高中数学第三章统计案例3.1独立性检验假设检验(hypothesistesting素材苏教版选修2_3202012251102

合集下载

3.1独立性检验

3.1独立性检验
一:分类变量的概念: 变量的不同“值”表示个体所属的不同类别,像这样 的变量称为分类变量.
在日常生活中,我们常常关心两个分类变量之间是否 有关系:
在统计学中,独立性检验就是检验两个分类变量是否 有关系的一种统计方法。
为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机 地调查了9965人,得到如下结果(单位:人): 吸烟与患肺癌列联表(列出两个分类变量的频数表):
总计 a+b c+d a+b+c+d
假设H0:吸烟和患病之间没有关系 用A表示不吸烟,B表示不患病
应有 ad bc.
|ad-bc|越小,说明吸烟与患肺癌之间关系越弱; |ad-bc|越大,说明吸烟与患肺癌之间关系越强.
为了使不同样本容量的数据有统一的评判标准,基于
上述分析,我们构造一个随机变量
7817 2148 9874 91
怎样判断K2的观测值k是大还是小呢?

这仅需要确定一个正数 k0 ,当 k k大。此时相应于 k 0 的判断规则为:
k0
时就认为K2的观测
k 如就果认为k“两k个0 ,分就类认变为量“之两间个没分有类关变系量”之。-间---有临关界系值”;否则 0
在H0成立的情况下,统计学家估算出如下的概率: P(K 2 6.635) 0.01
即有99%的把握认为“秃顶患心脏病有关”。
独立性检验的基本思想(类似反证法)
(1)假设结论不成立,即 H0 :“两个分类变量没有关系”.
(2)在此假设下我们所构造的随机变量 K2 应该很小,如果由 观测数据计算得到K2的观测值k很大,则在一定可信程度上 说明 H0 不成立.即在一定可信没有发现
反对H0 的充分证据。

(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)

(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)

(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算本章小结阅读与欣赏聪明在于学习,天才由于积累第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图象(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法本章小结阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)本章小结阅读与欣赏对数的发明必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积实习作业1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系本章小结阅读与欣赏散发着数学芳香的碑文第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式本章小结阅读与欣赏笛卡儿必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入和输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例本章小结阅读与欣赏我国古代数学家秦九韶附录1解三元一次方程组的算法、框图和程序附录2Scilab部分函数指令表第二章统计2.1随机抽样2.1.2系统抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关本章小结阅读与欣赏蚂蚁和大象谁的力气更大附录随机数表第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用本章小结阅读与欣赏概率论的起源必修四第一章基本初等函数(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图象与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角教学建模活动本章小结阅读与欣赏三角学的发展第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与轴上向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用本章小结阅读与欣赏向量概念的推广与应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积本章小结阅读与欣赏和角公式与旋转对称必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例本章小结阅读与欣赏亚历山大时期的三角测量第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和本章小结阅读与欣赏级数趣题无穷与悖论第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划本章小结选修1-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线级其标准方程2.3.2抛物线的几何性质本章小结阅读与欣赏圆锥面与圆锥曲线第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何意义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用本章小结阅读与欣赏微积分与极限思想选修1-2第一章统计案例1.1独立性检验1.2回归分析本章小结“回归”一词的由来附表相关性检验的临界值表第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法本章小结阅读与欣赏《原本》与公理化思想数学证明的机械化——机器证明第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法和减法3.2.2复数的乘法和除法本章小结复平面与高斯第四章框图4.1流程图4.2结构图本章小结阅读与欣赏冯·诺伊曼选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程、由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)本章小结阅读与欣赏向量的叉积及其性质选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常数函数与冥函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例本意小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法本章小节阅读与欣赏复平面与高斯选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3二项式定理1.3.2杨辉三角本章小结第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1独立性检验3.2回归分析本章小结阅读与欣赏“回归”一词的由来附表选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-2暂缺选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行摄影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式本章小结阅读与欣赏附录部分中英文词汇对照表后记选修4-6引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例说明:A版适用于文件生使用,B版适用于理科生使用,B 版比A版略难。

第三章--统计案例-3.2-独立性检验的基本思想及其初步应用

第三章--统计案例-3.2-独立性检验的基本思想及其初步应用

解:由列联表中的数据,得 K2 的观测值为 1 633×30×1 355-224×242 k= ≈68.033>10.828. 254×1 379×54×1 579 因此,在犯错误的概率不超过 0.001 的前提下,认为每 一晚都打鼾与患心脏病有关.
为了调查某生产线上,某质量监督员甲对产
品质量好坏有无影响,现统计数据如下:质量监督员在现 场时,990件产品中合格品为 982 件,次品数为 8 件,甲不 在现场时,510件产品中合格品为493件,次品数为17件, 试分别用列联表、等高条形图、假设检验的方法对数据进
的方法来判断色盲与性别是否有关?你所得的结论在什么
范围内有效? 解:根据题目所给的数据作出如下的列联表: 色盲 不色盲 合计
男 女 合计
38 6 44
442 514 956
480 520 1 000
根据列联表作出相应的等高条形图,如图所示:
38 从等高条形图来看在男人中患色盲的比例480比在女人
38 6 6 中患色盲的比例520要大,其差值为480-520 ≈0.068,差
位统一,图形准确,但它不能给我们两个分类变量有关或
无关的精确的判断,若要作出精确的判断,可以进行独立 性检验的有关计算.
本题应首先作出调查数据的列联表,再根据列联表画
出等高条形图,并进行分析,ห้องสมุดไป่ตู้后利用独立性检验作出判 断.
在调查 480 名男士中有 38 名患有色盲, 520名女士中有6名患有色盲,分别利用图形和独立性检验


③如果 k≥k0 ,就推断“X与Y有关系”,这种推断
犯错误的概率不超过α;否则,就认为在犯错误的概 率不超过α的前提下不能推断“X与Y有关系”,或者 在样本数据中没有发现足够证据支持结论“X与Y有 关系”.

(人教课标版)普通高中课程标准实验教科书《数学》目录(A版)

(人教课标版)普通高中课程标准实验教科书《数学》目录(A版)

(人教课标版)普通高中课程标准实验教科书《数学》目录(A版)(人教课标版)普通高中课程标准实验教科书《数学》目录(A版)必修一目录第一章集合与函数概念1.1集合1.1.1集合的含义与表示1.1.2集合间的基本关系1.1.3集合的基本运算阅读与思考集合中元素的个数1.2函数及其表示1.2.1函数的概念1.2.2函数的表示法阅读与思考函数概念的发展历程1.3函数的基本性质1.3.1单调性与最大(小)值1.3.2奇偶性信息技术应用用计算机绘制函数图象实习作业小结复习参考题第二章基本初等函数(I)2.1指数函数2.1.1指数与指数幂的运算。

2.1.2指数函数及其性质信息技术应用借助信息技术探究指数函数的性质2.2对数函数2.2.1对数与对数运算阅读与思考对数的发明2.2.2对数函数及其性质探究与发现互为反函数的两个函数图象之间的关系2.3幂函数小结复习参考题第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点3.1.2用二分法求方程的近似解阅读与思考中外历史上的方程求解信息技术应用借助信息技术求方程的近似解3.2函数模型及其应用3.2.1几类不同增长的函数模型3.2.2函数模型的应用实例信息技术应用收集数据并建立函数模型实习作业小结复习参考题必修二目录第一章空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征1.1.2简单组合体的结构特征1.2空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图1.2.3空间几何体的直观图阅读与思考画法几何与蒙日1.3空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积1.3.2球的体积与表面积探究与发现祖暅原理与柱体、锥体、球体的体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.1.1平面2.1.2空间中直线与直线之间的位置关系2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定2.3.2平面与平面垂直的判定2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质阅读与思考欧几里得《原本》与公理化方法小结复习参考题第三章直线与方程3.1直线的倾斜角与斜率3.1.1倾斜角与斜率3.1.2两条直线平行与垂直的判定探究与发现魔术师的地毯3.2直线的方程3.2.1直线的点斜式方程3.2.2直线的两点式方程3.2.3直线的一般式方程3.3直线的交点坐标与距离公式3.3.1两条直线的交点坐标3.3.2两点间的距离3.3.3点到直线的距离3.3.4两条平行直线间的距离阅读与思考笛卡尔与解析几何小结复习参考题第四章圆与方程4.1圆的方程4.1.1圆的标准方程4.1.2圆的一般方程阅读与思考坐标法与机器证明4.2直线、圆的位置关系4.2.1直线与圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用4.3空间直角坐标系4.3.1空间直角坐标系4.3.2空间两点间的距离公式信息技术应用用《几何画板》探究点的轨迹:圆小结复习参考题必修三目录第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图与算法的基本逻辑结构1.2基本算法语句1.2.1输入语句、输出语句和赋值语句1.2.2条件语句1.2.3循环语句1.3算法案例阅读与思考割圆术小结复习参考题第二章统计2.1随机抽样阅读与思考一个著名的案例2.1.1简单随机抽样2.1.2系统抽样阅读与思考广告中数据的可靠性2.1.3分层抽样阅读与思考如何得到敏感性问题的诚实反应2.2用样本估计总体2.2.1用样本的频率分布估计总体分布2.2.2用样本的数字特征估计总体的数字特征阅读与思考生产过程中的质量控制图2.3变量间的相关关系2.3.1变量之间的相关关系2.3.2两个变量的线性相关阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1随机事件的概率3.1.1随机事件的概率3.1.2概率的意义3.1.3概率的基本性质阅读与思考天气变化的认识过程3.2古典概型3.2.1古典概型3.2.2(整数值)随机数(random numbers)产生3.3几何概型3.3.1几何概型3.3.2均匀随机数的产生阅读与思考概率与密码小结复习参考题必修四目录第一章三角函数1.1任意角和弧度制1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数阅读与思考三角学与天文学1.2.2同角三角函数的基本关系1.3三角函数的诱导公式1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.4.2正弦函数、余弦函数的性质探究与发现函数y=Asin(ωx+ψ)及函数y=Acos(ωx+ψ)的周期探究与发现利用单位圆中的三角函数线研究正弦函数、余弦函数的性质1.4.3正切函数的性质与图象信息技术应用利用正切线画函数y=tanx,x∈(—,)的图象1.5函数函数y=Asin(ωx+ψ)的图象阅读与思考振幅、周期、频率、相位1.6三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念2.1.1向量的物理背景与概念2.1.2向量的几何表示2.1.3相等向量与共线向量阅读与思考向量及向量符号的由来2.2平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义2.2.3向量数乘运算及其几何意义2.3 平面向量的基本定理及坐标表示2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示2.4平面向量的数量积2.4.1平面向量数量积的物理背景及其含义2.4.2平面向量数量积的坐标表示、模、夹角2.5平面向量应用举例2.5.1平面几何中的向量方法2.5.2向量在物理中的应用举例阅读与思考向量的运算(运算律)与图形性质小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式3.1.2两角和与差的正弦、余弦、正切公式3.1.3二倍角的正弦、余弦、正切公式信息技术应用利用信息技术制作三角函数表3.2简单的三角恒等变换小结复习参考题必修五目录第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理探究与发现解三角形的进一步讨论1.2应用举例阅读与思考海伦和秦九韶1.3实习作业小结复习参考题第二章数列2.1数列的概念与简单表示法阅读与思考斐波那契数列信息技术应用估计的值2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4基本不等式:≤小结复习参考题选修1-1第一章常用逻辑用语1.1命题及其关系1.1.1命题1.1.2四种命题1.1.3四种命题间的相互关系1.2充分条件与必要条件1.2.1充分条件与必要条件1.2.2充要条件1.3简单的逻辑联结词1.3.1且(and)1.3.2或(or)1.3.3非(not)阅读与思考“且”“或”“非”与“交”“并”“补”1.4全称量词与存在量词1.4.1全称量词1.4.2存在量词1.4.3含有一个量词的命题的否定小结复习参考题第二章圆锥曲线与方程2.1椭圆2.1.1 椭圆及其标准方程探究与发现为什么截口曲线是椭圆2.1.2椭圆的简单几何性质信息技术应用用《几何画板》探究点的轨迹:椭圆2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的简单几何性质信息技术应用探究与发现为什么y=± x是双曲线-=1的渐近线2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的简单几何性质探究与发现为什么二次函数y=ax²+bx+c(a≠0)的图象是抛物线阅读与思考圆锥曲线的光学性质及其作用小结复习参考题第三章导数及其应用3.1变化率与导数3.1.1变化率问题3.1.2导数的概念3.1.3导数的几何意义3.2导数的计算3.2.1几个常用函数的导数3.2.2基本初等函数的导数公式及导数的运算法则探究与发现牛顿法——用导数方法求方程的近似解3.3导数在研究函数中的应用3.3.1函数的单调性与导数3.3.2函数的极值与导数3.3.3函数的最大(小)值与导数信息技术应用图形技术与函数性质3.4生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1合情推理与演绎证明2.1.1合情推理2.1.2演绎推理阅读与思考科学发现中的推理2.2直接证明与间接证明2.2.1综合法和分析法2.2.2反证法小结复习参考题第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.1.1数系的扩充和复数的概念3.1.2复数的几何意义3.2复数代数形式的四则运算3.2.1复数代数形式的加减运算及其几何意义3.2.2复数代数形式的乘除运算小结复习参考题第四章框图4.1流程图4.2结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1命题及其关系1.1.1命题1.1.2四种命题1.1.3四种命题间的相互关系1.2充分条件与必要条件1.2.1充分条件与必要条件1.2.2充要条件1.3简单的逻辑联结词1.3.1且(and)1.3.2或(or)1.3.3非(not)阅读与思考“且”“或”“非”与“交”“并”“补”1.4全称量词与存在量词1.4.1全称量词1.4.2存在量词1.4.3含有一个量词的命题的否定小结复习参考题第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程2.1.2求曲线的方程2.2椭圆2.2.1 椭圆及其标准方程探究与发现为什么截口曲线是椭圆2.2.2椭圆的简单几何性质信息技术应用用《几何画板》探究点的轨迹:椭圆2.3双曲线2.3.1双曲线及其标准方程2.3.2双曲线的简单几何性质信息技术应用探究与发现为什么y=± x是双曲线-=1的渐近线2.4抛物线2.4.1抛物线及其标准方程2.4.2抛物线的简单几何性质探究与发现为什么二次函数y=ax²+bx+c(a≠0)的图象是抛物线阅读与思考一、圆锥曲线的光学性质及其作用二、圆锥曲线的离心率与统一方程小结复习参考题第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算3.1.3空间向量的数量积运算3.1.4空间向量的正交分解及其坐标表示3.1.5空间向量运算的坐标表示阅读与思考向量概念的推广与应用3.2立体几何中的向量方法小结复习参考题选修2-2第一章导数及其应用1.1变化率与导数1.1.1 变化率问题1.1.2导数的概念1.1. 3导数的几何意义1.2导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及导数的运算法则探究与发现牛顿法——用导数方法求方程的近似解1.3导数在研究函数中的应用1.3.1函数的单调性与导数1.3.2函数的极值与导数1.3.3函数的最大(小)值与导数信息技术应用图形技术与函数性质1.4生活中的优化问题举例1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程1.5.3定积分的概念信息技术应用曲边梯形的面积1.6微积分基本定理1.7定积分的简单应用1.7.1定积分在几何中的应用1.7.2定积分在物理中的应用实习作业走进微积分小结复习参考题第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理阅读与思考平面与空间中的余弦定理2.2直接证明与间接证明2.2.1综合法和分析法2.2.2反证法2.3数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.1.1数系的扩充和复数的概念3.1.2复数的几何意义3.2复数代数形式的四则运算3.2.1复数代数形式的加、减运算及其几何意义3.2.2复数代数形式的乘除运算阅读与思考代数基本原理小结复习参考题选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2排列与组合1.2.1排列1.2.2组合探究与发现组合数的两个性质1.3二项式定理1.3.1二项式定理1.3.2 “杨辉三角”与二项式系数的性质探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.2二项分布及其应用2.2.1条件概率2.2.2事件的相互独立性2.2.3 独立重复试验与二项分布探究与发现服从二项分布的随机变量取何值时概率最大2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值2.3.2离散型随机变量的方差2.4正态分布信息技术应用用计算机研究正态曲线随着μ,σ变化而变化的特点对正态分布的影响信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用实习作业选修3-1【没有找到书】第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-2选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质信息技术应用四直角三角形的射影定理第一讲小结第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-3选修4-4第一讲坐标系一平面直角坐标系1.平面直角坐标系2.平面直角坐标系中的伸缩变换二极坐标系1.极坐标系的概念2.极坐标和直角坐标的互化三简单曲线的极坐标方程1.圆的极坐标方程2.直线的极坐标方程四柱坐标系与球坐标系简介1.柱坐标系2.球坐标系阅读与思考笛卡尔、费马与坐标方法第二讲参数方程一曲线的参数方程1.参数方程的概念2.圆的参数方程3.参数方程和普通方程的互化二圆锥曲线的参数方程1.椭圆的参数方程2.双曲线的参数方程信息技术应用圆锥曲线参数方程中参数的几何意义3.抛物线的参数方程三直线的参数方程四渐开线与摆线1.渐开线2.摆线阅读材料摆线及其应用学习总结报告选修4-5第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一连分数附录二分数法德最优性证明附录三常用正交表选修4-8选修4-9引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例。

高中数学 第三章 统计案例 3.1 独立性检验 假设检验(h

高中数学 第三章 统计案例 3.1 独立性检验 假设检验(h

假设检验(hypothesis testing)方法演变:t检验、z检验、F检验、卡方检验,方差分析( ANOVA)➢概述假设检验是分析数据的一种方法。

回答此类问题:“随机发生的事件的概率是多少?”另一方面的问题是:“我们从数据中发现的结果是真的吗?”当问题是有关大的总体而只能得到总体的一个样本时用假设检验。

这种方法被用来回答在质量改进中一系列重要的问题,如“我们在过程中所做的改变对产出创造了有意义的差别吗?”或”顾客对场地A的满意度是不是比其他场地高?”最常用的检验是:z检验、t检验、F检验、卡方(χ2)检验和方差分析。

这些检验和其他的检验都是基于均值、方差、比例及其他统计量所形成的具有常见模式的频率分布。

最有名的分布就是正态分布,它是:检验的基础。

t检验、F检验和卡方(χ2)检验是基于t分布、F分布和卡方分布。

➢适用场合·想知道一组或更多组数据的平均值、比例、方差或其他特征时;·当结论是基于更大总体中所取得的样本时。

例如:·想确定一个过程的均值或方差有否改变;·想确定很多数据集的均值或方差是否不同:·想确定两组不同的数据集的比例是否不同;·想确定真正的比例、均值或方差是否和一个定值相等(或大于或小于)。

➢实施步骤假设检验的步骤由三部分组成:理解要解决的问题并安排检验(以下步骤1~3);数字计算通常由计算机完成(步骤4和步骤5);应用数值结果到实际问题中(步骤6)。

虽然计算机能处理数字,但理解假没检验隐含的观念对第1部分和第3部分至关重要。

如果第一次接触假设检验,那么从看“注意事项”中的术语和定义开始。

这些定义解释了假设检验的慨念,然后再回来看这个步骤。

本书不可能详细地涉及假设检验。

这个步骤是个综述和快速参考。

要得到更多的信息,查阅统计学参考书或请教统计学家。

1确定要从数据中获得的结论。

选择适当的检验方法。

用哪种检验取决于检验的目的和数据的种类。

3.1_独立性检验(用)

3.1_独立性检验(用)
n11 n1 n1 n12 n1 n2 或者说, - , - , n n n n n n n21 n2 n1 n22 n2 n2 - , - 应该 n n n n n n 比较小,
2 2 2 2
n11 P AB 的估计为 ,P A 的估计为 n n1 n ,P B 的估计为 1 n n
n11 n1 n1 n12 n1 n2 - - n n n n n n 从而 n1 n1 n1 n2 n n n n n21 n2 n1 n22 n2 n2 - - n n n n n n n2 n1 n2 n2 n n n n 也应该比较小
P(χ≥x0)
0.05 3.841
0.010 6.635
x0
两个临界值:3.841与6.635 经过对卡方统计量分布的研究,已经得到了这 两个临界值 当卡方大于3.841时,有95%的把握说事件A与 B有关;当卡方大于6.635时,有99%的把握 说事件A与B有关,当卡方≤3.841时,认为 事件A与B是无关的
2
19358 31 64 40 1.3896 <3.841 122 71 98 95 因当H0成立时,χ2<3.841的概率为95%,故不能否定假设H0, 即不能作出药的效果与给药方式有关的结论。
例4:气管炎是一种常见的呼吸道疾病,医药研究人 员对两种中草药治疗慢性气管炎的疗效进行对比, 所得数据如表所示,问:它们的疗效有无差异?
复方江剪刀草 胆黄片 合计
有效 184 91 275
无效 61 9 70
2
合计 245 100 345
解:设H0:两种中草药的治疗效果没有差异。

高中数学 3.1独立性检验课件 新人教B版选修2-3

高中数学 3.1独立性检验课件 新人教B版选修2-3

响有没有关系.
[解析] 这是一个 2×2 列联表的独立性检验问题,由公式 知
χ2=3921×963×9×19166×7-681×573×24292≈1.780. ∵1.780<3.841,我们没有理由说“心脏搭桥手术”与“又 发作过心脏病”有关,可以认为病人又发作心脏病与否跟他做 过何种手术无关.
动,得到如下的列联表:
男 女 总计
爱好
40 20
60
不爱好
20 30
50
总计
60 50
110

χ2

nad-bc2 a+bc+da+cb+d



K2

110×60×405×0×306-0×205×0 202≈7.8.
附表:
P(K2ห้องสมุดไป่ตู้k)
0.050 0.010 0.001
χ
3.841 6.635 10.828
3.1 独立性检验 第三章
1 课前自主预习 2 课堂典例探究 3 课时作业
课前自主预习
饮用水的质量是人类普遍关心的问题.据统计,饮用优质 水的518人中,身体状况优秀的有466人,饮用一般水的312人 中,身体状况优秀的有218人.
人的身体健康状况与饮用水的质量之间有关系吗?
相互独立事件的概念与性质 1.定义:事件A是否发生对事件B发生的概率_没__有__影__响_, 即P(B|A)=__P__(B_)___,这时,我们称两个事件A,B相互独立, 并把这两个事件叫做相互独立事件. 2 . 性 质 : 当 事 件 A , B 相 互 独 立 时 , ____A____ 与 ____B____,____A____与____B____,___A_____与_____B___也相互 独立.

3.1独立性检验(1)

3.1独立性检验(1)

4)若P( 2>5.024)= 0.025表示有97.5%的把握认为”Ⅰ与Ⅱ”有关系;
2 >3.841)= 0.05表示有95%的把握认为”Ⅰ与Ⅱ”有关系; 5)若P( 2 >2.706)= 0.10表示有90%的把握认为”Ⅰ与Ⅱ”有关系; 6)若P( 2 7)若P( ≤2.706),就认为没有充分的证据显示”Ⅰ与Ⅱ”有关系,
H 但也不能做出结论“ 0 成立”,即”Ⅰ与Ⅱ”没有关
分层训练:
P91:2,3
第三章:统计案例
某医疗机构为了了解呼吸道疾病与吸烟 是否有关,进行了一次抽样调查,共调查了 515个成年人,其中吸烟者220人,不吸烟者 295人,调查结果是:吸烟的220 人中37人患 呼吸道疾病, 183人不患呼吸道疾病;不吸 烟的295人中21人患呼吸道疾病, 274人不患 呼吸道疾病。
根据这些数据能否断定:患呼吸道疾 病与吸烟有关?
医生对患者提出忠告:“你这气管炎是长期吸烟 的结果,为了减缓症状,请快戒烟吧!”
呼吸道疾病真的与吸烟有关吗? 研究人员开发了一种新疫苗,怎样检验该疫苗 的有效性呢?
公安人员在勘测案发现场时,总是非常仔细地搜 查罪犯的脚印,理由之一是可以根据脚的大小来预测 罪犯的身高。这里,推理的依据是什么?
无论是一个家庭,还是一个企业,“量入为出”是 管理与经营的基本原则。支出与收入具有怎样的关系?
化简得
χ
2
n ad bc a c b d a b c d 其中n a b c d
2
1
根据表3-1-1中的数据,利用公式(1)计算 吸烟与呼吸道疾病列联表 患病 不患病 总计 吸烟 37 183 220
不吸烟 总计
2

(压轴题)高中数学高中数学选修2-3第三章《统计案例》测试(包含答案解析)(3)

(压轴题)高中数学高中数学选修2-3第三章《统计案例》测试(包含答案解析)(3)

一、选择题1.已知x 与y 之间的几组数据如下表: x 1 2 3 4 y1mn4参考公式:线性回归方程y bx a =+,其中()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-;相关系数()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑.上表数据中y 的平均值为2.5,若某同学对m 赋了三个值分别为1.5,2,2.5得到三条线性回归直线方程分别为11y b x a =+,22y b x a =+,33y b x a =+,对应的相关系数分别为1r ,2r ,3r ,下列结论中错误..的是( ) A .三条回归直线有共同交点 B .相关系数中,2r 最大 C .12b b >D .12a a >2.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.53z x =+,则c =( ) A .3B .3eC .0.5D .0.5e3.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是A .10200ˆyx =-+ B .10200ˆyx =+ C .10200ˆyx =-- D .10200ˆyx =- 4.设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是 ( ) A .0.1E ξ=B .•01D ξ=C .10()0.01?0.99k k P k ξ-==D .1010()0.99?0.01k k kP k C ξ-==5.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:附表:经计算2K 的观测值10k =,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响 6.下列命题中正确命题的个数是(1)对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;(2)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变; (3)在残差图,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高; (4)设随机变量ξ服从正态分布()0,1N ; 若()1P p ξ>=,则()1102P p ξ-<<=-( ) A .4B .3C .2D .17.在独立性检验中,统计量2χ有三个临界值:2.706、3.841和6.635,在一项打鼾与患心脏病的调查中,共调查了1000人,经计算的2χ=18.87,根据这一数据分析,认为打鼾与患心脏病之间 ( )A .有95%的把握认为两者无关B .约有95%的打鼾者患心脏病C .有99%的把握认为两者有关D .约有99%的打鼾者患心脏病8.对于独立性检验,下列说法正确的是( ) A .K 2>3.841时,有95%的把握说事件A 与B 无关 B .K 2>6.635时,有99%的把握说事件A 与B 有关 C .K 2≤3.841时,有95%的把握说事件A 与B 有关 D .K 2>6.635时,有99%的把握说事件A 与B 无关9.利用独立性检验来考虑两个分类变量X 和Y 是否有关系时,通过查阅临界值表来确定推断“X 与Y 有关系”的可信度,如果k >5.024,那么就推断“X 和Y 有关系”,这种推断犯错误的概率不超过( ) A .0.25 B .0.75 C .0.025 D .0.97510.已知,x y 的取值如下表:( )x0 1, 2 3 4 y11.33.25.68.9若依据表中数据所画的散点图中,所有样本点()(,)1,2,3,4,5i i x y i =都在曲线212y x a =+附近波动,则a =( ) A .1B .12C .13D .12-11.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到2 6.023K =,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是( )A .90%B .95%C .97.5%D .99.5%12.下列说法:①将一组数据中的每个数据都乘以同一个非零常数a 后,标准差也变为原来的a 倍; ②设有一个回归方程35y x =-,变量x 增加1个单位时,y 平均减少5个单位; ③线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;④在某项测量中,测量结果ξ服从正态分布()()21,0N σσ>,若ξ位于区域()0,1的概率为0.4,则ξ位于区域()1,+∞内的概率为0.6⑤利用统计量2χ来判断“两个事件,X Y 的关系”时,算出的2χ值越大,判断“X 与Y 有关”的把握就越大 其中正确的个数是 A .1B .2C .3D .4二、填空题13.在一次独立试验中,有200人按性别和是否色弱分类如下表(单位:人)你能在犯错误的概率不超过_____的前提下认为“是否色弱与性别有关”?14.某中学为了调研学生的数学成绩和物理成绩是否有关系,随机抽取了189名学生进行调查,调查结果如下:在数学成绩较好的94名学生中,有54名学生的物理成绩较好,有40名学生的物理成绩较差;在成绩较差的95名学生中,有32名学生的物理成绩较好,有63名学生的物理成绩较差.根据以上的调查结果,利用独立性检验的方法可知,约有________的把握认为“学生的数学成绩和物理成绩有关系”.15.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了200位30~40岁之间的公务员,得到的情况如下表:男公务员 女公务员 生二胎 80 40 不生二胎4040则________(填“有”或“没有”)99%以上的把握认为“生二胎与性别有关”. 附:K 2=. P (K 2≥k 0) 0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.82816.为了解某班学生喜爱打篮球是否与性别有关,对该班50名 学生进行了问卷调查, 得到了如下22⨯ 列联表喜爱打篮球 不喜爱打篮球 合计男生20 525 女生 10 1525合计30 2050则至少有_____的把握认为喜爱打篮球与性别有关(请用百分数表示). 17.给出下列命题:①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱;②由变量x 和y 的数据得到其回归直线方程:l ˆybx a =+,则l 一定经过点(),x y P ; ③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;⑤在回归直线方程0.110ˆyx =+中,当解释变量x 每增加一个单位时,预报变量ˆy 增加0.1个单位,其中真命题的序号是___________.18.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温(如表),并求得线性回归方程为^=-2x +60.不小心丢失表中数据c ,d ,那么由现有数据知2c+d=______. x c 13 10 -1 y243438d19.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)20.2018年春季,世界各地相继出现流感疫情,这已经成为全球性的公共卫生问题.为了考察某种流感疫苗的效果,某实验室随机抽取100只健康小鼠进行试验,得到如下列联表:关系.(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++.)三、解答题21.第十八届中国国际农产品交易会于11月27日在重庆国际博览中心开幕,我市全面推广“遂宁红薯”及“遂宁鲜”农产品区域公用品牌,并组织了100家企业、1000个产品进行展示展销,扩大优质特色农产品市场的占有率和影响力,提升遂宁特色农产品的社会认知度和美誉度,让来自世界各地的与会者和消费者更深入了解遂宁,某记者对本次农交会进行了跟踪报道和实际调查,对某特产的最满意度()%x 和对应的销售额y (万元)进行了调查得到以下数据:关系数r 的绝对值在0.95以上(含0.95)是线性相关性较强;否则,线性相关性较弱.请你对线性相关性强弱作出判断,并给出理由;(2)如果没有达到较强线性相关,则采取“末位淘汰”制(即销售额最少的那一天不作为计算数据),并求在剔除“末位淘汰”的那一天后的销量额y 关于最满意度x 的线性回归方程(系数精确到0.1). 参考数据:24x =,81y =,52215146ii x x =-=∑, 52215176i i y y =-=∑,515151i ii x y xy =-=∑13.27≈≈.附:对于一组数据()()()1122,,,,,,n n x y x y x y ⋅⋅⋅.其回归直线方程 ˆˆˆy bx a =+的斜率和截距的最小二乘法估计公式分别为:1221ˆ·ni ii ni i x y nx y bx nx ==-=-∑∑,ˆa y bx=-,线性相关系数·ni ix y nx y r -=∑22.为了调查某生产线上质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在生产现场时,990件产品中合格品有982件,次品有8件;甲不在生产现场时,510件产品中合格品有493件,次品有17件,试分别用列联表、独立性检验的方法分析监督员甲是否在生产现场对产品质量好坏有无影响?23.2020年初,新型冠状病毒(2019-nCoV )肆虐,全民开启防疫防控.新型冠状病毒的传染主要是人与人之间进行传播,感染人群年龄大多数是40岁以上人群.该病毒进入人体后有潜伏期,潜伏期是指病原体侵入人体至最早出现临床症状的这段时间.潜伏期越长,感染到他人的可能性越高,现对200个病例的潜伏期(单位:天)进行调查,统计发现潜伏期平均数为7.1,方差为22.25.如果认为超过8天的潜伏期属于“长潜伏期”,按照年龄统计样本,得到下面的列联表:(1)是否有95%的把握认为“长期潜伏”与年龄有关;(2)假设潜伏期X 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .(ⅰ)现在很多省份对入境旅客一律要求隔离14天,请用概率的知识解释其合理性;(ⅱ)以题目中的样本频率估计概率,设1000个病例中恰有()*k k ∈N 个属于“长期潜伏”的概率是()g k ,当k 为何值时,()g k 取得最大值. 附:()()()()()22n ad bc a b c d a c b d χ-=++++若()2,N ξμσ则()0.6862P μσξμσ-<<+=.()220.9544P μσξμσ-<<+=,()330.9974P μσξμσ-<<+=.24.某地一所妇产科医院为了解婴儿性别与出生时间(白天或晚上)之间的联系,从该医院最近出生的200名婴儿获知如下数据:这200名婴儿中男婴的比例为55%,晚上出生的男婴比白天出生的男婴多75%,晚上出生的女婴人数与白天出生的男婴人数恰好相等. (1)根据题意,完成下列2×2列联表;(2)根据列联表,判断能否有99%的把握认为婴儿的性别与出生时间有关,说明你的理由.附:22()()()()()n ad bcKa b c d a c b d-=++++(n=a+b+c+d),参考数据:221999≈0.0368.25.在第十五次全国国民阅读调查中,某地区调查组获得一个容量为200的样本,其中城镇居民150人,农村居民50人,在这些居民中,经常阅读的城镇居民100人,农村居民24人.(1)完成上面2×2列联表,并判断是否有95%的把握认为经常阅读与居民居住地有关?(2)从该地区居民城镇的居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为X,若用样本的频率作为概率,求随机变量X的分布列和期望.附:K2=2()()()()()n ad bca b c d a c b d-++++,其中n=a+b+c+d.26.“微粒贷”是腾讯旗下2015年9月开发上市的微众银行网货产品.腾讯公司为了了解“微粒贷”上市以来在C市的使用情况,统计了C市2015年至2019年使用了“微粒货”贷款的累计人数,统计数据如表所示:(1)已知变量x ,y 具有线性相关关系,求累计人数y (万人)关于年份代号x 的线性回归方程y bx a =+;并预测2020年使用“微粒贷“贷款的累计人数;(2)“微粒贷”用户拥有的贷款额度是根据用户的账户信用资质判定的,额度范围在500元至30万元不等,腾讯公司在统计使用人数的同时,对他们所拥有的贷款额度也作了相应的统计.我们把拥有货款额度在500元至5万元(不包括5万元)的人群称为“低额度贷款人群”,简称“A 类人群”;把拥有贷款额度在5万元及以上的人群称为“高额度贷款人群”,简称“B 类人群”.根据统计结果,随机抽取6人,其中A 类人群4人,B 类人群2人.现从这6人中任取3人,记随机变量ξ为A 类人群的人数,求ξ的分布列及其期望.参考公式:1122211()()()()nni iiii i nniii i x y nx y x x y y b xn x x x ====---==--∑∑∑∑, a y bx =-参考数据:5162i ii x y=≈∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意可得5m n +=,分别取m 与n 的值,由公式计算出1122123,,,,,,b a b a r r r 的值,逐一分析四个选项,即可得到答案. 【详解】由题意,1410m n +++=,即5m n +=. 若 1.5m =,则 3.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 1.5 2.53 2.5 3.5 2.54 2.54 2.5 5.5iii x x y y =--=--+--+--+--=∑ ,()()()42222211.50.50.5 1.55i i x x =-=-+-++=∑ ,()()()42222211.511 1.5 6.5i i y y =-=-+-++=∑.则1 5.51.15b ==,1 2.5 1.1 2.50.25a =-⨯=- ,1r =≈; 若2m =,则3n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.52 2.53 2.53 2.54 2.54 2.55iii x x y y =--=--+--+--+--=∑,()4215ii x x =-=∑,()()()42222211.50.50.5 1.55i i y y =-=-+-++=∑.2515b ==,2 2.51 2.50a =-⨯=,21r ==; 若 2.5m =,则 2.5n =,此时12342.54x +++==, 2.5y =. ()()()()()()()()()()411 2.51 2.52 2.5 2.5 2.53 2.5 2.5 2.54 2.54 2.5 4.5iii x x y y =--=--+--+--+--=∑,()4215i i x x =-=∑,()()422211.5 1.5 4.5i i y y =-=-+=∑,3r ==由样本点的中心相同,故A 正确;由以上计算可得,相关系数中,2r 最大,12b b >,12a a <,故B ,C 正确,D 错误. 故选:D . 【点睛】本题考查线性回归方程与相关系数的求法,考查计算能力,是中档题.2.B解析:B 【分析】根据指对数互化求解即可. 【详解】解:因为0.53z x =+,ln z y =,所以0.53ln x y +=,所以0.5330.5x x y e e e +==⨯,故3c e =.故选:B. 【点睛】本题考查非线性回归问题的转化,是基础题.3.A解析:A 【解析】试题分析:因为商品销售量x 与销售价格ˆy负相关,所以排除B ,D 选项, 将0x =代入10200ˆyx =--可得2000ˆy =-<,不符合实际.故A 正确. 考点:线性回归方程.【方法点睛】本题主要考查线性回归方程,属容易题.线性回归方程ˆˆˆy bx a =+当ˆ0b<时ˆ,x y 负相关;当ˆ0b >时ˆ,x y 正相关. 4.A解析:A 【解析】 【分析】由题意知本题是在相同的条件下发生的试验,发射的事故率都为0.01,实验的结果只有发生和不发生两种结果,故本题符合独立重复试验,由独立重复试验的期望公式得到结果. 【详解】由题意知本题是在相同的条件下发生的试验,发射的事故率都为0.01,故本题符合独立重复试验,即ξ~(10,0.01)B . ∴100.010.1E ξ=⨯= 故选A . 【点睛】解决离散型随机变量分布列和期望问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.5.A解析:A 【解析】 【分析】由题意结合2K 的观测值k 由独立性检验的数学思想给出正确的结论即可. 【详解】由于2K 的观测值10k =7.879>,其对应的值0.0050.5%=,据此结合独立性检验的思想可知:有99.5%的把握认为使用智能手机对学习有影响. 本题选择A 选项. 【点睛】独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.6.B解析:B 【解析】 【分析】根据独立性检验的定义可判断(1);根据方差的性质可判断(2);根据残差的性质可判断(3);根据正态分布的对称性可判断(4).【详解】(1)对分类变量X 与Y 的随机变量2K 的观测值K 来说,K 越大,判断“X 与Y 有关系”的把握越大,故(1)错误;(2)若将一组样本数据中的每个数据都加上同一个常数后,数据的离散程度不变,则样本的方差不变,故(2)正确;(3)根据残差的定义可知,在残差图,残差点分布的带状区域的宽度越狭窄,预测值与实际值越接近,其模型拟合的精度越高,(3)正确;(4)设随机变量ξ服从正态分布()0,1N ,若()1P p ζ>=,则()1P p ζ<-=,则()1112P p ζ-<<=-,则()1102P p ζ-<<=-,故(4)正确, 故正确的命题的个数为3个,故选B. 【点睛】本题主要通过对多个命题真假的判断,主要综合考查独立性检验的定义、方差的性质、残差的性质以及正态分布的对称性,属于中档题. 这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.7.C解析:C 【解析】因为统计量2χ有三个临界值:2.706、3.841和6.635,而2χ=18.87>6.635,所以有99%的把握认为两者有关,选C.8.B解析:B【解析】由独立性检验的知识知:K 2>3.841时,有95%的把握认为“变量X 与Y 有关系”;K 2>6.635时,有99%的把握认为“变量X 与Y 有关系”.故选项B 正确.9.C解析:C【解析】∵P (k >5.024)=0.025,故在犯错误的概率不超过0.025的条件下,认为“X 和Y 有关系”. 考点:独立性检验.10.A解析:A 【解析】 设2t x = ,则11(014916)6,(1 1.3 3.2 5.68.9)455t y =++++==++++=,所以点(6,4)在直线12y t a =+上,求出1a =,选A.点睛:本题主要考查了散点图,属于基础题.样本点的中心(),x y 一定在直线回归直线上,本题关键是将原曲线变形为12y t a =+,将点(6,4)代入,求出值. 11.C解析:C 【解析】因为2 6.023K =,且5.024 6.023 6.635≤≤,所以有把握认为“爱好该项运动与性别有关”的可信度P 满足10.02510.010P -≤≤-,即0.9750.99P ≤≤,应选答案C 。

3.1独立性检验

3.1独立性检验

n
n
同理可得:吸烟但未患病人数:n P( AB) n a b b d
n
n
不吸烟但患病人数: n P( AB) n c d a c
n
n
不吸烟且未患病人数:nຫໍສະໝຸດ P( AB) n c d b d
n
n
实际观测值
如果实际观测值与预 期估计值差异不“大”, 那么我们就可以认为 这些差异是由随机误 差造成的,即假设 H 0 不能被所给数据否定。 否则,应认为假设 H0 不能接受
将以上数据代入公式得:
2 11.8634,
吸烟
这个值是大还是小呢? 不吸烟
总计
患病 37 21 58
不患病 183 274 457
总计 220 295 515
统计学家估算出如下的概率: P( 2 6.635 ) 0.01
即在H0成立的情况下,2的值大于6.635的概率非常小,近似于0.01,即1%.
问题一:我们想要研究“吸烟与患呼吸道疾病的关系”时,需要研究 哪些量呢?
吸烟且患病的人数、不吸烟但患病的人数
为了研究这个问题,我们将是否吸烟与患病的数据用2×2列联表表示:
列联表:分类变量的汇总统计表(频数表)
一般地,假设有两个分类变量 X 和 Y,它们的取值分别为
{x1,x2}和{y1,y2},其样本频数表称为列联表 ,又称为 2×2 列联表,其形式为
(b n a b b d )2 (c n c d a c )2 (d n c d b d )2
n n
n n
nn
n a b bd
n cd a c
n cd bd
nn
nn
nn
化简得: 2 =
n(adb)c2

(完整版)高中数学苏教版教材目录(必修+选修)

(完整版)高中数学苏教版教材目录(必修+选修)

苏教版-----------------------------------必修1----------------------------------- 第1章集合1.1集合的含义及其表示1.2子集、全集、补集1.3交集、并集第2章函数2.1函数的概念2.1.1函数的概念和图象2.1.2函数的表示方法2.2函数的简单性质2.2.1函数的单调性2.2.2函数的奇偶性2.3映射的概念第3章指数函数、对数函数和幂函数3.1指数函数3.1.1分数指数幂3.1.2指数函数3.2对数函数3.2.1对数3.2.2对数函数3.3幂函数3.4函数的应用3.4.1函数与方程3.4.2函数模型及其应用-----------------------------------必修2----------------------------------- 第1章立体几何初步1.1空间几何体1.1.1棱柱、棱锥和棱台1.1.2圆柱、圆锥、圆台和球1.1.3中心投影和平行投影1.1.4直观图画法1.2点、线、面之间的位置关系1.2.1平面的基本性质1.2.2空间两条直线的位置关系1.平行直线2.异面直线1.2.3直线与平面的位置关系1.直线与平面平行2.直线与平面垂直1.2.4平面与平面的位置关系1.两平面平行2.平面垂直1.3空间几何体的表面积和体积1.3.1空间几何体的表面积1.3.2空间几何体的体积第2章平面解析几何初步2.1直线与方程2.1.1直线的斜率2.1.2直线的方程1.点斜式2.两点式3.一般式2.1.3两条直线的平行与垂直2.1.4两条直线的交点2.1.5平面上两点间的距离2.1.6点到直线的距离2.2圆与方程2.2.1圆的方程2.2.2直线与圆的位置关系2.2.3圆与圆的位置关系2.3空间直角坐标系2.3.1空间直角坐标系2.3.2空间两点间的距离-----------------------------------必修3----------------------------------- 第1章算法初步1.1算法的意义1.2流程图1.2.1顺序结构1.2.2选择结构1.2.3循环结构1.3基本算法语句1.3.1赋值语句1.3.2输入、输出语句1.3.3条件语句1.3.4循环语句1.4算法案例第2章统计2.1抽样方法2.1.1简单随机抽样1.抽签法2.随机数表法2.1.2系统抽样2.1.3分层抽样2.2总体分布的估计2.2.1频率分布表2.2.2频率分布直方图与折线图2.2.3茎叶图2.3总体特征数的估计2.3.1平均数及其估计2.3.2方差与标准差2.4线性回归方程第3章概率3.1随机事件及其概率3.1.1随机现象3.1.2随机事件的概率3.2古典概型3.3几何概型3.4互斥事件-----------------------------------必修4----------------------------------- 第1章三角函数1.1任意角、弧度1.1.1任意角1.1.2弧度制1.2任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数关系1.2.3三角函数的诱导公式1.3三角函数的图象和性质1.3.1三角函数的周期性1.3.2三角函数的图象与性质1.3.3函数y=Asin(ωx+ψ)的图象1.3.4三角函数的应用第2章平面向量2.1向量的概念及表示2.2向量的线性运算2.2.1向量的加法2.2.2向量的减法2.2.3向量的数乘2.3向量的坐标表示2.3.1平面向量基本定理2.3.2平面向量的坐标运算2.4向量的数量积2.5向量的应用第3章三角恒等变换3.1两角和与差的三角函数3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2二倍角的三角函数3.3几个三角恒等式-----------------------------------必修5----------------------------------- 第1章解三角形1.1正弦定理1.2余弦定理1.3正弦定理、余弦定理的应用第2章数列2.1数列2.2等差数列2.2.1等差数列的概念2.2.2等差数列的通项公式2.2.3等差数列的前n项和2.3等比数列2.3.1等比数列的概念2.3.2等比数列的通项公式2.3.3等比数列的前n项和第3章不等式3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题3.3.1二元一次不等式表示的平面区域3.3.2二元一次不等式组表示的平面区域 3.3.3简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 3.4.1基本不等式的证明3.4.2基本不等式的应用-----------------------------------选修1-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念3.1.1平均变化率3.1.2瞬时变化率——导数3.2导数的运算3.2.1常见函数的导数3.2.2函数的和、差、积、商的导数 3.3导数在研究函数中的应用3.3.1单调性3.3.2极大值和极小值3.3.3最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修1-2-----------------------------------第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2-1-----------------------------------第1章 常用逻辑用语1.1命题及其关系1.1.1四种命题1.1.2充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词1.3.1量词1.3.2含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质 2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程2.6.1曲线与方程2.6.2求曲线的方程2.6.3曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算3.1.1空间向量及其线性运算3.1.2共面向量定理3.1.3空间向量基本定理3.1.4空间向量的坐标表示3.1.5空间向量的数量积 3.2空间向量的应用3.2.1直线的方向向量与平面的法向量3.2.2空间线面关系的判定3.2.3空间的角的计算-----------------------------------选修2-2-----------------------------------第一章 导数及其应用1.1导数的概念1.1.1平均变化率1.1.2瞬时变化率——导数1.2导数的运算1.2.1常见函数的导数1.2.2函数的和、差、积、商的导数1.2.3简单复合函数的导数1.3导数在研究函数中的应用1.3.1单调性1.3.2极大值和极小值1.3.3最大值和最小值 1.4导数在实际生活中的应用1.5定积分1.5.1曲边梯形的面积1.5.2定积分1.5.3微积分基本定理 第二章 推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.1.3推理案例欣赏 2.2直接证明与间接证明2.2.1直接证明2.2.2间接证明 2.3数学归纳法第三章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章 计数原理 1.1两个基本原理 1.2排列 1.3组合1.4计数应用题1.5二项式定理1.5.1二项式定理1.5.2二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性2.3.1条件概率2.3.2事件的独立性2.4二项分布2.5随机变量的均值与方差2.5.1离散型随机变量的均值2.5.2离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1----------------------------------- 1.1 相似三角形的进一步认识1.1.1平行线分线段成比例定理1.1.2相似三角形1.2 圆的进一步认识1.2.1圆周角定理1.2.2圆的切线1.2.3圆中比例线段1.2.4圆内接四边形1.3 圆锥截线1.3.1球的性质1.3.2圆柱的截线1.3.3圆锥的截线学习总结报告-----------------------------------选修4-2----------------------------------- 2.1 二阶矩阵与平面向量2.1.1矩阵的概念2.1.2二阶矩阵与平面列向量的乘法2.2 几种常见的平面变换2.2.1恒等变换2.2.2伸压变换2.2.3反射变换2.2.4旋转变换2.2.5投影变换2.2.6切变变换2.3 变换的复合与矩阵的乘法2.3.1矩阵乘法的概念2.3.2矩阵乘法的简单性质2.4 逆变换与逆矩阵2.4.1逆矩阵的概念2.4.2二阶矩阵与二元一次方程组2.5 特征值与特征向量2.6 矩阵的简单应用学习总结报告-----------------------------------选修4-4----------------------------------- 4.1 直角坐标系4.1.1直角坐标系4.1.2极坐标系4.1.3球坐标系与柱坐标系4.2 曲线的极坐标方程4.2.1曲线的极坐标方程的意义4.2.2常见曲线的极坐标方程4.3 平面坐标系中几种常见变换4.3.1平面直角坐标系中的平移变换4.3.2平面直角坐标系中的伸缩变换4.4 参数方程4.4.1参数方程的意义4.4.2参数方程与普通方程的互化4.4.3参数方程的应用4.4.4平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5----------------------------------- 5.1 不等式的基本性质5.2 含有绝对值的不等式5.2.1含有绝对值的不等式的解法5.2.2含有绝对值的不等式的证明5.3 不等式的证明5.3.1比较法5.3.2综合法和分析法5.3.3反证法5.3.4放缩法5.4 几个著名的不等式5.4.1柯西不等式5.4.2排序不等式5.4.3算术-几何平均值不等式5.5 运用不等式求最大(小)值5.5.1运用算术-几何平均值不等式求最大(小)值5.5.2运用柯西不等式求最大(小)值5.6 运用数学归纳法证明不等式学习总结报告。

高中数学第三章统计案例1独立性检验卡方检验素材苏教版

高中数学第三章统计案例1独立性检验卡方检验素材苏教版

2χ检验(一)掌握内容1. 2χ检验的用途。

2. 四格表的2χ检验.(1) 四格表2χ检验公式的应用条件; (2) 不满足应用条件时的解决办法; (3) 配对四格表的2χ检验。

3. 行⨯列表的2χ检验. (二) 熟悉内容频数分布拟合优度的2χ检验. (三) 了解内容1.2χ分布的图形。

2.四格表的确切概率法。

(一) 2χ检验的用途2χ检验(Chi —square test )用途较广,主要用途如下:1.推断两个率及多个总体率或总体构成比之间有无差别 2.两种属性或两个变量之间有无关联性 3.频数分布的拟合优度检验 (二) 2χ检验的基本思想1.2χ检验的基本思想是以2χ值的大小来反映理论频数与实际频数的吻合程度。

在零假设0H (比如0H :21ππ=)成立的条件下,实际频数与理论频数相差不应该很大,即2χ值不应该很大,若实际计算出的2χ值较大,超过了设定的检验水准所对应的界值,则有理由怀疑0H 的真实性,从而拒绝0H ,接受H 1(比如1H :21ππ≠).2. 基本公式:()∑-=TT A 22χ,A 为实际频数(Actual Frequency ),T 为理论频数(Theoretical Frequency ).四格表2χ检验的专用公式正是由此公式推导出来的,用专用公式与用基本公式计算出的2χ值是一致的。

(三)率的抽样误差与可信区间 1.率的抽样误差与标准误样本率与总体率之间存在抽样误差,其度量方法:np )1(ππσ-=,π为总体率,或 (8—1)np p S p )1(-=,p为样本率;(8—2)2.总体率的可信区间当n 足够大,且p 和1—p 均不太小,p 的抽样分布逼近正态分布.总体率的可信区间:(ppS u p S u p ⨯+⨯-2/2/,αα)。

(8—3)(四)2χ检验的基本计算见表8-1。

表8—1 2χ检验的用途、假设的设立及基本计算公式资料形式 用途 0H 、1H 的设立与计算公式 自由度 四格表 ①独立资料两 样本率的比较②配对资料两样本率的比较0H :两总体率相等 1H :两总体率不等①专用公式))()()(()(22d b c a d c b a n bc ad ++++-=χ②当n ≥40但1≤T 〈5时,校正公式))()()(()2/(22d b c a d c b a n n bc ad ++++--=χ③配对设计cb c b +--=22)1(χ1 R ⨯C 表 ①多个样本率、 0H :多个总体率(构成比)相等 (R —1)构成比的比较②两个变量之间关联性分析(0H:两种属性间存在关联)1H:多个总体率(构成比)不全相等(H:两种属性间存在关联))1(22-=∑CRnnAnχ(C—1)频数分布表频数分布的拟合优度检验H:资料服从某已知的理论分布1H:资料不服从某已知的理论分布∑-TTA2)(据频数表的组数而定(五)四格表的确切概率法当四格表有理论数小于1或n〈40时,宜用四格表的确切概率法。

3.1假设检验 独立性检验

3.1假设检验  独立性检验
2
500 500 1000
感冒与是否使用该血清没有关系. 解:设H0:感冒与是否使用该血清没有关系.
1000(258× 284 242× 216) 2 χ = ≈ 7.075 474×526×500×500 因当H 成立时, 的概率约为0.01,故有 因当 0成立时,χ2≥6.635的概率约为 的概率约为 ,故有99%的把握认 的把握认 为该血清能起到预防感冒的作用. 为该血清能起到预防感冒的作用.
0.54% 2.28%
通过图形直观判断
9000 8000 7000 6000 5000 4000 3000 2000 1000 0 不吸烟 吸烟 患肺癌 不患肺癌
二维条 形图
通过图形直观判断 患肺癌 比例
患肺癌 不患肺癌
100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 不吸烟 吸烟
χ 2的值; 根据2 (2)根据2× 2列表与公式计算 的值;
(3)查对临界值,作出判断. 查对临界值,作出判断. 由于抽样的随机性, 由于抽样的随机性,由样本得到的推断 2 有可能正确,也有可能错误. 有可能正确,也有可能错误.利用 χ 进 行独立性检验, 行独立性检验,可以对推断的正确性的概 率作出估计,样本量n越大,估计越准确. 率作出估计,样本量n越大,估计越准确.
表示不吸烟 用A表示不吸烟, 表示不吸烟, 用B表示不患肺癌, 表示不患肺癌, 表示不患肺癌
则"吸烟与患肺癌没有关系"等价于"吸烟与患肺癌独立", 吸烟与患肺癌没有关系"等价于"吸烟与患肺癌独立"
即假设H 即假设 0等价于 P(AB)=P(A)P(B).
不吸烟 吸烟 总计
不患肺癌 a c a+c

假设检验(HypothesisTesting)

假设检验(HypothesisTesting)

假设检验(HypothesisTesting)假设检验的定义假设检验:先对总体参数提出某种假设,然后利⽤样本数据判断假设是否成⽴。

在逻辑上,假设检验采⽤了反证法,即先提出假设,再通过适当的统计学⽅法证明这个假设基本不可能是真的。

(说“基本”是因为统计得出的结果来⾃于随机样本,结论不可能是绝对的,所以我们只能根据概率上的⼀些依据进⾏相关的判断。

)假设检验依据的是⼩概率思想,即⼩概率事件在⼀次试验中基本上不会发⽣。

如果样本数据拒绝该假设,那么我们说该假设检验结果具有统计显著性。

⼀项检验结果在统计上是“显著的”,意思是指样本和总体之间的差别不是由于抽样误差或偶然⽽造成的。

假设检验的术语零假设(null hypothesis):是试验者想收集证据予以反对的假设,也称为原假设,通常记为 H0。

例如:零假设是测试版本的指标均值⼩于等于原始版本的指标均值。

备择假设(alternative hypothesis):是试验者想收集证据予以⽀持的假设,通常记为H1或 Ha。

例如:备择假设是测试版本的指标均值⼤于原始版本的指标均值。

双尾检验(two-tailed test):如果备择假设没有特定的⽅向性,并含有符号“=”,这样的检验称为双尾检验。

例如:零假设是测试版本的指标均值等于原始版本的指标均值,备择假设是测试版本的指标均值不等于原始版本的指标均值。

单尾检验(one-tailed test):如果备择假设具有特定的⽅向性,并含有符号 “>” 或 “<” ,这样的检验称为单尾检验。

单尾检验分为左尾(lower tail)和右尾(upper tail)。

例如:零假设是测试版本的指标均值⼩于等于原始版本的指标均值,备择假设是测试版本的指标均值⼤于原始版本的指标均值。

检验统计量(test statistic):⽤于假设检验计算的统计量。

例如:Z值、t值、F值、卡⽅值。

显著性⽔平(level of significance):当零假设为真时,错误拒绝零假设的临界概率,即犯第⼀类错误的最⼤概率,⽤α表⽰。

高中数学第3章统计案例3.1独立性检验课件苏教版选修2_3

高中数学第3章统计案例3.1独立性检验课件苏教版选修2_3
三、课后“静思2分钟”大有学问
我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的课 后复习30分钟。
2019/5/29
精选最新中小学教学课件
thank
you!
2019/5/29
精选最新中小学教学课件
要判断该药品对患 A 疾病是否有效,即进行独立性检验提 出假设 H0:该药品对患 A 疾病没有效. 根据列联表中的数据可以求得 χ2=5232×3×55×004×004-181×001×05182≈0.041 45<0.455, 而查表可知 P(χ2≥0.455)≈0.5,故没有充分的理由认为该 保健药品对预防 A 疾病有效.
1.2×2 列联表的定义
对于两个研究对象Ⅰ和Ⅱ,Ⅰ有两类取值,即类 A 和类 B;Ⅱ
也有两类取值,即类 1 和类 2.这些取值可用下面的 2×2 列联表表示.

类1
类2
合计
类A a
b

类B c
d
a+b c+d
合计 a+c
b+d
a+b+c+d
2.χ2 统计量的求法 nad-bc2
公式 χ2= a+cb+da+bc+d .
4.在国家未实施西部开发战略前,一新闻单位在应届大学毕业
生中随机抽取 1 000 人问卷,只有 80 人志愿加入西部建设.而
国家实施西部开发战略后,随机抽取 1 200 名应届大学毕业生
问卷,有 400 人志愿加入国家西部建设.实施西部开发战略
是否对应届大学毕业生的选择产生了影响? 解:依题意,得 2×2 列联表:

高中数学选修课件第三章§独立性检验

高中数学选修课件第三章§独立性检验

针对性解决策略和建议
深入理解独立性概念
明确事件独立与随机变量独立的区别,熟练掌握 相关公式和定理的适用条件。
正确选择统计性检验。
ABCD
重视样本容量的选择
在进行独立性检验时,应根据实际情况选择合适 的样本容量,以保证结果的准确性。
明确显著性水平的意义
结果分析与讨论
结果描述
详细阐述检验结果,包 括统计量、显著性水平
等信息。
结果解释
结合研究问题和假设, 对检验结果进行合理解
释。
结果比较
将本研究结果与已有研 究进行比较,分析异同
点。
结果推广与应用
探讨本研究结果的推广 价值和应用前景。
06
独立性检验常见问题及解决方法
常见错误类型及原因剖析
错误理解独立性概念
在判断两个分类变量是否独立时,需 要结合实际情况和专业知识进行综合 判断,避免盲目依赖统计结果。
在计算卡方统计量时,需要注意期望 频数的计算方法,避免出现计算错误 。
需要注意独立性检验只能判断两个分 类变量之间是否存在关联,但不能确 定它们之间的因果关系。
03
独立性检验在统计学中应用
统计分析中作用
实际操作流程演示
确定研究问题和假设
明确研究目的,提出假设并确定检验标准 。
结果解释与报告
对检验结果进行解释,得出结论并撰写报 告。
收集数据
根据研究问题和假设,选择合适的方法收 集数据。
进行独立性检验
根据所选用的检验方法,对数据进行计算 和分析。
数据整理与预处理
对收集到的数据进行整理、清洗和转换, 以便于后续分析。
独立性检验可以帮助我们更好 地理解概率论中的基本概念, 如条件概率、联合概率等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假设检验(hypothesis testing)方法演变:t检验、z检验、F检验、卡方检验,方差分析( ANOVA)➢概述假设检验是分析数据的一种方法。

回答此类问题:“随机发生的事件的概率是多少?”另一方面的问题是:“我们从数据中发现的结果是真的吗?”当问题是有关大的总体而只能得到总体的一个样本时用假设检验。

这种方法被用来回答在质量改进中一系列重要的问题,如“我们在过程中所做的改变对产出创造了有意义的差别吗?”或”顾客对场地A的满意度是不是比其他场地高?”最常用的检验是:z检验、t检验、F检验、卡方(χ2)检验和方差分析。

这些检验和其他的检验都是基于均值、方差、比例及其他统计量所形成的具有常见模式的频率分布。

最有名的分布就是正态分布,它是:检验的基础。

t检验、F检验和卡方(χ2)检验是基于t分布、F分布和卡方分布。

➢适用场合·想知道一组或更多组数据的平均值、比例、方差或其他特征时;·当结论是基于更大总体中所取得的样本时。

例如:·想确定一个过程的均值或方差有否改变;·想确定很多数据集的均值或方差是否不同:·想确定两组不同的数据集的比例是否不同;·想确定真正的比例、均值或方差是否和一个定值相等(或大于或小于)。

➢实施步骤假设检验的步骤由三部分组成:理解要解决的问题并安排检验(以下步骤1~3);数字计算通常由计算机完成(步骤4和步骤5);应用数值结果到实际问题中(步骤6)。

虽然计算机能处理数字,但理解假没检验隐含的观念对第1部分和第3部分至关重要。

如果第一次接触假设检验,那么从看“注意事项”中的术语和定义开始。

这些定义解释了假设检验的慨念,然后再回来看这个步骤。

本书不可能详细地涉及假设检验。

这个步骤是个综述和快速参考。

要得到更多的信息,查阅统计学参考书或请教统计学家。

1确定要从数据中获得的结论。

选择适当的检验方法。

用哪种检验取决于检验的目的和数据的种类。

可以用表5.7和表5.8概括的常用的假设检验,或者请教统计学家以得到帮助。

2建立零假设和备择假设。

确定问题是属于双尾检验、左尾检验还是右尾检验。

3选择显著性水平。

4计算检验统计量,可借助计算机软件。

5用统计分布的统计表或计算机程序等来确定检验统计量的P值。

对于z检验可用表A.1正态曲线以下的曲线。

6把P值与左尾或右尾检验的α或者双尾检验的α/2作比较,如果P值较小,那么拒绝零假设并会得到备择假设可能正确的结论。

否则,不能拒绝零假设,并得出没有足够证据支持备择假设的结论。

➢备择步骤步骤1~4同上。

然后:5用统计表或计算机程序确定如下所示的检验统计量的临界值和拒绝域。

以z检验作为示例,对t检验、F检验或卡方检验,用统计量f、F或χ2来替换z。

6比较检验统计量和拒绝域。

如果检验统计量值落在拒绝域内,拒绝零假设,结论是备择假设可能止确。

否则,不拒绝零假设,结论是没有足够的证据支持备择假设。

➢示例:t检验一家食品杂货店从一供应商处购买几箱苹果,每箱质量为50磅(1lb=0.455kg),固定价格。

供应商保证每箱的平均质量确实是50磅。

产品小组随机抽取10箱称量。

质量分别为:50.1 49.6 50.3 49.9 49.5 49.7 50.0 49.6 49.7 50.2杂货店受骗没有?统计上讲,产品小组的问题是:“我们接受的苹果箱的平均质量少于50磅吗?”零假设是“苹果箱的平均质量等于50磅”,备择假设是“苹果箱的平均质量小于50磅”计划用5%的显著性水平。

在表5.7中找均值与给定的值作比较的检验。

σ未知,样本容量小于30个,假设箱子的质量服从正态分布。

因此用t检验。

因为备择假设是“小于”,所以需要左尾检验。

向在线计算器中输入数据得到以下结果:样本均值= 49.86 标准方差=0.28 t=-1.583 P=0.07因为P值大于0.05,所以不能拒绝零假设,没证据表明他们受骗。

图表5.99显示了t分布,检验统计量t=-1.583,曲线下这个值以外的区域是P=0.07。

用备择步骤,从t表中确定a=0. 05,自由度为9,临界值为t a=-1. 833。

因为是左尾检验,拒绝域是任何小于-1. 833的z值。

检验统计量为-1.583,没有落在拒绝城,所以不拒绝零假设。

图表5.100显示了t分面、临界值、拒绝域和曲线下相等于a=0. 05的区域。

两幅图的比较表明两个实施步骤如何以不同方式得到相同结论的过程。

对左尾情况,只要检验统计量t大于临界值t a,曲线下t值左边的区域即P值就比a大,a就是曲线下t a左边的区域。

➢示例:卡方检验1一家服装零售商想了解其提议的生产线的变化是否会在不同地区被同样地接受。

他们随机挑选了750名顾客,描述了提议的新产品,然后让顾客估计购买的可能性。

他们按地理位置对数据分组,建立了五行、四列的关联表,见图表5.17的关联表。

从表5.8看出,卡方检验是最合适的,比较了各组的分布。

这种检验总是有尾的。

零假设可陈述为“五个地区的顾客在购买可能性分布上没有差异”,备择假没是“五组购买的可能性分布有差异”。

选择显著性水平为5%,计算出自由度为df=12。

大多卡方表按备择步骤设计,可以查询a或l-a,读取临界值。

对a =0. 05和df=12来说,χ2临界值为21.026。

如果检验统计量大于它就拒绝零假设。

用电子制表软件计算每一单元的E。

E代表着零假设为真时的期望值,也就是每个地区的购买可能性分布和整体分布一样时的期望值。

接着计算每单元的(O-E)2÷E,加起来得到检验统计量χ2=22. 53,比临界值21. 026大,所以拒绝零假设。

购买可能性分布随区域而不同。

这个检验等同于检验两个变量是否独立。

结果表明地理区域和购买可能性两个变量不独立。

已知顾客所在的地区就能预测他是否更有可能购买新生产线。

➢另一示例:卡方检验2相同的零售商计划改变产品目录的格式和风格并想了解新的格式是否会有效提高订单。

作为测试,他们随机挑选顾客送出去200 000本新春装目录册,另外1 800 000本目录册是传统版本。

参考关联表例子,用图表5. 18的2×2的关联表来组织数据。

卡方检验比较两者的比例。

零假设是“顾客从测试目录和从标准目录购买的比例相同。

”选用5%的显著性水平。

比较比例,自由度就是l。

a=0. 05和df=1时,χ2临界值为3. 841,检验统计量χ2=278。

因此拒绝零假设,结论是顾客从新格式目录和从旧目录购买的比例显著不同。

➢注意事项·和许多学科一样,统计学有自己专门的语言表达常用的概念。

以下是在实施步骤中常用的定义术语:检验:一种统计检验,如z检验、t检验、F检验或卡方检验。

要知道选用哪种检验是实施步骤中最难的一部分,取决于数据的种类以及想从数据中得出结论的种类。

假设:陈述一事实,由检验证明或反驳。

零假设,H0:是想检验的假没,数据是随机的。

称为“零”是因为通常(不总是)零假设意味着两组数据中或从数据中计算的参数与给定的值之间没有差异。

备择假设,H。

:如果零假设为假,备择假设肯定为真。

通常备择假设暗含数据来自真实的影响而非随机的。

统计量:表征样本数据某些方面的变量。

平均数、均值、方差和比例都是统计量。

检验统计量:用来检验零假设的统计量。

对每种检验都有一个公式表达适当的检验统计量。

这样做如果零假设是真(数据随机),统计量就来自一有名分布,如z检验的正态分布。

双尾、右尾、左尾:描述检验是否涉及频率分布的双侧(双尾)或只是单侧。

如果备择假设表达式中包合≠(不等于),需要双尾检验。

如果包含<(小于)需要左尾检差验,包含>(大于),需要右尾检验。

卡方检验通常是双尾检验。

P值:检验统计量在已知分布下随机发生的概率。

P值等于曲线下检验统计量以外的那个区域(见图表5.99)。

P值越小,越能肯定结果是真的,不只是随机的。

由于各种检验分布都很有名,这些概率能在表中或计算机程序中得到。

显著性水平,a:能确定结果是真的以前反映我们能多大程度确信结果不是随机产生的数值。

通常取1%、5%、10%( a =0.01、0.05、0.10)。

例如:单侧检验a =0.05,只要随机得到的结果小于5%即P<0.05则可断定结果为真。

临界值:概率正好等于a时的检验统计量的值。

曲线尾部临界值以外的区域面积等于a。

对双尾检验来说有两个临界值(见图表5. 100),每一尾部一个,每个临界值以外的区域都等于a/2。

临界值由表或计算机程序确定,记为±z a或±z a/2。

拒绝域:如果检验统计量落在这个区域,零假设就被拒绝的频率分布区域。

对左尾检验来说,这些值位于小于临界值的分布曲线尾部。

对右尾检验而言,则位于大于临界值的曲线尾部。

双尾检验拒绝域包含两头。

置信水平,(1-a)。

置信区间:事件随机发生时以很大概率包含检验统计量的区间范围。

拒绝域是置信区间以外的区域。

显著水平、置信水平、置信区间之间的关系为:a=0.05,置信水平等于95%,则认为落在95%置信区间的值是最有可能单独地随机发生的,不能拒绝零假设。

置信区间的定义讲究技巧。

95%置信区间不是分布所有值的95%落在这一区间而是当一个值属于这个分布时,基于样本数据建立的所有区间95%地包含这个值。

·假设检验中,观察检验分布曲线,计算位于图形水平轴某处的检验统计量。

如果曲线下检验统计量以外的区域P足够小(小于显著水平a),则此统计检验量可能就不服从这个分布。

·因为曲线是频率分布,曲线任何部分以下的区域就是事件发生可能性的度量,标在水平轴上。

这就是在曲线下区域能找到a和P值的原因。

·由于假设检验涉及样本和概率,所以有可能得到错误的结论。

第一类错误就是零假设为真而被拒绝(见图表5. 101)。

第一类错误的概率是:显著性水平a。

在第二个例子中,有5%的可能性就是区域间分布差异确实是随机的。

第二类错误是零假设为假而没有被拒绝。

如果食品杂货店真的在苹果箱的重量上被欺骗则第二类错误发生。

第二类错误的概率β的计算更复杂,超出本书讨论范围。

不幸的是,“a越小,β越大。

但是给定a,增加样本容量,β将变小。

·因为第二类错误概率的存在,当零假设没被拒绝时,不能得出备择假设是错的结论,只能说数据没有提供足够的证据支持备择假设。

·很多网站上有计算器,可以计算检验统计量和检验分布值。

输人数据,计算器计算检验统计量、概率和临界值。

但是要知道采用哪种检验以及如何解释结果,这点很重要。

·成对样本就是两组样本集包含配对的有关联的观察值。

例如:处理前、后相同样本的测量值或者同一样本被不同仪器测量所得的值。

检验假设通常是两组样本的均值相等,换句话说,两组间的均值差是零。

相关文档
最新文档