检测技术与控制工程-1.2 控制技术的概述
自动检测技术概述第1章自动检测技术的基本概念和数据处理
图1-1 糖化过程温度控制系统方框图
1.1.2 自动检测系统的基本组成
1 传感器(信号的获得)
直接感受规定的被测量并按照一定规律转换成可 用输出信号的器件或装置,通常由敏感元件和传 感元件组成。
敏感元件是指传感器中直接感受被测量的部分, 传感元件是指能将敏感元件的输出转换为电信号 的部分。
图1-3 传感器图用图形符号图 图1-4 电容式压力传感器的图用图形符号
1.2 测量方法
按测量手续分类:直接测量、间接测量、联立测 量;
按测量方式分类:偏差式测量、零位式测量、微 差式测量;
按敏感元件是否与被测介质接触分类:接触式测 量、非接触式测量;
按被测量变化快慢分类:静态测量、动态测量;
自动检测技术概述 第1章 自动检测技术的 基 测量方法 1.3 传感器的一般特性 1.4 测量误差与数据处理
1.1 自动检测技术概述
1.1.1 自动检测技术在自动化专业中的地位
与作用
测量:以确定量值为目的的一组操作。
检验:分辨出被测参数的量值是否归属某一范 围带,从而判别被测参数是否合格、现象是否 存在等。
间接测量:首先对与被测物理量有确定函数关系 的几个量进行测量,将测量值代入函数关系式, 经过计算得到测量所需的结果。
优势:间接测量可以实现难以直接测量的被测量 的测量。
缺点:相对于直接测量,间接测量过程手续较多, 所需时间较长,有时可以得到较高的测量精度。 间接测量多用于实验室测量,工程测量中亦有应 用。
优点:反应快、精度高。
1.2.3 接触式测量、非接触式测量
接触检测:指在测量过程中敏感元件与被测介质 产生实际物理上的接触。
非接触检测:指利用物理、化学及声、光学的原 理,使被测对象与敏感元件之间不发生物理上的 直接接触而对被测量进行检测的方法。
《自动检测技术及应用》教案
《自动检测技术及应用》教案第一章:自动检测技术概述1.1 自动检测技术的定义与发展1.2 自动检测技术在工程应用中的重要性1.3 自动检测技术的分类与特点1.4 自动检测技术的基本组成部分第二章:模拟检测技术2.1 模拟检测的基本原理2.2 传感器的基本特性与选择2.3 信号处理电路的设计与分析2.4 模拟检测系统的应用实例第三章:数字检测技术3.1 数字检测的基本原理3.2 数字信号处理技术3.3 数字检测系统的组成与设计3.4 数字检测技术的应用实例第四章:智能检测技术4.1 智能检测技术的基本原理4.2 算法在检测技术中的应用4.3 智能检测系统的组成与设计4.4 智能检测技术的应用实例第五章:自动检测技术在工程应用中的案例分析5.1 自动化生产线的检测与控制5.2 汽车尾气排放检测技术5.3 生物医学信号检测技术5.4 电力系统状态检测技术第六章:传感器技术6.1 传感器的分类与基本原理6.2 常用传感器的特性与应用6.3 传感器信号的处理与分析6.4 传感器技术的最新发展趋势第七章:信号处理与分析7.1 信号处理的基本概念与方法7.2 数字信号处理技术7.3 信号分析与识别技术7.4 信号处理与分析在自动检测中的应用第八章:数据采集与通信技术8.1 数据采集系统的设计与实现8.2 模拟/数字转换技术8.3 通信协议与接口技术8.4 数据采集与通信技术在自动检测中的应用第九章:自动检测系统的可靠性分析9.1 系统可靠性的基本概念9.2 系统可靠性的数学模型9.3 提高自动检测系统可靠性的方法9.4 系统故障诊断与容错技术第十章:自动检测技术在典型行业中的应用10.1 自动化制造业中的应用10.2 电力系统中的应用10.3 交通运输行业中的应用10.4 环境监测与保护领域中的应用第十一章:现代检测技术11.1 光纤传感技术11.2 激光检测技术11.3 超声波检测技术11.4 红外检测技术第十二章:非线性检测技术12.1 非线性系统的特点12.2 非线性检测方法12.3 非线性检测技术的应用12.4 非线性检测技术的发展趋势第十三章:故障诊断与预测技术13.1 故障诊断的基本原理13.2 故障诊断方法13.3 故障预测技术13.4 故障诊断与预测技术的应用第十四章:自动检测技术在科研中的应用14.1 自动检测技术在物理科研中的应用14.2 自动检测技术在生物科研中的应用14.3 自动检测技术在化学科研中的应用14.4 自动检测技术在其他领域科研中的应用第十五章:自动检测技术的未来发展趋势15.1 微纳检测技术15.2 生物传感器技术15.3 网络化与智能化检测技术15.4 检测技术在可持续发展中的应用重点和难点解析重点:1. 自动检测技术的定义与发展2. 模拟检测技术、数字检测技术和智能检测技术的原理与特点3. 传感器的基本特性与选择、信号处理电路的设计与分析4. 数字信号处理技术、算法在检测技术中的应用5. 自动检测技术在工程应用中的案例分析,如自动化生产线、汽车尾气排放检测等难点:1. 模拟检测技术、数字检测技术和智能检测技术之间的区别与联系2. 传感器特性的详细分析及其在实际应用中的选择3. 信号处理电路的复杂设计与分析4. 数字信号处理技术、算法在检测技术中的应用细节5. 自动检测技术在工程应用中的案例分析,尤其是涉及多学科交叉的部分本文教案旨在帮助学生全面了解自动检测技术的基本概念、原理及其在各个领域的应用,为学生进一步研究和发展自动检测技术提供基础。
检测技术与控制工程 教学大纲
《检测技术与控制工程》课程教学大纲一、课程的地位、目的和任务本课程地位:检测技术与控制工程是高等院校机械电子工程、机械设计制造及其自动化等专业的专业课程。
本课程在教学内容方面应着重于介绍机电一体化系统中传感器与检测技术与计算机控制技术的基本知识、基本理论和基本方法,在培养实践能力方面应重视设计构思、创新意识和设计技能的培养。
本课程目的:1.学生获得传感器、自动检测方法及计算机控制系统的组成及特点等方面的基本知识和基本技能;2.将所学到的自动检测技术与计算机控制系统灵活地应用于今后的工作、生产实践中去。
本课程任务:1.掌握各种传感器的原理及应用;2.具备自动检测技术方面的基本知识和基本技能;3.掌握计算机控制系统的组成和特点;4.掌握计算机控制系统的应用程序设计及实现技术;5.初步形成解决生产实际问题的能力。
二、本课程与其它课程的联系前修课程:电工电子技术、c语言程序设计。
后修课程:机械创新设计等。
三、教学内容及要求第一章绪论教学要求:掌握机电一体化的基本概念、关键技术,了解机电一体化的典型产品与发展趋势。
重点:机电一体化的基本概念、关键技术难点:机电一体化的关键技术教学内容:第一节机电一体化的基本概念(一)机电一体化的定义(二)机电一体化系统构成要素(三)机电一体化系统分类(四)机电一体化系统特点第二节机电一体化技术与产品(一)机电一体化的理论与技术基础(二)机电一体化的关键技术(三)典型的机电一体化产品第三节机电一体化的发展历史及趋势(一)机电一体化的发展历史(二)机电一体化的发展趋势第二章传感器与检测技术教学要求:了解传感与检测技术的基本概念;掌握应变与应力、压力、位移、流量、温度等典型物理量的检测技术及其相应传感器的测量原理。
重点:传感器的基本概念;力传感器、压力传感器、温度传感器等的测量原理。
难点:各种传感器的工作原理、适用场合及选型。
教学内容:第一节传感与检测技术概述(一)检测技术基础(二)传感器的基本概念(三)传感器和检测系统的基本特性(四)传感与检测系统的发展趋势第二节应变与应力的检测(一)电阻应变效应(二)电阻应变片(三)测量电桥第三节应力的直接检测(一)压电效应(二)压电传感器及其等效电路(三)压电式测力传感器及其应用第四节位移量的检测(一)常用位移测量方法(二)电阻式位移传感器测量位移(三)电感式位移传感器测量位移(四)电容式位移传感器测量位移(五)数字式位移传感器测量位移第五节流量的检测(一)流量的特征(二)介入式流量检测方法(三)非介入式流量检测方法第六节温度的检测(一)温度及其测量方法(二)热电阻及其热敏电阻(三)热电偶(四)集成电路温度传感器第三章电动机及其控制特性教学要求:熟悉电机拖动系统运动分析方法;了解直流电动机、控制电机等的结构原理及其控制特性,掌握三相异步交流电动机的结构原理及其控制特性。
智能检测理论与技术-绪论
第一章 绪论
智能检测
第一章 绪论
(3). 集中式数字控制系统
基于工控机的检测系统
智能检测
第一章 绪论
(3). 集中式数字控制系统
以微处理器为核心的检测系统
智能检测
(4). 集散控制系统
第一章 绪论
PLC 可编程逻辑控制器
智能检测
(4). 集散控制系统
第一章 绪论
基于PLC的过程控制
DCS的物理层次示意图
智能检测
1.2 智能检测的发展
第一章 绪论
智能检测的发展
智能检测理论与技术的形成和发展
人工智能理论与技术、计算机技术的发展,促进与现代检 测理论与技术的有机结合,促进智能检测理论与技术的形成和 发展。
智能检测系统的形成和发展
计算机技术为智能检测系统的发展提供基础,智能器件的 广泛应用,改变了传统仪器仪表的体系结构以及相应功能。
A
L
B传感器:y(t+L/v) 相关函数 x(t)
X
Rxy
(
)
1 T
T
x(t)y(t )dt
0
延时器 积分器
B y(t)
x(t-)y(t) x(t-)y(t)dt
理想时, x(t) =y(t+L/v),互相关在0=L/v处出现尖峰,测 定0即可知 v。
智能检测
第一章 绪论
1.1 智能检测的基本概念
不确定性模型 高度非线性 复杂的检测要求 多参数综合检测的要求 实时性、准确性
智能检测
第一章 绪论
1.1 智能检测的基本概念
3.智能检测系统及其结构
智能检测系统结构
被控对象
数采 硬件传感器
计算
【专业介绍】探测制导与控制技术专业介绍
【专业介绍】探测制导与控制技术专业介绍探测制导与控制技术专业介绍一、专业简介教育部在1988年颁布的新专业,是由原来的鱼雷飞雷工程、火控与指挥系统工程、引信技术、飞行器制导与控制四个专业归并而成。
专业调整的目的是充实扩大专业内涵,内容增加至包括探测与识别、制导与控制、控制工程在内的专业课程。
探测制导与控制技术专业介绍二、专业特色探测制导与控制技术专业是为适应国防现代化需要,在我校的国内具有较高知名度的雷达、无线电引信和自动控制等专业基础上创办的国防特色专业,在目标及环境探测、目标跟踪与识别、安全起爆与控制、制导与控制等方面形成特色。
注重提高学生的科学研究、开发和创新能力,培养的学生具有理论基础和专业知识扎实、实践能力强和工作学习作风踏实等特点。
探测制导与控制技术专业介绍三、培养目标掌握目标探测与识别、导引与控制,以及制导武器系统设计等基本理论和基本技能,具备从事信息科学研究、系统工程设计、电子信息技术与军事应用等方面的基本能力。
培养能在国防尖端武器及电子信息领域从事研究、设计、制造及其技术管理的高级工程技术人才。
探测制导与控制技术专业介绍四、培养要求探测制导与控制技术专业学生主要学习目标探测与识别技术、制导与控制技术、传感与检测技术、电子与信息系统分析与综合等方面的基本理论和基本知识;受到系统设计、技术开发、产品研制、实验测试以及工程管理方面的实践训练,具备电子与信息系统分析与综合、工程设计与计算、计算机应用与开发、检测与实验的基本能力。
探测制导与控制技术专业介绍五、课程设置主干学科:机械工程、电子科学与技术、控制科学与工程主要课程:机电系统设计、中近程探测与识别技术、现代控制理论、制导与控制原理及系统、传感与检测技术、模式识别与智能控制、GPS与抗干扰技术、武器探测、制导与控制系统分析与设计、系统建模与仿真技术等主要实践性教学环节:包括金工实习、计算机上机操作、生产实习、专业课程设计、毕业设计等,一般安排28周。
测控技术
我所了解的测控技术摘要:本文介绍了测量与控制技术的基本概念,重点描述了几种常见的测量传感器和两种测量方法以及它们在生产生活中的运用。
关键词:测量、传感器、激光衍射测量技术、莫尔条纹测试技术、自动控制、反馈控制。
1引言测控技术与仪器专业是信息科学技术的源头,是光学、精密机械、电子、计算机与信息技术多学科互相渗透而形成的一门高新技术密集型综合学科。
测量是通过使用一个标准仪器或与一个已知大小的标准事物进行的定量的比较。
它包括信息的提取、转换与处理,把已获取的信息进行加工、运算、分析,对系统的工作进行引导与检测。
控制技术是由一些电气元件连接成控制线路所组成的,它可以完成一定的工作顺序,或实现一定的工作状态。
自动控制所用的技术手段是多种多样的,可以用电气技术、计算机控制、可编程控制,也可用机械方法、液压方法等。
测量与控制是密不可分的。
测量是对控制系统的工作进行量化的一种科学手段,控制系统根据测量的结果进行调整与实时控制,使之与设计的技术指标和要求参数相吻合。
测量是为了更好地控制,它们之间相辅相成。
测量与控制都是反映人和工具关系的一个概念。
因此准确的测量与控制必然离不开精密的仪器与仪表和先进的技术手段。
精密的仪器为测量控制提供了极大的帮助,而同时测量与控制的发展也催生出更加先进的仪器。
2测量意义、基本方法和理论以及仪器与技术2.1测量的意义测量的过程或行为包括获取在一个预定标准和一个被测量之间的定量的比较。
测量提供了有关物理变量和过程的现实状态的定量信息,否则的话,这种现实状态则只可能估计。
正因如此,测量便成为对客观世界的新认识的工具,同时也是对任何理论或设计的最终检验。
测量是一切研究、设计和开发的基础,且它的作用在众多的工程活动中是十分显著的。
所有具有任意复杂程度的机械设计均涉及三个要素:经验要素、理性要素和实验要素。
其中实验要素则以测量为基础——亦即基于对被开发的装置或过程的操作和性能方面的不同量的测量。
控制科学与工程学科简介
研究课题
• • • • • • • • • • • • • • • 模式分析与机器学习 模式分类、聚类与特征提取、模型选择 机器学习前沿方法:贝叶斯学习、流形学习、结构化学习 大规模数据分类器学习的计算方法 计算机视觉与图像分析,视觉计算模型和稳定性分析 复杂大范围场景建模 目标检测、跟踪和识别新方法 脑影像计算及其在脑疾病分析中的应用 生物特征识别新方法 遥感图像分析新方法 数字媒体的自动标注和个性化定制 语音语言处理和网络信息处理,面向语言理解的语义计算 基于听觉感知的语言信号处理 多模态信息融合的口语翻译 网络内容(文本、图像、视频等)挖掘,网络内容安全
控制科学与工程一级学科
• 该学科在本科阶段叫自动化,研究生阶段 叫控制科学与工程 • 下设的五个二级学科 1.控制理论与控制工程 2.检测技术与自动装置 3.模式识别与智能系统 4.系统工程 5.导航、制导与控制
各二级学科及主要研究范畴
1.控制理论与控制工程 “控制理论与控制工程”学科以工程领域 内的控制系统为主要对象,以数学方法和 计算机技术为主要工具,研究各种控制策 略及控制系统的建模、分析、综合、优化、 设计和实现的理论、方法和技术。 本学科培养从事控制理论与控制工程领 域的研究、设计、开发和系统集成等方面 的高级专门人才。
本专业方向主要研究: 线性与非线性控制、自适应控制、变结构控制、 鲁棒控制、智能控制、模糊控制、神经元控制、 预测控制、推理控制、容错控制、多变量控制、 量子控制、系统辨识、过程建模与优化、故障诊 断与预报、离散事件动态系统、复杂系统的优化 与调度、智能优化与智能维护、复杂性理论研究、 高性能调速与伺服、运动体导航与制导、机器人 与机器视觉、多传感器集成与融合,多自主体合 作与对抗、嵌入式系统、传感器网络、软测量技 术、电力电子技术、现场总线技术、系统集成技 术、网络控制技术,以及将上述技术与方法加以 集成的综合自动化技术等。
建筑材料检测技术及质量控制
建筑材料检测技术及质量控制摘要:建筑材料检测在工程建筑中有着重要的作用。
建筑材料的优劣直接影响到建筑工程的质量。
在工程实践中,由于选用了不合格的材料,导致了材料的性能和质量的下降,从而严重影响了工程的质量。
造成材料不合格的原因有人为因素也有自然因素。
所以,提高建筑材料检测技术,根据国家规定来制定检测标准,才能保障工程施工质量。
关键词:建筑材料;检测技术;质量控制1建筑材料检测概述及其重要意义1.1建筑材料检测概述建材检验的重点是检验建材的质量。
在实际的建设项目中,所使用的建筑材料的种类和数量都比较多,不同的建筑材料相应的检验标准也不一样。
有关部门必须严格按照国家标准进行检验,以保证检验工作方法和检验结果的准确性。
在检验工作中,要根据有关规定,制定取样计划,确保被检样品的代表性与覆盖性。
另外,还需要采取科学的方法来控制测试的过程和结果,尽量减少人为因素受到的影响。
1.2建筑材料检测的重要意义建材是一项重要的工程,建材的质量将影响到整个工程的质量和使用寿命。
建筑材料检测可以从源头上对建筑材料质量进行控制,保证建筑工程所用的建筑材料是合格的,为建筑质量、安全性提供保障。
在建筑材料的检验过程中,经常会使用一些新的材料和技术,这对建材和建筑行业的发展起到了一定的促进作用。
2建筑材料试验检测技术2.1书面检测技术书面检测技术就是建筑材料公司以书面的形式,如测验报告等,提供给检测机构,检测机构对建筑材料的书面资料进行审核、检测。
2.2外观检测技术外观检测技术就是检测机构对建筑材料的颜色、尺寸、外观等进行综合评价,做出选择和质量认证。
2.3仪器检测技术仪器检测技术指的是,检测机构根据所要检测的建筑材料的特性,选择相应的设备和仪器,对建筑材料展开质量检测,具体包括了建筑材料的内部组成部分和化学成分。
从目前的状况来看,这种方法由于其相对误差小,使用方便,效率高等优点,已经在建材质量检验中得到了广泛的应用。
2.4无损检测技术无损检测技术就是指不损害被检建筑材料工作状态下,通过探测建筑材料的物理性,比如建筑材料内部是否存在不均匀性或缺陷,从而对被检建筑材料的质量进行鉴定。
1检测技术基础知识-概述
主要测量被测量随时间的变化规律。
2.频域测量(稳态测量)
主要目的是获取待测量与频率之间的关系。
3.数据域测量(逻辑量测量)
主要是用逻辑分析仪等设备对数字量或电路的逻辑状
态进行测量。
4.随机测量(统计测量)
主要是对各类噪声信号进行动态测量和统计分析。
1.5 xm m xm 100 1.5V 100
可见:同一量程内,测得值越小,示值相对误差 越大。因此测量中所用仪表的准确度并不是测量 结果的准确度,一般测得值的准确度是低于仪表 的准确度,在示值和满度值相等时两者才相等。 例2:某1.0级电流表,满度值Xm=100uA,求测量值 测量时,为减小误差,示值应尽量接近满度值, 一般也不小于满度值的2/3为宜。 X1=100uA,X2=80uA,X3=20uA时的绝对误差和示值
小依次划分为0.1、0.2、0.5、1.0、1.5、2.5和5.0七级。 如某电压 表S=0.5,即表明它的准确度等级为0.5级,也就是它的满度相对 误差不超过0.5%,即 m 0.5% ,习惯上写成 m 0.5%。
例1:某电压表S=1.5,试标出它在0-100V量程中的最
大绝对误差。 解:该表在0-100V量程内上限值(仪表满度值)为 Xm=100V,而S=1.5,所以
第三节 误差理论
3.1 测量误差的基本概念
误差公理 真值 指定真值(约定真值) 实际值(相对真值) 标称值 示值(测量值)
3.2 测量误差的分析
1.按表示方法分析 (1)绝对误差:示值AX与被测量真值A0之间的差值。
Δ A=AX-A0 式中: Δ A为绝对误差,AX为示值(测量值), A0为被测量的真值,但该值一般很难得到,所以 一般用实际值A来代替被测量的真值。即绝对误差一般表 示为Δ X=AX-A 修正值:实际值A与示值AX之间的差值。 C=A-AX C为修正值,其绝对值和绝对误差Δ X相等,但符号相反。 即: C= -Δ X =A-AX
安全检测与监控技术
1.3.2 检测系统的分类
按被测参量分类 电工量、热工量、机械量、物性和成分量、光学 量、状态量 按被测参量的检测转换方法分类 电磁转换、光电转换、其它 按使用性质分类 标准表、实验室表、工业用表
1.4 安全检测技术的发展趋势
高速数据采集系统 先进技术的发展 1、传感器向新型、微型、智能型方向发展和多 传感器融合技术的应用。2、柔性测试系统。3、 测量仪器向高精度、多功能、小型化、在线监测、 性能标准化和低价格发展。 4、参数测量和数据处 理以计算机为核心,使测量、分析、处理、打印、 绘图、状态显 示及故障预报向自动化、集成化、 网络化发展。5、大型设备的测试。6、微观系统 的测试。7、视觉测试技术。8、智能结构。 虚拟仪器的应用
第2章 温度检测
温度标准与测量方法 接触式温度检测 非接触式温度检测
2.1 温度标准与测量方法
温度是国际单位制给出的基本物理量之一。 温度就是表征物体冷热程度的一个物理量,从微观上 说是物质分子运动平均动能大小的标志。自然界中的 许多物理现象和化学反应都紧密的与温度相关,温度 的变化会影响到物体的尺寸、体积、密度、硬度、弹 性系数、电导率、磁导率、热容量等值。温度是安全 检测的重要参数之一,在防火防爆、保证设备强度等 方面起着重要的作用。
安全检测与监控技术
第1章 安全检测概述
安全检测在安全科学中的地位与任务 安全检测与工业运行状态信息的关系 安全检测系统的组成和分类 安全检测技术的发展趋势
1.1安全检测在安全科学中的地位与任务
工业革命给人类带来了无穷的财富,但是,工 业事故和工业灾难与科技发展和社会进步 伴随而来, 从泰坦尼克号到切尔诺贝利核泄露,人类经历了无 数次危险和灾难。现代化学工业、高能技术、高新 技术、航空航天技术、核工业技术以及探海技术的 发展以及规模装置、大型联合装置的出现,使技术 密集性、物质高能性和过程高参数性更为突出,使得 当代工业生产、科学探索、经济运行中的事故更具 突发性、灾难性、社会性。由于事故现象越来越复 杂,损失越来越惨重,迫使人们必须认真地去分析 事故现象,研究事故规律,建立安全科学,发展安 全工程学科。
控制科学与工程学系概况介绍
控制科学与工程学系概况介绍控制科学与工程学系(简称控制系)始建于1956年,经过50多年的传承和发展,已建成从本科、硕士、博士到博士后的完善人才培养体系,成为我国控制科学的研究基地、自动化技术的开发基地、自动化领域高水平复合型人才的培养基地。
控制系下设自动化一个本科专业。
学科背景控制系的学科领域涵盖“控制科学与工程”一级学科及下属的全部五个二级学科:控制理论与控制工程、检测技术与自动化装置、模式识别与智能系统、系统工程、导航制导与控制。
我校控制科学与工程学科是全国重点学科一级学科,拥有自动化学科领域全国唯一的“工业控制技术国家重点实验室”和“工业自动化国家工程研究中心”。
科学研究具有强大的科学研究实力。
在先进过程控制、机器人智能控制、成套自动化装备、模式识别与智能系统、自动检测系统、新型传感器与传感器网络、导航制导与控制、故障诊断与监控、系统工程、智能交通等多个方向开展了高水平的研究工作。
办学特色经过50多年的探索和积累,自动化专业构建了宽口径、开放式、个性化的新型创新教学体系,尤其重视实践教学,连续3年成功立项国家大学生创新实验计划。
2001年,依托“工业控制技术”国家重点实验室,建成了“浙江大学机器人科技实践基地”,以创新、协作、多学科交叉为立足点,采用实践教学与竞赛、科研相结合的方式,在寓教于乐中培养学生的创新能力、理论与实践相结合能力、多学科综合能力以及团队协作精神。
以2008年为例:基地获得中国机器人大赛暨RoboCup公开赛仿真救援组冠军和小型组冠军,Robocup机器人世界杯技术挑战赛冠军、仿真救援组冠军和小型组竞赛第四名。
主要课程自动化专业对数学、物理、计算机、外语、电子技术和信息处理等基础知识有较高的要求。
除通识和大类课程外,主要专业课程包括:⑴专业基础课――电路原理、电子技术基础、信号与系统、微机原理与接口技术、软件技术基础、数字信号处理、计算机网络等。
⑵专业核心课――自动控制原理、过程控制工程、现代传感技术、过程检测系统、计算机控制系统与软件、计算机控制装置及仪表、电气控制技术等。
第1章 控制工程的基本概念
然制 温 我 嘿 不芯 度 体 嘿 会片 自 内 , 冷, 动 装 因 当控了为
为 什 么 ! ?
Wuhan University of Technology
温度自动控制系统 武汉理工大学
控制工程基础
第一章 控制工程的基本概念
瓦特
Wuhan University of Technology
离心调速器
Wuhan University of Technology
武汉理工大学
控制工程基础
第一章 控制工程的基本概念
二、教材及参考书
王积伟
容一鸣
Wuhan University of Technology
武汉理工大学
控制工程基础
第一章 控制工程的基本概念
二、教材及参考书
1、考核采用闭卷考试形式; 胡寿松
控制工程基础
第一章 控制工程的基本概念
控制工程基础
吴华春 whc@ 机电工程学院
Wuhan University of Technology
武汉理工大学
控制工程基础
第一章 控制工程的基本概念
一、课程基本内容
【课程名称】控制工程基础/ Foundation of Control Engineering。 【学 时】40学时,34理论学时,6实验学时。
Wuhan University o
第一章 控制工程的基本概念
反馈(Feedback)定义:
通常,把输出量取出,送回到输入端,并与输入量相比较产生偏 差信号的过程,称为反馈。若反馈的信号是与输入信号相减,使产生的 偏差越来越小,则称为负反馈;反之,则称为正反馈。
Wuhan University of Technology
第一章 控制系统的基本概念
而能够直接获取的信息是被控变量的测量值。因此,通常把给定 值与测量值的差作为偏差,即 e = y s-y m。在反馈控制系统中, 调节器根据偏差信号的大小去控制操纵变量。 控制信号 u 控制器将偏差按一定规律计算得到的量。
1.4 控制系统系统的分类
自动控制系统的分类方法有很多。例如,按被控变量的不同, 可以分为温度控制系统、流量控制系统、压力控制系统、液位控制 系统、成分控制系统等。按调节器的控制规律来分类,可分为比例 控制系统、比例积分控制系统、比例微分控制系统、比例微分积分 控制系统等。但是,在分析自动控制系统的特性时,常常采用下述 几种分类方法。
(3)自动操纵系统 : 这是一种根据预先规定的程序, 自动的对生产设备进行某种周期性操作,极大地减轻操 作人员的繁重或重复性体力劳动的装备。例如,合成氨 造气车间煤气发生炉的操作就是按照程序自动地进行的, 如自动进行吹气、上吹、下吹制气、吹净等步骤,周期 性地接通空气与水蒸气实现自动操纵。 (4)自动控制系统: 利用一些自动控制仪表及装 置,对生产过程中某些重要的工艺变量进行自动调节, 使它们在受到外界干扰影响偏离正常状态后,能够自动 地重新回复到规定的范围内,从而保证生产的正常进行。
过程装备控制技术 及应用
过控教研室
前
言
《过程装备控制技术及应用》课程是经全国高等学校化工类及 相关专业教学指导委员会化工装备教学指导组讨论决定,确定为 “过程装备与控制工程”专业的核心课程之一。本专业学生通过该 课程的学习,可以将过程机械、计算机自动测试、控制、自动化等 方面的知识有机地结合在一起,培养学生成为掌握多学科知识与技 能的复合型人才。
比较自动控制与人工控制:在自动控制系统中,测量仪表,控制 仪表,自动调节阀分别代表了人工控制中人的观察,思考和手动操 作,因而大大降低了人的劳动强度;同时由于仪表的信号测量、运 算、传输、动作速度远远高于人的观察,思考和操作过程,因此自 动控制可以满足信号变化速度快,控制要求高的场合 。 1.2.2 控制系统的组成 从上面锅炉汽包水位的自动控制系统中可以看出,一个自动控 制系统主要由两大部分组成:一部分是起控制作用的全套自动控制 系统,它包括测量仪表,变送器,控制仪表以及执行器等;另一部 分是自动控制装置下的生产设备,即被控对象如锅炉、反应器、换 热器等。图1-1(b)中,锅炉、差压便送器、调节器、执行器等 构成了一个完整的自动控制系统。系统各部分的作用如下。 被控对象 :在自动控制系统中,工艺变量需要控制的生产设备 或机器称为被控对象,简称对象。在化工生产中,各种塔器、反应 器、泵、压缩机以及各种容器。贮罐、贮槽、甚至一段输送流体的 管道或复杂塔器(如精馏塔)的某一部分都可以是被控对象。图1 -1的锅炉即为汽包水位控制系统中的被控对象。
测控技术与仪器专业介绍
测控技术与仪器专业介绍本专业以光、机、电、计算机一体化为特色,培养具有现代科学创新意识、知识面宽、基础理论扎实、计算机和外语能力强,可从事计算机应用、电子信息、智能仪器、虚拟仪器、测量与控制等多领域的产品设计制造、科技开发、应用研究、企业管理等多方面的高级工程技术及经营管理人才。
同时因为他们专业知识面宽广,具有很强的适应能力和广泛的发展空间,也可从事计量、测试、控制工程、智能仪器仪表、计算机软件和硬件等高新技术领域的设计、制造、开发和应用等工作,转行比较容易。
测控技术自古以来就是人类生活和生产的重要组成部分。
最初的测控尝试都是来自于生产生活的需要,对时间的测控要求使人类有了日晷这一原始的时钟,对空间的测控要求使人类有了点线面的认识。
现代社会对测控的要求当然不会停留在这些初级阶段,随着科技的发展,测控技术进入了全新的时代。
一、测控的几个重要过程及其新技术1.信号采集在信号采集环节,主要是采集对象发出的各种信号,再将这种信号转换成电信号,以便于后续的处理。
对象发出的信号大多数是通过传感器来采集的,包括物理信号(如温度、流量、压力等)和化学信号(如湿度、气味等)两大类,当然还包括不能归为这两类的一些信号,如可靠性、价格等。
而开关量信号(带有数字信号的特征)则主要是靠带有单片机电路的仪器,如无纸记录仪,进行采集。
此外,某某某像信号自然是由摄像装置来进行采集。
传感器是一种将物理量,化学量,生物量等转换成电信号的器件。
输出信号有不同形式,如电压、电流、频率、脉冲等,能满足信息传输、处理、记录、显示、控制要求,是自动检测系统和自动控制系统中不可缺少的元件。
光导纤维的应用是传感器材料的重大突破,其最早用于光通信技术。
光纤传感器与传统传感器相比,灵敏度高,结构简单,体积小,耐腐蚀,电绝缘性好,光路可弯曲,便于实现遥测等。
光纤传感器与集成光路技术相结合,加速光纤传感器技术的发展。
将集成光路器件代替原有光学元件和无源光器件,使光纤传感器有高的带宽低的信号处理电压,可靠性高,成本低。
检测技术与控制工程基础讲义
检测技术与自动控制工程基础材料成型及控制工程专业(必修)课程讲义南京农业大学工学院机械工程系机电工程教研室2012年1月第一章检测系统概论1.1 概述1.1.1 认识检测(测试)技术的重要性1、认识检测技术●检测是科学地认识各种现象的基础性的方法和手段。
●检测技术是所有现代科学技术的基础。
●检测技术是科学技术的重要分支,是一门具有特殊性的专门科学和专门技术,又称测试技术。
●现代科学技术的发展,尤其是计算机技术、通信技术、微电子技术等学科的迅猛发展,推动了检测技术的飞速发展,反过来,检测技术的发展又进一步推动了现代科学技术在工程实践中的应用,加快了科学技术向生产力的转化过程。
2、检测技术的作用●检测技术在国民经济各个部门和科学研究各个领域的应用日益广泛,已成为促进生产和科学技术发展的有力手段,使用先进的检测技术是科学技术现代化的重要标志之一,是科学技术现代化必不可少的条件。
●利用检测技术手段,可以有效地揭示出表征各种生产工艺和技术操作过程特征的有关物理参量,能更深刻地认识和把握客观过程的本质和规律性,从而有利于生产工艺和生产设备的研究与改造。
●检测反馈环节是构成高精度闭环控制系统的必要环节,检测技术的发展推动了生产过程的机械化与自动化水平,推动了科学技术向高、精、尖方向的发展,例如机器人技术、海洋石油钻探、航空航天以及外太空探索等都依赖高精度、高可靠性的检测技术的发展。
●检测动态物理量。
对于从事机械制造业的工程技术人员,不仅面临着静态几何量的测量,随着科学技术的发展,还越来越多地面临着许多不可避免的动态物理量的检测(如位移、振动、力、流量、温度、噪声等)。
这些动态量的检测,大量地使用非电量电测法,即通过传感器将被测量变换为电量,而后,要对电信号进行各种变换与处理来达到最终的检测目的。
P1机床动态量检测例子。
●机械工程中许多理论和计算方法只具有粗略估算性质,往往不是很准确,因此只能通过测试获得数据并进行分析,才能了解与实际工况较接近的承载及变形情况、动态过程的载荷特征和运动参数的情况。
现代测控技术概论
1.3计算机控制系统概述
1.3.1微机过程控制系统的基本组成
过程控制一词具有特定的含义,广义地说,过程是一个 能被监视或控制的物理系统。而过程变量是指该系统中应按 照某种目的或规则变化的物理参数,也就是被控制量。控制 的目的是使一个或多个过程变量达到预定的最佳参考值,从 而使系统处于最佳工作状态。
图1-6微机过程控制系统的组成框图
1.3.2计算机控制系统的类别及要求
一般来说,各类控制系统均可以使用计算机进行在线控 制。但是,往往只有在那些更能体现计算机作用的控制系统 中才使用计算机。所使用的计算机档次需按系统控制任务的 情况恰当地选择。为了了解计算机控制系统的概貌,在前面 所介绍的基本型计算机过程控制系统的基础上,再按计算机 在计算机控制系统中所担任的不同控制任务分类, 几种:
人类在工程实践的过程中,一种需求是要采取各种方法 获得反映客观事物或对象的运动属性的各种数据、记录并进 行必要的处理,这种技术称为“测量”。另一种需求是要采 取各种方法支配或约束某一客观事物或对象的运动过程,达 到一定的目的,这种技术称为“控制”。
“测量”和“控制”是人类认识世界和改造世界的两项 工作任务。相应地,人们就要研制和发展测控仪器或系统以 实现测量和控制,与此相关的理论和技术就是测控技术。测 控仪器或测控系统按照任务的不同,可以分为三大类,即检 测系统、控制系统和测控系统。
4) A/D
A/D
(1)分辨率和量化误差。对于同样的量化值,分辨率由 寄存器的位数决定,也就是量化单位q。设满刻度为Xm,寄 存器位数为n位,则
q Xm 2n 1
(1.7)
量化误差为ε=q/2。
(2)偏移误差。偏移误差是指输入信号为零,输出信号 不为零时的值,所以也称为零值误差。偏移误差通常是由放 大器的偏移电压产生的,一般在静态时对电路进行调整,使 之最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动化是以机械取代人力的一种技术革命。 它始于工业革命时代,是人类不断追求的目标。
毛泽东
3
自动控制的应用深入到生产、生活的各个领域:
日常生活:电视机、冰箱、空调、电梯、汽车… 工业:炉温控制、电网电压和频率控制… 工程:数控机床、材料合成、核反应堆… 军事: 火炮群、导弹、特种炸弹、垂直起降飞机… 科技:航天飞机、卫星运行与姿态控制、机器人… ……
• 公元1637年,明代的《天工开物》一书中记载有 程序控制思想的提花织机结构图。
5
(2)世界上公认的第一个自动控制系统
1769年瓦特发明蒸汽机
6
控制问题举例
温度控制系统
7
8 8
机械手的控制问题
9
3 2 1
4 5 6
机械手有6个被控制量按照预定的规律变化。
10
导弹的控制问题
目标
控制的概念
控制
控制
使某个(某些)量按一定的规律变化。
被控制量
1
自动控制已成为现代社会活动中不可缺少的重要组成部分! 自动化技术几乎渗透到国民经济的各个领域及社会生活的各
个方面。 在某种程度上说,自动化是现代化的同义词。
自动控制是当代发展最迅速、应用最广泛、最引人注目的高 科技,是推动新的技术革命和新的产业革命的关键技术。
16
自动控制的概念
自动控制
无人直接参与的情况下,由一套设备来完 成控制作用。
自动控制的元件和设备构成自动控制系统。
优点: 可以快速准确地进行控制,比人工控制效果更好;
17
使人们从繁重的、大量的重复性劳动中解放 出来; 在恶劣的环境或人们无法到达的环境中实现 自动控制; 可以长时间不疲劳的工作,提高了工作效率。
导弹
导弹与目标的相对距离 是被控制量,最终必须趋向
于零。
11
工件分选控制的问题
12
பைடு நூலகம் 退火炉的温度控制
为了防止在退火过程中工件产生内应力,退火炉内的温度应该按照 图示曲线的规律变化。
温度
0 退火炉的温度变化曲线
时间
13
从上述例子可见,“控制”就是使“被控制量”按照一 定的规律变化。
规律包括3种情况: 事先预定的规律
4
自动控制发展简史
(1)中国古代自动化方面的成就:
• 公元前14世纪至前11世纪,中国、埃及和巴比伦 出现自动计时漏壶;
• 公元132年,张衡研制出自动测量地震的候风地动 仪;
• 公元235年,马钧研制出用齿轮传动自动指示方向 的指南车,类似按扰动补偿的自控系统;
• 公元1135年,宋代王普记述“莲华漏”上使用浮 子—阀门式机构自动调节漏壶的水位;
例子:生产线上的机械手 特点:重复性运动 又称:程序控制
14
随机的变化规律
例子:雷达控制系统
特点:事先无法知道,即事先不知道被测对象的方向位 置,俯仰角及方位角的变化规律。在控制过程中,使被 控制量按照实时给出的规律变化。 又称:随机控制
15
保持恒定
例子:恒温箱温度控制。 特点:使被控制量保持某一定值。 又称:“恒值控制”或“调节”。
18
检测 与 控制 之间的关联:
比较元件
放大器 参考 -
输入
偏差信号
执行 元件
测量元件
干扰 被控 对象
被控 制量
19