高中数学 第一章 统计案例 1.2.2 独立性检验 2.3 独立性检验的基本思想 2.4 独立性检验的应用学案 北师大版

合集下载

高中数学人教版选修1-2全套教案

高中数学人教版选修1-2全套教案

高中数学人教版选修1-2全套教案第一章统计案例第一课时 1.1回归分析的基本思想及其初步应用(一)教学目标1、知识与技能目标 认识随机误差;2、过程与方法目标(1)会使用函数计算器求回归方程; (2)能正确理解回归方程的预报结果. 3、情感、态度、价值观通过本节课的学习,加强数学与现实生活的联系,以科学的态度评价两个变量的相关性,理解处理问题的方法,形成严谨的治学态度和锲而不舍的求学精神.培养学生运用所学知识,解决实际问题的能力.教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性.教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备:1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关?2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题:① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编 号 1 2 3 4 5 6 7 8 身高/cm165165 157 170 175 165 155 170 体重/kg 4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm 的女大学生的体重. (分析思路→教师演示→学生整理)第一步:作散点图第二步:求回归方程 第三步:代值计算010203040506070150155160165170175180身高/cm体重/k g② 提问:身高为172cm 的女大学生的体重一定是60.316kg 吗? 不一定,但一般可以认为她的体重在60.316kg 左右. ③ 解释线性回归模型与一次函数的不同事实上,观察上述散点图,我们可以发现女大学生的体重y 和身高x 之间的关系并不能用一次函数y bx a =+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm 的3名女大学生的体重分别为48kg 、57kg 和61kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165cm 的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e (即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e =++,其中残差变量e 中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就变成一次函数模型. 因此,一次函数模型是线性回归模型的特殊形式,线性回归模型是一次函数模型的一般形式.2. 相关系数:相关系数的绝对值越接近于1,两个变量的线性相关关系越强,它们的散点图越接近一条直线,这时用线性回归模型拟合这组数据就越好,此时建立的线性回归模型是有意义.3. 小结:求线性回归方程的步骤、线性回归模型与一次函数的不同.第二课时 1.1回归分析的基本思想及其初步应用(二)教学目标:1知识与技能:会建立回归模型,进而学习相关指数(相关系数r 、总偏差平方和、随机误差的效应即残差、残差平方和、回归平方和、相关指数R2、残差分析) 2过程与方法:通过学习会求上述的相关指数3情感态度价值观:从实际问题发现已有知识不足,激发好奇心、求知欲。

苏教版选修1-2高中数学1.1《独立性检验》

苏教版选修1-2高中数学1.1《独立性检验》
课前探究学习 课堂讲练互动
甲厂 乙厂 合计 优质品 非优质品 合计
2 n ad - bc 附:χ2= , a+bb+ca+cb+d
P(χ2≥x0) x0
0.05
0.01
3.841 6.635
课前探究学习
课堂讲练互动
解 (1)甲厂抽查的产品中有 360 件优质品,从而甲厂生产的零件 360 的优质品率估计为500=72%; 乙厂抽查的产品中有 320 件优质品,从而乙厂生产的零件的优质 320 品率估计为500=64%. (2) 甲厂 乙厂 合计 优质品 360 320 680
课前探究学习 课堂讲练互动
【题后反思】 统计的基本思维模式是归纳,通过部分数据的性质 来推测全部数据的性质,从数据上体现的只是统计关系,而不是 因果关系.
课前探究学习
课堂讲练互动
【训练3】 某企业有两个分厂生产某种零件,按规定内径尺寸(单 位: mm) 的值落在 [29.94,30.06) 的零件为优质品.从两个分 厂生产的零件中各抽出了 500 件,量其内径尺寸,得结果如
(4)若χ2≤2.706,则认为没有充分的证据显示“Ⅰ与Ⅱ有关系”,
但也不能作出结论“H0成立”,即不能认为Ⅰ与Ⅱ没有关 系.
课前探究学习
课堂讲练互动
题型一 利用χ2判定两个变量间的关系 【例1】 某电视台联合相关报社对“男女同龄退休”这一公众关
注的问题进行了民意调查,数据如下表所示:
赞同 男 女 合计 198 476 674
可能性为1%.
课前探究学习 课堂讲练互动
名师点睛 1.独立性检验
2 n ad - bc (1)利用随机变量 χ2= ,(其中 n=a+b a+bc+da+cb+d
+c+d 为样本容量),来确定在多大程度上可以认为“两个分 类变量有关系”的方法称为两个分类变量的独立性检验.

(人教课标版)普通高中课程标准实验教科书《数学》目录(A版)

(人教课标版)普通高中课程标准实验教科书《数学》目录(A版)

(人教课标版)普通高中课程标准实验教科书《数学》目录(A版)(人教课标版)普通高中课程标准实验教科书《数学》目录(A版)必修一目录第一章集合与函数概念1.1集合1.1.1集合的含义与表示1.1.2集合间的基本关系1.1.3集合的基本运算阅读与思考集合中元素的个数1.2函数及其表示1.2.1函数的概念1.2.2函数的表示法阅读与思考函数概念的发展历程1.3函数的基本性质1.3.1单调性与最大(小)值1.3.2奇偶性信息技术应用用计算机绘制函数图象实习作业小结复习参考题第二章基本初等函数(I)2.1指数函数2.1.1指数与指数幂的运算。

2.1.2指数函数及其性质信息技术应用借助信息技术探究指数函数的性质2.2对数函数2.2.1对数与对数运算阅读与思考对数的发明2.2.2对数函数及其性质探究与发现互为反函数的两个函数图象之间的关系2.3幂函数小结复习参考题第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点3.1.2用二分法求方程的近似解阅读与思考中外历史上的方程求解信息技术应用借助信息技术求方程的近似解3.2函数模型及其应用3.2.1几类不同增长的函数模型3.2.2函数模型的应用实例信息技术应用收集数据并建立函数模型实习作业小结复习参考题必修二目录第一章空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征1.1.2简单组合体的结构特征1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图1.2.3空间几何体的直观图阅读与思考画法几何与蒙日1.3空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积1.3.2球的体积与表面积探究与发现祖暅原理与柱体、锥体、球体的体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.1.1平面2.1.2空间中直线与直线之间的位置关系2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定2.3.2平面与平面垂直的判定2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题第三章直线与方程3.1直线的倾斜角与斜率3.1.1倾斜角与斜率3.1.2两条直线平行与垂直的判定探究与发现魔术师的地毯3.2直线的方程3.2.1直线的点斜式方程3.2.2直线的两点式方程3.2.3直线的一般式方程3.3直线的交点坐标与距离公式3.3.1两条直线的交点坐标3.3.2两点间的距离3.3.3点到直线的距离3.3.4两条平行直线间的距离阅读与思考笛卡尔与解析几何小结复习参考题第四章圆与方程4.1圆的方程4.1.1圆的标准方程4.1.2圆的一般方程阅读与思考坐标法与机器证明4.2直线、圆的位置关系4.2.1直线与圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用4.3空间直角坐标系4.3.1空间直角坐标系4.3.2空间两点间的距离公式信息技术应用用《几何画板》探究点的轨迹:圆小结复习参考题必修三目录第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图与算法的基本逻辑结构1.2基本算法语句1.2.1输入语句、输出语句和赋值语句1.2.2条件语句1.2.3循环语句1.3算法案例阅读与思考割圆术小结复习参考题第二章统计2.1随机抽样阅读与思考一个著名的案例2.1.1简单随机抽样2.1.2系统抽样阅读与思考广告中数据的可靠性2.1.3分层抽样阅读与思考如何得到敏感性问题的诚实反应2.2用样本估计总体2.2.1用样本的频率分布估计总体分布2.2.2用样本的数字特征估计总体的数字特征阅读与思考生产过程中的质量控制图2.3变量间的相关关系2.3.1变量之间的相关关系2.3.2两个变量的线性相关阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1随机事件的概率3.1.1随机事件的概率3.1.2概率的意义3.1.3概率的基本性质阅读与思考天气变化的认识过程3.2古典概型3.2.1古典概型3.2.2(整数值)随机数(random numbers)产生3.3几何概型3.3.1几何概型3.3.2均匀随机数的产生阅读与思考概率与密码小结复习参考题必修四目录第一章三角函数1.1任意角和弧度制1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数阅读与思考三角学与天文学1.2.2同角三角函数的基本关系1.3三角函数的诱导公式1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.4.2正弦函数、余弦函数的性质探究与发现函数y=Asin(ωx+ψ)及函数y=Acos(ωx+ψ)的周期探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质1.4.3正切函数的性质与图象信息技术应用利用正切线画函数y=tanx,x∈(—,)的图象1.5函数函数y=Asin(ωx+ψ)的图象阅读与思考振幅、周期、频率、相位1.6三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念2.1.2向量的几何表示2.1.3相等向量与共线向量阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义2.2.3向量数乘运算及其几何意义2.3 平面向量的基本定理及坐标表示2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义2.4.2平面向量数量积的坐标表示、模、夹角2.5平面向量应用举例2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式3.1.2两角和与差的正弦、余弦、正切公式3.1.3二倍角的正弦、余弦、正切公式信息技术应用利用信息技术制作三角函数表3.2简单的三角恒等变换小结复习参考题必修五目录第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理探究与发现解三角形的进一步讨论1.2应用举例阅读与思考海伦和秦九韶1.3实习作业小结复习参考题第二章数列2.1数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用估计的值2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4基本不等式:≤小结复习参考题选修1-1第一章常用逻辑用语1.1命题及其关系1.1.1命题1.1.2四种命题1.1.3四种命题间的相互关系1.2充分条件与必要条件1.2.1充分条件与必要条件1.2.2充要条件1.3简单的逻辑联结词1.3.1且(and)1.3.2或(or)1.3.3非(not)阅读与思考“且”“或”“非”与“交”“并”“补”1.4全称量词与存在量词1.4.1全称量词1.4.2存在量词1.4.3含有一个量词的命题的否定小结复习参考题第二章圆锥曲线与方程2.1椭圆2.1.1 椭圆及其标准方程探究与发现为什么截口曲线是椭圆2.1.2椭圆的简单几何性质信息技术应用用《几何画板》探究点的轨迹:椭圆2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的简单几何性质信息技术应用探究与发现为什么y=± x是双曲线-=1的渐近线2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的简单几何性质探究与发现为什么二次函数y=ax²+bx+c(a≠0)的图象是抛物线阅读与思考圆锥曲线的光学性质及其作用小结复习参考题第三章导数及其应用3.1变化率与导数3.1.1变化率问题3.1.2导数的概念3.1.3导数的几何意义3.2导数的计算3.2.1几个常用函数的导数3.2.2基本初等函数的导数公式及导数的运算法则探究与发现牛顿法——用导数方法求方程的近似解3.3导数在研究函数中的应用3.3.1函数的单调性与导数3.3.2函数的极值与导数3.3.3函数的最大(小)值与导数信息技术应用图形技术与函数性质3.4生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1合情推理与演绎证明2.1.1合情推理2.1.2演绎推理阅读与思考科学发现中的推理2.2直接证明与间接证明2.2.1综合法和分析法2.2.2反证法小结复习参考题第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.1.1数系的扩充和复数的概念3.1.2复数的几何意义3.2复数代数形式的四则运算3.2.1复数代数形式的加减运算及其几何意义3.2.2复数代数形式的乘除运算小结复习参考题第四章框图4.1流程图4.2结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1命题及其关系1.1.1命题1.1.2四种命题1.1.3四种命题间的相互关系1.2充分条件与必要条件1.2.1充分条件与必要条件1.2.2充要条件1.3简单的逻辑联结词1.3.1且(and)1.3.2或(or)1.3.3非(not)阅读与思考“且”“或”“非”与“交”“并”“补”1.4全称量词与存在量词1.4.1全称量词1.4.2存在量词1.4.3含有一个量词的命题的否定小结复习参考题第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程2.1.2求曲线的方程2.2椭圆2.2.1 椭圆及其标准方程探究与发现为什么截口曲线是椭圆2.2.2椭圆的简单几何性质信息技术应用用《几何画板》探究点的轨迹:椭圆2.3双曲线2.3.1双曲线及其标准方程2.3.2双曲线的简单几何性质信息技术应用探究与发现为什么y=± x是双曲线-=1的渐近线2.4抛物线2.4.1抛物线及其标准方程2.4.2抛物线的简单几何性质探究与发现为什么二次函数y=ax²+bx+c(a≠0)的图象是抛物线阅读与思考一、圆锥曲线的光学性质及其作用二、圆锥曲线的离心率与统一方程小结复习参考题第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算3.1.3空间向量的数量积运算3.1.4空间向量的正交分解及其坐标表示3.1.5空间向量运算的坐标表示阅读与思考向量概念的推广与应用3.2立体几何中的向量方法小结复习参考题选修2-2第一章导数及其应用1.1变化率与导数1.1.1 变化率问题1.1.2导数的概念1.1. 3导数的几何意义1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则探究与发现牛顿法——用导数方法求方程的近似解1.3导数在研究函数中的应用1.3.1函数的单调性与导数1.3.2函数的极值与导数1.3.3函数的最大(小)值与导数信息技术应用图形技术与函数性质1.4生活中的优化问题举例1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程1.5.3定积分的概念信息技术应用曲边梯形的面积1.6微积分基本定理1.7定积分的简单应用1.7.1定积分在几何中的应用1.7.2定积分在物理中的应用实习作业走进微积分小结复习参考题第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理阅读与思考平面与空间中的余弦定理2.2直接证明与间接证明2.2.1综合法和分析法2.2.2反证法2.3数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.1.1数系的扩充和复数的概念3.1.2复数的几何意义3.2复数代数形式的四则运算3.2.1复数代数形式的加、减运算及其几何意义3.2.2复数代数形式的乘除运算阅读与思考代数基本原理小结复习参考题选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合1.2.1排列1.2.2组合探究与发现组合数的两个性质1.3二项式定理1.3.1二项式定理1.3.2 “杨辉三角”与二项式系数的性质探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.2二项分布及其应用2.2.1条件概率2.2.2事件的相互独立性2.2.3 独立重复试验与二项分布探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值2.3.2离散型随机变量的方差2.4正态分布信息技术应用用计算机研究正态曲线随着μ,σ变化而变化的特点对正态分布的影响信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用实习作业选修3-1【没有找到书】第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-2选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质信息技术应用四直角三角形的射影定理第一讲小结第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-3选修4-4第一讲坐标系一平面直角坐标系1.平面直角坐标系2.平面直角坐标系中的伸缩变换二极坐标系1.极坐标系的概念2.极坐标和直角坐标的互化三简单曲线的极坐标方程1.圆的极坐标方程2.直线的极坐标方程四柱坐标系与球坐标系简介1.柱坐标系2.球坐标系阅读与思考笛卡尔、费马与坐标方法第二讲参数方程一曲线的参数方程1.参数方程的概念2.圆的参数方程3.参数方程和普通方程的互化二圆锥曲线的参数方程1.椭圆的参数方程2.双曲线的参数方程信息技术应用圆锥曲线参数方程中参数的几何意义3.抛物线的参数方程三直线的参数方程四渐开线与摆线1.渐开线2.摆线阅读材料摆线及其应用学习总结报告选修4-5第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一连分数附录二分数法德最优性证明附录三常用正交表选修4-8选修4-9引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例。

高中数学选修1-2第一章课后习题解答

高中数学选修1-2第一章课后习题解答

新课程标准数学选修1—2第一章课后习题解答第一章统计案例1.1回归分析的基本思想及其初步应用练习(P8)1、画散点图的目的是通过变量的散点图判断两个变量更近似于什么样的函数关系,以确定是否直接用线性回归模型来拟合原始数据.说明:学生在对常用的函数图象比较了解的情况下,通过观察散点图可以判断两个变量的关系更近似于哪种函数.2、分析残差可以帮助我们解决以下两个问题:(1)寻找异常点,就是残差特别大的点,考察相应的样本数据是否有错.(2)分析残差图可以发现模型选择是否合适.说明:分析残差是回归诊断的一部分,可以帮助我们发现样本数据中的错误,分析模型选择是否合适,是否有其他变量需要加入到模型中,模型的假设是否正确等. 本题只要求学生能回答上面两点即可,主要让学生体会残差和残差图可以用于判断模型的拟合效果.3、(1)解释变量和预报变量的关系式线性函数关系.R=.(2)21说明:如果所有的样本点都在一条直线上,建立的线性回归模型一定是该直线,所以每个=+,没有随机误差项,是严样本点的残差均为0,残差平方和也为0,即此时的模型为y bx aR=.格的一次函数关系. 通过计算可得21习题1.1 (P9)1、(1)由表中数据制作的散点图如下:从散点图中可以看出GDP值与年份近似呈线性关系.y表示GDP值,t表示年份. 根据截距和斜率的最小二乘计算公式,得(2)用tˆ14292537.729a≈-,ˆ7191.969b≈从而得线性回归方程ˆ7191.96914292537.729=-.y t残差计算结果见下表.GDP 值与年份线性拟合残差表(年实际GDP 值为117251.9,所以预报与实际相差4275.540-.(4)上面建立的回归方程的20.974R =,说明年份能够解释约97%的GDP 值变化,因此所建立的模型能够很好地刻画GDP 和年份的关系.说明:关于2003年的GDP 值的来源,不同的渠道可能会有所不同.2、说明:本题的结果与具体的数据有关,所以答案不唯一.3、由表中数据得散点图如下:从散点图中可以看出,震级x 与大于或等于该震级的地震数N 之间不呈线性相关关系,随着x 的减少,所考察的地震数N 近似地以指数形式增长. 做变换lg y N =,得到的数据如下表所示.x 和y 的散点图如下:从这个散点图中可以看出x 和y 之间有很强的线性相关性,因此可以用线性回归模型拟合它们之间的关系. 根据截距和斜率的最小二乘计算公式,得ˆ 6.704a≈,ˆ0.741b ≈-, 故线性回归方程为 ˆ0.741 6.704y x =-+. 20.997R ≈,说明x 可以解释y 的99.7%的变化.因此,可以用回归方程 0.741 6.704ˆ10x N-+= 描述x 和N 之间的关系. 1.2独立性检验的基本思想及其初步应用练习(P15)列联表的条形图如图所示.由图及表直观判断,好像“成绩优秀与班级有关系”. 因为2K 的观测值0.653 6.635k ≈<,由教科书中表1-11克重,在犯错误的概率不超过0.01的前提下,不能认为“成绩与班级有关系”.说明:(1)教师应要求学生画出等高条形图后,从图形上判断两个分类变量之间是否有关系. 这里通过图形的直观感觉的结果可能会出错.(2)本题与例题不同,本题计算得到的2K 的观测值比较小,所以没有理由说明“成绩优秀与班级有关系”. 这与反证法也有类似的地方,在使用反证法证明结论时,假设结论不成立的条件下如果没有推出矛盾,并不能说明结论成立也不能说明结论不成立. 在独立性检验中,没有推出小概率事件发生类似于反证法中没有推出矛盾.习题1.2 (P16)1、假设“服药与患病之间没有关系”,则2K 的值应该比较小;如果2K 的值很大,则说明很可能“服药与患病之间没有关系”. 由列联表中数据可得2K 的观测值 6.110 5.024k ≈>,而由教科书表1-11,得2( 5.024)0.025P K ≥≈,所以在犯错误的概率不超过0.025的前提下可以认为“服药与患病之间有关系”. 又因为服药群体中患病的频率0.182小于没有服药群体中患病的频率0.400,所以“服药与患病之间关系”可以解释为药物对于疾病有预防作用. 因此在犯错误的概率不超过0.025的前提下,可以认为药物有效.说明:仿照例1,学生很容易完成此题,但希望学生能理解独立性检验在这里的具体含义,即“服药与患病之间关系”可以解释为“药物对于疾病有预防作用”.2、如果“性别与读营养说明之间没有关系”,由题目中所给数据计算,得2K 的观测值为8.416k ≈,而由教科书中表1-11知2(7.879)0.005P K ≥≈,所以在犯错误的概率不超过0.005的前提下认为“性别与读营养说明之间有关系”.3、说明:需要收集数据,所有没有统一答案. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.4、说明:需要从媒体上收集数据,学生关心的问题不同,收集的数据会不同. 第一步,要求学生收集并整理数据后得到列联表;第二步,类似上面的习题做出判断.第一章 复习参考题A 组(P19)根据散点图,可以认为中国人口总数与年份呈现很强的线性相关关系,因此选用线性回归模型建立回归方程.由最小二乘法的计算公式,得 2095141.503a ≈-,1110.903b ≈,则线性回归方程为 ˆ1110.9032095141.503yx =-. 由2R 的计算公式,得 20.994R ≈,明线性回归模型对数据的拟合效果很好.根据回归方程,,预计2003年末中国人口总数约为129997万人,而实际情况为129227万人,预测误差为770万人;预计2004年末中国人口总数约为131108万人,而实际情况为129988万人,预测误差为1120万人.说明:数据来源为《中国统计年鉴》(2003). 由于人数为整数,所以预测的数据经过四舍五入的取整运算.2、(1)将销售总额作为横轴,利润作为纵轴,根据表中数据绘制散点图如下:由于散点图中的样本点基本上在一个带形区域内分布,猜想销售总额与利润之间呈现线性相关关系.(2)由最小二乘法的计算公式,得 ˆ1334.5a≈,ˆ0.026b ≈, 则线性回归方程为 ˆ0.0261334.5yx =+ 其残差值计算结果见下表:(3)对于(2)中所建立的线性回归方程,20.457R ≈,说明在线性回归模型中销售总额只能解释利润变化的46%,所以线性回归模型不能很好地刻画销售总额和利润之间的关系. 说明:此题也可以建立对数模型或二次回归模型等,只要计算和分析合理,就算正确.3、由所给数据计算得2K 的观测值为 3.689k ≈,而由教科书中表1-11知2( 2.706)0.10P K ≥=所以在犯错误的概率不超过0.10的前提下认为“婴儿的性别与出生的时间有关系”.第一章 复习参考题B 组(P19)1、因为 21(,)()ni i i Q a b y a bx ==--∑21(()())n i i i y bx y bx a y bx ==--+--+∑ 2211()()n n i i i i y bx y bx a y bx ===--++-+∑∑12()()ni i i y bx y bx a y bx =---+-+∑ 并且221()()n i a y bx n a y bx =-+=-+∑,12()()n i i i y bx y bx a y bx =--+-+∑ 1()(())ni i i a y bx y bx ny nbx ==-+--+∑ ()()0a y b x n y n b xn y n b x=-+--+= 所以 221(,)()()ni i i Q a b y bx y bx n a y bx ==--++-+∑.考察上面的等式,等号右边的求和号中不包含a ,而另外一项非负,所以ˆa和ˆb 必然使得等号右边的最后一项达到最小值,即 ˆˆ0ay bx -+=, 即ˆˆy a bx =+. 2、总偏差平方和21()n i i y y =-∑表示总的效应,即因变量的变化效应;残差平方和21ˆ()ni i y y =-∑表示随机误差的效应,即随机误差的变化效应;回归平方和21ˆ()ni yy =-∑表示表示变量的效应,即自变量的变化效应. 等式 222111ˆˆ()()()n n n i ii i i y y y y y y ===-=-+-∑∑∑ 表示因变量的变化总效应等于随机误差的变化效应与自变量的变化效应之和.3、说明:该题主要是考察学生应用回归分析模型解决实际问题的能力,解答应该包括如何获取数据,如何根据散点图寻找合适的模型去拟合数据,以及所得结果的解释三方面的内容.。

人教A版高中数学选修1-2《一章 统计案例 1.2 独立性检验的基本思想及其初步应用》精品课件_33

人教A版高中数学选修1-2《一章 统计案例  1.2 独立性检验的基本思想及其初步应用》精品课件_33

解:根据题目所给数据得到如下列联表:
患心脏病 不患心脏病 总计
秃顶
214
ቤተ መጻሕፍቲ ባይዱ不秃顶
451
总计
665
175
389
597
1048
772
1437
根据列联表中的数据,得到
K 2 1437 (214597 175 451)2 16.373 6.635. 3891048 665 772
案 例:某医疗机构为了了解呼吸道疾病与吸 烟是否有关,进行了一次抽样调查,共调查了 515个成年人,其中吸烟者220人,不吸烟者 295人。
调查结果:吸烟的220人中有37人患呼吸道疾 病,183人未患呼吸道疾病;不吸烟的295人中 有21人患病,274人未患病。
根据这些数据,能否断定:患呼吸道疾 病与吸烟有关?
(2)求k值 (3)下结论
5
8
3
2
6
1
4
5
9
8
(1)如果k 10.828,就有99.9%的把握认为" X 与Y有关系" (2)如果k 7.879,就有99.5%的把握认为" X 与Y有关系"
(3)如果k 6.635,就有99%的把握认为" X 与Y有关系"
(4)如果k 5.024,就有97.5%的把握认为" X 与Y有关系"
练习3:为了调查胃病是否与生活规律有关,在某地对540名40岁以上 的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者 生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生 活规律的共200人. (1)根据以上数据列出2×2列联表; (2)能够以99%的把握认为40岁以上的人患胃病与否和生活规律有关 系吗?为什么?

新课程北师大版高中数学高考必考+选考内容教材目录

新课程北师大版高中数学高考必考+选考内容教材目录

必考内容(必修+选修系列1,2)《数学1》(必修)全书共分四章:第一章集合;第二章函数;第三章指数函数和对数函数;第四章函数的应用全书目录:第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算阅读材料康托与集合论第二章函数§1 生活中的变量关系§2 对函数的进一步认识§3 函数的单调性§4 二次函数性质的再研究§5 简单的幂函数阅读材料函数概念的发展课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数概念的扩充§3 指数函数§4 对数§5 对数函数§6 指数函数、幂函数、对数函数增长的比较阅读材料历史上数学计算方面的三大发明第四章函数应用§1 函数与方程§2 实际问题的函数建模阅读材料函数与中学数学探究活动同种商品不同型号的价格问题《数学2》(必修)本书是根据《普通高中数学课程标准(实验)》编写的,包括两部分内容:第一部分是立体几何初步,第二部分是解析几何初步。

全书目录:第一章立体几何初步§1 简单几何体§2 三视图§3 直观图§4 空间图形的基本关系与公理§5 平行关系§6 垂直关系§7 简单几何体的面积和体积§8 面积公式和体积公式的简单应用阅读材料蜜蜂是对的课题学习正方体截面的形状第二章解析几何初步§1 直线与直线的方程§2 圆与圆的方程§3 空间直角坐标系阅读材料笛卡儿与解析几何探究活动1 打包问题探究活动2 追及问题《数学3》(必修)本书是根据《普通高中数学课程标准(实验)》编写的。

共分三章:第一章统计,第二章算法初步,第三章概率。

全书目录第一章统计§1 统计活动:随机选取数字§2 从普查到抽样§3 抽样方法§4 统计图表§5 数据的数字特征§6 用样本估计总体§7 统计活动:结婚年龄的变化§8 相关性§9 最小二乘法阅读材料统计小史课题学习调查通俗歌曲的流行趋势第二章算法初步§1 算法的基本思想§2 算法的基本结构及设计§3 排序问题§4 几种基本语句课题学习确定线段n等分点的算法第三章概率§1 随机事件的概率§2 古典概型§3模拟方法――概率的应用探究活动用模拟方法估计圆周率π的值《数学4》(必修)全书共三章:第一章三角函数;第二章平面向量;第三章三角恒等变形。

北师大版高中数学课本目录(含重难点及课时分布)

北师大版高中数学课本目录(含重难点及课时分布)

高中数学课本内容及其重难点北师大版高中数学必修一1、集合的基本关系ﻫ·2、集合·第一章集合(考点的难度不是很大,是高考的必考点)ﻫ·的含义与表示ﻫ·3、集合的基本运算(重点)(2课时)1、生活中的变量关系··第二章函数ﻫ·4、二次函数性质的再研究(重点)3、函数的单调性(重点)ﻫ· 2、对函数的进一步认识ﻫ··5、简单的幂函数(5课时)ﻫ·第三章指数函数和对数函数·2、指数概念的扩充·1、正整数指数函数ﻫ· 3、指数函数(重点)· 4、对数· 5、对数函数(重点)· 6、指数函数、幂函数、对数函数增减性(重点)(3课时)ﻫ·第四章函数应用ﻫ·1、函数与方程ﻫ·2、实际问题的函数建模(2课时)北师大版高中数学必修二·第一章立体几何初步ﻫ·1、简单几何体ﻫ2、三视图(重点)·· 3、直观图(1课时)ﻫ·4、空间图形的基本关系与公理(重点)ﻫ·5、平行关系(重点)ﻫ·6、7、简单几何体的面积和体积(重点)·垂直关系(重点)ﻫ· 8、面积公式和体积公式的简单应用(重点、难点)(4课时)·第二章解析几何初步·3、空间直角坐标系· 1、直线与直线的方程ﻫ·2、圆与圆的方程ﻫ(4课时)北师大版高中数学必修三1、统计活动:随机选取数字··第一章统计ﻫ· 2、从普查到抽样ﻫ·3、抽样方法6、用样本估计总体·4、统计图表ﻫ·5、数据的数字特征(重点)ﻫ·· 7、统计活动:结婚年龄的变化· 8、相关性ﻫ·9、最小二乘法(3课时)ﻫ·第二章算法初步· 1、算法的基本思想·3、排序问题(重点)· 2、算法的基本结构及设计(重点)ﻫ·4、几种基本语句(2课时)1、随机事件的概率(重点)··第三章概率ﻫ· 2、古典概型(重点)·3、模拟方法――概率的应用(重点、难点)(4课时)ﻫ北师大版高中数学必修四·第一章三角函数·1、周期现象与周期函数ﻫ·2、角的概念的推广ﻫ·3、弧度制· 4、正弦函数(重点)· 5、余弦函数(重点)· 6、正切函数(重点)·7、函数的图像(重点)·8、同角三角函数的基本关系(重点、难点)(5课时)1、从位移、速度、力到向量ﻫ·2、从位移的合成到向量的加法(重ﻫ·第二章平面向量ﻫ·3、从速度的倍数到数乘向量(重点)·点)ﻫ· 4、平面向量的坐标(重点)·5、从力做的功到向量的数量积(重点)ﻫ·6、平面向量数量积的坐标表示(重点)·7、向量应用举例(难点)(5课时)ﻫ·第三章三角恒等变形(重点)·2、二倍角的正弦、余弦和正切·1、两角和与差的三角函数ﻫ·3、半角的三角函数·4、三角函数的和差化积与积化和差· 5、三角函数的简单应用(难点)(4课时)北师大版高中数学必修五·第一章数列ﻫ·1、数列的概念· 2、数列的函数特性4、等差数列的前n项和(重点)· 3、等差数列(重点)ﻫ·· 5、等比数列(重点)·6、等比数列的前n项和(重点)ﻫ·7、数列在日常经济生活中的应用·3、2、正弦定理ﻫ1、正弦定理与余弦定理正弦定理ﻫ(6课时)ﻫ·第二章解三角形(重点)ﻫ··4、三角形中的几何计算(难点)ﻫ·5、解三角形的实际应用举例·余弦定理ﻫ(6课时)ﻫ·第三章不等式·1、不等关系ﻫ· 1.1、不等式关系· 1.2、比较大小(重点)ﻫ2,一元二次不等式(重点)ﻫ·2.1、一元二次不等式的解法(重点)ﻫ·2.2、一元二次不等式的应用【4课时】· 3、基本不等式(重点)3.1 基本不等式· 3.2、基本不等式与最大(小)值4线性规划(重点)·4.1、二元一次不等式(组)与平面区(重点)ﻫ·4.2、简单线性规划(重点)· 4.3、简单线性规划的应用(重点、难点) 【3课时】选修1-1第一章常用逻辑用语1命题2.2必要条件2充分条件与必要条件(重点)ﻫ2.1充分条件ﻫ2.3充要条件3全称量词与存在量词ﻫ3.1全称量词与全称命题ﻫ3.2存在量词与特称命题ﻫ3.3全称命题与特称命题的否定ﻫ4逻辑联结词“且’’‘‘或…‘非(重点)4.1逻辑联结词“且ﻫ4.2逻辑联结词“或4.3逻辑联结词‘‘非【1.5课时】ﻫ第二章圆锥曲线与方程(重点)ﻫ1椭圆ﻫ1.1椭圆及其标准方程1.2椭圆的简单性质ﻫ2抛物线2.1抛物线及其标准方程2.2抛物线的简单性质3 曲线3.2双曲线的简单性质3.1双曲线及其标准方程ﻫ【8课时】第三章变化率与导数(重点)ﻫ1变化的快慢与变化率ﻫ2导数的概念及其几何意义2.1导数的概念ﻫ2.2导数的几何意义3计算导数(重点)ﻫ4导数的四则运算法则(重点)ﻫ4.1导数的加法与减法法则4.2导数的4.2导数的乘法与除法法则ﻫ第四章导数应用(重点)ﻫ4.1导数的加法与减法法则ﻫ乘法与除法法则【6课时】ﻫ选修1-2第一章统计案例1 回归分析ﻫ1.1 回归分析ﻫ1.2相关系数ﻫ1.3可线性化的回归分析ﻫ2独立性检验(重点、重点)2.1条件概率与独立事件2.2独立性检验2.3独立性检验的基本思想ﻫ2.4独立性检验的应用(重点、难点)【4课时】第二章框图(重点,高考必考点)1 流程图ﻫ2结构图【1.5课时】第三章推理与证明1归纳与类比ﻫ1.1归纳推理1.2类比推理ﻫ2数学证明3综合法与分析法3.1综合法3.2分析法4反证法【2课时】1.2复1.1数的概念的扩充ﻫﻫ第四章数系的扩充与复数的引入ﻫ1数系的扩充与复数的引入ﻫ数的有关概念(重点)ﻫ2复数的四则运算(重点、高考必考点)2.1复数的加法与减法ﻫ2.2复数的乘法与除法【1.5课时】ﻫ选修2-1ﻫ第一章常用逻辑用语1命题2充分条件与必要条件ﻫ3全称量词与存在量词4逻辑联结词“且”“或”“非”&…&…(重点)【1.5课时】第二章空间向量与立体几何(重点,在解决立体几何方面有很大的帮助)1 从平面向量到空间向量2 空间向量的运算ﻫ3向量的坐标表示和空间向量基本定理4用向量讨论垂直与平行ﻫ5夹角的计算ﻫ6距离的计算【6课时】ﻫ第三章圆锥曲线与方程(重点、高考大题必考知识点)1 椭圆ﻫ1.1椭圆及其标准方程1.2 椭圆的简单性质2 抛物线2.1抛物线及其标准方程3.1双曲线及其标准方程ﻫ3.2双曲线的简单性质2.2抛物线的简单性质ﻫ3双曲线ﻫﻫ4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征ﻫ4.3 直线与圆锥曲线的交点【8课时】选修2-2第一章推理与证明(重点)ﻫ1归纳与类比ﻫ2综合法与分析法ﻫ3反证法4数学归纳法【2课时】ﻫ第二章变化率与导数(重点)ﻫ1变化的快慢与变化率ﻫ2导数的概念及其几何意义2.1导数的概念2.2导数的几何意义ﻫ3计算导数ﻫ4导数的四则运算法则4.1导数的加法与减法法则ﻫ4.2导数的乘法与除法法则5简单复合函数的求导法则【2课时】第三章导数应用(重点)1函数的单调性与极值1.1导数与函数的单调性ﻫ1.2函数的极值(重、难点)ﻫ2导数在实际问题中的应用ﻫ2.1实际问题中导数的意义2.2最大、最小值问题(重、难点)【5课时】第四章定积分1定积分的概念1.1定积分背景-面积和路程问题(重点)ﻫ1.2定积分2微积分基本定理3定积分的简单应用(重点)3.1平面图形的面积3.2简单几何体的体积【4课时】ﻫ第五章数系的扩充与复数的引入(重点)1 数系的扩充与复数的引入1.1数的概念的扩展1.2复数的有关概念2复数的四则运算ﻫ2.1复数的加法与减法2.2复数的乘法与除法【2课时】选修2-3第一章计数原理(重点)1.分类加法计数原理和分步乘法计数原理1.1 分类加法计数原理1.2分步乘法计数原理ﻫ2.排列(重点、难点)ﻫ2.1排列的原理2.2排列数公式3.组合3.1 组合及组合数公式3.2 组合数的两个性质ﻫ4.简单计数问题ﻫ5.二项式定理(重、难点)5.2二项式系数的性质5.1二项式定理ﻫ【8课时】第二章概率(重点)ﻫ1.离散型随机变量及其分布列2.超几何分布ﻫ3.条件概率与独立事件4.二项分布5.离散型随机变量均值与方差5.1 离散型随机变量均值与方差(一)5.2离散型随机变量均值与方差(二)6.正态分布6.1 连续型随机变量6.2正态分布【4课时】ﻫ第三章统计案例1.1回归分析1.回归分析ﻫ1.2 相关系数1.3 可线性化的回归分析2.1独立性检验2.独立性检验(重点)ﻫ2.2 独立性检验的基本思想2.3 独立性检验的应用【2课时】选修3-1ﻫ第一章数学发展概述第二章数与符号ﻫ第三章几何学发展史ﻫ第四章数学史上的丰碑----微积分第五章无限第六章数学名题赏析ﻫ选修3-2选修3-3ﻫ第一章球面的基本性质1.直线、平面与球面的我诶制关系ﻫ2.球面直线与球面距离ﻫ第二章球面上的三角形1.球面三角形2.球面直线与球面距离ﻫ3.球面三角形的边角关系4.球面三角形的面积【2课时】ﻫ第三章欧拉公式与非欧几何1.球面上的欧拉公式2.简单多面体的欧拉公式3.欧氏几何与球面几何的比较ﻫ选修4-1第一章直线、多边形、圆(重点)1.全等与相似ﻫ2.圆与直线ﻫ3.圆与四边形【2课时】第二章圆锥曲线ﻫ1.截面欣赏ﻫ2.直线与球、平面与球的位置关系3.柱面与平面的截面ﻫ4.平面截圆锥面5.圆锥曲线的几何性质【3课时】ﻫ选修4-2ﻫ第一章平面向量与二阶方阵ﻫ1平面向量及向量的运算2向量的坐标表示及直线的向量方程ﻫ3二阶方阵与平面向量的乘法ﻫ第二章几何变换与矩阵1几种特殊的矩阵变换2 矩阵变换的性质ﻫ第三章变换的合成与矩阵乘法ﻫ1变换的合成与矩阵乘法2矩阵乘法的性质ﻫ第四章逆变换与逆矩阵1 逆变换与逆矩阵2 初等变换与逆矩阵ﻫ3二阶行列式与逆矩阵4 可逆矩阵与线性方程组第五章矩阵的特征值与特征向量ﻫ1矩阵变换的特征值与特征向量ﻫ2特征向量在生态模型中的简单应用ﻫ选修4-4ﻫ第一章坐标系1 平面直角坐标系2 极坐标系ﻫ3柱坐标系和球坐标系ﻫ第二章参数方程ﻫ1参数方程的概念2 直线和圆锥曲线的参数方程ﻫ3参数方程化成普通方程4平摆线和渐开线ﻫ选修4-5第一章不等关系与基本不等式(重点)l不等式的性质ﻫ2含有绝对值的不等式(难点)3平均值不等式ﻫ4不等式的证明5不等式的应用第二章几个重妻的不等式1柯西不等式ﻫ2排序不等式ﻫ3数学归纳法与贝努利不等式选修4-6第一章带余除法与书的进位制1、整除与带余除法ﻫ2、二进制ﻫ第二章可约性1、素数与合数2、最大公因数与辗转相除法ﻫ3、算术基本定理及其应用ﻫ4、不定方程第三章同余ﻫ1、同余及其应用ﻫ2、欧拉定理还在更新。

高中数学第一章统计案例2独立性检验2.2独立性检验2.3独立性检验的基本思想2.4独立性检验的应用课后巩固提升

高中数学第一章统计案例2独立性检验2.2独立性检验2.3独立性检验的基本思想2.4独立性检验的应用课后巩固提升

2.4 独立性检验的应用[A组基础巩固]1.下列说法正确的个数是( )①对事件A与B的检验无关时,即两个事件互不影响;②事件A与B关系越密切,则χ2就越大;③χ2的大小是判定事件A与B是否相关的唯一根据;④若判定两个事件A与B有关,则A发生B一定发生.A.1 B.2C.3 D.4解析:两个事件检验无关,只是说明两个事件的影响较小;而判定两事件是否相关除了χ2公式外,还有许多方法.两事件有关,也只是说明当一个事件发生时,另一个事件发生的概率较大,但不一定必然发生.所以只有命题②正确.答案:A2.经过对χ2的统计量的研究,得到了若干个临界值,当χ2≤2.706时,我们认为( ) A.有95%的把握认为A与B有关系B.有99%的把握认为A与B有关系C.没有充分理由说明事件A与B有关系D.不能确定解析:利用临界值来判断,当χ2≤2.706时,没有充分理由说明事件A与B有关系.答案:C3.大学生和研究生毕业的一个随机样本给出了关于所获取学位类别与学生性别的分类数据如表所示:根据以上数据,则可以判定A.获取学位类别与性别有关B.获取学位类别与性别无关C.性别决定获取学位的类别D.以上都是错误的解析:χ2=340×(162×8-27×143)2189×151×305×35≈7.343>6.635.故有99%的把握认为获取学位类别与性别有关. 答案:A4.在吸烟与患肺病这两个变量的计算中,下列说法正确的是( )A .若χ2的值大于6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病B .从独立性检验可知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病C .若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误D .以上三种说法都不正确 答案:C5.某班主任对全班50名学生进行了作业量的调查,数据如表( ) A .0.1 B .0.05 C .0.9D .0.95解析:∵χ2=50×(18×15-8×9)226×24×27×23≈5.059>3.841.∴有95%的把握认为学生性别与认为作业量大有关,或者说这种推断犯错误的概率不超过0.05. 答案:B6.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算χ2≈27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(填“有关”或“无关”) 解析:由χ2≈27.63与临界值比较,我们有99.9%的把握说打鼾与患心脏病有关. 答案:有关7.下列是关于出生男婴与女婴调查的列联表那么A =________,B ==________. 解析:由45+E =98得E =53, 由98+D =180可知D =82, 由A +35=D 知A =47.所以B =45+47=92,C =E +35=88. 答案:47 92 88 82 538.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:为了检验主修统计专业是否与性别有关系,根据表中的数据,得到χ2=50(13×20-10×7)223×27×20×30≈4.84,因为P (χ2>3.841)=0.05,所以断定主修统计专业与性别有关系,这种判断出错的可能性为________.解析:根据题意,如果P (χ2>3.841)=0.05,表示有95%的把握认为“X 与Y ”有关系,则这种判断出错的可能性为5%. 答案:5%9.从发生汽车碰撞事故的司机中抽取2 000名司机.根据他们的血液中是否含有酒精以及他们是否对事故负有责任,将数据整理如下:有关系?解析:根据列联表中的数据可以求得: χ2=2 000×(650×500-700×150)21 350×650×800×1 200≈114.9因为114.9>10.828,所以我们有99.9%的把握认为对事故负有责任与血液中含有酒精有关. 10.某生产线上,质量监督员甲在生产现场时,990件产品中有合格品982件,次品8件;不在生产现场时,510件产品中有合格品493件,次品17件.能否在犯错误的概率不超过0.01的前提下认为质量监督员甲在不在生产现场与产品质量好坏有关系? 解析:根据题目所给数据得如下2×2列联表:χ2=1 500×(982×17-8×493)2990×510×1 475×25≈13.097>10.828.因此,在犯错误的概率不超过0.001的前提下,可以认为质量监督员甲在不在生产现场与产品质量好坏有关系.[B 组 能力提升]1.假设有两个分类变量X 和Y ,它们的值域分别为{x 1,x 2}和{y 1,y 2},其2×2列联表为:) A .a =5,b =4,c =3,d =2 B .a =5,b =3,c =4,d =2 C .a =2,b =3,c =4,d =5 D .a =3,b =2,c =4,d =5解析:对于同一样本,|ad -bc |越小,说明X 与Y 相关性越弱,而|ad -bc |越大,说明X 与Y 相关性越强,通过计算知,对于A ,B ,C 都有|ad -bc |=|10-12|=2.对于选项D 有|ad -bc |=|15-8|=7,显然7>2. 答案:D2.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表3A .成绩B .视力C .智商D .阅读量解析:∵χ21=52×(6×22-14×10)216×36×32×20=52×8216×36×32×20,χ22=52×(4×20-16×12)216×36×32×20=52×112216×36×32×20,χ23=52×(8×24-12×8)216×36×32×20=52×96216×36×32×20,χ24=52×(14×30-6×2)216×36×32×20=52×408216×36×32×20,则有χ24>χ22>χ23>χ21,所以阅读量与性别关联的可能性最大.答案:D3.巴西医生马廷思收集的犯有各种贪污、受贿罪的官员与廉洁官员的寿命的调查资料如下:500名贪官中有348人的寿命小于平均寿命,152人的寿命大于或等于平均寿命;590名廉洁官员中有93人的寿命小于平均寿命,497人的寿命大于或等于平均寿命.这里,平均寿命是指“当地人均寿命”.通过数据分析,说明有________的把握认为贪官寿命小于平均寿命. 解析:根据题意列2×2列联表如下:假设H 0χ2=1 090×(348×497-152×93)2500×590×441×649≈325.635>6.635,因此拒绝H 0,即我们有99%的把握认为官员经济上是否清廉与他们的寿命长短有密切关系. 答案:99%4.在关于人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人,女性中有43人主要的休闲方式是看电视;男性中有21人主要的休闲方式是看电视;男性、女性中另外的人主要的休闲方式是运动. (1)根据以上数据建立一个2×2的列联表; (2)判断性别与休闲方式是否有关系?解析:(1)依据题意得“性别与休闲方式”2×2列联表为:(2)由公式得χ2=70×54×64×60≈6.201.∵6.201>3.841,∴有95%的把握认为休闲方式与性别有关.5.某学校高三年级有学生1 000名,经调查研究,其中750名同学经常参加体育锻炼(称为A 类同学),另外250名同学不经常参加体育锻炼(称为B 类同学),现用分层抽样方法(按A 类、B 类分二层)从该年级的学生中共抽查100名同学,测得这100名同学身高(单位:厘米)频率分布直方图如图:(1)统计方法中,同一组数据常用该组区间的中点值(例如区间[160,170)的中点值为165)作为代表.据此,计算这100名学生身高数据的平均值;(2)如果以身高达170 cm 作为达标的标准,对抽取的100名学生,得到以下2×2列联表: 体育锻炼与身高达标2×2列联表①完成上表;②能否判定体育锻炼与身高达标有关系(χ2值精确到0.01)?解析:(1)数据的平均值为:145×0.03+155×0.17+165×0.30+175×0.30+185×0.17+195×0.03=170(cm). (2)①②χ2=100(75×25×50×50≈1.33<3.841.因此没有理由认为体育锻炼与身高达标有关系,即体育锻炼与身高达标无关.。

北师大版高中数学课本目录(2021年整理)

北师大版高中数学课本目录(2021年整理)

北师大版高中数学课本目录(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版高中数学课本目录(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版高中数学课本目录(word版可编辑修改)的全部内容。

必修1 第一章集合§1 集合的含义与表示§2 集合的基本关系§3 集合的基本运算3.1 交集与并集3。

2 全集与补集第二章函数§1 生活中的变量关系§2 对函数的进一步认识2。

1 函数概念2。

2 函数的表示法2。

3 映射§3 函数的单调性§4 二次函数性质的再研究4。

1 二次函数的图像4。

2 二次函数的性质§5 简单的幂函数课题学习个人所得税的计算第三章指数函数和对数函数§1 正整数指数函数§2 指数扩充及其运算性质2。

1 指数概念的扩充2.2 指数运算的性质§3指数函数3.1 指数函数的概念3.2 指数函数和的图像和性质3。

3 指数函数的图像和性质§4 对数4。

1 对数及其运算4.2 换底公式§5 对数函数5。

1 对数函数的概念5。

2 y=log2x的图像和性质5。

3 对数函数的图像和性质§6 指数函数、幂函数、对数函数增长的比较第四章函数应用§1 函数与方程1。

1 利用函数性质判定方程解的存在1。

2 利用二分法求方程的近似解§2 实际问题的函数建模2。

1 实际问题的函数刻画2.2 用函数模型解决实际问题2.3 函数建模案例必修2第一章立体几何初步§1 简单几何体 1.1 简单旋转体1.2 简单多面体§2 直观图§3 三视图3.1 简单组合体的三视图3.2 由三视图还原成实物图§4 空间图形的基本关系与公理4。

我的高中数学目录 (2)

我的高中数学目录 (2)

北师大版高中数学必修一·第一章集合·1、集合的基本关系◎好◎一般◎较差◎完全不会·2、集合的含义与表示◎好◎一般◎较差◎完全不会·3、集合的基本运算◎好◎一般◎较差◎完全不会·第二章函数·1、生活中的变量关系◎好◎一般◎较差◎完全不会·2、对函数的进一步认识◎好◎一般◎较差◎完全不会·3、函数的单调性◎好◎一般◎较差◎完全不会·4、二次函数性质的再研究◎好◎一般◎较差◎完全不会·5、简单的幂函数◎好◎一般◎较差◎完全不会·第三章指数函数和对数函数·1、正整数指数函数◎好◎一般◎较差◎完全不会·2、指数概念◎好◎一般◎较差◎完全不会·3、指数函数◎好◎一般◎较差◎完全不会·4、对数◎好◎一般◎较差◎完全不会·5、对数函数◎好◎一般◎较差◎完全不会·6、指数函数、幂函数、对数函数◎好◎一般◎较差◎完全不会·第四章函数应用·1、函数与方程◎好◎一般◎较差◎完全不会·2、实际问题的函数建模◎好◎一般◎较差◎完全不会北师大版高中数学必修二·第一章立体几何初步·1、简单几何体◎好◎一般◎较差◎完全不会·2、三视图◎好◎一般◎较差◎完全不会·3、直观图◎好◎一般◎较差◎完全不会·4、空间图形的基本关系与公理◎好◎一般◎较差◎完全不会·5、平行关系◎好◎一般◎较差◎完全不会·6、垂直关系◎好◎一般◎较差◎完全不会·7、简单几何体的面积和体积◎好◎一般◎较差◎完全不会·8、面积公式和体积公式的简单应用◎好◎一般◎较差◎完全不会·第二章解析几何初步·1、直线与直线的方程◎好◎一般◎较差◎完全不会·2、圆与圆的方程◎好◎一般◎较差◎完全不会·3、空间直角坐标系◎好◎一般◎较差◎完全不会北师大版高中数学必修三·第一章统计·1、统计活动:随机选取数字◎好◎一般◎较差◎完全不会·2、从普查到抽样◎好◎一般◎较差◎完全不会·3、抽样方法◎好◎一般◎较差◎完全不会·4、统计图表◎好◎一般◎较差◎完全不会·5、数据的数字特征◎好◎一般◎较差◎完全不会·6、用样本估计总体◎好◎一般◎较差◎完全不会·7、统计活动:结婚年龄的变化◎好◎一般◎较差◎完全不会·8、相关性◎好◎一般◎较差◎完全不会·9、最小二乘法◎好◎一般◎较差◎完全不会·第二章算法初步·1、算法的基本思想◎好◎一般◎较差◎完全不会·2、算法的基本结构及设计◎好◎一般◎较差◎完全不会·3、排序问题◎好◎一般◎较差◎完全不会·4、几种基本语句◎好◎一般◎较差◎完全不会·第三章概率·1、随机事件的概率◎好◎一般◎较差◎完全不会·2、古典概型◎好◎一般◎较差◎完全不会·3、模拟方法――概率的应用◎好◎一般◎较差◎完全不会北师大版高中数学必修四·第一章三角函数·1、周期现象与周期函数◎好◎一般◎较差◎完全不会·2、角的概念的推广◎好◎一般◎较差◎完全不会·3、弧度制◎好◎一般◎较差◎完全不会·4、正弦函数◎好◎一般◎较差◎完全不会·5、余弦函数◎好◎一般◎较差◎完全不会·6、正切函数◎好◎一般◎较差◎完全不会·7、函数的图像◎好◎一般◎较差◎完全不会·8、同角三角函数的基本关系◎好◎一般◎较差◎完全不会·第二章平面向量·1、从位移、速度、力到向量◎好◎一般◎较差◎完全不会·2、从位移的合成到向量的加法◎好◎一般◎较差◎完全不会·3、从速度的倍数到数乘向量◎好◎一般◎较差◎完全不会·4、平面向量的坐标◎好◎一般◎较差◎完全不会·5、从力做的功到向量的数量积◎好◎一般◎较差◎完全不会·6、平面向量数量积的坐标表示◎好◎一般◎较差◎完全不会·7、向量应用举例◎好◎一般◎较差◎完全不会·第三章三角恒等变形·1、两角和与差的三角函数◎好◎一般◎较差◎完全不会·2、二倍角的正弦、余弦和正切◎好◎一般◎较差◎完全不会·3、半角的三角函数◎好◎一般◎较差◎完全不会·4、三角函数的和差化积◎好◎一般◎较差◎完全不会·5、三角函数的简单应用◎好◎一般◎较差◎完全不会北师大版高中数学必修五·第一章数列·1、数列的概念◎好◎一般◎较差◎完全不会·2、数列的函数特性◎好◎一般◎较差◎完全不会·3、等差数列◎好◎一般◎较差◎完全不会·4、等差数列的前n项和◎好◎一般◎较差◎完全不会·5、等比数列◎好◎一般◎较差◎完全不会·6、等比数列的前n项和◎好◎一般◎较差◎完全不会·7、数列在日常经济生活中的应用◎好◎一般◎较差◎完全不会·第二章解三角形·1、正弦定理与余弦定理正弦定理◎好◎一般◎较差◎完全不会·2、正弦定理◎好◎一般◎较差◎完全不会·3、余弦定理◎好◎一般◎较差◎完全不会·4、三角形中的几何计◎好◎一般◎较差◎完全不会·5、解三角形的实际应用举例◎好◎一般◎较差◎完全不会·第三章不等式·1、不等关系◎好◎一般◎较差◎完全不会·1.1、不等式关系◎好◎一般◎较差◎完全不会·1.2、比较大小◎好◎一般◎较差◎完全不会2,一元二次不等式◎好◎一般◎较差◎完全不会·2.1、一元二次不等式的解法◎好◎一般◎较差◎完全不会·2.2、一元二次不等式的应用◎好◎一般◎较差◎完全不会·3、基本不等式◎好◎一般◎较差◎完全不会3.1 基本不等式◎好◎一般◎较差◎完全不会·3.2、基本不等式与最大(小)值◎好◎一般◎较差◎完全不会4 线性规划·4.1、二元一次不等式与平面区◎好◎一般◎较差◎完全不会·4.2、简单线性规划◎好◎一般◎较差◎完全不会·4.3、简单线性规划的应用◎好◎一般◎较差◎完全不会选修1-1第一章常用逻辑用语1命题◎好◎一般◎较差◎完全不会2充分条件与必要条件◎好◎一般◎较差◎完全不会2.1充分条件◎好◎一般◎较差◎完全不会2.2必要条件◎好◎一般◎较差◎完全不会2.3充要条件◎好◎一般◎较差◎完全不会3全称量词与存在量词3.1全称量词与全称命题◎好◎一般◎较差◎完全不会3.2存在量词与特称命题◎好◎一般◎较差◎完全不会3.3全称命题与特称命题的否定◎好◎一般◎较差◎完全不会4逻辑联结词“且’’‘‘或…‘非4.1逻辑联结词“且◎好◎一般◎较差◎完全不会4.2逻辑联结词“或◎好◎一般◎较差◎完全不会4.3逻辑联结词‘‘非◎好◎一般◎较差◎完全不会第二章圆锥曲线与方程1椭圆◎好◎一般◎较差◎完全不会1.1椭圆及其标准方程◎好◎一般◎较差◎完全不会1.2椭圆的简单性质◎好◎一般◎较差◎完全不会2抛物线2.1抛物线及其标准方程◎好◎一般◎较差◎完全不会2.2抛物线的简单性质◎好◎一般◎较差◎完全不会3 曲线3.1双曲线及其标准方程◎好◎一般◎较差◎完全不会3.2双曲线的简单性质◎好◎一般◎较差◎完全不会第三章变化率与导数1变化的快慢与变化率◎好◎一般◎较差◎完全不会2导数的概念及其几何意义2.1导数的概念◎好◎一般◎较差◎完全不会2.2导数的几何意义◎好◎一般◎较差◎完全不会3计算导数◎好◎一般◎较差◎完全不会4导数的四则运算法则4.1导数的加法与减法法则◎好◎一般◎较差◎完全不会4.2导数的乘法与除法法则◎好◎一般◎较差◎完全不会第四章导数应用4.1导数的加法与减法法则◎好◎一般◎较差◎完全不会4.2导数的乘法与除法法则◎好◎一般◎较差◎完全不会选修1-2第一章统计案例1 回归分析◎好◎一般◎较差◎完全不会1.1 回归分析◎好◎一般◎较差◎完全不会1.2相关系数◎好◎一般◎较差◎完全不会1.3可线性化的回归分析◎好◎一般◎较差◎完全不会2独立性检验2.1条件概率与独立事件◎好◎一般◎较差◎完全不会2.2 独立性检验◎好◎一般◎较差◎完全不会2.3独立性检验的基本思想◎好◎一般◎较差◎完全不会2.4独立性检验的应用◎好◎一般◎较差◎完全不会第二章框图1 流程图◎好◎一般◎较差◎完全不会2结构图◎好◎一般◎较差◎完全不会第三章推理与证明1 归纳与类比◎好◎一般◎较差◎完全不会1.1归纳推理◎好◎一般◎较差◎完全不会1.2类比推理◎好◎一般◎较差◎完全不会2 数学证明◎好◎一般◎较差◎完全不会3 综合法与分析法3.1综合法◎好◎一般◎较差◎完全不会3.2分析法◎好◎一般◎较差◎完全不会4反证法◎好◎一般◎较差◎完全不会第四章数系的扩充与复数的引入1 数系的扩充与复数的引入◎好◎一般◎较差◎完全不会1.1数的概念的扩充◎好◎一般◎较差◎完全不会1.2复数的有关概念◎好◎一般◎较差◎完全不会2复数的四则运算2.1复数的加法与减法◎好◎一般◎较差◎完全不会2.2复数的乘法与除法◎好◎一般◎较差◎完全不会选修2-1第一章常用逻辑用语1 命题◎好◎一般◎较差◎完全不会2 充分条件与必要条件◎好◎一般◎较差◎完全不会3 全称量词与存在量词◎好◎一般◎较差◎完全不会4 逻辑联结词“且”“或”“非”◎好◎一般◎较差◎完全不会第二章空间向量与立体几何1 从平面向量到空间向量◎好◎一般◎较差◎完全不会2 空间向量的运算◎好◎一般◎较差◎完全不会3 向量的坐标表示和空间向量◎好◎一般◎较差◎完全不会4 用向量讨论垂直与平行◎好◎一般◎较差◎完全不会5 夹角的计算◎好◎一般◎较差◎完全不会6 距离的计算◎好◎一般◎较差◎完全不会第三章圆锥曲线与方程1 椭圆1.1 椭圆及其标准方程◎好◎一般◎较差◎完全不会1.2 椭圆的简单性质◎好◎一般◎较差◎完全不会2 抛物线2.1 抛物线及其标准方程◎好◎一般◎较差◎完全不会2.2 抛物线的简单性质◎好◎一般◎较差◎完全不会3 双曲线3.1 双曲线及其标准方程◎好◎一般◎较差◎完全不会3.2 双曲线的简单性质◎好◎一般◎较差◎完全不会4 曲线与方程4.1 曲线与方程◎好◎一般◎较差◎完全不会4.2 圆锥曲线的共同特征◎好◎一般◎较差◎完全不会4.3 直线与圆锥曲线的交点◎好◎一般◎较差◎完全不会选修2-2第一章推理与证明1 归纳与类比◎好◎一般◎较差◎完全不会2 综合法与分析法◎好◎一般◎较差◎完全不会3 反证法◎好◎一般◎较差◎完全不会4 数学归纳法◎好◎一般◎较差◎完全不会第二章变化率与导数1 变化的快慢与变化率◎好◎一般◎较差◎完全不会2 导数的概念及其几何意义◎好◎一般◎较差◎完全不会2.1导数的概念◎好◎一般◎较差◎完全不会2.2导数的几何意义◎好◎一般◎较差◎完全不会3 计算导数◎好◎一般◎较差◎完全不会4 导数的四则运算法则4.1导数的加法与减法法则◎好◎一般◎较差◎完全不会4.2导数的乘法与除法法则◎好◎一般◎较差◎完全不会5 简单复合函数的求导法则◎好◎一般◎较差◎完全不会第三章导数应用1 函数的单调性与极值◎好◎一般◎较差◎完全不会1.1导数与函数的单调性◎好◎一般◎较差◎完全不会2 导数在实际问题中的应用◎好◎一般◎较差◎完全不会2.1实际问题中导数的意义◎好◎一般◎较差◎完全不会2.2最大、最小值问题◎好◎一般◎较差◎完全不会第四章定积分1 定积分的概念◎好◎一般◎较差◎完全不会1.1定积分背景-面积和路程问题◎好◎一般◎较差◎完全不会1.2定积分◎好◎一般◎较差◎完全不会2 微积分基本定理◎好◎一般◎较差◎完全不会3 定积分的简单应用◎好◎一般◎较差◎完全不会3.1平面图形的面积◎好◎一般◎较差◎完全不会3.2简单几何体的体积◎好◎一般◎较差◎完全不会第五章数系的扩充与复数的引入1 数系的扩充与复数的引入◎好◎一般◎较差◎完全不会1.1数的概念的扩展◎好◎一般◎较差◎完全不会1.2复数的有关概念◎好◎一般◎较差◎完全不会2 复数的四则运算◎好◎一般◎较差◎完全不会2.1复数的加法与减法◎好◎一般◎较差◎完全不会2.2复数的乘法与除法◎好◎一般◎较差◎完全不会选修2-3第一章计数原理1.分类加法计数原理◎好◎一般◎较差◎完全不会1.1 分类加法计数原理◎好◎一般◎较差◎完全不会1.2 分步乘法计数原理◎好◎一般◎较差◎完全不会2.排列2.1 排列的原理◎好◎一般◎较差◎完全不会2.2 排列数公式◎好◎一般◎较差◎完全不会3.组合3.1 组合及组合数公式◎好◎一般◎较差◎完全不会3.2 组合数的两个性质◎好◎一般◎较差◎完全不会4.简单计数问题◎好◎一般◎较差◎完全不会5.二项式定理5.1 二项式定理◎好◎一般◎较差◎完全不会5.2 二项式系数的性质◎好◎一般◎较差◎完全不会第二章概率1.离散型随机变量及其分布列◎好◎一般◎较差◎完全不会2.超几何分布◎好◎一般◎较差◎完全不会3.条件概率与独立事件◎好◎一般◎较差◎完全不会4.二项分布◎好◎一般◎较差◎完全不会5.离散型随机变量均值与方差5.1 离散型随机变量均值与方差◎好◎一般◎较差◎完全不会5.2 离散型随机变量均值与方差◎好◎一般◎较差◎完全不会6.正态分布6.1 连续型随机变量◎好◎一般◎较差◎完全不会第三章统计案例1.回归分析◎好◎一般◎较差◎完全不会1.1 回归分析◎好◎一般◎较差◎完全不会1.2 相关系数◎好◎一般◎较差◎完全不会1.3 可线性化的回归分析◎好◎一般◎较差◎完全不会2.独立性检验2.1 独立性检验◎好◎一般◎较差◎完全不会2.2 独立性检验的基本思想◎好◎一般◎较差◎完全不会2.3 独立性检验的应用◎好◎一般◎较差◎完全不会选修4-1第一章直线、多边形、圆1.全等与相似◎好◎一般◎较差◎完全不会2.圆与直线◎好◎一般◎较差◎完全不会3.圆与四边形◎好◎一般◎较差◎完全不会第二章圆锥曲线1.截面欣赏◎好◎一般◎较差◎完全不会2.直线与球平面与球的位置◎好◎一般◎较差◎完全不会3.柱面与平面的截面◎好◎一般◎较差◎完全不会4.平面截圆锥面◎好◎一般◎较差◎完全不会5.圆锥曲线的几何性质◎好◎一般◎较差◎完全不会选修4-4第一章坐标系1 平面直角坐标系◎好◎一般◎较差◎完全不会2 极坐标系◎好◎一般◎较差◎完全不会3 柱坐标系和球坐标系◎好◎一般◎较差◎完全不会第二章参数方程1 参数方程的概念◎好◎一般◎较差◎完全不会2 圆锥曲线的参数方程◎好◎一般◎较差◎完全不会3 参数方程化成普通方程◎好◎一般◎较差◎完全不会4 平摆线和渐开线◎好◎一般◎较差◎完全不会选修4-5第一章不等关系与基本不等式l不等式的性质◎好◎一般◎较差◎完全不会2含有绝对值的不等式◎好◎一般◎较差◎完全不会3平均值不等式◎好◎一般◎较差◎完全不会4不等式的证明◎好◎一般◎较差◎完全不会5不等式的应用◎好◎一般◎较差◎完全不会第二章几个重妻的不等式1柯西不等式◎好◎一般◎较差◎完全不会2排序不等式◎好◎一般◎较差◎完全不会3数学归纳法◎好◎一般◎较差◎完全不会。

人教版高中数学章节目录

人教版高中数学章节目录
人教版高中数学必修一目录
第一章集合与函数概念
集合
函数及其表示
函数的基本性质
第二章基本初等函数(Ⅰ)
指数函数
对数函数
幂函数
第三章函数的应用
函数与方程
函数模型及其应用
人教版高中数学必修二目录
第一章空间几何体
空间几何体的结构
空间几何体的三视图和直观图
空间几何体的表面积与体积
第二章点、直线、平面之间的位置关系
3.3 导数在研究函数中的应用
3.4 生活中的优化问题举例
人教版高中数学选修1-2目录
第一章 统计案例
1.1 回归分析的基本思想及其初步应用
1.2 独立性检验的基本思想及其初步应用
第二章 推理与证明
2.1 合情推理与演绎推理
2.2 直接证明与间接证明
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
2.2 二项分布及其应用
2.3 离散型随机变量的均值与方差
2.4 正态分布
第三章 统计案例
3.1 回归分析的基本思想及其初步应用
3.2 独立性检验的基本思想及其初步应用
人教版高中数学选修4-1目录
第一讲 相似三角形的判定及有关性质
一 平行线等分线段定理
二 平行线分线段成比例定理
三 相似三角形的判定及性质
2.2 直接证明与间接证明
2.3 数学归纳法
第三章 数系的扩充与复数的引入
3.1 数系的扩充和复数的概念
3.2 复数代数形式的四则运算
人教版高中数学选修2-3目录
第一章 计数原理
1.1 分类加法计数原理与分步乘法计数原理
1.2 排列与组合
1.3 二项式定理

高中数学 第一章 统计案例 1.2 独立性检验是如何判断

高中数学 第一章 统计案例 1.2 独立性检验是如何判断

独立性检验是如何判断两个事件是否相互独立的独立性检验的基本思想类似于反证法.要确认“两个分类变量有关系”这一结论成立的可信程度,首先假设结论不成立,即假设结论“两个分类变量没有关系”成立,在该假设下构造的随机变量2χ应该很小.如果由观测数据计算得到的2χ的观测值很大,则在一定程度上说明假设不合理.根据随机变量2χ的含义,可以通过概率式评价该假设不合理的程度,由实际计算的2χ>6.635,说明假设不合理的程度约为99%,即“两个分类变量有关系”这一结论成立的可信程度约为99%.当2χ≤3.841时,认为两个分类变量是无关的.对于两事件而言即相互独立. 1.两个事件独立的判定例1: 为了研究不同的给药方式(口服与注射)和药的效果(有效与无效)是否有关,进根据193个病人的数据,能否作出药的效果与给药方式有关的结论?请说明理由. 解:提出假设H 0:药的效果与给药方式无关系.根据列联表中的数据,得χ2=2193(58314064)122719895-⨯-⨯⨯⨯⨯≈1.3896<2.072.当H 0成立时,χ2>1.3896的概率大于15%,这个概率比较大,所以根据目前的调查数据,不能否定假设H 0,即不能作出药的效果与给药方式有关的结论.注意:这是一个由列联表来验证的独立性检验问题,其结论是没有关系的假设成立.并且应该注意上述结论是对所有口服药物与注射药物的实验人而言的,绝不要误以为对被跟踪的193个跟踪研究对象成立.例2:调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表.试问能以多大把握认为婴儿的性别与出生时间有关系.分析:利用表中的数据通过公式计算出2χ统计量,可以用它的取值大小来推断独立性是否成立. 解:由公式()841.368892.35732345531826248922<≈⨯⨯⨯⨯-⨯⨯=χ 故婴儿的性别与出生时间是相互独立的(也可以说没有充分证据显示婴儿的性别与出生时间有关).2.两个事件不独立的判定例3:在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶,而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶.利用独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?分析:列出22⨯列联表,利用公式求出2χ与两个临界值3.841与6.635比较大小得适当范围.解:根据题目所给数据得到如下表所示: 秃顶与患心脏病列联表由公式,得:()635.6373.167726651048389451175597214143722>≈⨯⨯⨯⨯-⨯⨯=χ 所以有99%的把握认为“秃顶与患心脏病有关”.说明:因为这组数据来自住院的病人,因此所得到的结论适合住院的病人群体.例 4.某班主任对全班50名学生进行了作业量多少的调查,喜欢玩电脑游戏的同学认为作业多的有18人,认为作业不多的有9人,不喜欢玩电脑游戏的同学认为作业多的有8人,认为作业不多的有15人,则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约是多少?2x =059.523272426)981518(502=⨯⨯⨯⨯-⨯, ()024.52>x P =0.025,有97.5%的把握认为喜欢玩电脑游戏与认为作业多有关系.。

统计案例

统计案例

- x)
i
∑(y
n i=1
2
- y)
i
n 2 _ 2 n 2 _ 2 ∑xi − n x ∑yi − ny i=1 i=1
相关系数的性质 (1)|r|≤1. (1)|r|≤1. (2)|r|越接近于 越接近于1 相关程度越强;|r|越接近于 越接近于0 (2)|r|越接近于1,相关程度越强;|r|越接近于0, 相关程度越弱. 相关程度越弱. • 注:b 与 r 同号 • 问题:达到怎样程度,x、y线性相关呢?它们的相 问题:达到怎样程度, 线性相关呢? 关程度怎样呢? 关程度怎样呢?
问题二:在线性回归模型中, 是用 是用bx+a预报真实值 的随机误 预报真实值y的随机误 问题二:在线性回归模型中,e是用 预报真实值
差, 它是一个不可观测的量,那么应如何研究随机误差呢? 它是一个不可观测的量,那么应如何研究随机误差呢? e=y-(bx+a)
残差:一般的对于样本点(x1,y),(x2,y2 ),...,(xn ,yn ),它们的随机误差为 1 ei = yi −bxi − a, i =1,2,...n, 其估计值为ei = yi − yi = yi −bxi − a, i =1,2,...n
函数关系中的两个变量间是一种确定性关系 相关关系是一种非确定性关系 函数关系是一种理想的关系模型 相关关系在现实生活中大量存在,是更一 般的情况
问题2: 问题 :对于线性相关的两个变量用什么方法 来刻划之间的关系呢? 来刻划之间的关系呢? 2、最小二乘估计 、 最小二乘估计下的线性回归方程: 最小二乘估计下的线性回归方程:
求根据一名女大学生的身高预报她的体重的回归方程, 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名 身高为172cm的女大学生的体重。 的女大学生的体重。 身高为 的女大学生的体重 解:1、选取身高为自变量 ,体重为因变量 ,作散点图: 、选取身高为自变量x,体重为因变量y,作散点图:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2 独立性检验2.3 独立性检验的基本思想2.4 独立性检验的应用1.了解独立性检验的基本思想方法.(重点)2.了解独立性检验的初步应用.(难点)[基础·初探]教材整理1 独立性检验阅读教材P21~P24第1行部分,完成下列问题.设A,B为两个变量,每一个变量都可以取两个值,变量A:A1,A2=A1;变量B:B1,B2=B1,有下面2×2列联表:BB1B2总计AA1a b a+bA2c d c+d总计a+c b+d n=a+b+c+d111取B2时的数据;c表示变量A取A2,且变量B取B1时的数据;d表示变量A取A2,且变量B取B2时的数据.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目 新闻节目 总计 20至40岁 40 18 58 大于40岁 15 27 42 总计5545100由表中数据直观分析,收看新闻节目的观众是否与年龄有关:________(填“是”或“否”).【解析】 因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即ba +b =1858,dc +d =2742,两者相差较大,所以,经直观分析,收看新闻节目的观众与年龄是有关的.【答案】 是教材整理2 独立性检验的基本思想阅读教材P 24“练习”以下至P 25“练习”以上部分,完成下列问题. 在2×2列联表中,令χ2=n ad -bc2a +bc +da +cb +d,当数据量较大时,在统计中,用以下结果对变量的独立性进行判断:(1)当χ2≤2.706时,没有充分的证据判定变量A ,B 有关联,可以认为变量A ,B 是没有关联的;(2)当χ2>2.706时,有90%的把握判定变量A ,B 有关联; (3)当χ2>3.841时,有95%的把握判定变量A ,B 有关联; (4)当χ2>6.635时,有99%的把握判定变量A ,B 有关联.对分类变量X 与Y 的统计量χ2的值说法正确的是( ) A .χ2越大,“X 与Y 有关系”的把握性越小 B .χ2越小,“X 与Y 有关系”的把握性越小 C .χ2越接近于0,“X 与Y 无关系”的把握性越小D.χ2越大,“X与Y无关系”程度越大【解析】χ2越大,X与Y越不独立,所以关联越大;相反,χ2越小,关联越小.【答案】B[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:___________________________________________________解惑:___________________________________________________疑问2:___________________________________________________解惑:___________________________________________________疑问3:___________________________________________________解惑:___________________________________________________[小组合作型],2×2列联表在对人们饮食习惯的一次调查中,共调查了124人,其中六十岁以上的70人,六十岁以下的54人.六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.请根据以上数据作出饮食习惯与年龄的列联表,并利用aa+b与cc+d判断二者是否有关系.【精彩点拨】对变量进行分类→求出分类变量的不同取值→作出2×2列联表→计算aa+b与cc+d的值,作出判断【自主解答】2×2列联表如下:年龄在六十岁以上年龄在六十岁以下总计饮食以蔬菜为主432164饮食以肉类为主273360总计7054124将表中数据代入公式得aa+b=4364≈0.671 875.cc+d=2760=0.45.显然二者数据具有较为明显的差距,据此可以在某种程度上认为饮食习惯与年龄有关系.1.作2×2列联表时,关键是对涉及的变量分清类别.注意应该是4行4列,计算时要准确无误.2.利用2×2列联表分析两变量间的关系时,首先要根据题中数据获得2×2列联表,然后根据频率特征,即将aa+b与cc+d⎝⎛⎭⎪⎫或ba+b与dc+d的值相比,直观地反映出两个分类变量间是否相互影响,但方法较粗劣.[再练一题]1.在一项有关医疗保健的社会调查中,发现调查的男性为530人,女性为670人,其中男性中喜欢吃甜食的为117人,女性中喜欢吃甜食的为492人,请作出性别与喜欢吃甜食的列联表.【解】作列联表如下:喜欢甜食情况性别喜欢甜食不喜欢甜食总计男 117 413 530 女 492 178 670 总计6095911 200,独立性检验在500人身上试验某种血清预防感冒的作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示.问:能否在犯错误的概率不超过1%的前提下认为该种血清能起到预防感冒的作用.未感冒 感冒 总计 使用血清 258 242 500 未使用血清 216 284 500 总计4745261 000【精彩点拨】 独立性检验可以通过2×2列联表计算χ2的值,然后和临界值对照作出判断.【自主解答】 假设感冒与是否使用该种血清没有关系.由列联表中的数据,求得χ2的值为χ2=1 000×258×284-242×2162474×526×500×500≈7.075.χ2=7.075≥6.635,查表得P (χ2≥6.635)=0.01,故我们在犯错误的概率不超过1%的前提下,即有99%的把握认为该种血清能起到预防感冒的作用.1.熟练掌握χ2统计量的数值计算,根据计算得出χ2值,对比三个临界值2.706,3.841和6.635,作出统计推断.2.独立性检验的一般步骤: (1)根据样本数据列2×2列联表;(2)计算χ2=n ad -bc2a +bc +da +cb +d的值;(3)将χ2的值与临界值进行比较,若χ2大于临界值,则认为X 与Y 有关,否则没有充分的理由说明这个假设不成立.[再练一题]2.“十一”黄金周前某地的一旅游景点票价上浮,黄金周过后,统计本地与外地来的游客人数,与去年同期相比,结果如下: 【导学号:67720005】本地 外地 总计 去年 1 407 2 842 4 249 今年 1 331 2 065 3 396 总计2 7384 9077 645能否在犯错误的概率不超过0.01的前提下认为票价上浮后游客人数与所处地区有关系?【解】 按照独立性检验的基本步骤,假设票价上浮后游客人数与所处地区没有关系. 因为χ2=7 645× 1 407×2 065-2 842×1 33124 249×3 396×2 738×4 907≈30.35>6.635.所以在犯错误的概率不超过0.01的前提下认为票价上浮后游客人数与所处地区有关系.[探究共研型],独立性检验的综合应用探究1 当χ2>3.841时,我们有多大的把握认为事件A 与B 有关?【提示】 由临界值表可知当χ2>3.841时,我们有95%的把握认为事件A 与B 有关. 探究2 在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的.我们是否可以判定100个心脏病患者中一定有打鼾的人?【提示】 这是独立性检验,在犯错误的概率不超过0.01的前提下认为“打鼾与患心脏病有关”.这只是一个概率,即打鼾与患心脏病有关的可能性为99%.根据概率的意义可知100个心脏病患者中可能一个打鼾的人都没有.为了解某市创建文明城市过程中,学生对创建工作的满意情况,相关部门对某中学的100名学生进行调查,其中有50名男生对创建工作表示满意,有15名女生对创建工作表示不满意.已知在全部100名学生中随机抽取1人,其对创建工作表示满意的概率为45.是否有充足的证据说明,学生对创建工作的满意情况与性别有关?【精彩点拨】 解决本题首先根据对工作满意的概率,确定对工作满意的男女生人数,再画出2×2列联表,最后根据2×2列联表计算χ2,并进行判断.【自主解答】 由题意得2×2列联表如下:满意 不满意 总计 男生 50 5 55 女生 30 15 45 总计8020100χ2=100×50×15-30×5280×20×55×45≈9.091>6.635,所以我们有99%的把握认为学生对创建工作的满意情况与性别有关.1.独立性检验的基本思想是:要确认两个变量有关系这一结论成立的可信程度,首先假设结论“两个变量没有关系”成立,在该假设下我们构造的统计量χ2应该很小,如果用观测数据计算的统计量χ2很大,则在一定程度上说明假设不合理.由χ2与临界值的大小关系,作出判断.2.独立性检验仍然属于用样本估计总体,由于样本抽取具有随机性,因而作出的推断可能正确,也可能错误,有95%(或99%)的把握说事件A 与B 有关,则推断结论为错误的可能性仅为5%(或1%).[再练一题]3.有两个变量x 与y ,其一组观测值如下2×2列联表所示:yxy 1 y 2x 1 a20-a x 215-a30+a其中a,15-a 均为大于5的整数,则a 取何值时,有95%的把握认为x 与y 之间有关系?【解】 由题意χ2=65[a 30+a -20-a 15-a ]220×45×15×50=6565a -300220×45×15×50=1313a -6025 400.∵有95%的把握认为x 与y 之间有关系, ∴χ2>3.841, ∴1313a -6025 400>3.841,a >7.7或a <1.5.又a >5,15-a >5,∴7.7<a <10. 又a ∈N , ∴a =8或a =9.[构建·体系]1.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A.平均数与方差B.回归分析C.独立性检验D.概率【解析】判断两个分类变量是否有关的最有效方法是进行独立性检验,故选C.【答案】C2.(2016·长沙高二检测)为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算χ2=8.01,则认为“喜欢乡村音乐与性别有关系”的把握性约为( )AC.99% D.99.9%【解析】因为χ2>6.635,所以有99%以上的把握认为“喜欢乡村音乐与性别有关系”.【答案】C3.在2×2列联表中,两个比值aa+b与________相差越大,两个分类变量有关系的可能性越大.【解析】根据2×2列联表可知,比值aa+b与cc+d相差越大,则|ad-bc|就越大,那么两个分类变量有关系的可能性就越大.【答案】c c+d4.以下关于独立性检验的说法中,正确的是________.①独立性检验依据小概率原理;②独立性检验得到的结论一定正确;③样本不同,独立性检验的结论可能有差异;④独立性检验不是判断两分类变量是否相关的唯一方法.【解析】独立性检验得到的结论不一定正确,故②错,①③④正确.【答案】①③④5.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品总计南方学生602080北方学生101020合计7030100根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.【解】将2×2列联表中的数据代入公式计算,得χ2=n ad-bc2a+b c+d a+c b+d=100×60×10-20×10270×30×80×20=10021≈4.762.因为4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.我还有这些不足:(1)___________________________________(2)___________________________________我的课下提升方案:(1)___________________________________(2)___________________________________学业分层测评(三) (建议用时:45分钟)[学业达标]一、选择题1.有两个分类变量X 与Y 的一组数据,由其列联表计算得χ2≈4.523,则认为“X 与Y 有关系”犯错误的概率为( )A .95%B .90%C .5%D .10%【解析】 χ2≈4.523>3.841.这表明认为“X 与Y 有关系”是错误的可能性约为0.05,即认为“X 与Y 有关系”犯错误的概率为5%.【答案】 C2.在调查中发现480名男人中有38名患有色盲,520名女人中有6名患有色盲.下列说法正确的是( )A .男、女患色盲的频率分别为0.038,0.006B .男、女患色盲的概率分别为19240,3260C .男人中患色盲的比例比女人中患色盲的比例大,患色盲与性别是有关的D .调查人数太少,不能说明色盲与性别有关 【解析】 男人中患色盲的比例为38480,要比女人中患色盲的比例6520大,其差值为⎪⎪⎪⎪⎪⎪38480-6520≈0.0676,差值较大. 【答案】 C3.为了探究中学生的学习成绩是否与学习时间长短有关,在调查的500名学习时间较长的中学生中有39名学习成绩比较好,500名学习时间较短的中学生中有6名学习成绩比较好,那么你认为中学生的学习成绩与学习时间长短有关的把握为( )A .0B .95%C.99% D.都不正确【解析】计算出χ2与两个临界值比较,χ2=1 000×39×494-6×461245×955×500×500≈25.340 3>6.635.所以有99%的把握说中学生的学习成绩与学习时间长短有关,故选C.【答案】C4.某卫生机构对366人进行健康体检,其中某项检测指标阳性家族史者糖尿病发病的有16人,不发病的有93人;阴性家族史者糖尿病发病的有17人,不发病的有240人,有________的把握认为糖尿病患者与遗传有关系.( )A.99.9% B.99.5%C.99% D.97.5%【解析】可以先作出如下列联表(单位:人):糖尿病患者与遗传列联表:糖尿病发病糖尿病不发病总计阳性家族史1693109阴性家族史17240257总计33333366χ2=366×16×240-17×932109×257×33×333≈6.067>5.024.故我们有97.5%的把握认为糖尿病患者与遗传有关系.【答案】D5.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表为:y1y2总计x1a b a+b( ) A .a =5,b =4,c =3,d =2 B .a =5,b =3,c =4,d =2 C .a =2,b =3,c =4,d =5 D .a =2,b =3,c =5,d =4【解析】 比较⎪⎪⎪⎪⎪⎪a a +b -c c +d . 选项A 中,⎪⎪⎪⎪⎪⎪59-35=245;选项B 中,⎪⎪⎪⎪⎪⎪58-46=124;选项C 中,⎪⎪⎪⎪⎪⎪25-49=245;选项D 中,⎪⎪⎪⎪⎪⎪25-59=745.故选D .【答案】 D 二、填空题6.调查者通过随机询问72名男女中学生喜欢文科还是理科,得到如下列联表(单位:名):性别与喜欢文科还是理科列联表:【解析】 通过计算χ2=72×16×8-28×20236×36×44×28≈8.42>7.879.故我们有99.5%的把握认为中学生的性别和喜欢文科还是理科有关系. 【答案】 有7.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表: 【导学号:67720006】专业性别非统计专业 统计专业男 13 10 女720χ2=50×13×20-10×7223×27×20×30≈4.844,因为χ2≥3.841,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为________.【解析】 ∵χ2>3.841,所以有95%的把握认为主修统计专业与性别有关,出错的可能性为5%.【答案】 5%8.在吸烟与患肺病是否相关的判断中,有下面的说法:①若统计量χ2>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②由独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③由独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.(填序号)【解析】统计量χ2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①错误;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确.【答案】③三、解答题9.某班主任对班级22名学生进行了作业量多少的调查,数据如下表:在喜欢玩电脑游戏的12人中,有10人认为作业多,2人认为作业不多;在不喜欢玩电脑游戏的10人中,有3人认为作业多,7人认为作业不多.(1)根据以上数据建立一个2×2列联表;(2)试问喜欢电脑游戏与认为作业多少是否有关系?【解】由题意列出2×2列联表:认为作业多认为作业不多总计喜欢玩电脑游戏10212不喜欢玩电脑游戏3710总计13922χ2=22×10×7-3×2212×10×13×9≈6.418,∵6.418>3.841,∴有95%的把握认为玩电脑游戏与认为作业多少有关系.10.在一次天气恶劣的飞行航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.请你根据所给数据判定:在天气恶劣的飞行航程中,男乘客是否比女乘客更容易晕机?【解】根据题意,列出2×2列联表如下:晕机不晕机总计男乘客243155女乘客 8 26 34 总计325789由公式可得χ2=89×24×26-31×8255×34×32×57≈3.689>2.706,故我们有90%的把握认为“在天气恶劣的飞行航程中,男乘客比女乘客更容易晕机”.[能力提升]1.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男 女 总计 爱好 40 20 60 不爱好 20 30 50 总计6050 110由χ2=n ad -bc2a +bc +da +cb +d算得,χ2=110×40×30-20×20260×50×60×50≈7.8.附表:P (χ2≥k 0)0.050 0.010 0.001 k3.8416.63510.828A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” 【解析】 根据独立性检验的思想方法,正确选项为C . 【答案】 C2.某班主任对全班50名学生进行了作业量的调查,数据如下表:认为作业量大认为作业量不大总计 男生 18 9 27 女生 8 15 23 总计262450若推断“学生的性别与认为作业量大有关”,则这种推断犯错误的概率不超过( ) A .0.01 B .0.025 C .0.10D .0.05【解析】 χ2=50×18×15-8×9226×24×27×23≈5.059>5.024,因为P (χ2>5.024)=0.025,所以这种推断犯错误的概率不超过0.025.【答案】 B3.某研究小组为了研究中学生的身体发育情况,在某中学随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表中的数据,可以在犯错误的概率不超过________的前提下认为该学校15至16周岁的男生的身高和体重之间有关系.超重 不超重 总计 偏高 4 1 5 不偏高 3 12 15 总计71320【解析】 根据公式χ2=n ad -bc2a +bc +da +cb +d得,χ2=20×4×12-1×325×15×7×13≈5.934,因为χ2>5.024,因此在犯错误的概率不超过0.025的前提下认为该学校15至16周岁的男生的身高和体重之间有关系.【答案】 0.0254.(2016·沈阳二检)为了研究“教学方式”对教学质量的影响,某高中数学老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.甲乙0 9 0 1 5 6 87 7 3 2 8 0 1 2 5 6 6 8 9 84 2 2 1 0 7 1 35 98 7 7 6 6 5 7 8 988775(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.甲班 乙班 总计 优秀 不优秀 总计下面临界表仅供参考:P (χ2≥k ) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828⎝⎛⎭⎪⎫参考公式:χ2=2a +bc +da +cb +d【解】 (1)记成绩为87分的同学为A ,B ,其他不低于80分的同学为C ,D ,E ,“从甲班数学成绩不低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10个.“至少有一个87分的同学被抽到”所组成的基本事件有(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),共7个,所以P=710.(2)甲班乙班总计优秀61420不优秀14620总计202040χ2=40×220×20×20×20=6.4>5.024,因此,我们有97.5%的把握认为成绩优秀与教学方式有关.。

相关文档
最新文档