(整理)集成电路基本概念.

(整理)集成电路基本概念.
(整理)集成电路基本概念.

IC集成电路基本概念

1. 根据工艺和结构的不同,可将IC分为哪几类?

根据工艺和结构的不同,可将IC分为三类:

①半导体IC或称单片(Monolithic)IC,②膜IC,又可分为两种:厚膜电路,薄膜电路;③混合IC(Hybrid IC)

按器件结构类型分类:双极集成电路,金属-氧化物-半导体(MOS)集成电路。

2. 用哪些技术指标描述集成电路工艺技术水平?

描述集成电路工艺技术水平的五个技术指标:集成度,特征尺寸,芯片面积,晶片直径,封装。

3. 为什么数字IC和模拟IC划分集成电路规模的标准不同?

因为数字IC中重复单元很多,而模拟IC中基本无重复单元。

4. 集成电路是哪一年由谁发明的?哪一种获得Nobel物理奖?

1958年以德克萨斯仪器公司的科学家基尔比(Clair Kilby)为首的研究小组研制出了世界上第一块集成电路,并于1959年公布了该结果。获得2000年Nobel物理奖。

5. 为什么实现社会信息化的网络及其关键部件不管是各种计算机和/或通讯机,它们的基础都是微电子?

因为其核心部件是集成电路。几乎所有的传统产业与微电子技术结合,用集成电路芯片进行智能改造,都可以使传统产业重新焕发青春。电子装备更新换代都基于微电子技术的进步,其灵巧(Smart)的程度都依赖于集成电路芯片的“智慧”程度和使用程度。

6. 采用哪些途径来提高集成度?

提高微细加工技术;芯片面积扩大;晶圆大直径化;简化电路结构7. 21世纪硅微电子芯片将沿着哪些方向继续向前发展?

1)特征尺寸继续等比例缩小,沿着Moore定律继续高速发展;

2)片上芯片(SOC):微电子由集成电路向集成系统(IS)发展;

3)赋予微电子芯片更多的“灵气” :微机械电子系统(MEMS)和微光电机系统(MOEMS),生物芯片(biochip);

4)硅基的量子器件和纳米器件。

8. 对如下英文单词或缩写给出简要解释:

IC集成电路(Integrated Circuit,IC)

SSI小规模集成电路(Small Scale IC,SSI)

MSI中规模集成电路(Medium Scale IC,MSI)

LSI大规模集成电路(Large Scale IC,LSI)

VLSI超大规模集成电路(Very Large Scale IC,VLSI)

ULSI特大规模集成电路(Ultra Large Scale IC,ULSI)

GSI巨大规模集成电路(Gigantic Scale IC,GSI)

Wafer晶圆片,Foundry 标准工艺加工厂或称代客加工厂

IDM 集成器件制造商(IDM—Integrated Device Manufactory Co.),

IP core 知识产权核,fabless co. 无生产线公司(集成电路设计公司),chipless co. 无芯片公司(开发知识产权核公司),mp 微处理机,DSP 数字信号处理,E2PROM 电可擦除可编程唯读存储器,Flash快闪存储器,A/D 模数转换,D/A 数模转换,SOI 绝缘衬底的硅薄膜(Silicon

on Insulator),SOS 兰宝石衬底外延硅结构(SOS-Silicon on Sapphire 结构)

第1章 IC工艺

1. 硅集成电路制造工艺主要由哪几个工序组成?

1) 图形转换:将设计在掩膜版(类似于照相底片)上的图形转移到半导体单晶片上;2) 掺杂:根据设计的需要,将各种杂质掺杂在需要的位置上,形成晶体管、接触等;3) 制膜:制作各种材料的薄膜2. 制版的目的是什么?图形发生器(PG-pattern generator)是做什么用的设备?

制版是通过图形发生器完成图形的缩小和重复。在设计完成集成电路的版图以后,设计者得到的是一组标准的制版数据,将这组数据传送给图形发生器(一种制版设备),图形发生器(PG-pattern generator)根据数据,将设计的版图结果分层的转移到掩模版上(掩模版为涂有感光材料的优质玻璃板),这个过程叫初缩。

3. 图形转换工序由哪些步骤组成?

光刻与刻蚀工艺

4. 为什么说光刻(含刻蚀)是加工集成电路微图形结构的关键工艺技术?光刻工艺包括哪些步骤?

光刻是加工集成电路微图形结构的关键工艺技术,通常,光刻次数越

多,就意味着工艺越复杂。另—方面,光刻所能加工的线条越细,意味着工艺线水平越高。光刻工艺是完成在整个硅片上进行开窗的工作。过程如下:

1) 打底膜(HMDS粘附促进剂,六甲基乙硅烷(HMDS)),2)涂光刻胶,3) 前烘,4)对版曝光,5)显影,6)坚膜, 7)刻蚀:采用干法刻蚀(Dry Etching),8)去胶:化学方法及干法去胶。

5. 说明光刻三要素的含义。

光刻三要素:光刻胶、掩膜版和光刻机

6. 正性胶(光致分解)和负性胶(光致聚合)各有什么特点?在VLSI工艺中通常使用那种光刻胶?AZ-1350 系列是正胶还是负胶?

正胶:曝光后可溶,负胶:曝光后不可溶。

正胶的主要优点是分辨率高,在VLSI工艺中通常使用正胶。AZ-1350 系列是正胶。

光刻胶-photoresist; 正胶和负胶:positive and negative; 掩膜版-photomask; 光刻机-lithography machine

7.常见的光刻方法有哪几种?接触与接近式光学曝光技术各有什么优缺点?

1)接触式光刻:分辨率较高,但是容易造成掩膜版和光刻胶膜的损伤。

2)接近式曝光:在硅片和掩膜版之间有一个很小的间隙(10~25mm),可以大大减小掩膜版的损伤,分辨率较低

3)投影式曝光Stepper:利用透镜或反射镜将掩膜版上的图形投影到衬底上的曝光方法,目前用的最多的曝光方式

8. 说明图形刻蚀技术的种类与作用。

湿法刻蚀:利用液态化学试剂或溶液通过化学反应进行刻蚀的方法干法刻蚀:主要指利用低压放电产生的等离子体中的离子或游离基(处于激发态的分子、原子及各种原子基团等)与材料发生化学反应或通过轰击等物理作用而达到刻蚀的目的

9. 掺杂工艺有几种?为了在N型衬底上获得P型区,需掺何种杂质?为了在P型衬底上获得N型区,需掺何种杂质?热扩散与离子注入工艺各有什么优缺点?

掺杂工艺分为热扩散法掺杂和离子注入法掺杂。为了在N型衬底上获得P型区,需掺Ⅲ价元素硼杂质。为了在P型衬底上获得N型区,需掺Ⅴ价元素磷、砷杂质。所谓热扩散掺杂就是利用原子在高温下的扩散运动,使杂质原子从浓度很高的杂质源向硅中扩散并形成一定的分布。工艺相对简单,但掺杂浓度控制精确度差、位置准确度也差。离子注入是将具有很高能量的杂质离子射入半导体衬底中的掺杂技术,掺杂深度由注入杂质离子的能量和质量决定,掺杂浓度由注入杂质离子的数目(剂量)决定。

离子注入技术以其掺杂浓度控制精确、位置准确等优点,正在取代热扩散掺杂技术,成为VLSI工艺流程中掺杂的主要技术。但需昂贵的设备和退火工艺。由于高能粒子的撞击,导致硅结构的晶格发生损伤。为恢复晶格损伤,在离子注入后要进行退火处理,根据注入的杂质数量不同,退火温度在450℃~950℃之间,掺杂浓度大则退火温度高,反之则低。在退火的同时,掺入的杂质同时向硅体内进行再分布,

在各个领域中常用芯片汇总(2)(精)

在各个领域中常用芯片汇总 1. 音频pcm编码DA转换芯片cirrus logic的cs4344,cs4334,4334是老封装,据说已经停产,4344封装比较小,非常好用。还有菲利谱的8211等。 2. 音频放大芯片4558,833,此二芯片都是双运放。为什么不用324等运放个人觉得应该是对音频的频率响应比较好。 3. 74HC244和245,由于244是单向a=b的所以只是单向驱动。而245是用于数据总线等双向驱动选择。同时245的封装走线非常适合数据总线,它按照顺序d7-d0。 4. 373和374,地址锁存器,一个电平触发,一个沿触发。373用在单片机p0地址锁存,当然是扩展外部ram的时候用到62256。374有时候也用在锁数码管内容显示。 5. max232和max202,有些为了节约成本就用max202,主要是驱动能力的限制。 6. 网络接口变压器。需要注意差分信号的等长和尽量短的规则。 7. amd29系列的flash,有bottom型和top型,主要区别是loader区域设置在哪里?bottom型的在开始地址空间,top型号的在末尾地址空间,我感觉有点反,但实际就是这么命名的。 8. 164,它是一个串并转换芯片,可以把串行信号变为并行信号,控制数码管显示可以用到。 9. sdram,ddrram,在设计时候通常会在数据地址总线上加22,33的电阻,据说是为了阻抗匹配,对于这点我理论基础学到过,但实际上没什么深刻理解。 10. 网卡控制芯片ax88796,rtl8019as,dm9000ae当然这些都是用在isa总线上的。 11. 24位AD:CS5532,LPC2413效果还可以 12. 仪表运放:ITL114,不过据说功耗有点大 13. 音频功放:一般用LM368 14. 音量控制IC. PT2257/9. 15. PCM双向解/编码ADC/DAC CW6691.

常用电源芯片大全

常用电源芯片大全 第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596

18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875

初中物理电学知识点总结精华

初中电学公式归纳与简析 初中物理电学公式繁多,且各种物理规律在串并联两种电路中有时完全不同,使得学生极易将各种公式混淆,为了使学生对整个电学公式有一个完整的了解,形成一个完整清晰的知识网络,现将初中串、并联中的物理规律以及电学公式以两个表格的形式归纳总结如下: 二、电学中各物理量求解公式表(二)

分析: 1、对于电功、电功率、电热三个物理量,它们无论是在串联电路还是并联电路中,都是总量等于各部分之和。同学们在解答这类题时应灵活选取公式进行计算。如以计算电路中的总功率为例,既可以根据P=P1+P2,也可以跟据P=UI进行计算,其它几个物理量的求解也与之类似。 2、用欧姆定律I= U R求电路中的电流,让学生明白此公式是由实验得出,是电学中最基本的公式,但 此公式只适合于纯电阻电路(所谓纯电阻电路即电路中电能全部转化为热能的电路)。 3、电功率求解公式P = W t与P=UI这两个公式为电学中计算电功率时普遍适用最基本的两个公式,第 一个为电功率的定义式,也常常作为用电能表和钟表测记家用电器电功率的公式。第二个公式是实验室用伏安法小灯泡功率的原理,也是计算用电器电功率的最基本公式。 4、虽然表中公式繁多,但电学基本公式只有4个,即:I= U R、P = W t、P = UI、Q = I 2Rt 。其他公 式都是导出公式,同学们可以在掌握这4个公式的基础上进行推导练习,很快就会熟悉并掌握。 5、应熟练掌握的几个比较重要的导出公式。具体公式:在表中分别是如下八个公式(2)I = P U(5) U = IR (6)R = U I(7)R = U2 P(12)P = U2 R(13) P = I 2R (14) W = Pt (17) Q = I2Rt 这八个公 式在电学解题中使用的频率也较高,要求学生能熟练掌握。 本资料大部分来自网络,经过格式转换,以便大家使用,并对部分内容修改整理。

常见电源稳压芯片

LM2930T-5.0 5.0V低压差稳压器 LM2930T-8.0 8.0V低压差稳压器 LM2931AZ-5.0 5.0V低压差稳压器(TO-92) LM2931T-5.0 5.0V低压差稳压器 LM2931CT 3V to 29V低压差稳压器(TO-220,5PIN) 线性LM2940CT-5.0 5.0V低压差稳压器 LM2940CT-8.0 8.0V低压差稳压器 LM2940CT-9.0 9.0V低压差稳压器 LM2940CT-10 10V低压差稳压器 LM2940CT-12 12V低压差稳压器 LM2940CT-15 15V低压差稳压器 LM123K 5V稳压器(3A) LM323K 5V稳压器(3A) LM117K 1.2V to 37V三端正可调稳压器(1.5A) LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) 线性LM317T 1.2V to 37V三端正可调稳压器(1.5A) LM317K 1.2V to 37V三端正可调稳压器(1.5A) LM133K 三端可调-1.2V to -37V稳压器(3.0A) LM333K 三端可调-1.2V to -37V稳压器(3.0A) LM337K 三端可调-1.2V to -37V稳压器(1.5A)

LM337T 三端可调-1.2V to -37V稳压器(1.5A) 线性LM337LZ 三端可调-1.2V to -37V稳压器(0.1A) LM150K 三端可调1.2V to 32V稳压器(3A) LM350K 三端可调1.2V to 32V稳压器(3A) 线性LM350T 三端可调1.2V to 32V稳压器(3A) 线性LM138K 三端正可调1.2V to 32V稳压器(5A) LM338T 三端正可调1.2V to 32V稳压器(5A) LM338K 三端正可调1.2V to 32V稳压器(5A) LM336-2.5 2.5V精密基准电压源 LM336-5.0 5.0V精密基准电压源 LM385-1.2 1.2V精密基准电压源 LM385-2.5 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ 精密可调2.5V to 36V基准稳压源 LM723 高精度可调2V to 37V稳压器 LM105 高精度可调4.5V to 40V稳压器 LM305 高精度可调4.5V to 40V稳压器 MC1403 2.5V基准电压源 MC34063 充电控制器

(整理)接口技术中常用芯片

74LS244:3态8位缓冲器,一般用作总线驱动器。74LS244没有锁存的功能。地址锁存器就是一个暂存器,它根据控制信号的状态,将总线上地址代码暂存起来。 当微处理器与存储器交换信号时,首先由CPU发出存储器地址,同时发出允许锁存信号ALE 给锁存器,当锁存器接到该信号后将地址/数据总线上的地址锁存在总线上,随后才能传输数据。 锁存器是一个很普通的时序电路。一般的,它在时钟上升沿或者下降沿来的时候锁存输入,然后产生输出,在其他的时候输出都不跟随输入变化,这就是所谓边缘触发的D触发器。它主要用于三态输出,作为地址驱动器、时钟驱动器、总线驱动器和定向发送器等。其真值表如下:74Ls244真值表 74LS245:用来驱动led或者其他的设备,它是8路同相三态双向总线收发器,既可以输出,也可以输入数据。当8051单片机的P0口总线负载达到或超过P0最大负载能力时,必须接入74LS245等总线驱动器。当片选端/CE低电平有效时,DIR=“0”,信号由B 向A 传输(接收);DIR=“1”,信号由A 向 B 传输(发送);当CE为高电平时,A、B均为高阻态。由于P2口始终输出地址的高8位,接口时74LS245的三态控制端1G和2G接地,P2口与驱动器输入线对应相连。P0口与74LS245输入端相连,E端接地,保证数据线畅通。8051的/RD 和/PSEN相与后接DIR,使得RD且PSEN有效时,74LS245输入(P0.1←D1),其它时间处于输出(P0.1→D1)。 74LS273:是一种带清除功能的8D触发器,1D~8D为数据输入端,1Q~8Q为数据输出端,正脉冲触发,低电平清除,常用作数据锁存器,地址锁存器。D0~D7:出入;Q0~Q7:输出第一脚WR:主清除端,低电平触发,即当为低电平时,芯片被清除,输出全为0(低电平);CP(CLK):触发端,上升沿触发,即当CP从低到高电平时,D0~D7的数据通过芯片,为0时将数据锁存,D0~D7的数据不变。只有在清除端保持高电平时,才具有锁存功能,CPU 的ALE信号必须经过反相器反相之后才能与74LS273的控制端CLK 端相连。 应用:缓冲/存储寄存器,移位寄存器,图像发生器。 74LS373:为三态输出的八D 透明锁存器。373 的输出端可直接与总线相连。当三态允许控制端OE 为低电平时,Q0~Q7为正常逻辑状态,可用来驱动负载或总线。当OE 为高

物理电学基础知识点总结

2012中考物理知识点总结 一、电荷 1、带了电(荷):摩擦过的物体有了吸引物体的轻小物体的性质,我们就说物体带了电。 轻小物体指碎纸屑、头发、通草球、灰尘、轻质球等。 2、使物体带电的方法: ②接触带电:物体和带电体接触带了电。如带电体与验电器金属球接触使之带电。 ③感应带电:由于带电体的作用,使带电体附近的物体带电。 3、两种电荷: 正电荷:规定:用丝绸摩擦过的玻璃棒所带的电。 实质:物质中的原子失去了电子 负电荷:规定:毛皮摩擦过的橡胶棒所带的电。 实质:物质中的原子得到了多余的电子 4、电荷间的相互作用规律:同种电荷相互排斥,异种电荷相互吸引。 5、验电器:构造:金属球、金属杆、金属箔 作用:检验物体是否带电。 原理:同种电荷相互排斥的原理。 6、电荷量: 定义:电荷的多少叫电量。 单位:库仑(C ) 元电荷 e 7、中和:放在一起的等量异种电荷完全抵消的现象 扩展:①如果物体所带正、负电量不等,也会发生中和现象。这时,带电量多的物体先用部分电荷和带电量少的物体中和,剩余的电荷可使两物体带同种电荷。 ②中和不是意味着等量正负电荷被消灭,实际上电荷总量保持不变,只是等量的正负电荷使物体整体显不出电性。 二、电流 1、形成:电荷的定向移动形成电流 注:该处电荷是自由电荷。对金属来讲是自由电子定向移动形成电流;对酸、碱、盐的水溶液来讲,正负离子定向移动形成电流。 2、方向的规定:把正电荷移动的方向规定为电流的方向。 注:在电源外部,电流的方向从电源的正极到负极。 电流的方向与自由电子定向移动的方向相反 3、获得持续电流的条件: 电路中有电源 电路为通路 4、电流的三种效应。 (1) 、电流的热效应。如白炽灯,电饭锅等。(2)、电流的磁效应,如电铃等。(3)、电流的化学效应,如电解、电镀等。 注:电流看不见、摸不着,我们可以通过各种电流的效应来判断它的存在,这里体现了转换法的科学思想。 (物理学中,对于一些看不见、摸不着的物质或物理问题我们往往要抛开事物本身,通过观察和研究它们在自然界中表现出来的外显特性、现象或产生的效应等,去认识事物的方法,在物理学上称作这种方法叫转换法) 定义:用摩擦的方法使物体带电 原因:不同物质原子核束缚电子的本领不同 实质:电荷从一个物体转移到另一个物体使正负电荷分开 能的转化:机械能-→电能 ①摩擦起电 1e=1.6×10-19C

74LS系列芯片资料

74、74HC、74LS系列芯片资料 74、74HC、74LS系列芯片资料 系列电平典型传输延迟ns 最大驱动电流(-Ioh/Lol)mA AHC CMOS 8.5 -8/8 AHCT COMS/TTL 8.5 -8/8 HC COMS 25 -8/8 HCT COMS/TTL 25 -8/8 ACT COMS/TTL 10 -24/24 F TTL 6.5 -15/64 ALS TTL 10 -15/64 LS TTL 18 -15/24 注:同型号的74系列、74HC系列、74LS系列芯片,逻辑功能上是一样的。 74LSxx的使用说明如果找不到的话,可参阅74xx或74HCxx的使用说明。 有些资料里包含了几种芯片,如74HC161资料里包含了74HC160、74HC161、74HC162、74HC163四种芯片的资料。找不到某种芯片的资料时, 可试着查看一下临近型号的芯片资料。 7400 QUAD 2-INPUT NAND GATES与非门 7401 QUAD 2-INPUT NAND GATES OC与非门 7402 QUAD 2-INPUT NOR GATES或非门 7403 QUAD 2-INPUT NAND GATES与非门 7404 HEX INVERTING GATES反向器 7406 HEX INVERTING GATES HV高输出反向器 7408 QUAD 2-INPUT AND GATE与门 7409 QUAD 2-INPUT AND GATES OC与门 7410 TRIPLE 3-INPUT NAND GATES与非门 7411 TRIPLE 3-INPUT AND GATES与门 74121 ONE-SHOT WITH CLEAR单稳态 74132 SCHMITT TRIGGER NAND GATES 触发器与非门 7414 SCHMITT TRIGGER INVERTERS触发器反向器 74153 4-LINE TO 1 LINE SELECTOR四选一 74155 2-LINE TO 4-LINE DECODER译码器 74180 PARITY GENERATOR/CHECKER奇偶发生检验 74191 4-BIT BINARY COUNTER UP/DOWN计数器 7420 DUAL 4-INPUT NAND GATES双四输入与非门 7426 QUAD 2-INPUT NAND GATES与非门 7427 TRIPLE 3-INPUT NOR GATES三输入或非门 7430 8-INPUT NAND GATES八输入端与非门 7432 QUAD 2-INPUT OR GATES二输入或门 7438 2-INPUT NAND GATE BUFFER与非门缓冲器 7445 BCD-DECIMAL DECODER/DRIVER BCD译码驱动器

常用芯片及其功能介绍完整版

常用芯片及其功能介绍 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

74LS系列 74LS00 TTL 2输入端四与非门 74LS01 TTL 集电极开路2输入端四与非门 74LS02 TTL 2输入端四或非门 74LS03 TTL 集电极开路2输入端四与非门 74LS122 TTL 可再触发单稳态多谐振荡器 74LS123 TTL 双可再触发单稳态多谐振荡器 74LS125 TTL 三态输出高有效四总线缓冲门 74LS126 TTL 三态输出低有效四总线缓冲门 74LS13 TTL 4输入端双与非施密特触发器 74LS132 TTL 2输入端四与非施密特触发器74LS133 TTL 13输入端与非门 74LS136 TTL 四异或门 74LS138 TTL 3-8线译码器/复工器 74LS139 TTL 双2-4线译码器/复工器 74LS14 TTL 六反相施密特触发器 74LS145 TTL BCD—十进制译码/驱动器 74LS15 TTL 开路输出3输入端三与门 74LS150 TTL 16选1数据选择/多路开关 74LS151 TTL 8选1数据选择器 74LS153 TTL 双4选1数据选择器

74LS154 TTL 4线—16线译码器74LS155 TTL 图腾柱输出译码器/分配器 74LS156 TTL 开路输出译码器/分配器 74LS157 TTL 同相输出四2选1数据选择器 74LS158 TTL 反相输出四2选1数据选择器 74LS16 TTL 开路输出六反相缓冲/驱动器 74LS160 TTL 可预置BCD异步清除计数器 74LS161 TTL 可予制四位二进制异步清除计数器 74LS162 TTL 可预置BCD同步清除计数器74LS163 TTL 可予制四位二进制同步清除计数器74LS164 TTL 八位串行入/并行输出移位寄存器 74LS165 TTL 八位并行入/串行输出移位寄存器 74LS166 TTL 八位并入/串出移位寄存器74LS169 TTL 二进制四位加/减同步计数器 74LS17 TTL 开路输出六同相缓冲/驱动器 74LS170 TTL 开路输出4×4寄存器堆 74LS173 TTL 三态输出四位D型寄存器 74LS174 TTL 带公共时钟和复位六D 触发器 74LS175 TTL 带公共时钟和复位四D 触发器

(整理)集成电路基本概念.

IC集成电路基本概念 1. 根据工艺和结构的不同,可将IC分为哪几类? 根据工艺和结构的不同,可将IC分为三类: ①半导体IC或称单片(Monolithic)IC,②膜IC,又可分为两种:厚膜电路,薄膜电路;③混合IC(Hybrid IC) 按器件结构类型分类:双极集成电路,金属-氧化物-半导体(MOS)集成电路。 2. 用哪些技术指标描述集成电路工艺技术水平? 描述集成电路工艺技术水平的五个技术指标:集成度,特征尺寸,芯片面积,晶片直径,封装。 3. 为什么数字IC和模拟IC划分集成电路规模的标准不同? 因为数字IC中重复单元很多,而模拟IC中基本无重复单元。 4. 集成电路是哪一年由谁发明的?哪一种获得Nobel物理奖? 1958年以德克萨斯仪器公司的科学家基尔比(Clair Kilby)为首的研究小组研制出了世界上第一块集成电路,并于1959年公布了该结果。获得2000年Nobel物理奖。 5. 为什么实现社会信息化的网络及其关键部件不管是各种计算机和/或通讯机,它们的基础都是微电子? 因为其核心部件是集成电路。几乎所有的传统产业与微电子技术结合,用集成电路芯片进行智能改造,都可以使传统产业重新焕发青春。电子装备更新换代都基于微电子技术的进步,其灵巧(Smart)的程度都依赖于集成电路芯片的“智慧”程度和使用程度。

6. 采用哪些途径来提高集成度? 提高微细加工技术;芯片面积扩大;晶圆大直径化;简化电路结构7. 21世纪硅微电子芯片将沿着哪些方向继续向前发展? 1)特征尺寸继续等比例缩小,沿着Moore定律继续高速发展; 2)片上芯片(SOC):微电子由集成电路向集成系统(IS)发展; 3)赋予微电子芯片更多的“灵气” :微机械电子系统(MEMS)和微光电机系统(MOEMS),生物芯片(biochip); 4)硅基的量子器件和纳米器件。 8. 对如下英文单词或缩写给出简要解释: IC集成电路(Integrated Circuit,IC) SSI小规模集成电路(Small Scale IC,SSI) MSI中规模集成电路(Medium Scale IC,MSI) LSI大规模集成电路(Large Scale IC,LSI) VLSI超大规模集成电路(Very Large Scale IC,VLSI) ULSI特大规模集成电路(Ultra Large Scale IC,ULSI) GSI巨大规模集成电路(Gigantic Scale IC,GSI) Wafer晶圆片,Foundry 标准工艺加工厂或称代客加工厂 IDM 集成器件制造商(IDM—Integrated Device Manufactory Co.), IP core 知识产权核,fabless co. 无生产线公司(集成电路设计公司),chipless co. 无芯片公司(开发知识产权核公司),mp 微处理机,DSP 数字信号处理,E2PROM 电可擦除可编程唯读存储器,Flash快闪存储器,A/D 模数转换,D/A 数模转换,SOI 绝缘衬底的硅薄膜(Silicon

常用 系列芯片手册

常用74系列芯片手册 7400TTL2输入端四与非门 7401TTL集电极开路2输入端四与非门 7402TTL2输入端四或非门 7403TTL集电极开路2输入端四与非门 7404TTL六反相器 7405TTL集电极开路六反相器 7406TTL集电极开路六反相高压驱动器 7407TTL集电极开路六正相高压驱动器 7408TTL2输入端四与门 7409TTL集电极开路2输入端四与门 7410TTL3输入端3与非门 74107TTL带清除主从双J-K触发器 74109TTL带预置清除正触发双J-K触发器 7411TTL3输入端3与门 74112TTL带预置清除负触发双J-K触发器 7412TTL开路输出3输入端三与非门 74121TTL单稳态多谐振荡器 74122TTL可再触发单稳态多谐振荡器 74123TTL双可再触发单稳态多谐振荡器 74125TTL三态输出高有效四总线缓冲门 74126TTL三态输出低有效四总线缓冲门 7413TTL4输入端双与非施密特触发器 74132TTL2输入端四与非施密特触发器 74133TTL13输入端与非门 74136TTL四异或门 74138TTL3-8线译码器/复工器 74139TTL双2-4线译码器/复工器 7414TTL六反相施密特触发器

74145TTL BCD—十进制译码/驱动器 7415TTL开路输出3输入端三与门 74150TTL16选1数据选择/多路开关 74151TTL8选1数据选择器 74153TTL双4选1数据选择器 74154TTL4线—16线译码器 74155TTL图腾柱输出译码器/分配器 74156TTL开路输出译码器/分配器 74157TTL同相输出四2选1数据选择器74158TTL反相输出四2选1数据选择器7416TTL开路输出六反相缓冲/驱动器74160TTL可预置BCD异步清除计数器74161TTL可予制四位二进制异步清除计数器74162TTL可预置BCD同步清除计数器74163TTL可予制四位二进制同步清除计数器74164TTL八位串行入/并行输出移位寄存器74165TTL八位并行入/串行输出移位寄存器74166TTL八位并入/串出移位寄存器 74169TTL二进制四位加/减同步计数器7417TTL开路输出六同相缓冲/驱动器74170TTL开路输出4×4寄存器堆 74173TTL三态输出四位D型寄存器 74174TTL带公共时钟和复位六D触发器74175TTL带公共时钟和复位四D触发器74180TTL9位奇数/偶数发生器/校验器74181TTL算术逻辑单元/函数发生器 74185TTL二进制—BCD代码转换器 74190TTL BCD同步加/减计数器 74191TTL二进制同步可逆计数器 74192TTL可预置BCD双时钟可逆计数器

FPGA配置芯片的网上汇总(较杂总结)

FPGA配置芯片 1.Altera FPGA器件有三类配置下载方式:主动配置方式(AS)和被动配置方式(PS)和最常用的(JTAG)配置方式。 AS由FPGA器件引导配置操作过程,它控制着外部存储器和初始化过程,EPCS系列.如EPCS1,EPCS4配置器件专供AS模式,目前只支持Cyclone系列。使用Altera串行配置器件来完成。Cyclone期间处于主动地位,配置期间处于从属地位。配置数据通过DATA0引脚送入FPGA。配置数据被同步在DCLK输入上,1个时钟周期传送1位数据。(见附图) PS则由外部计算机或控制器控制配置过程。通过加强型配置器件(EPC16,EPC8,EPC4)等配置器件来完成,在PS配置期间,配置数据从外部储存部件,通过DATA0引脚送入FPGA。配置数据在DCLK 上升沿锁存,1个时钟周期传送1位数据。(见附图) JTAG接口是一个业界标准,主要用于芯片测试等功能,使用IEEE Std 1149.1联合边界扫描接口引脚,支持JAM STAPL标准,可以使用Altera下载电缆或主控器来完成。 FPGA在正常工作时,它的配置数据存储在SRAM中,加电时须重新下载。在实验系统中,通常用计算机或控制器进行调试,因此可以使用PS。在实用系统中,多数情况下必须由FPGA主动引导配置操作过程,这时FPGA将主动从外围专用存储芯片中获得配置数据,而此芯片中fpga配置信息是用普通编程器将设计所得的pof格式的文件烧录进去。 专用配置器件:epc型号的存储器 常用配置器件:epc2,epc1,epc4,epc8,epc1441(现在好象已经被逐步淘汰了)等 对于cyclone cycloneII系列器件,ALTERA还提供了针对AS方式的配置器件,EPCS系列.如EPCS1,EPCS4配置器件也是串行配置的.注意,他们只适用于cyclone系列. 除了AS和PS等单BIT配置外,现在的一些器件已经支持PPS,FPS等一些并行配置方式,提升配置了

常用芯片及其功能介绍

74LS系列 74LS00 TTL 2输入端四与非门 74LS01 TTL 集电极开路2输入端四与非门 74LS02 TTL 2输入端四或非门 74LS03 TTL 集电极开路2输入端四与非门 74LS122 TTL 可再触发单稳态多谐振荡器 74LS123 TTL 双可再触发单稳态多谐振荡器 74LS125 TTL 三态输出高有效四总线缓冲门 74LS126 TTL 三态输出低有效四总线缓冲门 74LS13 TTL 4输入端双与非施密特触发器 74LS132 TTL 2输入端四与非施密特触发器74LS133 TTL 13输入端与非门 74LS136 TTL 四异或门 74LS138 TTL 3-8线译码器/复工器 74LS139 TTL 双2-4线译码器/复工器 74LS14 TTL 六反相施密特触发器 74LS145 TTL BCD—十进制译码/驱动器 74LS15 TTL 开路输出3输入端三与门 74LS150 TTL 16选1数据选择/多路开关 74LS151 TTL 8选1数据选择器74LS153 TTL 双4选1数据选择器 74LS154 TTL 4线—16线译码器

74LS155 TTL 图腾柱输出译码器/分配器 74LS156 TTL 开路输出译码器/分配器 74LS157 TTL 同相输出四2选1数据选择器 74LS158 TTL 反相输出四2选1数据选择器 74LS16 TTL 开路输出六反相缓冲/驱动器 74LS160 TTL 可预置BCD异步清除计数器 74LS161 TTL 可予制四位二进制异步清除计数器 74LS162 TTL 可预置BCD同步清除计数器 74LS163 TTL 可予制四位二进制同步清除计数器74LS164 TTL 八位串行入/并行输出移位寄存器74LS165 TTL 八位并行入/串行输出移位寄存器 74LS166 TTL 八位并入/串出移位寄存器74LS169 TTL 二进制四位加/减同步计数器 74LS17 TTL 开路输出六同相缓冲/驱动器 74LS170 TTL 开路输出4×4寄存器堆 74LS173 TTL 三态输出四位D型寄存器 74LS174 TTL 带公共时钟和复位六D 触发器 74LS175 TTL 带公共时钟和复位四D 触发器 74LS180 TTL 9位奇数/偶数发生器/校验器 74LS181 TTL 算术逻辑单元/函数发生器 74LS185 TTL 二进制—BCD代码转

电学基本概念整理

2 电学基本概念整理 一 知识点 短路:短路分为电源短路和局部短路 开关闭合后形成电源短路 开关闭合后灯泡L1被短路 电功率 一、知识点 1.电功 (1)电功是电流通过用电器所做的功,实质是电能转化为其他形式的能量。 (2)公式:W UIt =;推导公式:2 U W t R =、2W I Rt =;其他公式:W UQ =、 W Pt = (3)国际单位:焦耳(J )。1J=1V ·A ·s 。 常用单位:千瓦时(Kw ·h ),用于测量电能消耗多少。1kw ·h= 63.610J ? 2.电能表

(1)电能表是测量电功的仪表。 (2)某电能表表盘上“220V 5(10)A 3000r/kw ·h ”的含义: 200V :电能表正常工作的电压为220V 5A :电路中允许通过的电流不超过5A 10A :电路中允许通过的瞬间电流不超过10A 3000r/kw ·h :每消耗1kw ·h 的电,电能表表盘转3000转 (3)读数方法: 例如: 读数为:7831.6kw ·h 3.电功率 (1)电流在单位时间内所做的功叫做电功率,它是描述电流做功快慢的物理量。 (2)公式:W UIt P UI t t ===;推导公式:2U P R = 、2P I R = (3)国际单位:瓦特(W )。若W =1kw ·h ,t=1h ,可得W P t ==1kw 。 4.额定功率与实际功率 (1)用电器正常工作时的电压叫额定电压,用电器在额定电压下的功率叫额定功率。 (2)用电器实际工作时的电压叫实际电压,用电器实际电压下的功率叫做实际功率。 (1)电流通过导体时产生的热量跟电流的平方成正比,跟导体的电阻成正比,跟通电时 间成正比,这个规律叫做焦耳定律。 (2)公式:2Q I Rt =。如果电能全部转化成内能,则有Q W =2 2 U UIt I Rt t Pt R ====。 如果电能并没有全部转化成内能(即非纯电阻电路),则有2Q I Rt =W UIt ≠=,可知非纯电阻电路U IR ≠。 6.串联电路与并联电路的电功率规律 (1)串联电路中,各电阻的电流相等,消耗的功率与自身阻值成正比; (2)并联电路中,各电阻的电压相等,消耗的功率与自身阻值成反比。 欧姆定律 一知识点 1探究电流与电压、电流与电阻的关系 探究电流与电压须保持电阻阻动滑动变阻器的滑片以改变

常见存储器芯片资料(简版)

2716 2716指的是Intel2716芯片,Intel2716是一种可编程可擦写存储器芯片封装:双列直插式封装,24个引脚 基本结构:带有浮动栅的MOS管 封装:直插24脚, 引脚功能: Al0~A0:地址信号 O7~O0:双向数据信号输入输出引脚; CE:片选 OE:数据输出允许; Vcc:+5v电源, VPP:+25v电源; GND:地 2716读时序:

2732 相较于2716: Intel2716存储器芯片的存储阵列由4K×8个带有浮动栅的MOS管构成,共可保存4K×8位二进制信息 封装:直插24脚 引脚功能: A0~A11地址 E片选 G/VPP输出允许/+25v电源 DQ0~7数据双向 VSS地 VCC+5v电源 2732读时序

2764、27128、27256、27512等与之类似27020 存储空间:256kx8 读写时间:55/70ns 封装:直插/贴片32脚 引脚功能:

A0~A17地址线 I/O0~7数据输入输出 CE片选 OE输出允许 PGM编程选通 VCC+5v电源 VPP+25v电源 GND地 27020读时序: 27040与之类似 RAM--6116 6116是2K*8位静态随机存储器芯片,采用CMOS工艺制造,单一+5V供电,额定功耗160mW,典型存取时间90/120ns, 封装:24线双列直插式封装.

引脚功能: A0-A10为地址线; CE是片选线; OE是读允许线; WE是写允许线. 操作方式: RAM—6264 6264是8K*8位静态随机存储器芯片,采用CMOS工艺制 造,单一+5V供电,最大功耗450mW,典型存取时间70/100/120ns, 封装:直插式28脚 引脚功能: A0~A12:地址线 WE写允许 OE读允许 CS片选

常用芯片型号大全Word版

常用芯片型号大全 4N35/4N36/4N37 "光电耦合器" AD7520/AD7521/AD7530/AD7521 "D/A转换器" AD7541 12位D/A转换器 ADC0802/ADC0803/ADC0804 "8位A/D转换器" ADC0808/ADC0809 "8位A/D转换器" ADC0831/ADC0832/ADC0834/ADC0838 "8位A/D转换器" CA3080/CA3080A OTA跨导运算放大器 CA3140/CA3140A "BiMOS运算放大器" DAC0830/DAC0832 "8位D/A转换器" ICL7106,ICL7107 "3位半A/D转换器" ICL7116,ICL7117 "3位半A/D转换器" ICL7650 "载波稳零运算放大器" ICL7660/MAX1044 "CMOS电源电压变换器" ICL8038 "单片函数发生器" ICM7216 "10MHz通用计数器" ICM7226 "带BCD输出10MHz通用计数器" ICM7555/7555 CMOS单/双通用定时器 ISO2-CMOS MT8880C DTMF收发器 LF351 "JFET输入运算放大器" LF353 "JFET输入宽带高速双运算放大器" LM117/LM317A/LM317 "三端可调电源" LM124/LM124/LM324 "低功耗四运算放大器" LM137/LM337 "三端可调负电压调整器" LM139/LM239/LM339 "低功耗四电压比较器"

LM158/LM258/LM358 "低功耗双运算放大器" LM193/LM293/LM393 "低功耗双电压比较器" LM201/LM301 通用运算放大器 LM231/LM331 "精密电压—频率转换器" LM285/LM385 微功耗基准电压二极管 LM308A "精密运算放大器" LM386 "低压音频小功率放大器" LM399 "带温度稳定器精密电压基准电路" LM431 "可调电压基准电路" LM567/LM567C "锁相环音频译码器" LM741 "运算放大器" LM831 "双低噪声音频功率放大器" LM833 "双低噪声音频放大器" LM8365 "双定时LED电子钟电路" MAX038 0.1Hz-20MHz单片函数发生器 MAX232 "5V电源多通道RS232驱动器/接收器" MC1403 "2.5V精密电压基准电路" MC1404 5.0v/6.25v/10v基准电压 MC1413/MC1416 "七路达林顿驱动器" MC145026/MC145027/MC145028 "编码器/译码器" MC145403-5/8 "RS232驱动器/接收器" MC145406 "RS232驱动器/接收器"

常用芯片介绍

[交流] 常用芯片介绍 本帖最后由望眼欲穿2 于2010-7-20 22:32 编辑 1.音频pcm编码DA转换芯片cirrus logic的cs4344,cs4334 4334是老封装,据说已经停产,4344封装比较小,非常好用。还有菲利谱的8211等。 2.音频放大芯片4558,LM833,5532,此二芯片都是双运放。 3.244和245,由于244是单向a=b的所以只是单向驱动。而245是用于数据总线等双向驱动选择。同时2 4.373和374,地址锁存器, 5.max232和max202,max3232 TTL电平转换 6.网络接口变压器。需要注意差分信号的等长和尽量短的规则。 7.amd29系列的flash,有bottom型和top型,主要区别是loader区域设置在哪里?bottom型的在开始实际就是这么命名的。 8.74XX164,它是一个串并转换芯片,可以把串行信号变为并行信号,控制数码管显示可以用到。 9.网卡控制芯片CS8900,ax88796,rtl8019as,dm9000ae当然这些都是用在isa总线上的。24位AD:表运放:ITL114,不过据说功耗有点大 音频功放:一般用LM368 音量控制IC:PT2257,Pt2259. PCM双向解/编码:ADC/DAC CW6691. cirruslogic公司比较多 2.4G双工通讯RF IC CC2500 1.cat809,max809,这些是电源监控芯片,当低于某一电压以后比如3.07v等出现一个100ms的低电平,实等就是出现一个100ms的高电平。还有一些复位芯片,既有高又有低复位输出,同时还有带手动触发复位功能 2.pericom的pt7v(pi6cx100-27)压控振荡器,脉冲带宽调制。 1、语音编解码TP3054/3057,串行接口,带通滤波。 2、现在用汉仁的网卡变压器HR61101G接在RTL8019AS上,兼容的有VALOR的FL1012、PTT的PM2 3、驱动LED点阵用串行TPIC6B595,便宜的兼容型号HM6B595 交换矩正:mt 8816 8*16 双音频译码器:35300 我们原来使用单独的网络变压器,如常用的8515等。现在我们用YDS的一款带网络变压器的RJ45接口。 其优点:1.体积仅比普通的RJ45稍微大一点。 2.价格单买就6元,我觉得量稍微大点应该在4-5左右或者更低。 3.连接比较方便只要把差分信号注意就可以了。 缺点:用的人不多,不知道是因为是新,还是性能不好,我们用了倒没什么问题。不过没有做过抗雷击等测试,我觉得最好再加一点典型电路的原理图等。比如说网络接口,串口232,485通讯,I2C级连,RAM连接,F

九年级物理电学基础知识点归纳

九年级物理电学基础知识点回顾与归纳 电学一:电路 一、简单电路的组成 简单电路:由电源、开关、用电器、导线组成。 二、电路种类 1、通路:线路接通时,有电流从电源正 _极流出,经过用电器流回到电源负__极. 2、开路:线路断开时,电路中没有(有或没有)电流. 3、短路:当电源直接用导线相连时发生短路,此时用电器中没有电流;但有很大的电流通过电源,使电源及导线发热过多而被烧坏,因此电源是不允许被短路的. 三电路的连接 1、串联电路 2.并联电路 四、导体和绝缘体 1、导体:容易导电的物体叫导体.如金属(金、银、铜铁、铝等)、人体、大地、碳、酸碱盐的水溶液等. 2、绝缘体:难于导电的物体叫绝缘体.如橡胶、塑料、玻璃、陶瓷、油、纯水等. 3、导体和绝缘体之间没有绝对的界限:在一定条件下,绝缘体有可能变为导体. 五、六、家庭电路 1、家庭电路:进户线有有两条,一条叫零线,叫火线,能使试电笔的氖管发光。电灯和开关是串联连接的,插座和电灯并联连接. 2、白炽灯:利用电流的热效应,将电能转化为内_能和光能,因此灯丝要用熔点高的钨制成 3、电路中的总电流是随用电器功率的增大而增大的.造成家庭电路中电流超过安全电流的常见原因是短路和用电器功率过大. 七、安全用电 1、触电:触电一般是指一定强度的电流通过人体所引起的伤害事故.事实表明,不高于36伏的电压才是安全电压。触电类型分为单线触电和双线触电。

2、安全用电的原则:对安全用电必须做到“四不”,即不接触高于36伏的带电体;不靠近高压带电体;不弄湿用电器;不损坏绝缘皮。发生触电时应该立即切断电源。 3、保险丝的作用:是在电路中的电流增大到危险程度以前自动切断电路. 4、三线插头:标有L字样的接火线;标有N字样的接零线;标有E字样的接地线; 电学二:欧姆定律 一、电流I 1、电流的方向电流从电源的正极经过用电器、导线等流向电源的负极. 2、获得持续电流的条件:电路中必须有电源,电路必须是闭合回路. 3、电流[强度]:表示电流的强弱。用符号 I 表示。 4、电流的单位:国际单位制中电流的主单位是安培,国际符号是A.1 A=103mA=106μA 5、电流表( ):实验中,用电流表测量电流的大小.它必须串联在被测的电路中,并使电流从正接线柱流入,从负接线柱流出;通过它的电流绝不允许超过它的量程;使用时,绝对禁止不经过用电器将它的两个接线柱直接连到电源的两极上. 6.电流的特点: 串联电路中电流处处相等,数学表达式I=I 1=I 2 . 并联电流中的总电流等于各支路电流之和,数学表达式I=I 1+I 2 二、电压U 1、单位:国际单位制中电压的主单位是伏特,国际符号是V.1kV=103V=106mV. 一节干电池的电压是1.5V;一节铅蓄电池的电压是2V;照明电路(或称家庭电路)电压是220V;对人体安全的电压是36V. 2、电压表( ):实验中用电压表测量电压.测量时,必须把它并联在被测电路的两端; 正接线柱应接在靠近电源正极的那端;使用时,所测电压不得超过它的量程. 3、电压的特点:串联电路两端的总电压等于各部分电路电压之和. 数学表达式:U=U 1+U 2 并联电路各支路两端的电压等于电源电压,数学表达式:U=U 1=U 2 . 二、电阻R 1、电阻的概念:物理学中把导体对对电流的阻碍作用叫电阻. 2、电阻的单位:国际单位制中,电阻的主单位是欧姆,国际符号是Ω.

常用AD芯片介绍

目前生产AD/DA的主要厂家有ADI、TI、BB、PHILIP、MOTOROLA等,武汉力源公司拥有多年从事电子产品的 经验和雄厚的技术力量支持,已取得排名世界前列的模拟IC生产厂家ADI、TI 公司代理权,经营全系列适用各 种领域/场合的AD/DA器件。 1. AD公司AD/DA器件 AD公司生产的各种模数转换器(ADC)和数模转换器(DAC)(统称数据转换器)一直保持市场领导地位,包括 高速、高精度数据转换器和目前流行的微转换器系统(MicroConvertersTM )。 1)带信号调理、1mW功耗、双通道16位AD转换器:AD7705 AD7705是AD公司出品的适用于低频测量仪器的AD转换器。它能将从传感器接收到的很弱的输入信号直接 转换成串行数字信号输出,而无需外部仪表放大器。采用Σ-Δ的ADC,实现16位无误码的良好性能,片内可 编程放大器可设置输入信号增益。通过片内控制寄存器调整内部数字滤波器的关闭时间和更新速率,可设置 数字滤波器的第一个凹口。在+3V电源和1MHz主时钟时, AD7705功耗仅是1mW。AD7705是基于微控制器(MCU )、数字信号处理器(DSP)系统的理想电路,能够进一步节省成本、缩小体积、减小系统的复杂性。应用于 微处理器(MCU)、数字信号处理(DSP)系统,手持式仪器,分布式数据采集系统。 2)3V/5V CMOS信号调节AD转换器:AD7714 AD7714是一个完整的用于低频测量应用场合的模拟前端,用于直接从传感器接收小信号并输出串行数字 量。它使用Σ-Δ转换技术实现高达24位精度的代码而不会丢失。输入信号加至位于模拟调制器前端的专用可 编程增益放大器。调制器的输出经片内数字滤波器进行处理。数字滤波器的第一次陷波通过片内控制寄存器 来编程,此寄存器可以调节滤波的截止时间和建立时间。AD7714有3个差分模拟输入(也可以是5个伪差分模 拟输入)和一个差分基准输入。单电源工作(+3V或+5V)。因此,AD7714能够为含有多达5个通道的系统进行 所有的信号调节和转换。AD7714很适合于灵敏的基于微控制器或DSP的系统,它的串行接口可进行3线操作, 通过串行端口可用软件设置增益、信号极性和通道选择。AD7714具有自校准、系统和背景校准选择,也允许 用户读写片内校准寄存器。CMOS结构保证了很低的功耗,省电模式使待机功耗减至15μW(典型值)。 3)微功耗8通道12位AD转换器:AD7888 AD7888是高速、低功耗的12位AD转换器,单电源工作,电压范围为2.7V~5.25V,转换速率高达125ksps ,输入跟踪-保持信号宽度最小为500ns,单端采样方式。AD7888包含有8个单端模拟输入通道,每一通道的模

相关文档
最新文档