数学优质课件精选——坐标方位角的推算

合集下载

坐标方位角计算公式过程

坐标方位角计算公式过程

坐标方位角计算公式过程
一、坐标方位角的定义。

在平面直角坐标系中,从某点的坐标纵轴方向的北端起,顺时针量到目标方向线间的水平夹角,称为该点的坐标方位角,其取值范围是0° - 360°。

二、坐标方位角计算公式推导过程。

1. 已知两点坐标计算坐标方位角。

- 设A(x1,y1)、B(x2,y2)为平面直角坐标系中的两点。

- 首先计算Δx=x2 - x1,Δy=y2 - y1。

- 然后根据正切函数计算反正切值tanα=(Δ y)/(Δ x),这里得到的α是一个锐角(- 90^∘<α<90^∘)。

- 接下来需要根据Δ x和Δ y的正负来确定坐标方位角β:
- 当Δ x>0,Δ y≥slant0时,坐标方位角β=α。

- 当Δ x = 0,Δ y>0时,坐标方位角β = 90^∘。

- 当Δ x<0时,坐标方位角β=α + 180^∘。

- 当Δ x>0,Δ y<0时,坐标方位角β=α+360^∘(也可写成β = α - 360^∘,目的是将其转化到0° - 360°范围内)。

例如,已知A点坐标为(1,1),B点坐标为(3,3),则Δ x=3 - 1=2,Δ y=3 - 1 = 2,tanα=(2)/(2)=1,α = 45^∘,因为Δ x>0,Δ y≥slant0,所以坐标方位角β = 45^∘。

再如,已知A点坐标为(1,1),B点坐标为(-1,3),Δ x=-1 - 1=-2,Δ y=3 - 1=2,tanα=(2)/(-2)=- 1,α=-45^∘,由于Δ x<0,所以坐标方位角β=-45^∘+180^∘=135^∘。

《方位角问题》课件

《方位角问题》课件
《方位角问题》ppt课件
目录
• 方位角的基本概念 • 方位角的应用 • 方位角的计算实例 • 方位角问题解析 • 方位角问题的实际应用
01 方位角的基本概念
定义
01
02
03
方位角
指从正北方向顺时针转到 目标方向线的夹角,范围 在0°到360°之间。
真方位角
以真北方向为基准,顺时 针旋转至目标方向线的夹 角。
航海学
船舶导航
在航海学中,方位角是船舶导航 的重要参数之一,通过测量和计 算船只相对于不同地标的方位角 ,可以确定船只的位置和航向。
海上交通控制
海上交通控制中心通过监测船舶的 方位角变化,可以判断船舶的航行 轨迹和航向,确保海上交通的安全 和有序。
海洋调查
海洋调查船利用方位角来定位和测 量海洋参数,如海流、潮汐等。
掌握基本概念
了解和掌握方位角的基本 概念和计算方法是解决方 位角问题的关键。
熟练使用工具
使用量角器、罗盘等工具 进行测量和计算,可以提 高计算的准确性和效率。
实践应用
通过实践应用,如地图阅 读、导航等,可以加深对 方位角概念的理解,并提 高解决实际问题的能力。
05 方位角问题的实际应用
军事应用
1 2 3
航空学
飞机导航
航空飞行中,飞机需要精确的导 航信息来确保安全飞行,方位角 是飞机导航系统中的重要参数之
一。
机场调度
机场调度员通过监测飞机的方位 角变化,可以判断飞机的起降轨 迹和方向,确保机场的正常运行
和飞机的安全起降。
气象观测
气象观测中,方位角也被用来测 量风向、风速等气象参数。

03 方位角的计算实例
科研应用
天文学

坐标方位角 课件

坐标方位角 课件
角坐标系,6°带或3° 带都以该带的中央子 午线为坐标纵轴,因 此取坐标纵轴方向作 为标准方向。
7
x
P2 P1 y
o 高斯平面直角坐标系
直线定向的目的?
P1 P3
D P2
A
8
直线方向的表示方法
1、方位角
1)方位角的定义
2 • 从直线起点的标准方向北端起,
顺时针方向量至直线的水平夹角, 称为该直线的方位角;其角值范 围为0°~ 360°
2
标准方向北端 2
方位角
2 2
1
2
9
标 准 方 向
10
真子午线方向
真方位角(A)
磁子午线方向
磁方位角(Am)
坐标纵轴方向
坐标方位角( α )
真北 坐标北
磁北
Am A
α
1
由于地面各点的真北(或磁北) 方向互不平行,用真(磁)方 位角表示直线方向会给方位角 的推算带来不便,所以在一般 测量工作中,常采用坐标方位 角来表示直线方向。
13
三、坐标方位角的推算
α12已知,通过连测求得12边与23边的连接角为β2 (右角)、 23边与34边的连接角为β3(左角),现推算α23、α34
x
α12 1
x
α23
x
2
α34
β3
β2
3
前进方向 4
14
由图分析
由图中分析可知
x
前进方向
x
α23
x
4
2
α12
α21
α34
β3
1
β2
3
α32
23 21 2 12 180 2
• 如图所示,已知AB边的坐标方位角为150°30′,观测转折角如图所示, 计算DE边的坐标方位角

坐标方位角的推算

坐标方位角的推算

使用时的注意事项
01
02

03
了解精度限制
在使用坐标方位角推算结 果前,应了解其精度限制, 避免误用。
注意适用范围
不同坐标系、不同计算方 法得到的坐标方位角可能 存在差异,使用时应明确 适用范围。
定期校准
对使用的设备和软件进行 定期校准和维护,确保其 性能和准确性。
05
总结与展望
总结
坐标方位角的概念
02
坐标方位角的计算方法
计算公式
坐标方位角计算公式
arctan((y2-y1)/(x2-x1))。其中,(x1, y1)和(x2, y2)分别为两个已 知点的平面直角坐标。
真方位角计算公式
arctan((y2-y1)/(x2-x1)) + (如果 x2 > x1,则取0°,否则取180°)。
磁方位角计算公式
应用领域的拓展
随着人们对地理信息和位置服务的不断需求,坐标方位角的 应用领域也将不断拓展。例如,在智能交通、城市规划、环 境保护等领域中,坐标方位角将发挥更加重要的作用。
展望
与其他技术的结合
坐标方位角可以与其他技术结合使用 ,例如与GIS技术、遥感技术、人工智 能等技术的结合,可以实现更加复杂 和精细的地理信息处理和应用。
THANKS
感谢观看
将点A和点B的坐标代入坐标方位角计算公式,得到arctan((8-4)/(6-3)) = arctan(4/3) = 53.13°。
因此,AB的坐标方位角为53.13°。
03
坐标方位角的应用
在地图导航中的应用
确定方向
坐标方位角是地图上两点之间的方向线与正北方向的夹角,通过计算坐标方位 角,可以确定地图上任意两点之间的相对方向,从而在地图导航中确定正确的 路径。

坐标方位角和坐标正反算PPT课件

坐标方位角和坐标正反算PPT课件
坐标方位角
• 坐标方位角:直线的方向是用方位角来表示的, 其中以坐标北方向为基准方向,顺时针旋转到直 线的水平角度,称为该直线的坐标方位角。

象限角划分:第一象限角:0°~90° (0~π/2)

第二象限角:90°~180° (π/2~π)

第三象限角:180°~270° (π~3π/2)

第四象限角:270°~360° (3π/2~2π)
已知坐标方位角和边长原点坐标为xaya那么计算坐标xbyb为xbxsabcosaabybysabsinaab其中aab为方位角sab为距离坐标反算已知两点坐标求距离sabxbxaybya建筑物定位测量前应由建设项目法人提供规划测量位测量并确认的建筑物角标的坐标包括书面通知和现场坐标移交角标一般为三点以上其中两点作为定位测量用其余点作为校核用
-
4
-
5

建筑物定位测量前,应由建设项目法人提供规划测量
位测量并确认的建筑物角标的坐标,(包括书面通知和现
场坐标移交)角标一般为三点以上,其中两点作为定位测
量用,其余点作为校核用。

⑵所提供的角标施工单位应妥善保护,当角标位于建内或 施工过程可能会破坏时,应在单体定位后,引至安全地方 固定好。
量定位,然后利用其余角标反向测量校核;属角标有误时, 应及时通知现场专业监理工程师和项目法人代表进一步证 实;属放样本身轴算
• 已知坐标方位角和边 长,原点坐标为(XA, YA),那么计算坐标 (XB,YB)为 XB=x+sAB·cosaAB
• YB=y+sAB·sinaAB其 中aAB为方位角,sAB 为距离
-
2
坐标反算
已知两点坐标,求距离 SAB=√(XB-XA)²

测量坐标方位角计算课件

测量坐标方位角计算课件

误差积累规律
随着测量次数的增加,误 差会逐渐积累,导致最终 结果精度下降。
提高测量精度的措施
01
02
03
04
选择高精度仪器
使用高精度测量仪器,可以降 低仪器本身带来的误差。
提高观测技术水平
通过培训观测者,提高其技术 水平和经验,可以降低观测误
差。
多次测量求平均值
通过多次测量并取平均值,可 以减小随机误差的影响。
观测误差
由于观测者技术水平、 经验等因素导致的误差

环境误差
由于大气折射、地球曲 率等因素引起的误差。
计算误差
在数据处理过程中,由 于舍入误差、算法限制
等因素引起的误差。
误差传播规律
01
02
03
线性传播规律
当多个测量值相互关联时 ,任何一个测量值的误差 都会传递到其他测量值中 。
非线性传播规律
某些情况下,测量值的误 差之间存在非线性关系, 误差传递规律较为复杂。
在矿山测量中,除了坐标方位角外,还需要测量矿体的长 度、宽度、高度等信息,以及矿岩的物理性质和采矿工程 的设计和施工。同时,需要考虑矿山的特殊环境和安全要 求,采取相应的测量技术和措施。
04
坐标方位角计算中的存在的误 差,如望远镜、水准器
等部件的精度限制。
实例二
已知点A(x1, y1)和点B(x2, y2)的坐标 ,求两点间的边长d和方位角α。
03
测量中坐标方位角的应用
测量控制网布设
测量控制网是进行各种测量的基础,而坐标方位角是确定测 量控制点位置的重要参数之一。在控制网布设中,需要根据 测量任务和要求,计算出各个控制点的坐标方位角,以确保 测量结果的准确性和可靠性。

坐标方位角详细课件

坐标方位角详细课件

1 根据已知控制点计算坐标方位角,测设放样点平面位置(极坐标法)首先明确方位角的概念,方位角是指从直线起点的标准方向北端开始,顺时针量到直线的夹角,以坐标纵轴作为标准方向的称为坐标方位角(以下简称方位角)。

测量上选用的平面直角坐标系,规定纵坐标轴为x轴,横坐标轴为y轴,象限名称按顺时针方向排列(图1),即第Ⅰ象限x>0 y>0;第Ⅱ象限x<0 y>0;第Ⅲ象限x<0 y<0;第Ⅳ象限x>0 y <0,或许对于测量坐标系与数学坐标系的x、y轴位置不同,象限规定不同,觉得难理解,其实能注意到测量上的平面直角坐标系与数学上的平面直角坐标系只是规定不同,x轴与y 轴互换,象限的顺序与相反,因为轴向与象限顺序同时都改变,只要真正理解了方位角的定义,测量坐标系的实质与数学上的坐标系是一致的,因此数学中的公式可以直接应用到测量计算中。

1.1 按给定的坐标数据计算方位角αBA、αBPΔxBA=xA-xB=+123.461mΔyBA=yA-yB=+91.508m由于ΔxBA>0,ΔyBA>0可知αBA位于第Ⅰ象限,即αBA=arctg=36°32'43.64"ΔxBP=xP-xB=-37.819mΔyBP=yP-yB=+9.048m由于ΔxBP<0,ΔyBP>0可知αBP位于第Ⅱ象限,αBP=180o-α=180o-arctg=180o-13o27'17.33"=166°32'42.67"此外,当Δx<0,Δy<0;位于第Ⅲ象限,方位角=180°+ arctg当Δx>0,Δy<0;位于第Ⅳ象限,方位角=360°+ arctg1.2 计算放样数据∠PBA、DBP∠PBA=αBP-αBA=129°59'59.03"1.3 测设时,把经纬仪安置在B点,瞄准A点,按顺时针方向测设∠PBA,得到BP 方向,沿此方向测设水平距离DBP,就得到P点的平面位置。

2 当受地形限制不便于量距时,可采用角度交会法测设放样点平面位置上例中,当BP间量距受限时,通过计算测设∠PAB、∠PBA来定P点2.1 根据给定坐标计算∠PABΔxAP=xP-xA=-161.28mΔyAP=yP-yA=-82.46mαAP=180°+arctg=207°4'47.88"又αAB=180°+αBA=180°+36°32'43.64"=216°32'43.64"∠PAB=αAB-αAP=9°27'55.76"2.2 测设时,在A、B上各架设一台经纬仪,根据已知方向分别测设∠PAB、∠PBA,定出AP、BP方向,得P点的大概位置,打上大木桩,在桩顶面上沿每个方向线各标出两点,将相应点连起来,其交点即为P点位置。

坐标方位角

坐标方位角

坐标方位角1. 坐标方位角的定义坐标方位角是用来描述一个点相对于参考点的方位关系的数值。

在平面直角坐标系中,方位角通常用角度来表示,范围从0度到360度。

方位角是从参考点指向待确定点的线段与正x轴之间的夹角。

2. 坐标方位角的计算方法要计算坐标方位角,可以使用三角函数来辅助计算。

假设参考点的坐标为(x₀, y₀),待确定点的坐标为(x, y)。

1.首先,计算两点之间的水平距离dx和垂直距离dy。

dx = x - x₀,dy =y - y₀。

2.然后,计算方位角θ。

如果dx和dy都为0,则说明参考点和待确定点重合,此时方位角无意义。

否则,可以通过以下公式来计算方位角:θ = atan2(dy, dx)其中,atan2是一个数学函数,用于计算给定坐标的反正切值。

该函数的返回值范围为-π到π。

3.最后,将计算得到的方位角θ转换为度数形式,以得到最终的坐标方位角。

3. 坐标方位角的例子以下是一个使用坐标方位角计算两点之间方位关系的例子:假设参考点的坐标为(1, 1),待确定点的坐标为(3, 4)。

首先,计算dx和dy的值:dx = 3 - 1 = 2dy = 4 - 1 = 3然后,计算方位角θ:θ = atan2(3, 2) ≈ 56.31°因此,参考点到待确定点的方位角约为56.31°。

4. 坐标方位角的应用坐标方位角在很多领域中都有广泛的应用。

以下列举了几个常见的应用场景:•地理导航:通过计算两个地点之间的方位角,可以确定前往目的地所需的方向。

•天文学:在天文观测中,坐标方位角用于描述天体位置的方位关系。

•机器人及无人驾驶:在自动导航系统中,坐标方位角用于确定机器人或无人驾驶车辆与目标位置之间的关系。

•建筑与工程:在建筑设计和工程测量中,坐标方位角用于确定建筑物或结构物之间的位置关系。

5. 总结坐标方位角是描述一个点相对于参考点的方位关系的数值。

通过计算两个点之间的水平距离和垂直距离,然后使用三角函数进行计算,可以得到方位角的数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α21 β3
β2
前进方向
4
x
α34
3
α32
23 21 2 12 180 2
34 32 3 23 180 3
推算坐标方位角的通用公式:


180
左 右
当β角为左角时,取“+”;若为右角时,取“-”。
注意: 计算中,若α前>360°,减360°; 若α前<0°,加360°。
例题:已知α12=46°,β2 、β3及β4的角值 均注于图上;试求其余各边坐标方位角。
α12已知,通过连测求得12边与23边的连接角为β2 (右
角)、 23边与34边的连接角为β3(左角),现推算α23、
α34。
➢左角:位于推算路线前进方向的左x 侧,
➢右角:位于推算 x
路线前进方向的
α12
右侧,
1
α23 2
β3 β2
x 前进方向 4 α34
3
由图中分析可知:
x
α12 1
x
α23 2
α45=α34+180°-β4
= 57°20´+180°-247°20´
= 3-5100°° <0° (- 10°+360°)
小结
1)左角:位于推算路线前进方向的左侧, 右角:位于推算路线前进方向的右侧,
2)推算坐方位角的通用公式:


180
左 右
当β角为左角时,取“+”;若为右角时,取“-”。
注意:
计算中,若α前>360°,减360°;
若α前<0°,加360°。
作业
• 1、习题册P29 T2、3、4、5、6、7
• 2、笔记整理
• 3、已知α12=46°,β2 、β3及β4的角值均注于图上;试
求其余各边坐标方位角。
5
x
4
2
136°30´
46° 125°10´
3
1
247°20´
§2 方位角计算
教学目标:
掌握方位角的概念;坐标方位角的概念及其推 算;象限角的概念。
教学重点:坐标方位角推算 教学难点:坐标方位角推算 教学课时:2课时 教学方式:理论教学
四、坐标方位角的推算
为了整个测区坐标系统的统一,在测量实际工作中,每
条直线的坐标方位角不是直接测定的,而是通过与已知边的
连测,用与相邻边的水平夹角推算出的。
5
前进方向
x
4
2
136°30´
46° 125°10´
3
247°20´
解:
1
α23 =α12+180°-β2
= 46°+180°-125°10´ = 100°50´
α34 =α23+180°+β3
= 100°50´+180°+136°30´
==45177°°2200´´ >360° (417°20´-360°)
相关文档
最新文档