,31-q k 1-q -2q k -1,q ≠1,且S 1=1,S 2=3,S 3=3+q ,S 4=3+3q , 因为数列{S n +t }为等比数列,所以⎩⎪⎨⎪⎧S 2+t 2=S 1+t S 3+t ,S 3+t2=S 2+tS 4+t ,即⎩⎪⎨⎪⎧3+t2=1+t 3+q +t ,3+q +t 2=3+t3+3q +t ,即⎩⎪⎨⎪⎧2t +6=q 1+t,t =q -3,解得⎩⎪⎨⎪⎧t =1,q =4或⎩⎪⎨⎪⎧t =-3,q =0(舍去).所以S 2k =4k-1=22k-1,S 2k -1=22k -1-1,从而对任意n ∈N *有S n =2n-1, 此时S n +t =2n,S n +tS n -1+t=2为常数,满足{S n +t }成等比数列,当n ≥2时,a n =S n -S n -1=2n-2n -1=2n -1,又a 1=1,所以a n =2n -1(n ∈N *),综上,存在t =1使数列{S n +t }为等比数列,此时a n =2n -1,S n =2n-1(n ∈N *).法二:由(2)知a 2n =2qn -1,a 2n -1=qn -1,且S 1=1,S 2=3,S 3=3+q ,S 4=3+3q ,因为数列{S n +t }为等比数列,所以⎩⎪⎨⎪⎧S 2+t 2=S 1+t S 3+t ,S 3+t2=S 2+tS 4+t ,即⎩⎪⎨⎪⎧3+t2=1+t 3+q +t ,3+q +t2=3+t3+3q +t ,即⎩⎪⎨⎪⎧2t +6=q 1+t ,t =q -3,解得⎩⎪⎨⎪⎧t =1,q =4或⎩⎪⎨⎪⎧t =3,q =0(舍去).所以a 2n =2qn -1=22n -1,a 2n -1=22n -2,从而对任意n ∈N *有a n =2n -1,所以S n =20+21+22+…+2n -1=1-2n1-2=2n -1, 此时S n +t =2n,S n +tS n -1+t=2为常数,满足{S n +t }成等比数列,综上,存在t =1使数列{S n +t }为等比数列,此时a n =2n -1,S n =2n -1(n ∈N *).三上台阶,自主选做志在冲刺名校1.各项均为正数的等比数列{a n }中,若a 1≥1,a 2≤2,a 3≥3,则a 4的取值范围是________. 解析:设{a n }的公比为q ,则根据题意得q =a 2a 1=a 3a 2, ∴32≤q ≤2,a 4=a 3q ≥92,a 4=a 2q 2≤8,∴a 4∈⎣⎢⎡⎦⎥⎤92,8. 答案:⎣⎢⎡⎦⎥⎤92,8 2.(2018·泰州中学高三学情调研)设正项等比数列{a n }满足2a 5=a 3-a 4,若存在两项a n ,a m ,使得a 1=4a n ·a m ,则m +n =________.解析:设等比数列{a n }的公比为q .正项等比数列{a n }满足2a 5=a 3-a 4,则2a 3q 2=a 3(1-q ),可得2q 2+q -1=0,q >0,解得q =12,若存在两项a n ,a m ,使得a 1=4a n ·a m ,可得a 1=4a 21⎝ ⎛⎭⎪⎫12m +n -2,所以m +n =6. 答案:63.(2019·苏锡常镇调研)已知数列{a n }的前n 项和为S n ,a 1=3,且对任意的正整数n ,都有S n +1=λS n +3n +1,其中常数λ>0.设b n =a n3n (n ∈N *).(1)若λ=3,求数列{}b n 的通项公式; (2)若λ≠1且λ≠3,设c n =a n +2λ-3·3n (n ∈N *),证明数列{}c n 是等比数列; (3)若对任意的正整数n ,都有b n ≤3,求实数λ的取值范围. 解:因为S n +1=λS n +3n +1,n ∈N *,所以当n ≥2时,S n =λS n -1+3n, 从而a n +1=λa n +2·3n,n ≥2,n ∈N *﹒ 在S n +1=λS n +3n +1中,令n =1,可得a 2=λa 1+2×31,满足上式,所以a n +1=λa n +2·3n,n ∈N *.(1)当λ=3时, a n +1=3a n +2·3n,n ∈N *,从而a n +13n +1=a n 3n +23,即b n +1-b n =23,又b 1=a 13=1,所以数列{}b n 是首项为1,公差为23的等差数列,所以b n =1+(n -1)×23=2n +13.(2)证明:当λ>0且λ≠3且λ≠1时,c n =a n +2λ-3·3n =λa n -1+2·3n -1+2λ-3·3n=λa n -1+2λ-3·3n -1(λ-3+3) =λ⎝⎛⎭⎪⎫a n -1+2λ-3·3n -1=λ·c n -1, 又c 1=3+6λ-3=3λ-1λ-3≠0, 所以{}c n 是首项为3λ-1λ-3,公比为λ的等比数列,故c n =3λ-1λ-3·λn -1.(3)在(2)中,若λ=1,则c n =0也可使a n 有意义,所以当λ≠3时,c n =3λ-1λ-3·λn-1.从而由(1)和(2)可知a n =⎩⎪⎨⎪⎧2n +1·3n -1, λ=3,3λ-1λ-3·λn -1-2λ-3·3n,λ≠3.当λ=3时,b n =2n +13,显然不满足条件,故λ≠3.当λ≠3时,b n =λ-1λ-3×⎝ ⎛⎭⎪⎫λ3n -1-2λ-3. 若λ>3,λ-1λ-3>0,b n <b n +1,n ∈N *,b n ∈[1,+∞),不符合,舍去. 若0<λ<1,λ-1λ-3>0,-2λ-3>0,b n >b n +1,n ∈N *,且b n >0. 所以只需b 1=a 13=1≤3即可,显然成立. 故0<λ<1符合条件;若λ=1,b n =1,满足条件.故λ=1符合条件; 若1<λ<3,λ-1λ-3<0,-2λ-3>0,从而b n <b n +1,n ∈N *, 因为b 1=1>0.故b n ∈⎣⎢⎡⎭⎪⎫1,-2λ-3, 要使b n ≤3恒成立,只需-2λ-3≤3即可. 所以1<λ≤73.综上所述,实数λ的取值范围是⎝ ⎛⎦⎥⎤0,73.。

高中数学高考2022届高考数学一轮复习(新高考版) 第6章 高考专题突破三 高考中的数列问题

高中数学高考2022届高考数学一轮复习(新高考版) 第6章 高考专题突破三 高考中的数列问题

(1)求a4的值;
解 因为 4Sn+2+5Sn=8Sn+1+Sn-1,a1=1,a2=32,a3=54,
当n=2时,4S4+5S2=8S3+S1,
即 4×1+32+54+a4+5×1+32=8×1+32+45+1,
解得 a4=78.
(2)证明:an+1-12an为等比数列.
证明 由4Sn+2+5Sn=8Sn+1+Sn-1(n≥2), 得4Sn+2-4Sn+1+Sn-Sn-1=4Sn+1-4Sn(n≥2), 即4an+2+an=4an+1(n≥2). 当 n=1 时,有 4a3+a1=4×54+1=6=4a2,∴4an+2+an=4an+1, ∴aan+n+2-1-2112aan+n 1=44aan+n+2-1-22aan+n 1=4an4+a1-n+a1-n-22aan n+1=222aann++11--aann=12, ∴数列an+1-12an是以 a2-12a1=1 为首项,12为公比的等比数列.
4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构 成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和 公式就是用此法推导的.
题型突破 核心探究
TIXINGTUPO HEXINTANJIU
题型一 数列与数学文化
自主演练
1.(多选)(2020·山东曲阜一中月考)在《增删算法统宗》中有这样一则故事:
2.我国古代数学名著《算法统宗》中说:“九百九十六斤棉,赠分八子
做盘缠.次第每人多十七,要将第八数来言.务要分明依次第,孝和休惹
外人传.”意为:“996斤棉花,分别赠送给8个子女做旅费,从第1个孩
Байду номын сангаас
子开始,以后每人依次多17斤,直到第8个孩子为止.分配时一定要按照

高三数学第一轮复习——数列(知识点很全)五篇范文

高三数学第一轮复习——数列(知识点很全)五篇范文

高三数学第一轮复习——数列(知识点很全)五篇范文第一篇:高三数学第一轮复习——数列(知识点很全)数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列通项公式,即anan的第n,那么这个公式叫做这个数列的,且任何一项an与它的前一项an-1(或前几{an}的第一项(或前几项)=f(n).3.递推公式:如果已知数列=f(an-1)或an=f(an-1,an-2),那么这个式子叫做数列{an}的递推公式.如数列{an}中,a1=1,an=2an+1,其中an=2an+1是数列{an}的递推项)间的关系可以用一个式子来表示,即an公式.4.数列的前n项和与通项的公式⎧S1(n=1)①Sn=a1+a2+Λ+an;②an=⎨.S-S(n≥2)n-1⎩n5.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何n∈N+,均有an+1②递减数列:对于任何n∈N+,均有an+1③摆动数列:例如: -1,1,-1,1,-1,Λ.④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M使>an.<an.an≤M,n∈N+.⑥无界数列:对于任何正数M,总有项an使得an>M.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前项和公式⑴通项公式an=a1+(n-1)d,a1为首项,d=为公差.⑵前n项和公式Sn3.等差中项 n(a1+an)1或Sn=na1+n(n-1)d.22A叫做a与b的等差中项.如果a,A,b成等差数列,那么即:A是a与b的等差中项⇔2A=a+b⇔a,A,b成等差数列.4.等差数列的判定方法⑴定义法:an+1-an=d(n∈N+,d是常数)⇔{an}是等差数列;⑵中项法:2an+1⑴数列=an+an+2(n∈N+)⇔{an}是等差数列.5.等差数列的常用性质{an}是等差数列,则数列{an+p}、{pan}(p是常数)都是等差数列;⑵在等差数列{an}中,等距离取出若干项也构成一个等差数列,即an,an+k,an+2k,an+3k,Λ为等差数列,公差为kd.⑶an=am+(n-m)d;an=an+b(a,b是常数);Sn=an2+bn(a,b是常数,a≠0)⑷若m+n =p+q(m,n,p,q∈N+),则am+an=ap+aq;1⑸若等差数列Sn⎫{an}的前n项和Sn,则⎧⎨⎬是等差数列;⎩n⎭;S偶an+1⑹当项数为2n(n∈N+),则S偶-S奇=nd,=S奇an当项数为2n-1(n∈N+),则S奇-S偶=an,S偶n-1.=S奇n等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数q(q列,常数q称为等比数列的公比.≠0),这个数列叫做等比数2.通项公式与前n项和公式⑴通项公式:an=a1qn-1,a1为首项,q为公比.=1时,Sn=na1⑵前n项和公式:①当qa1(1-qn)a1-anq②当q≠1时,Sn=.=1-q1-q3.等比中项如果a,G,b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等差中项⇔a,4.等比数列的判定方法⑴定义法:A,b成等差数列⇒G2=a⋅b.an+1=q(n∈N+,q≠0是常数)⇔{an}是等比数列; an⑵中项法:an+1⑴数列=an⋅an+2(n∈N+)且an≠0⇔{an}是等比数列.5.等比数列的常用性质{an}是等比数列,则数列{pan}、{pan}(q≠0是常数)都是等比数列;⑵在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,Λ为等比数列,公比为q.k=am⋅qn-m(n,m∈N+)⑷若m+n=p+q(m,n,p,q∈N+),则am⋅an=ap⋅aq;⑶an⑸若等比数列{an}的前n项和Sn,则Sk、S2k-Sk、S3k-S2k、S4k-S3k是等比数列.二、典型例题A、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、已知Sn为等差数列{an}的前n项和,a4=9,a9=-6,Sn=63,求n;2、等差数列{an}中,a4=10且a3,a6,a10成等比数列,求数列{an}前20项的和S20.3、设{an}是公比为正数的等比数列,若a1=1,a5=16,求数列{an}前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知Sn为等差数列{an}的前n项和,a6=100,则S11=2、设Sn、Tn分别是等差数列{an}、{an}的前n项和,3、设Sn 是等差数列{an}的前n项和,若Sn7n+2a,则5=.=Tnn+3b5a55S=,则9=()a39S5Sa2n4、等差数列{an},{bn}的前n项和分别为Sn,Tn,若n=,则n=()Tn3n+1bn5、已知Sn为等差数列{an}的前n项和,Sn=m,Sm=n(n≠m),则Sm+n=6、在正项等比数列{an}中,a1a5+2a3a5+a3a7=25,则a3+a5=_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


a4=9,a2a3=8,则数列an的前 n 项和等于________.
解析:设等比数列的公比为 q,则有aa121+ ·q3a=1q83,=9,
解得aq1==21,
a1=8, 或q=12.
又an为递增数列,∴aq1==21,, ∴Sn=11--22n=2n-1.
答案:2n-1
7.(2014·新课标全国卷Ⅰ)已知数列{an}的前 n 项和为 Sn, a1=1,an≠0,anan+1=λSn-1,其中 λ 为常数.
(1)证明:an+2-an=λ; (2)是否存在 λ,使得{an}为等差数列?并说明理由. 解:(1)证明:由题设,anan+1=λSn-1, an+1an+2=λSn+1-1. 两式相减得 an+1(an+2-an)=λan+1. 由于 an+1≠0,所以 an+2-an=λ.
4.(2015·陕西高考)中位数为 1 010 的一组数构成等差数列, 其末项为 2 015,则该数列的首项为________.
解析:设数列首项为 a1,则a1+22 015=1 010,故 a1=5.
答案:5
5.(2015·湖南高考)设 Sn 为等比数列{an}的前 n 项和.若 a1=1,且 3S1,2S2,S3 成等差数列,则 an=________.
2.(2015·浙江高考)已知{an}是等差数列,公差 d 不பைடு நூலகம்零,前
n 项和是 Sn,若 a3,a4,a8 成等比数列,则( )
A.a1d>0,dS4>0
B.a1d<0,dS4<0
C.a1d>0,dS4<0
D.a1d<0,dS4>0
解析:选 B ∵a3,a4,a8 成等比数列,∴a24=a3a8,∴(a1 +3d)2=(a1+2d)(a1+7d),展开整理,得-3a1d=5d2,即 a1d =-53d2.∵d≠0,∴a1d<0.∵Sn=na1+nn2-1d,∴S4=4a1+
解析:因为 3S1,2S2,S3 成等差数列,所以 4S2=3S1+S3, 即 4(a1+a2)=3a1+a1+a2+a3.化简,得aa32=3,即等比数列{an} 的公比 q=3,故 an=1×3n-1=3n-1.
答案:3n-1
6.
(2015·安徽高考
)已知
数列
a 是递增的
n
等比
数列
,a1
-Sn-1=23an+13-23an-1+13=23an-23an-1, 所以 an=-2an-1, 所以数列{an}为以 1 为首项,以-2 为公比的等比数列,所以 an=(-2)n-1.
答案:(-2)n-1
3.(2014·辽宁高考)设等差数列{an}的公差为 d,若数列 {2a1an}为递减数列,则( )
答案:14
考点二:等差数列与等比数列
1.(2013·新课标全国卷Ⅱ)等比数列{an}的前 n 项和为 Sn.
已知 S3=a2+10a1,a5=9,则 a1=( )
1 A.3
B.-13
1 C.9
D.-19
解析:选 C 由题知 q≠1,则 S3=a111--qq3=a1q+10a1,
得 q2=9,又 a5=a1q4=9,则 a1=19,故选 C.
A.d<0 B.d>0 C.a1d<0 D.a1d>0
解析:选 C ∵数列{2a1an}为递减数列,a1an=a1[a1+(n -1)d]=a1dn+a1(a1-d),等式右边为关于 n 的一次函数, ∴a1d<0.
4.(2015·江苏高考)设数列{an}满足 a1=1,且 an+1-an=n +1(n∈N*),则数列a1n前 10 项的和为________.
答案:12
2.(2013·新课标全国卷Ⅰ)若数列{an}的前 n 项和 Sn=23an
+13,则{an}的通项公式是 an=________. 解析:当 n=1 时,由已知 Sn=23an+13,得 a1=23a1+13,即
a1=1;当 n≥2 时,由已知得到 Sn-1=23an-1+13,所以 an=Sn
解析:法一(直接递推归纳):等腰直角三角形 ABC 中,斜 边 BC=2 2,所以 AB=AC=a1=2,AA1=a2= 2,A1A2=a3 =1,…,A5A6=a7=a1× 226=14.
法二(求通项):等腰直角三角形 ABC 中,斜边 BC=2 2, 所以 AB=AC=a1=2,AA1=a2= 2,…,An-1An=an+1=sinπ4·an = 22an=2× 22n,故 a7=2× 226=14.
解析:由题意有 a2-a1=2,a3-a2=3,…,an-an-1= n(n≥2) . 以 上 各 式 相 加 , 得 an - a1 = 2 + 3 + … + n = n-122+n=n2+2n-2.又∵a1=1,∴an=n2+2 n(n≥2).
∵当 n=1 时也满足此式,∴an=n2+2 n(n∈N*). ∴a1n=n2+2 n=2n1-n+1 1. ∴S10=2×11-12+12-13+…+110-111=2×1-111=2110. 答案:2110
5.(2014·安徽高考)如图,在等腰直角三角形 ABC 中,斜 边 BC=2 2.过点 A 作 BC 的垂线,垂足为 A1 ;过点 A1 作 AC 的垂线,垂足为 A2;过点 A2 作 A1C 的垂线,垂足为 A3 ;…, 依此类推.设 BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,则 a7=________.
考点一:数列的概念及表示 1.(2014·新课标全国卷Ⅱ)数列 {an}满足 an+1=1-1an , a8 =2,则 a1 =________.
解析:将 a8=2 代入 an+1=1-1an,可求得 a7=12;再将 a7 =12代入 an+1=1-1an,可求得 a6=-1;再将 a6=-1 代入 an+1 =1-1an,可求得 a5=2;由此可以推出数列{an}是一个周期数 列,且周期为 3,所以 a1=a7=12.
6d,dS4=4a1d+6d2=-23d2<0.
3.(2014·天津高考)设{an}是首项为 a1,公差为-1 的等差
数列,Sn 为其前 n 项和.若 S1,S2,S4 成等比数列,则 a1=( )
A.2
B.-2
1 C.2
D.-12
解析:选 D 由 S1=a1,S2=2a1-1,S4=4a1-6 成等比 数列可得(2a1-1)2=a1(4a1-6),解得 a1=-12.
相关文档
最新文档