2020-2021莆田擢英中学初三数学上期末试题含答案

合集下载

2020-2021莆田擢英中学高中必修三数学上期末试题含答案

2020-2021莆田擢英中学高中必修三数学上期末试题含答案

2020-2021莆田擢英中学高中必修三数学上期末试题含答案一、选择题1.执行如图的程序框图,若输入1t =-,则输出t 的值等于( )A .3B .5C .7D .152.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .253.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?4.如果数据121x +、221x +、L 、21n x +的平均值为5,方差为16,则数据:153x -、253x -、L 、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1445.日本数学家角谷静夫发现的“31x + 猜想”是指:任取一个自然数,如果它是偶数,我们就把它除以2,如果它是奇数我们就把它乘3再加上1,在这样一个变换下,我们就得到了一个新的自然数.如果反复使用这个变换,我们就会得到一串自然数,猜想就是:反复进行上述运算后,最后结果为1,现根据此猜想设计一个程序框图如图所示,执行该程序框图输入的6N =,则输出i 值为( )A .6B .7C .8D .96.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?7.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化、相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被3sin6y x π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .112D .198.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .4139.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率( ) A .38B .34C .35D .4510.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为( ) A .13B .49C .59D .2311.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.512.2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是( ) A .25B .35C .23D .15二、填空题13.若正方体1111ABCD A B C D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.14.如下图,利用随机模拟的方法可以估计图中由曲线y=22x 与两直线x=2及y=0所围成的阴影部分的面积S :①先产生两组0~1的均匀随机数,a=RAND ( ),b=RAND ( );②做变换,令x=2a ,y=2b ;③产生N 个点(x ,y ),并统计落在阴影内的点(x ,y )的个数1N ,已知某同学用计算器做模拟试验结果,当N=1 000时,1N =332,则据此可估计S 的值为____.15.某班60名学生参加普法知识竞赛,成绩都在区间[40100],上,其频率分布直方图如图所示,则成绩不低于60分的人数为___.16.在棱长为2 的正方体内任取一点,则此点到正方体中心的距离不大于1的概率为_____.17.如图是一个算法的流程图,则输出的a 的值是__________.18.某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为 .19.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______.20.执行如图所示的程序框图,若1ln 2a =,22b e =,ln 22c =(其中e 是自然对数的底),则输出的结果是__________.三、解答题21.某电子科技公司由于产品采用最新技术,销售额不断增长,最近5个季度的销售额数据统计如下表(其中20181Q 表示2018年第一季度,以此类推): 季度 20181Q 20182Q 20183Q 20184Q 20191Q季度编号x 1 2345销售额y (百万元)4656 67 86 96(1)公司市场部从中任选2个季度的数据进行对比分析,求这2个季度的销售额都超过6千万元的概率;(2)求y 关于x 的线性回归方程,并预测该公司20193Q 的销售额.附:线性回归方程:y bx a =+$$$其中()()()1122211n niii ii i nniii i x x y y xy nx yb x x xnx====---⋅==--∑∑∑∑$,$$a y bx=-$ 参考数据:511183i ii x y==∑.22.市政府为了节约用水,调查了100位居民某年的月均用水量(单位:t ),频数分布如下: 分组 [0,0.5) [0.5,1)[1,1.5)[1.5,2)[2,2.5) [2.5,3) [3,3.5)[3.5,4) [4,4.5]频数4815222514642(1)根据所给数据将频率分布直方图补充完整(不必说明理由); (2)根据频率分布直方图估计本市居民月均用水量的中位数;(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).23.某高中为了了解高三学生每天自主参加体育锻炼的情况,随机抽取了100名学生进行调查,其中女生有55名.下面是根据调查结果绘制的学生自主参加体育锻炼时间的频率分布直方图:将每天自主参加体育锻炼时间不低于40分钟的学生称为体育健康A 类学生,已知体育健康A 类学生中有10名女生.(Ⅰ)根据已知条件完成下面22⨯列联表,并据此资料你是否认为达到体育健康A 类学生与性别有关?非体育健康A 类学生 体育健康A 类学生 合计男生女生合计(Ⅱ)将每天自主参加体育锻炼时间不低于50分钟的学生称为体育健康A +类学生,已知体育健康A +类学生中有2名女生,若从体育健康A +类学生中任意选取2人,求至少有1名女生的概率. 附:P (20K k ≥)0.05 0.010 0.005 0k3.8416.6357.879()()()()()22n ad bc k a c b d c d a b -=++++24.某医疗器械公司在全国共有100个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这100个销售点的年销量绘制出如下的频率分布直方图.(1)完成年销售任务的销售点有多少个?(2)若用分层抽样的方法从这100个销售点中抽取容量为25的样本,求该五组[2,6),[6,10),____________=,[14,18),[18,22),(单位:千台)中每组分别应抽取的销售点数量.(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取2个,求这两个销售点不在同一组的概率.25.东莞市摄影协会准备在2019年10月举办主题为“庆祖国70华诞——我们都是追梦人”摄影图片展.通过平常人的镜头记录国强民富的幸福生活,向祖国母亲的生日献礼,摄影协会收到了来自社会各界的大量作品,打算从众多照片中选取100张照片展出,其参赛者年龄集中在[20,70]之间,根据统计结果,做出频率分布直方图如图:(1)求频率分布直方图中x 的值,并根据频率分布直方图,求这100位摄影者年龄的样本平均数x 和中位数m (同一组数据用该区间的中点值作代表);(2)为了展示不同年龄作者眼中的祖国形象,摄影协会按照分层抽样的方法,计划从这100件照片中抽出20个最佳作品,并邀请相应作者参加“讲述照片背后的故事”座谈会. ①在答题卡上的统计表中填出每组相应抽取的人数: 年龄 [20,30) [30,40) [40,50) [50,60) [60,70]人数②若从年龄在[30,50)的作者中选出2人把这些图片和故事整理成册,求这2人至少有一人的年龄在[30,40)的概率.26.某手机厂商在销售某型号手机时开展“手机碎屏险”活动.用户购买该型号手机时可选购“手机碎屏险”,保费为x 元,若在购机后一年内发生碎屏可免费更换一次屏幕,为了合理确定保费x 的值,该手机厂商进行了问卷调查,统计后得到下表(其中y 表示保费为x 元时愿意购买该“手机碎屏险”的用户比例):(1)根据上面的数据计算得()()5119.2iii x x y y =--=-∑,求出y 关于x 的线性回归方程;(2)若愿意购买该“手机碎屏险”的用户比例超过0.50,则手机厂商可以获利,现从表格中的5种保费任取2种,求这2种保费至少有一种能使厂商获利的概率.附:回归方程$$ˆy bxa =+中斜率和截距的最小二乘估计分别为()()()121niii nii x x y y b x x ==--=-∑∑$,$a y bx =-$【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】直接根据程序框图依次计算得到答案. 【详解】模拟执行程序,可得1t =-,不满足条件0t >,0t =,满足条件()()250t t +-<, 不满足条件0t >,1t =,满足条件()()250t t +-<, 满足条件0t >,3t =,满足条件()()250t t +-<,满足条件0t >,7t =,不满足条件()()250t t +-<,退出循环,输出t 的值为7. 故选:C. 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.2.B解析:B 【解析】 【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案. 【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择; 如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A ⨯=种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率84724020P == 故选:B . 【点睛】本题主要考查了分类计数原理,关键是如何分步,属于中档题.3.B解析:B 【解析】 【分析】程序运行结果为41S =,执行程序,当6k =时,判断条件成立,当5k =时,判断条件不成立,输出41S =,即可选出答案. 【详解】根据程序框图,运行如下: 初始10,1k S ==,判断条件成立,得到11011S =+=,1019k =-=; 判断条件成立,得到11920S =+=,918k =-=; 判断条件成立,得到20828S =+=,817k =-=; 判断条件成立,得到28735S =+=,716k =-=; 判断条件成立,得到35641S =+=,615k =-=; 判断条件不成立,输出41S =,退出循环,即6k ≥符合题意. 故选:B. 【点睛】本题考查了程序框图的识别与判断,弄清进入循环体和跳出循环体的条件是解决本题的关键,考查了学生的推理能力,属于基础题.4.A解析:A 【解析】 【分析】计算出数据1x 、2x 、L 、n x 的平均值x 和方差2s 的值,然后利用平均数和方差公式计算出数据153x -、253x -、L 、53n x -的平均值和方差. 【详解】设数据1x 、2x 、L 、n x 的平均值为x ,方差为2s , 由题意()()()()121221212121215n n x x x x x x x nn++++++++=+=+=L L,得2x =,由方差公式得()()()()()()22212212121212121n x x x x x x n⎡⎤⎡⎤⎡⎤+-+++-++++-+⎣⎦⎣⎦⎣⎦L ()()()2221224416n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===L ,24s ∴=. 所以,数据153x -、253x -、L 、53n x -的平均值为()()()12535353n x x x n-+-+-L ()1235535321n x x x x n+++=-=-=-⨯=-L,方差为()()()()()()22212535353535353n x x x x x x n⎡⎤⎡⎤⎡⎤---+---++---⎣⎦⎣⎦⎣⎦L ()()()2221229936n x x x x x x s n⎡⎤-+-++-⎢⎥⎣⎦===L . 故选:A. 【点睛】本题考查平均数与方差的计算,熟练利用平均数与方差的公式计算是解题的关键,考查计算能力,属于中等题.5.D解析:D 【解析】分析:由已知中的程序语句可知:该程序的功能是利用循环结构计算n 的值并输出相应的i 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得结论. 详解:模拟程序的运行,可得6,1n i ==,不满足条件n 是奇数,3,2n i ==,不满足条件1n =,执行循环体,不满足n 是奇数,10,3n i ==; 不满足条件1n =,执行循环体,不满足n 是奇数,可得5,4n i ==, 不满足条件1n =,执行循环体,满足条件n 是奇数,16,5n i ==, 不满足条件1n =,执行循环体,不满足n 是奇数,8,6n i ==; 不满足条件1n =,执行循环体,不满足n 是奇数,4,7n i ==;不满足条件1n =,执行循环体,不满足n 是奇数,2,8n i ==; 不满足条件1n =,执行循环体,不满足n 是奇数,1,9n i ==, 满足条件1n =,退出循环,输出i 的值为9,故选D.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.C解析:C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a 的值为170. 则分析各个选项可得程序中判断框内的“条件”应为k 6<? 故选:C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.7.B解析:B 【解析】设大圆的半径为R ,则:126226T R ππ==⨯=, 则大圆面积为:2136S R ππ==,小圆面积为:22122S ππ=⨯⨯=,则满足题意的概率值为:213618p ππ==. 本题选择B 选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.8.A解析:A 【解析】 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x xx x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即7BC x =,设DEF V 的面积为1S ,ABC V 的面积为2S因为DEF V 与ABC V 相似所以21217S DE P S BC ⎛⎫=== ⎪⎝⎭故选:A9.A解析:A 【解析】设甲到达时刻为x ,乙到达时刻为y ,依题意列不等式组为{0.50,1y xx y x y ≥+≥≤≤,画出可行域如下图阴影部分,故概率为11138218--=.10.C解析:C【分析】设小赵到达汽车站的时刻为x ,小王到达汽车站的时刻为y ,根据条件建立二元一次不等式组,求出对应的区域面积,结合几何概型的概率公式进行计算即可. 【详解】如图,设小赵到达汽车站的时刻为x ,小王到达汽车站的时刻为y , 则0≤x≤15,0≤y≤15,两人到达汽车站的时刻(x ,y )所对应的区域在平面直角坐标系中画出(如图所示)是大正方形.将2班车到站的时刻在图形中画出,则两人要想乘同一班车, 必须满足{(x ,y )|0505x y ≤≤⎧⎨≤≤⎩,或515515x y ≤⎧⎨≤⎩<<},即(x ,y )必须落在图形中的2个带阴影的小正方形内,则阴影部分的面积S=5×5+10×10=125, 则小赵和小王恰好能搭乘同一班公交车去上学的概率P=1251515⨯=59, 故选:C 【点睛】本题主要考查几何概型的概率公式的应用,根据条件求出对应区域的面积是解决本题的关键.11.A解析:A 【解析】 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =.【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.12.A解析:A 【解析】分析:根据已知中某公共汽车站每隔5分钟有一辆车通过,我们可以计算出两辆车间隔的时间对应的几何量长度为5,然后再计算出乘客候车时间不超过2分钟的几何量的长度,然后代入几何概型公式,即可得到答案 详解::∵公共汽车站每隔5分钟有一辆车通过当乘客在上一辆车开走后3分钟内到达候车时间会超过2分钟 ∴乘客候车时间不超过2分钟的概率为53255P -== . 故选A .点睛:本题考查的知识点是几何概型,其中计算出所有事件和满足条件的事件对应的几何量的值是解答此类问题的关键二、填空题13.【解析】【分析】先求出满足题意的体积运用几何概型求出结果【详解】由题意可知总的基本事件为正方体内的点可用其体积满足的基本事件为为球心3为半径的求内部在正方体中的部分其体积为故则的长度大于3的概率【点 解析:16π-【解析】 【分析】先求出满足题意的体积,运用几何概型求出结果 【详解】由题意可知总的基本事件为正方体内的点,可用其体积3327=, 满足||3AE …的基本事件为A 为球心3为半径的求内部在正方体中的部分, 其体积为31493832V ππ=⨯⨯=,故则AE 的长度大于3的概率9211276P ππ=-=-.【点睛】本题考查了几何概型,读懂题意并计算出结果,较为基础14.328【解析】根据题意满足条件y<的点(xy)的概率是矩形的面积为4则有所以S≈1328点睛:随机模拟求近似值的方法先分别根据古典概型概率公式以及几何概型概率公式计算概率再根据两者相等求近似值解析:328根据题意,满足条件y<的点(x ,y )的概率是,矩形的面积为4,则有,所以S ≈1.328.点睛: 随机模拟求近似值的方法,先分别根据古典概型概率公式以及几何概型概率公式计算概率,再根据两者相等求近似值15.30【解析】由题意可得:则成绩不低于分的人数为人解析:30 【解析】 由题意可得:()400.0150.0300.0250.0051030⨯+++⨯=则成绩不低于60分的人数为30人16.【解析】【分析】以正方体的中心为球心1为半径做球若点在球上或球内时符合要求求其体积根据几何概型求概率即可【详解】当正方体内的点落在以正方体中心为球心1为半径的球上或球内时此点到正方体中心的距离不大于解析:6π 【解析】 【分析】以正方体的中心为球心,1为半径做球,若点在球上或球内时,符合要求,求其体积,根据几何概型求概率即可. 【详解】当正方体内的点落在以正方体中心为球心,1为半径的球上或球内时,此点到正方体中心的距离不大于1, 因为344133V ππ=⨯⨯=球,2228V =⨯⨯=正方体 因此正方体内点到正方体中心的距离不大于1的概率24132226V P V 球正方体ππ⨯⨯===⨯⨯, 故填6π. 【点睛】本题主要考查了几何概型,球的体积,正方体的体积,属于中档题.17.7【解析】执行程序框图当输入第一次循环;第二次循环;第三次循环;第四次循环;第五次循环结束循环输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点解析:7执行程序框图,当输入2,10a b ==,第一次循环,3,9==a b ;第二次循环,4,8a b ==;第三次循环,5,7a b ==;第四次循环,6,6a b ==;第五次循环,7,5a b ==,结束循环输出7a =,故答案为7.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.18.151020【解析】试题分析:抽取比例为45900=120∴300×120=15200×120=10400×120=20抽取人数依次为151020考点:分层抽样解析:15,10,20 【解析】试题分析:抽取比例为,抽取人数依次为15,10,20 考点:分层抽样19.【解析】【分析】先算出基本事件总数再求出甲被选上包含的基本事件个数即可求得甲被选上的概率【详解】从甲乙丙丁四人中选人当代表基本事件总数甲被选上包含的基本事件个数则甲被选上的概率为故答案为【点睛】本题 解析:34【解析】 【分析】先算出基本事件总数,再求出甲被选上包含的基本事件个数,即可求得甲被选上的概率 【详解】从甲、乙、丙、丁四人中选3人当代表,基本事件总数344n C ==甲被选上包含的基本事件个数12133m C C ==则甲被选上的概率为34m p n == 故答案为34【点睛】本题考查了古典概型及其概率计算公式的应用,属于基础题。

福建省2020-2021学年九年级上学期期末考试数学试题.docx

福建省2020-2021学年九年级上学期期末考试数学试题.docx

莆田二中2020-2021学年九年级上学期数学期末考试卷一、单选题(每小题4分,共40分) 1. -2的绝对值是() 1 1 A. —2B. 2C. -------D.—222. 截至北京时间2020年6月26日9时30分,全球新冠肺炎确诊病例超过961万,将 961万用科学记数法表示为() 8. 如图,四边形ABCD 是边长为5的正方形,E 是DC1.一点,DE = 1,将AADE 绕着点A 顺时针旋转到与A/妍重合,则EF=()A. 9.61X103B. 9.61X105C. 9.61X106D. 9.61X1073. 下列事件是必然事件的是( A. 乘坐公共汽车恰好有空座 B. 同位角相等C. 打开手机就有未接电话D. 三角形内角和等于180°4. 下列运算正确的是()A. (a 2)5 = a 7B ci d = ClC. 5. 已知一个几何体如图所示,则该几何体的左视图是() 6. 我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日 至南海.今凫雁俱起,问何日相逢? ”(凫:野鸭)设野鸭与大雁从北海和南海同时起 飞,经过X 天相遇,可列方程为( A. (9 - 7) x=lB. (9+7) x=lA 1、1 (* = 17.已知一元二次方程必_女+ 4 = 0有两个相等的实数根,则上的值为()C. k = ±4(第8题)(第9题)(第15题) 3/b — 3ab 2= 0a 1~2A.B.A. 同B. ^42C. 5A /2D. 2A /139. 如图,半径为R 的。

的弦AC=BD,且AC±BD 于E,连结A3、AD,若AD=很, 则半径R 的长为()A. 1B.J2 C. —D.—2210. 平面直角坐标系中,已知点P (m —1, n 2), Q (m, 〃一 1),其中m<0,则下列函数的 图象可能同时经过F,。

两点的是() A.y=2x+b B.y= —j^+lx+cC.y=ax+2(a > 0)D.y=ax 2—2ax+c (a>0)二、填空题(每小题4分,共24分) 11-计算:•应=. 12.分解因式:疽_9 =.ax+by = 7y 的二元一次方程组] / _____ ,的一组解,则a+b=ax-by = i 14. 抛掷一枚均匀的硬币,前3次都正面朝上,第4次正面朝上的概率为.15. 如图,正六边形ABCDEF 内接于。

福建省莆田擢英中学2022-2023学年九年级上学期数学期末试卷(含答案解析)

福建省莆田擢英中学2022-2023学年九年级上学期数学期末试卷(含答案解析)

福建省莆田擢英中学2022-2023学年九年级上学期数学期末试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是()A .戴口罩讲卫生B .勤洗手勤通风C .有症状早就医D .少出门少聚集2.在Rt △ABC 中,∠C=90°,AC=12,BC=5,则sinA 的值为()A .512B .125C .1213D .5133.已知一个几何体如图所示,则该几何体的俯视图是()A .B .C .D .4.关于二次函数2(1)2y x =--,下列说法正确的是()A .有最大值1B .有最小值﹣1C .有最大值2D .有最小值﹣25.关于x 的一元二次方程x 2+2021x +2022=0的根的情况是()A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根6.一个正多边形的半径与边长相等,则这个正多边形的边数为()A .4B .5C .6D .87.二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +c 和反比例函数y =a x在同一平面直角坐标系中的图象可能是()A .B .C .D .8.如图,在▱ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCB 的面积比为()A .13B .14C .15D .169.如图,在△ABC 中,AB =AC ,若M 是BC 边上任意一点,将△ABM 绕点A 逆时针旋转得到△ACN ,点M 的对应点为点N ,连接MN ,则下列结论一定正确的是()A .AB AN =B .AB NC ∥C .AMN ACN ∠=∠D .MN AC⊥10.已知二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如下表:x…2-1-012…y…755711…若点211,4m P y ⎛⎫+ ⎪⎝⎭,()21,Q m y -都在该函数图象上,则1y 和2y 的大小关系是()A .12y y <B .12y y >C .12y y ≤D .12y y ≥二、填空题11.计算:322tan 60-︒=______.12.圆心角为120︒,半径为2的扇形的弧长是_______.13.六张卡片的正面分别写有π,1300.1212212221-这六个数,将卡片的正面朝下(反面完全相同)放在桌子上,从中任意抽取一张,卡片上的数字为无理数的可能性大小是______.14.如图,AB 是半圆O 的直径,点C ,D 在半圆O 上.若54ABC ∠=︒,则BDC ∠的度数为______.15.如图,已知在电线杆AB 上有一个光源,身高1.8m 的小明站在与电线杆底部A 距离2m 的点C 处,其影长1m CE =,若他沿AC 方向走4m 到达点F 处,此时他的影长是______m .(图中CD ,FG 均表示小明身高)16.如图,点A 为双曲线2y x=-在第二象限上的动点,AO 的延长线与双曲线的另一个交点为B ,以AB 为边的矩形ABCD 满足:4:3AB BC =,对角线AC ,BD 交于点P ,设P 的坐标为(),m n ,则m ,n 满足的关系式为______.三、解答题17.计算:021()|5|3π---.18.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,现有“微信”、“支付宝”、“银行卡”和“现金”四种支付方式.(1)若随机选一种方式进行支付,则恰巧是“现金”的概率是________;(2)在一次购物中,小嘉和小琪都想从“微信”、“支付宝”和“银行卡”三种支付方式中选一种方式进行支付,求出两人恰好选择同一种支付方式的概率(用画树状图法或列表法求解).19.先化简,再求值:222213222x y xy xy y xy ⎡⎤⎛⎫+-+- ⎪⎢⎥⎝⎭⎣⎦,其中2x =,13y =-.20.如图,一次函数13y x =+的图象与反比例函数2my x=(0x <)的图象交于A ,B 两点,点A 的横坐标为2-.(1)求m 的值及点B 的坐标;(2)根据图象,当12y y <时,直接写出x 的取值范围.21.某市为了加快5G 网络信号覆盖,在市区附近小山顶架设信号发射塔,如图所示.小军为了知道发射塔的高度,从地面上的一点A 测得发射塔顶端P 点的仰角是45°,向前走90米到达B 点测得P 点的仰角是60°,测得发射塔底部Q 点的仰角是30°.请你帮小军计算出信号发射塔PQ 的高度.(结果精确到1 1.732≈)22.如图,在Rt ABC 中90C ∠=︒,45A ∠<︒.(1)请作出经过A 、B 两点的圆,且该圆的圆心O 落在线段AC 上(尺规作图,保留作图痕迹,不写做法);(2)在(1)的条件下,已知BOC α∠=,将线段AB 绕点A 逆时针旋转α后与⊙O 交于点E .试证明:B 、C 、E 三点共线.23.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y (个)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y 与x 之间的函数表达式(不要求写出自变量x 的取值范围);(2)设该玩具日销售利润为w 元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?24.已知如图1,在O 中,弦AC BD ⊥于点P ,3AP =,6BP =,4PD =.E 是 CD的中点.(1)求BC 的长;(2)求AE 的长;(3)如图2,若 AF BF=,连接FD 交AB 于点Q ,试说明AQD ∠的度数是否会发生变化,若不变请求出AQD ∠的度数,并说明理由.25.已知抛物线2234434y x ax a a a ⎛⎫=-+-+> ⎪⎝⎭,顶点为点D ,抛物线与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C .(1)求抛物线的最大值;(2)若当02x ≤≤时,抛物线函数有最大值3,求此时a 的值;(3)若直线CD 交x 轴于点G ,求AG BGOG⋅的值.参考答案:1.C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项符合题意;D、不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.D【详解】解:如图所示,∵∠C=90°,AC=12,BC=5,∴13AB==,∴5 sin13BCAAB==.故选:D3.A【分析】根据三视图进行判断即可,注意看得见的部分用实线,看不见的部分用虚线表示.【详解】解:从上面可看,是一个矩形,矩形的中间有一条纵向的实线,实线的两侧分别有一条纵向的虚线.∴俯视图是:故选:A.【点睛】本题考查了三视图的知识,掌握“俯视图是从物体的上面看到的视图”是解本题的关键.4.D【分析】由二次函数的性质及函数的顶点式,可得顶点坐标,进而根据二次函数的性质得出答案.【详解】解:∵二次函数2(1)2y x =--,∴抛物线开口向上,顶点坐标为(1,﹣2).∴函数的最小值为﹣2.故选:D .【点睛】本题考查了二次函数的最值,明确二次函数的性质及二次函数的顶点式是解题的关键.5.D【分析】计算出根的判别式的值,再进行判断即可得到结论.【详解】解:2=2021420224084441808840763530∆-⨯=-=>∴方程有两个不相等的实数根故选:D【点睛】本题考查的是根的判别式,熟知一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 的关系是解答此题的关键.6.C【分析】如图(见解析),先根据等边三角形的判定与性质可得60AOB ∠=︒,再根据正多边形的中心角与边数的关系即可得.【详解】解:如图,由题意得:OA OB AB ==,AOB ∴ 是等边三角形,60AOB ∴∠=︒,则这个正多边形的边数为360606︒÷︒=,故选:C .【点睛】本题考查了正多边形,熟练掌握正多边形的中心角与边数的关系是解题关键.7.D【分析】根据二次函数图象开口向下得到a <0,再根据对称轴确定出b ,根据与y 轴的交点确定出c <0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】解:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2bx a=->0,∴b >0,∵与y 轴的负半轴相交,∴c <0,∴y =bx +c 的图象经过第一、三、四象限,反比例函数y =ax图象在第二四象限,只有D 选项图象符合.故选:D .【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.8.D【分析】根据平行四边形的性质得出AB=CD ,AB ∥CD ,根据相似三角形的判定得出△BEF ∽△DCF ,根据相似三角形的性质和三角形面积公式求出即可.【详解】解:∵四边形ABCD 是平行四边形,E 为AB 的中点,∴AB=DC=2BE ,AB ∥CD ,∴△BEF ∽△DCF ,∴BE DC =BF DF =12,∴DF=2BF ,BEF DCF S S ∆∆=(12)2=14,∴DCF DCB S S ∆∆=23,∴S △BEF =14S △DCF ,S △DCB =32S △DCF ,∴BEF DCBS S ∆∆=1432DCFDCF S S ∆∆=16,故选D .【点睛】本题考查了相似三角形的性质和判定和平行四边形的性质,能熟记相似三角形的性质是解此题的关键.9.C【分析】根据旋转的性质,对每个选项逐一判断即可.【详解】解:∵将△ABM 绕点A 逆时针旋转得到△ACN ,∴△ABM ≌△ACN ,∴AB =AC ,AM =AN ,∴AB 不一定等于AN ,故选项A 不符合题意;∵△ABM ≌△ACN ,∴∠ACN =∠B ,而∠CAB 不一定等于∠B ,∴∠ACN 不一定等于∠CAB ,∴AB 与CN 不一定平行,故选项B 不符合题意;∵△ABM ≌△ACN ,∴∠BAM =∠CAN ,∠ACN =∠B ,∴∠BAC =∠MAN ,∵AM =AN ,AB =AC ,∴△ABC 和△AMN 都是等腰三角形,且顶角相等,∴∠B =∠AMN ,∴∠AMN =∠ACN ,故选项C 符合题意;∵AM =AN ,而AC 不一定平分∠MAN ,∴AC 与MN 不一定垂直,故选项D 不符合题意;故选:C .【点睛】本题考查了旋转的性质,等腰三角形的判定与性质.旋转变换是全等变换,利用旋转不变性是解题的关键.10.D【分析】由表中对应值可得到抛物线的对称轴为直线12x =-,且抛物线开口向上,然后根据两点到对称轴的距离进行判断即可.【详解】解:∵=1x -时,5y =;0x =时,5y =,∴抛物线的对称轴为直线12x =-,且抛物线开口向上,∵点211,4m P y ⎛⎫+ ⎪⎝⎭,()21,Q m y -在抛物线上,当12m ≥时,21111422m m ⎛⎫++--+ ⎪⎝⎭211102m ⎛⎫=-+> ⎪⎝⎭,当12m <时,222111111111104224222m m m m m ⎛⎫⎛⎫++---+=++++-=+≥ ⎪ ⎪⎝⎭⎝⎭,∴211,4m P y ⎛⎫+ ⎪⎝⎭距离对称轴较远,()21,Q m y -距离对称轴较近,∴12y y ≥,故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,二次函数的增减性,熟练的利用增减性比较二次函数值的大小是解本题的关键.11.5【分析】直接利用特殊角的三角函数值代入求出答案.【详解】解:3222tan 608835-︒=-=-=.故答案为:5.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12.43π【分析】利用弧长公式进行计算.【详解】解:12024=1801803n R l πππ⨯==弧故答案为:43π【点睛】本题考查弧长的计算,掌握公式正确计算是本题的解题关键.13.13【分析】明确无理数的个数,再根据等可能事件的概率公式即可知道无理数的可能性大小;【详解】解:在这六个数中,无理数有:π无理数的可能性大小是2163=,故答案为:13【点睛】本题考查了概率的公式及无理数的定义,用到的知识点为:等可能事件概率公式P =所求情况数与总情况数之比,无理数是无限不循环小数.14.144︒##144度【分析】根据直径所对的圆周角是直角,可得90ACB ∠=︒,从而求出CAB ∠,再根据圆内接四边形对角互补,即可解答.【详解】解:AB 是半圆O 的直径,90ACB ∴∠=︒,54ABC =︒∠ ,9036CAB ABC ∴∠=︒-∠=︒,四边形ABDC 是O 的内接四边形,180,A BDC ∴∠+∠=︒180144BDC A ∴∠=︒-∠=︒故答案为:144︒.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.15.3【分析】根据题意得到,,AB AC DC AC GF AC ⊥⊥⊥,得到,,CD AB GF AB ∥∥,根据相似三角形的性质即可得到结论.【详解】解:如图,连接BE ,则BE 经过点DE ,连接BG 并延长交AC 于点H ,∵,,AB AC DC AC GF AC ⊥⊥⊥,∴,,CD AB GF AB ∥∥,∴EDC EBA ∽△△,HGF HBA ∽,∴,CD CE FG FH AB AE AB AH ==,∴CE FH AE AH =∴12124FH FH=+++,解得:3FH =,答:此时他的影长是3m ,故答案为:3.【点睛】本题考查了中心投影,相似三角形的应用:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比成比例求物体的高度.16.98mn =【分析】连接OP ,分别过点A 、P 作x 轴的垂线,垂足为M 、N ,证明AOM OPN ∆∆∽,然后利用相似三角形的性质分析求解.【详解】解:连接OP ,分别过点A 、P 作x 轴的垂线,垂足为M 、N ,90AMO PNO ∴∠=∠=︒,四边形ABCD 是矩形,90ABC ∴∠=︒,AP PC =,OA OB = ,OP BC ∴∥,2BC OP =,90AOP ABC ∴∠=∠=︒,::4:3AO OP AB BC ==,90AOM PON ∴∠+∠=︒,90AMO ∠=︒ ,90AOM MAO ∴∠+∠=︒,MAO PON ∴∠=∠,AOM OPN ∴∆∆∽,∴216()9AOM OPN S AO S OP ∆∆==, 点A 为双曲线2y x =-在第二象限上的动点,设点A 的坐标为2(,a a -,12()12AOM S a a ∆-=⨯-⨯= ,916OPN S ∆∴=,P 的坐标为(,)m n ,19216OPN S mn ∆∴==,∴98mn =,故答案为:98mn =.【点睛】本题考查了反比例函数k 的几何意义、相似三角形判定与性质和矩形的性质,恰当的构建相似三角形,利用面积比是相似比的平方是解题关键.17.2.【分析】根据零次幂、算术平方根、负整数指数幂和绝对值的性质化简,然后再进行计算.【详解】解:原式13952=-+-=.【点睛】本题考查了实数的混合运算,熟练掌握运算法则是解题的关键.18.(1)14(2)13【分析】(1)根据概率公式即可求解;(2)根据题意画出树状图,再根据概率公式即可求解.【详解】(1)若随机选一种方式进行支付,则恰巧是“现金”支付方式的概率为14,故答案为14;(2)树状图如图,由树状图可知,共有9种等可能结果,其中两人恰好选择同一种支付方式的有3种,故P (两人恰好选择同一种支付方式)13=【点睛】此题主要考查概率的求解,解题的关键是根据题意画出树状图,再利用概率公式求解.19.22232x y xy xy +-;23-【详解】解:222213222x y xy xy y xy ⎡⎤⎛⎫+-+- ⎪⎢⎥⎝⎭⎣⎦222213222x y xy xy x y xy ⎛⎫=+--- ⎪⎝⎭2222342x y xy xy x y xy =+---22232x y xy xy=+-当2x =,13y =-时原式22111223222333⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯⨯--⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭864393=-++2433=-23=-.【点睛】本题考查了整式的加减以及化简求值,正确的计算是解题的关键.20.(1)2m =-,()1,2B -(2)当12y y <时,自变量x 的取值范围为<2x -或10x -<<.【分析】(1)先求解A 的坐标,再利用待定系数法求解反比例函数解析式即可;(2)由反比例函数图象在一次函数图象的上方可得12y y <时,自变量的取值范围.【详解】(1)解:∵一次函数13y x =+过A 点,且点A 的横坐标为2-,∴231y =-+=,∴()2,1A -,又∵反比例函数()20m y x x=<的图象过A ,B 两点,∴212m =-⨯=-,∴反比例函数关系式为2y x=-,由32y x y x =+⎧⎪⎨=-⎪⎩,解得12x y =-⎧⎨=⎩或21x y =-⎧⎨=⎩,∴()1,2B -;(2)由函数的图象可得,当12y y <时,自变量x 的取值范围为<2x -或10x -<<.【点睛】本题考查的是利用待定系数法求解反比例函数解析式,一次函数与反比例函数的交点坐标问题,利用图象法求解不等式的解集,熟悉数形结合的方法解题是关键.21.142.0米.【分析】先根据题意得出AC =PC ,BQ =PQ ,CQ =12BQ ,设BQ =PQ =x ,则CQ =12BQ =12x ,根据勾股定理可得BC=2x ,根据AB +BC =PQ +QC 即可得出关于x 的方程求解即可.【详解】解:∵∠PAC =45°,∠PCA =90°,∴AC =PC ,∵∠PBC =60°,∠QBC =30°,∠PCA =90°,∴∠BPQ =∠PBQ =30°,∴BQ =PQ ,CQ =BQ sin30°=12BQ ,设BQ =PQ =x ,则CQ =12BQ =12x ,根据勾股定理可得BC2x,∴AB +BC =PQ +QC ,即90+2x =x +12x ,解得:=90+30×1.732=141.96≈142.0,∴PQ 的高度为142.0米.【点睛】本题考查了等腰三角形的性质与判定,勾股定理,锐角三角函数,二次根式化简,掌握等腰三角形的性质与判定,勾股定理,锐角三角函数,二次根式化简,利用等腰直角三角形两腰相等构造方程是解题关键.22.(1)见解析(2)见解析【分析】(1)只需要作AB 的垂直平分线,其与AC 的交点即为圆心O ,由此作图即可;(2)先由圆周角定理求出1=2BAC α∠,再由旋转的性质求出1=2CAE α∠,从而得到=COE α∠,证明△OBC ≌△OEC 得到∠OCE =∠OCB =90°,则∠OCB +∠OCE =180°,即可证明B 、C 、E 三点共线.【详解】(1)解:如图所示,圆O 即为所求;(2)解:如图所示,连接CE ,OE ,∵=BOC α∠,∴11==22BAC BOC α∠,由旋转的性质可知BAE α∠=,∴1==2CAE BAE BAC α-∠∠∠,∴=2=COE CAE α∠∠,在△OBC 和△OEC 中,==OB OE BOC EOC OC OC α=⎧⎪∠∠⎨⎪=⎩,∴△OBC ≌△OEC (SAS ),∴∠OCE =∠OCB =90°,∴∠OCB +∠OCE =180°,∴B 、C 、E 三点共线.【点睛】本题主要考查了线段垂直平分线的尺规作图,画圆,圆周角定理,旋转的性质,全等三角形的性质与判定等等,熟知性格知识是解题的关键.23.(1)2100y x =-+(2)当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.【分析】(1)直接用待定系数法,求出一次函数的关系式;(2)根据题意,列出w 与x 的关系式,然后利用二次函数的性质,即可求出答案.【详解】(1)设一次函数的关系式为y kx b =+,由题图可知,函数图象过点()25,50和点()35,30.把这两点的坐标代入一次函数y kx b =+,得25503530k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩,∴一次函数的关系式为2100y x =-+;(2)根据题意,则()()102100w x x =--+,整理得:()2230800w x =--+;∵20-<,∴当30x =时,w 有最大值,最大值为800;∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.【点睛】本题考查了二次函数的应用,二次函数的最值,解题的关键是理解掌握题意,正确的找出题目中的等量关系,列出方程或函数关系式,从而进行解题.24.(1)10BC =(2).AE =(3)45AQD ∠=°,不会发生变化,理由见解析【分析】(1)连接CD ,证明ABP DCP ∽△△,可得AP BP DP CP=,代入数值求出PC 的长,再用勾股定理即可求出BC 的长;(2)连接BE ,由(1)可知BCD △是等腰三角形,再由E 是 CD的中点,可得BM CD ⊥,则BE 是圆O 的直径,再由同弧所对的圆周角相等,可知ACB BEA ∠=∠,根据tan tan BCP BEA ∠=∠,即可求AE 的长;(3)设BE 与AC 的交点为G ,过点G 作GH BC ⊥交于点H ,证明Rt Rt BHG BPG ≌,设GP x =,则GH x =,在Rt CGH △中,由勾股定理求出3GP AP ==,再由BP 垂直平分AG ,可得AB GB =,则12ABP GBP ABE ∠=∠=∠,又由 AF BF =,可得12BDF AEB ∠=∠,进而可求出45AQD ︒∠=.【详解】(1)如图,连接CD .∵BAP CDP ∠=∠,APB CPD ∠=∠,∴ABP DCP ∽△△,∴AP BP DP CP=,∵3,6,4AP BP PD ===,∴364CP =,∴8PC =,∴10BC ==;(2)连接BE ,BE 交CD 的交点为M ,∵10,10BC BD ==,∴BCD △是等腰三角形,∵E 是 CD的中点,∴DBE CBE ∠=∠,∴BM CD ⊥,∴BE 是圆O 的直径,∴90BAE ∠=︒.在Rt ABP ∆中,3,6AP BP ==,∴.AB ==,∵ AB AB =,∴ACB BEA ∠=∠,∵3tan 4BP BCP CP ∠==,∴3tan 4AB BEA AE ∠==,∴.AE =;(3)45AQD ∠=°,不会发生变化,理由如下:设BE 与AC 的交点为G ,过点G 作GH BC ⊥交于点H ,由(2)知,CBE DBE ∠=∠,∵90BHG CHG ︒∠=∠=,∴GH GP =,∵BG BG =,∴Rt (HL)BHG BPG ≌,∴6BH BP ==,∴4CH BC BH =-=,设GP GH x ==,则8CG CP GP x =-=-,在Rt CGH △中,2216(8)x x +=-,解得3x =,∴.3GP AP ==,∵BP AG ⊥,∴BP 垂直平分AG ,∴AB GB =,∴12ABP GBP ABE ∠=∠=∠,∵ AF BF =,∴12BDF AEB ∠=∠,∴1.()452AQD ABP BDF ABE AEB ︒∠=∠+∠=∠+∠=.【点睛】本题考查圆的综合应用,熟练掌握同弧所对的圆周角相等,相似三角形的判定与性质,直角三角形的性质,等腰三角形的性质,勾股定理,线段垂直平分线的性质,三角形全等的判定及性质是解题的关键.25.(1)3a(2)a 的值是1或74(3)32【分析】(1)抛物线开口向下,在顶点时有最大值,根据顶点坐标公式可得结果;(2)利用配方法得:()22244323y x ax a a x a a =-+-+=--+,得抛物线对称轴是2x a =,分两种情况:①当对称轴在0与2之间时,最大值就是顶点坐标的纵坐标,②当对称轴在点()20,的右侧时,y 随x 的增大而增大,2x =时有最大值,列式可得a 的值;(3)用待定系数法求出CD 的解析式,再根据两点间的距离可得AG 、BG 、OG 的长,在代入式子化简即可.【详解】(1)解: 抛物线开口向下,∴在顶点时有最大值,由顶点坐标公式得()()()()2241434341a a a y a ⨯-⨯-+-==⨯-最大,即抛物线最大值为3a ;(2)解: ()22244323y x ax a a x a a =-+-+=--+,∴抛物线的对称轴是:2x a =, 34a >,∴322a >,分两种情况:①当3222a <≤时,即314a <≤,∴当02x ≤≤时,抛物线函数有最大值是3a ,即33a =,∴1a =,②当22a >时,即1a >,y 随x 的增大而增大,∴当02x ≤≤时,2x =时有最大值3,∴()22233y a a =--+=,解得:174a =,21a =(舍),综上,a 的值是1或74;(3)解:如图,()223y x a a =--+,∴()23D a a ,,()2043C a a -+,,当0y =时,()2230x a a --+=,解得:12x a =-,22x a =+∴()2A a,()2B a ,设DC 的解析式为:y kx b =+,则22343ak b a b a a +=⎧⎨=-+⎩,解得2243k a b a a =⎧⎨=-+⎩,∴DC 的解析式为:2243y ax a a =-+,当0y =时,22430ax a a -+=,∴322x a =-,∴((33222222322a a a a AG BG OG a ⎡⎤⎡⎤⎛⎫⎛⎫---+-- ⎪ ⎪⎢⎥⎢⎥⋅⎝⎭⎝⎭⎣⎦⎣⎦=-33931293224338622222a a a a a ⎫-⎪-⎝⎭⎝⎭====---.【点睛】本题是二次函数综合题型,主要利用了待定系数法求一次函数解析式,抛物线与坐标轴的交点,两点的距离,最值问题,难点在于(3)利用字母系数表示线段的长,并进行运算.。

2021-2022学年福建省莆田市莆田擢英中学九年级上学期期末数学试题

2021-2022学年福建省莆田市莆田擢英中学九年级上学期期末数学试题

2021-2022学年福建省莆田市莆田擢英中学九年级上学期期末数学试题1.如图所示标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列各式中,y是关于x的二次函数的是()A.y=4 x +2 B.C.D.y=3.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.三个球中有黑球D.3个球中有白球4.如图是由6个大小相同的正方体搭成的几何体,这个几何体的左视图是()A.B.C.D.5.若2+,2-是关于x的方程x2+mx+n=0的两个实数根,则m+n的值为()A.-4 B.-3 C.3 D.56.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=()A. 7海里B. 14海里C. 3.5海里D. 4海里7.若x支球队参加篮球比赛,共比赛了36场,每2队之间比赛一场,则下列方程中符合题意的是A.B.C.D.8.在Rt△ABO中,∠OAB=90°,以O为圆心,OA为半径构造⊙O,OB的中点C恰好在⊙O上,点D是AB上一点,CD=AD,若∠DCB的角平分线所在的直线与⊙O的另一交点为E,连接OE,则∠EOC=()A.45°B.67.5°C.90°D.112.5°9.如图,点A在反比例函数y=(x<0)的图象上,过点A作AC⊥x轴垂足为C,OA的垂直平分线交x轴于点B,当AC=1时,BO=BC+,则k的值是()A.2 B.﹣2 C.﹣1 D.110.如图,△ABC中,∠C=90°,BC=5,D为BC边上一点,CD=1,AC>BC,E为边AC上一动点,当∠BED最大时CE的长为()A.2 B.3 C.D.2 ﹣111.已知点A(m,2)与点B(﹣6,n)关于原点对称,则m﹣n的值为_______.12.若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积是_____.13.如图,将△ABC绕点A按逆时针方向旋转100°得到△ADE,连接EB,若AD∥BE,则∠DAE=_______.14.如图所示,是放置在正方形网格中的一个角,则的值是________.15.如图,在平面直角坐标系中,,点B和点C的坐标分别为,,反比例函数的图象经过点A,且与AC相交于另一点D,作于点E,交BD于点F,则点F的坐标为_____________.16.如图,二次函数的图象经过点A(1,0),与y轴的交点为C,对称轴为直线x=﹣1,下列结论:①;②若点和是该抛物线上的两点,则;③不等式的解集为;④在对称轴上存在一点B,使得△ABC是以AC为斜边的直角三角形.其中一定正确的是 _____(填序号即可).17.计算:.18.解方程:2x2+3=7x.19.如图,一次函数的图象与反比例函数的图象相交于点两点.(1)分别求出一次函数和反比例函数的解析式:(2)根据图象,直接写出满足的的取值范围;(3)连接BO并延长交双曲线于点C,连接AC,求ABC的面积.20.如图,在矩形ABCD中,AD>2AB.(1)在边BC上求作一点E,使得AE⊥DE、且AE<DE;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的图形中,延长AE至点F,使得AE=EF,连接FD交BC于点G.求证:GE=GD.21.“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日16:20,全球接种“新冠”疫苗的比例为18.29%;中国累计接种4.2亿剂,占全国人口的29.32%.以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:①填空:_________,_________,_________;②在甲、乙两医院当天接种疫苗的所有人员中,40-49周岁年龄段人数在扇形统计图中所占圆心角为_________;(2)若A、B、C三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.22.为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8≤x≤40)满足的函数图象如图所示.(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润.23.如图,已知ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若BF=10,EF=20,求⊙O的半径和AD的长.24.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD 的边长为1,求△PQB的面积.25.如图,在平面直角坐标系中,二次函数的图象经过点,点.(1)求此二次函数的解析式;(2)当时,求二次函数的最大值和最小值;(3)点为此函数图象上任意一点,其横坐标为,过点作轴,点的横坐标为.已知点与点不重合,且线段的长度随的增大而减小.①求的取值范围;②当时,直接写出线段与二次函数的图象交点个数及对应的的取值范围.。

2020-2021莆田市擢英初三数学上期末模拟试卷(附答案)

2020-2021莆田市擢英初三数学上期末模拟试卷(附答案)

2020-2021莆田市擢英初三数学上期末模拟试卷(附答案)一、选择题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .2π-12D .12 3.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++= 4.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π-C .3π-D .3π-5.下列说法正确的是( )A .“任意画出一个等边三角形,它是轴对称图形”是随机事件B .某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13D .“概率为1的事件”是必然事件 6.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根 7.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( )A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位8.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .9.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )A .15B .18C .20D .24 10.下列对二次函数y=x 2﹣x 的图象的描述,正确的是( ) A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 11.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下: x 1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76 则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 12.关于y=2(x ﹣3)2+2的图象,下列叙述正确的是( )A .顶点坐标为(﹣3,2)B .对称轴为直线y=3C .当x≥3时,y 随x 增大而增大D .当x≥3时,y 随x 增大而减小 二、填空题13.从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_________.14.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).15.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为 .16.如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是__.17.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.18.△ABC中,∠A=90°,AB=AC,以A为圆心的圆切BC于点D,若BC=12cm,则⊙A的半径为_____cm.19.一个扇形的半径为6,弧长为3π,则此扇形的圆心角为___度.20.若二次函数y=x2﹣3x+3﹣m的图象经过原点,则m=_____.三、解答题21.已知二次函数y=2x2+m.(1)若点(-2,y1)与(3,y2)在此二次函数的图象上,则y1_________y2(填“>”、“=”或“<”);(2)如图,此二次函数的图象经过点(0,-4),正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.22.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.23.某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?24.已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?(2)在(1)中,△PQB的面积能否等于8cm2?说明理由.25.在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.(1)根据题意,袋中有个蓝球.(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A 、是中心对称图形,故本选项正确;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误;故选:A .点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.A解析:A【解析】【分析】先根据勾股定理得到,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD .【详解】∵∠ACB=90°,AC=BC=1,∴,∴S 扇形ABD =230=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键. 3.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 4.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =2602123602π⨯-⨯=23π 故选B . 5.D解析:D【解析】试题解析:A 、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B. 某种彩票的中奖概率为11000,说明每买1000张,有可能中奖,也有可能不中奖,故B 错误;C. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为12.故C 错误; D. “概率为1的事件”是必然事件,正确.故选D. 6.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0, ∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.7.A解析:A【解析】【分析】先确定抛物线y=x 2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),因为点(0,0)向左平移3个单位长度后得到(-3,0),所以把抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选:A.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.D解析:D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别9.C解析:C【解析】【分析】连结AC,先由△AGH≌△ADH得到∠GHA=∠AHD,进而得到∠AHD=∠HAP,所以△AHP是等腰三角形,所以PH=PA=PC,所以∠HAC是直角,再在Rt△ABC中由勾股定理求出AC的长,然后由△HAC∽△ADC,根据=求出AH的长,再根据△HAC∽△HDA求出DH的长,进而求得HP和AP的长,最后得到△APH的周长.【详解】∵P是CH的中点,PH=PC,∵AH=AH,AG=AD,且AGH与ADH都是直角,∴△AGH≌△ADH,∴∠GHA=∠AHD,又∵GHA=HAP,∴∠AHD=∠HAP,∴△AHP是等腰三角形,∴PH=PA=PC,∴∠HAC是直角,在Rt△ABC中,AC==10,∵△HAC∽△ADC,∴=,∴AH===7.5,又∵△HAC∽△HAD,=,∴DH=4.5,∴HP==6.25,AP=HP=6.25,∴△APH的周长=AP+PH+AH=6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.10.C解析:C【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案.【详解】A 、∵a=1>0,∴抛物线开口向上,选项A 不正确;B 、∵﹣122b a ,∴抛物线的对称轴为直线x=12,选项B 不正确; C 、当x=0时,y=x 2﹣x=0,∴抛物线经过原点,选项C 正确; D 、∵a >0,抛物线的对称轴为直线x=12, ∴当x >12时,y 随x 值的增大而增大,选项D 不正确, 故选C .【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0),对称轴直线x=-2b a,当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.11.C解析:C【解析】【分析】仔细看表,可发现y 的值-0.24和0.25最接近0,再看对应的x 的值即可得.【详解】解:由表可以看出,当x 取1.4与1.5之间的某个数时,y=0,即这个数是ax 2+bx+c=0的一个根.ax 2+bx+c=0的一个解x 的取值范围为1.4<x <1.5.故选C .【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.12.C解析:C【解析】∵ y=2(x﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3,∴当3x 时,y随x的增大而增大.∴选项A、B、D中的说法都是错误的,只有选项C中的说法是正确的.故选C.二、填空题13.【解析】分析:直接利用概率公式求解即可求出答案详解:从12345中随机取出1个不同的数共有5种不同方法其中3被抽中的概率为故答案为点睛:本题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情解析:1 5【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为15.故答案为15.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比. 14.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.15.【解析】试题分析:根据圆的确定先做出过ABC三点的外接圆从而得出答案如图分别作ABBC的中垂线两直线的交点为O以O为圆心OA为半径作圆则⊙O即为过ABC三点的外接圆由图可知⊙O还经过点DEFGH这5解析:【解析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为5.考点:圆的有关性质.16.1+【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形所以猜想到要求BM可能需要构造直角三角形由旋转的性质可知AC=AM∠CAM=60°故△ACM是等边三角形可证明△ABM与△CB解析:【解析】【分析】试题分析:首先考虑到BM所在的三角形并不是特殊三角形,所以猜想到要求BM,可能需要构造直角三角形.由旋转的性质可知,AC=AM,∠CAM=60°,故△ACM是等边三角形,可证明△ABM与△CBM全等,可得到∠ABM=45°,∠AMB=30°,再证△AFB和△AFM是直角三角形,然后在根据勾股定理求解【详解】解:连结CM,设BM与AC相交于点F,如下图所示,∵Rt△ABC中,AB=BC,∠ABC=90°∴∠BCA=∠BAC=45°∵Rt△ABC绕点A逆时针旋转60°与Rt△ANM重合,∴∠BAC=∠NAM=45°,AC=AM又∵旋转角为60°∴∠BAN=∠CAM=60°,∴△ACM是等边三角形∴AC=CM=AM=4在△ABM与△CBM中,BA BC AM CM BM BM=⎧⎪=⎨⎪=⎩∴△ABM≌△CBM (SSS)∴∠ABM=∠CBM=45°,∠CMB=∠AMB=30°∴在△ABF中,∠BFA=180°﹣45°﹣45°=90°∴∠AFB=∠AFM=90°在Rt△ABF中,由勾股定理得,BF=AF=1=又在Rt△AFM中,∠AMF=30°,∠AFM=90°∴故本题的答案是:点评:此题是旋转性质题,解决此题,关键是思路要明确:“构造”直角三角形.在熟练掌握旋转的性质的基础上,还要应用全等的判定及性质,直角三角形的判定及勾股定理的应用17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】解:如图.2+2=4,恒星的面积=4×4-4π=16-4π.故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.18.【解析】【分析】由切线性质知AD⊥BC根据AB=AC可得BD=CD=AD=BC =6【详解】解:如图连接AD则AD⊥BC∵AB=AC∴BD=CD=AD=BC=6故答案为:6【点睛】本题考查了圆的切线性解析:【解析】【分析】由切线性质知AD⊥BC,根据AB=AC可得BD=CD=AD=12BC=6.【详解】解:如图,连接AD,则AD⊥BC,∵AB=AC,∴BD=CD=AD=12BC=6,故答案为:6.【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.19.90【解析】【分析】根据弧长公式列式计算得到答案【详解】设这个扇形的圆心角为n°则=3π解得n=90故答案为:90【点睛】考核知识点:弧长的计算熟记公式是关键解析:90【解析】【分析】根据弧长公式列式计算,得到答案.【详解】设这个扇形的圆心角为n°,则6180nπ⋅=3π,解得,n=90,故答案为:90.【点睛】考核知识点: 弧长的计算.熟记公式是关键.20.【解析】【分析】此题可以将原点坐标(00)代入y=x2-3x+3-m求得m的值即可【详解】由于二次函数y=x2-3x+3-m的图象经过原点把(00)代入y=x2-3x+3-m得:3-m=0解得:m= 解析:【解析】【分析】此题可以将原点坐标(0,0)代入y=x2-3x+3-m,求得m的值即可.【详解】由于二次函数y=x2-3x+3-m的图象经过原点,把(0,0)代入y=x2-3x+3-m,得:3-m=0,解得:m=3.故答案为3.【点睛】本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解.三、解答题21.<;(2)8.【解析】【分析】【详解】解:(1)由二次函数22y x m =+图象知:其图像关于y 轴对称又∵点1(2,)y -在此二次函数的图象上∴1(2,)y 也在此二次函数的图象上∵当0x >时函数是增函数∴12y y <故答案为:<;(2)∵二次函数22y x m =+的图象经过点(0,-4)∴m = -4∵四边形ABCD 为正方形又∵抛物线和正方形都是轴对称图形,且y 轴为它们的公共对称轴∴OD=OC ,=BCOE S S 阴影矩形设点B 的坐标为(n ,2n )(n >0)∵点B 在二次函数224y x =-的图象上∴2224n n =-解得,122,1n n ==-(舍负)∴点B 的坐标为(2,4)∴=BCOE S S 阴影矩形=2⨯4=8.【点睛】本题考查二次函数的图象.22.(1)作图见解析;(2)作图见解析;(3)(0,-2).【解析】试题分析:(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.试题解析:(1)如图所示:△A 1B 1C 即为所求;(2)如图所示:△A 2B 2C 2即为所求;(3)旋转中心坐标(0,﹣2).【考点】作图-旋转变换;作图-平移变换.23.(1)0.24R m =;(2)50x =时,w 最大1200=;(3)70x =时,每天的销售量为20件.【解析】【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y 与销售单价x 之间的函数关系式为:y=kx+b ,将点(30,100)、(45,70)代入一次函数表达式得:100307045k b k b +⎧⎨+⎩==, 解得:2160k b -⎧⎨⎩==, 故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x <55时,w 随x 的增大而增大,而30≤x≤50,∴当x=50时,w 由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w 得出函数关系式是解题关键.24.(1)2或3秒;(2)不能.【解析】【分析】(1)设经过x秒钟,△PBQ的面积等于6cm2,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解.(2)通过判定得到的方程的根的判别式即可判定能否达到8cm2.【详解】(1)设经过x秒以后△PBQ面积为6cm2,则12×(5﹣x)×2x=6,整理得:x2﹣5x+6=0,解得:x=2或x=3.答:2或3秒后△PBQ的面积等于6cm2 .(2)设经过x秒以后△PBQ面积为8cm2,则12×(5﹣x)×2x=8,整理得:x2﹣5x+8=0,△=25﹣32=﹣7<0,所以,此方程无解,故△PQB的面积不能等于8cm2.【点睛】此题主要考查了一元二次方程的应用,找到关键描述语“△PBQ的面积等于6cm2”,得出等量关系是解决问题的关键.25.(1)1;(2)1 2【解析】【分析】(1) 根据红球的个数和红球的概率可求出总球的个数,然后相减即可;(2)根据题意画出树状图,然后求出总可能数和符合条件的次数,根据概率公式求解即可.【详解】(1)3÷0.75-3=1. 故填1.(2)将袋中各球分别记为红1、红2、红3、蓝.根据题意,可以画出如下的树状图:由树状图可以看出,所有可能出现的结果共有12种,这些结果出现的可能性相等,其中事件A的结果共有6种,所以 P(A)=61 122.。

莆田擢英中学九年级上册期末数学试卷(word解析版)

莆田擢英中学九年级上册期末数学试卷(word解析版)

莆田擢英中学九年级上册期末数学试卷(word 解析版)一、选择题1.关于x 的一元一次方程122a x m -+=的解为1x =,则a m -的值为( )A .5B .4C .3D .22.一元二次方程x 2=-3x 的解是( )A .x =0B .x =3C .x 1=0,x 2=3D .x 1=0,x 2=-33.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变4.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .35.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( ) A .3(1)10x += B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++=6.已知点O 是△ABC 的外心,作正方形OCDE ,下列说法:①点O 是△AEB 的外心;②点O 是△ADC 的外心;③点O 是△BCE 的外心;④点O 是△ADB 的外心.其中一定不成立的说法是( ) A .②④ B .①③ C .②③④ D .①③④ 7.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020B .﹣2020C .2021D .﹣20218.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3) B .(1,3)- C .(1,3)- D .(1,3)-- 9.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( )A .5πB .10πC .20πD .40π10.如图,点A、B、C都在⊙O上,若∠ABC=60°,则∠AOC的度数是()A.100°B.110°C.120°D.130°11.数据3、4、6、7、x的平均数是5,这组数据的中位数是()A.4 B.4.5 C.5 D.612.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为()A.7 : 12 B.7 : 24 C.13 : 36 D.13 : 7213.下列方程中,关于x的一元二次方程是()A.2x﹣3=x B.2x+3y=5 C.2x﹣x2=1 D.17 xx+=14.下列说法正确的是()A.所有等边三角形都相似B.有一个角相等的两个等腰三角形相似C.所有直角三角形都相似D.所有矩形都相似15.如图,AB为O的直径,C为O上一点,弦AD平分BAC∠,交BC于点E,6AB=,5AD=,则AE的长为()A.2.5 B.2.8 C.3 D.3.2二、填空题16.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.17.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.18.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.19.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l 将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=________.20.若x1,x2是一元二次方程2x2+x-3=0的两个实数根,则x1+x2=____.21.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.22.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.23.若m是方程5x2﹣3x﹣1=0的一个根,则15m﹣3m+2010的值为_____.24.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.25.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.26.方程22x x =的根是________.27.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.28.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.29.如图,已知△ABC 是面积为3的等边三角形,△ABC ∽△ADE ,AB =2AD ,∠BAD =45°,AC 与DE 相交于点F ,则△AEF 的面积等于_____(结果保留根号).30.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题31.某养殖场计划用96米的竹篱笆围成如图所示的①、②、③三个养殖区域,其中区域①是正方形,区域②和③是矩形,且AG ∶BG =3∶2.设BG 的长为2x 米.(1)用含x 的代数式表示DF = ;(2)x 为何值时,区域③的面积为180平方米; (3)x 为何值时,区域③的面积最大?最大面积是多少? 32.抛物线y =﹣x 2+bx+c 的对称轴为直线x =2,且顶点在x 轴上. (1)求b 、c 的值;(2)画出抛物线的简图并写出它与y 轴的交点C 的坐标;(3)根据图象直接写出:点C 关于直线x =2对称点D 的坐标 ;若E(m ,n)为抛物线上一点,则点E 关于直线x =2对称点的坐标为 (用含m 、n 的式子表示).33.如图,某数学兴趣小组为测量一棵古树BH 和教学楼CG 的高,先在点A 处用高1.5米的测角仪测得古树顶端点H 的仰角HDE ∠为45︒,此时教学楼顶端点G 恰好在视线DH 上,再向前走7米到达点B 处,又测得教学楼顶端点G 的仰角GEF ∠为60︒,点A 、B 、C 点在同一水平线上.(1)计算古树BH 的高度;(2)计算教学楼CG 的高度.(结果精确到0.12 1.4≈3 1.7≈). 34.如图,⊙O 为ABC ∆的外接圆,9012ACB AB ∠=︒=,,过点C 的切线与AB 的延长线交于点D ,OE 交AC 于点F ,CAB E ∠=∠.(1)判断OE 与BC 的位置关系,并说明理由; (2)若3tan 4BCD ∠=,求EF 的长. 35.计算: (1)()28233+--(2)()13127+3.14+2π-⎛⎫- ⎪⎝⎭四、压轴题36.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.37.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E .(1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB 与弦CD 交于点F ; ②如图3,弦AB 与弦CD 不相交: ③如图4,点B 与点C 重合.38.如图,在▱ABCD 中,AB =4,BC =8,∠ABC =60°.点P 是边BC 上一动点,作△PAB 的外接圆⊙O 交BD 于E .(1)如图1,当PB =3时,求PA 的长以及⊙O 的半径; (2)如图2,当∠APB =2∠PBE 时,求证:AE 平分∠PAD ;(3)当AE 与△ABD 的某一条边垂直时,求所有满足条件的⊙O 的半径. 39.已知点(4,0)、(2,3)-为二次函数图像抛物线上两点,且抛物线的对称轴为直线2x =.(1)求抛物线的解析式;(2)将抛物线平移,使顶点与原点重合,已知点(,1)M m -,点A 、B 为抛物线上不重合的两点(B 在A 的左侧),且直线MA 与抛物线仅有一个公共点.①如图1,当点M 在y 轴上时,过点A 、B 分别作AP y ⊥轴于点P ,BQ x ⊥轴于点Q .若APM △与BQO △ 相似, 求直线AB 的解析式;②如图2,当直线MB 与抛物线也只有一个公共点时,记A 、B 两点的横坐标分别为a 、b .当点M 在y 轴上时,直接写出m am b--的值为 ;当点M 不在y 轴上时,求证:m am b--为一个定值,并求出这个值.40.()1尺规作图1:已知:如图,线段AB 和直线且点B 在直线上求作:点C ,使点C 在直线上并且使ABC 为等腰三角形. 作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C .()2特例思考:如图一,当190∠=时,符合()1中条件的点C 有______个;如图二,当160∠=时,符合()1中条件的点C 有______个.()3拓展应用:如图,AOB 45∠=,点M ,N 在射线OA 上,OM x =,ON x 2=+,点P 是射线OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 有且只有三个,求x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】满足题意的有两点,一是此方程为一元一次方程,即未知数x 的次数为1;二是方程的解为x=1,即1使等式成立,根据两点列式求解. 【详解】解:根据题意得, a-1=1,2+m=2, 解得,a=2,m=0, ∴a-m=2. 故选:D. 【点睛】本题考查一元一次方程的定义及方程解的定义,对定义的理解是解答此题的关键.2.D解析:D 【解析】 【分析】先移项,然后利用因式分解法求解. 【详解】 解:(1)x 2=-3x , x 2+3x=0, x (x+3)=0, 解得:x 1=0,x 2=-3. 故选:D . 【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.3.B解析:B 【解析】 【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案. 【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280;调整后的平均数是:260528023005525⨯+⨯+⨯++=280;故A 正确;调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003;调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003; 故B 错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280, 故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变, 故D 正确. 故选B. 【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.4.A解析:A 【解析】∵堤坝横断面迎水坡AB 的坡比是1,∴BCAC ,∵BC=50,∴,∴100==(m ).故选A5.D解析:D 【解析】 【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案. 【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2, 根据题意可列方程为233(1)3(1)10x x ++++=. 故选:D . 【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.6.A解析:A 【解析】 【分析】根据三角形的外心得出OA=OC=OB ,根据正方形的性质得出OA=OC <OD ,求出OA=OB=OC=OE≠OD ,再逐个判断即可. 【详解】解:如图,连接OB 、OD 、OA ,∵O 为锐角三角形ABC 的外心,∴OA =OC =OB ,∵四边形OCDE 为正方形,∴OA =OC <OD ,∴OA =OB =OC =OE ≠OD ,∴OA =OC ≠OD ,即O 不是△ADC 的外心,OA =OE =OB ,即O 是△AEB 的外心,OB =OC =OE ,即O 是△BCE 的外心,OB =OA ≠OD ,即O 不是△ABD 的外心,故选:A .【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键.7.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a 代入已知方程,即可求得a 2+3a 的值,然后再代入求值即可.【详解】解:根据题意,得a 2+3a ﹣1=0,解得:a 2+3a =1,所以a 2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键8.A解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).9.B解析:B【解析】【分析】利用圆锥面积=Rr 计算.【详解】 Rr =2510,故选:B.【点睛】 此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.10.C解析:C【解析】【分析】直接利用圆周角定理求解.【详解】解:∵∠ABC 和∠AOC 所对的弧为AC ,∠ABC=60°,∴∠AOC=2∠ABC=2×60°=120°.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.11.C解析:C【解析】【分析】首先根据3、4、6、7、x 这组数据的平均数求得x 值,再根据中位数的定义找到中位数即可.【详解】由3、4、6、7、x 的平均数是5,即(3467)55++++÷=x得5x =这组数据按照从小到大排列为3、4、5、6、7,则中位数为5.故选C【点睛】此题考查了平均数计算及中位数的定义,熟练运算平均数及掌握中位数的定义是解题关键.12.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD SS =四边形, ∴1176824AGH EFC ABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.13.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.14.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511 BD AB AD∴=-=-∵弦AD平分BAC∠11CD BD∴==CBD DAB∴∠=∠ADB BDE∠=∠ABD BED∴DE DBDB AD∴=11511=解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m17.【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形解析:1 3【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA=ACAB=26=13.故答案为13.考点:1.圆周角定理;2.解直角三角形.18.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.19.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。

2020年莆田市初三数学上期末模拟试卷(附答案)

2020年莆田市初三数学上期末模拟试卷(附答案)

2020年莆田市初三数学上期末模拟试卷(附答案)一、选择题1.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值是y 1,y 2,且y 1=y 2,设该函数图象的对称轴是x =m ,则m 的取值范围是( )A .0<m <1B .1<m ≤2C .2<m <4D .0<m <42.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300 3.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-4.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .12 5.抛物线2y x 2=-+的对称轴为A .x 2=B .x 0=C .y 2=D .y 0=6.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( )A .15B .25C .35D .457.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 8.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根9.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( ) A .3B .3-C .9D .9- 10.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( )A .y=1+12x 2B .y=(2x+1)2C .y=(x ﹣1)2D .y=2x 211.当﹣2≤x≤1时,二次函数y=﹣(x ﹣m )2+m 2+1有最大值4,则实数m 的值为( )A .74-B 3或3C .2或3-D .2或3-74- 12.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150二、填空题13.设二次函数y =x 2﹣2x ﹣3与x 轴的交点为A ,B ,其顶点坐标为C ,则△ABC 的面积为_____.14.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .15.函数 2y 24x x =-- 的最小值为_____.16.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.17.如图,Rt △ABC 中,∠C =90°,AC =30cm ,BC =40cm ,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm .18.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.19.一元二次方程22x 20-=的解是______.20.关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,则实数k 的取值范围是_______.三、解答题21.关于x 的一元二次方程x 2﹣x ﹣(m +2)=0有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为符合条件的最小整数,求此方程的根.22.如图,在⊙O 中,点C 为AB 的中点,∠ACB =120°,OC 的延长线与AD 交于点D ,且∠D =∠B .(1)求证:AD 与⊙O 相切;(2)若CE =4,求弦AB 的长.23.如图,平面直角坐标系中,每个小正方形边长是1.(1)画出△ABC关于原点中心对称的得到△A1B1C1;(2)画出△ABC关于C点顺时针旋转90°的△A2B2C2;(3)在(2)的条件下,求出B点旋转后所形成的弧线长.24.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.25.深圳国际马拉松赛事设有A“全程马拉松”,B“半程马拉松”,C“嘉年华马拉松”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到A“全程马拉松”项目组的概率为 .(2)用树状图或列表法求小智和小慧被分到同一个项目标组进行志愿服务的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据二次函数图象上点的坐标特征即可求得.【详解】解:当a>0时,抛物线开口向上,则点(0,1)的对称点为(x0,1),∴x0>4,∴对称轴为x=m中2<m<4,故选C.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.2.A解析:A【解析】【分析】设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加300m2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm,根据题意得x(x-20)=300,故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.3.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 4.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.5.B解析:B【解析】【分析】根据顶点式的坐标特点,直接写出对称轴即可.【详解】解∵:抛物线y=-x2+2是顶点式,∴对称轴是直线x=0,即为y轴.故选:B.【点睛】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.6.C解析:C【解析】【分析】【详解】解:根据题意,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,因此可知使与图中阴影部分构成轴对称图形的概率为3 355÷=故选C7.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x ﹣1)x=2070,故选A .【点睛】本题考查由实际问题抽象出一元二次方程.8.C解析:C【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2b a -=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误;∵对称轴x=2b a-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确;∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误, 故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2b a-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点. 9.C解析:C【解析】由题意得:2a 2-a-3=0,所以2a 2-a=3,所以6a 2-3a=3(2a 2-a)=3×3=9, 故选C.10.D解析:D【解析】【分析】抛物线的形状只是与a 有关,a 相等,形状就相同.【详解】y =2(x ﹣1)2+3中,a =2.故选D .【点睛】本题考查了抛物线的形状与a的关系,比较简单.11.C解析:C【解析】【分析】根据对称轴的位置,分三种情况讨论求解即可.【详解】二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=74,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣故选C.12.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)2=150,故选:B.【点睛】本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“-”.二、填空题13.8【解析】【分析】首先求出AB的坐标然后根据坐标求出ABCD的长再根据三角形面积公式计算即可【详解】解:∵y=x2﹣2x ﹣3设y =0∴0=x2﹣2x ﹣3解得:x1=3x2=﹣1即A 点的坐标是(﹣10解析:8【解析】【分析】首先求出A 、B 的坐标,然后根据坐标求出AB 、CD 的长,再根据三角形面积公式计算即可.【详解】解:∵y =x 2﹣2x ﹣3,设y =0,∴0=x 2﹣2x ﹣3,解得:x 1=3,x 2=﹣1,即A 点的坐标是(﹣1,0),B 点的坐标是(3,0),∵y =x 2﹣2x ﹣3,=(x ﹣1)2﹣4,∴顶点C 的坐标是(1,﹣4),∴△ABC 的面积=12×4×4=8, 故答案为8.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式的应用,主要考查学生运用性质进行计算的能力,题目比较典型,难度适中. 14.1【解析】【分析】(1)根据求出扇形弧长即圆锥底面周长;(2)根据即求圆锥底面半径【详解】该圆锥的底面半径=故答案为:1【点睛】圆锥的侧面展开图是扇形解题关键是理解扇形弧长就是圆锥底面周长解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.15.-5【解析】【分析】将二次函数配方即可直接求出二次函数的最小值【详解】∵y=x2﹣2x﹣4=x2﹣2x+1﹣5=(x﹣1)2﹣5∴可得二次函数的最小值为﹣5故答案是:﹣5【点睛】本题考查了二次函数的解析:-5【解析】【分析】将二次函数配方,即可直接求出二次函数的最小值.【详解】∵y=x2﹣2x﹣4=x2﹣2x+1﹣5=(x﹣1)2﹣5,∴可得二次函数的最小值为﹣5.故答案是:﹣5.【点睛】本题考查了二次函数的最值问题,用配方法是解此类问题的最简洁的方法.16.4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE即可求解【详解】令y=0则:x=±1令x=0则y=2则:OB=1BD=2OB=2S阴影部分图形=S四边形BDFE=BD×OE=2×2=解析:4【解析】【分析】由S阴影部分图形=S四边形BDFE=BD×OE,即可求解.【详解】令y=0,则:x=±1,令x=0,则y=2,则:OB=1,BD=2,OB=2,S阴影部分图形=S四边形BDFE=BD×OE=2×2=4.故:答案为4.【点睛】本题考查的是抛物线性质的综合运用,确定S阴影部分图形=S四边形BDFE是本题的关键.17.【解析】【分析】根据勾股定理求出的斜边AB再由等面积法即可求得内切圆的半径【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆设AC边上的切点为D连接OAOBOCOD∵∠ACB=90°AC解析:【解析】【分析】根据勾股定理求出的斜边AB,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆,设AC边上的切点为D,连接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB=223040+=50cm,设半径OD=rcm,∴S△ACB=12AC BC⋅=111AC r BC r AB r222⋅+⋅+⋅,∴30×40=30r+40r+50r,∴r=10,则该圆半径是 10cm.故答案为:10.【点睛】本题考查内切圆、勾股定理和等面积法的问题,属中档题.18.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2 =﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x的值,直接计算.【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣=﹣=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.19.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x1=1,x2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为x1=1,x2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.20.k <2且k≠1【解析】试题解析:∵关于x 的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根∴k -1≠0且△=(-2)2-4(k-1)>0解得:k <2且k≠1考点:1根的判别式;2一元二次解析:k <2且k≠1【解析】试题解析:∵关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根, ∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k <2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.三、解答题21.(1)m >94-;(2)x 1=0,x 2=1. 【解析】【分析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m >0即可求出m 的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m +2)=9+4m >0 ∴94m >-. (2)∵m 为符合条件的最小整数, ∴m=﹣2.∴原方程变为2=0x x -∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.22.(1)见解析;(2)【解析】【分析】(1)连接OA ,由=CA CB ,得CA=CB ,根据题意可得出∠O=60°,从而得出∠OAD=90°,则AD 与⊙O 相切;(2)由题意得OC ⊥AB ,Rt △BCE 中,由三角函数得AB 的长.【详解】(1)证明:如图,连接OA ,∵=CA CB,∴CA=CB,又∵∠ACB=120°,∴∠B=30°,∴∠O=2∠B=60°,∵∠D=∠B=30°,∴∠OAD=180°﹣(∠O+∠D)=90°,∴AD与⊙O相切;(2)∵∠O=60°,OA=OC,∴△OAC是等边三角形,∴∠ACO=60°,∵∠ACB=120°,∴∠ACB=2∠ACO,AC=BC,∴OC⊥AB,AB=2BE,∵CE=4,∠B=30°,∴BC=2CE=8,∴BE22BC CE2284-3∴AB=2BE=3∴弦AB的长为3.【点睛】本题考查了切线的判定和性质,垂径定理,解直角三角形,熟练掌握切线的判定和性质是解题的关键.23.(1)图见详解;(2)图见详解;(3)32π.【解析】【分析】(1)利用关于原点对称点的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式计算即可得出结果.【详解】解:(1)如图示,△A1B1C1为所求;(2)如图示,△A2B2C2为所求;(3)∵△ABC 关于C 点顺时针旋转90°得到的△A 2B 2C 2,每个小正方形边长是1, 由题图可知,半径3BC ,根据弧长的公式得:2239036320BB . 【点睛】此题主要考查了平移变换、旋转变换,正确得出对应点位置和熟悉弧长公式是解题关键.24.小路的宽为1m .【解析】【分析】如果设小路的宽度为xm ,那么整个草坪的长为(16﹣2x )m ,宽为(9﹣x )m ,根据题意即可得出方程.【详解】设小路的宽度为xm ,那么整个草坪的长为(16﹣2x )m ,宽为(9﹣x )m .根据题意得: (16﹣2x )(9﹣x )=112解得:x 1=1,x 2=16.∵16>9,∴x =16不符合题意,舍去,∴x =1.答:小路的宽为1m . 【点睛】本题考查了一元二次方程的应用,弄清“整个草坪的长和宽”是解决本题的关键.25.(1)13(2)13 【解析】【分析】(1)直接利用概率公式可得;(2)记这三个项目分别为A 、B 、C ,画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)小智被分配到A“全程马拉松”项目组的概率为13,故答案为:1 3 .(2)画树状图为:共有9种等可能的结果数,其中小智和小慧被分配到同一个项目组的结果数为3,所以小智和小慧被分到同一个项目组进行志愿服务的概率为31 = 93.【点睛】本题主要考察概率,熟练掌握概率公式是解题关键.。

2021-2022学年福建省莆田市九年级(上)期末数学试卷(附答案详解)

2021-2022学年福建省莆田市九年级(上)期末数学试卷(附答案详解)

2021-2022学年福建省莆田市九年级(上)期末数学试卷一、选择题(本大题共10小题,共40.0分)1.以下各方程中,一定是关于x的一元二次方程的是()A. x+2=0B. x2−5x=2020−5x−2021=0C. 3x3+6x=1D. 1x2.下列各点中,在二次函数y=−x2的图象上的是()A. (1,−1)B. (2,−2)C. (3,−3)D. (4,−4)3.已知关于x的一元二次方程x2+3x−m=0的一个根是x=2,则m的值为()A. −10B. −2C. 2D. 104.下列三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等圆心角所对的弧相等;其中是假命题的是()A. ③B. ②③C. ①③D. ①②③5.如图,若正六边形ABCDEF绕着中心O旋转角α得到的图形与原来的图形重合,则α最小值为()A. 180°B. 120°C. 90°D. 60°6.某小区居民今年从三月开始到五月底全部接种新冠疫苗.已知该小区常驻人口1820人,三月已有500人接种新冠疫苗,四月、五月每月新接种人数都较前一个月有增长,且月增长率均为x,则下面所列方程正确的是()A. 500(1+x)2=1820B. 500+500(1+x)2=1820C. 500(1+x)+500(1+x)2=1820D. 500+500(1+x)+500(1+x)2=18207.已知点P坐标为(5,2),将线段OP绕原点O逆时针旋转90°得到线段OP′,则点P的对应点P′的坐标为()A. (−5,2)B. (−2,5)C. (2,5)D. (2,−5)8.如图,AB是⊙O的直径,C、D是⊙O上两点,CD⊥AB,若∠DAB=66°,则∠BOC=()A. 24°B. 48°C. 132°D. 114°9.某地新高考有一项“6选3”选课制,高中学生李鑫和张锋都已选了地理和生物,现在他们还需要从“物理、化学、政治、历史”四科中选一科参加考试.若这四科被选中的机会均等,则他们恰好一人选物理,另一人选化学的概率为()A. 18B. 14C. 38D. 1210.已知二次函数y=x2+bx+c的图象与x轴的两个交点分别是(−1,0)和(3,0),且抛物线还经过点(−4,y1)和(4,y2),则下列关于y1、y2的大小关系判断正确的是()A. y1<0<y2B. y2<0<y1C. 0<y2<y1D. 0<y1<y2二、填空题(本大题共6小题,共24.0分)11.若点P(m,−1)与点Q(−2021,n)关于原点成中心对称,则m+n的值是______.12.抛物线y=x2+6x+c与x轴有且只有1个公共点,则c=______.13.有一纸箱装有除颜色外都相同的散装塑料球共100个,小明将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.4,由此可以估计纸箱内红球的个数约是______个.14.等腰△ABC的底和腰分别是一元二次方程x2−5x+4=0的两根,则这个等腰三角形的周长为______.15.如图,在正十边形中,连接A1A4,A1A7,则∠A4A1A7=______.16.如图,在△ABC中,AB=AC=6,∠BAC=40°,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F.下列结论正确的是______.(填序号)①点D是BC的中点;②点D是BE⏜的中点;③阴影部分的面积为10π;④∠CDF=20°.三、解答题(本大题共9小题,共86.0分)17.解方程:2x2−5x+3=0.OC,若AB= 18.如图,在⊙O中,半径OD⊥弦AB于点C,CD=126√5,求⊙O的半径.19.一抛物线以(−1,9)为顶点,且经过x轴上一点(−4,0),求该抛物线解析式及抛物线与y轴交点坐标.20.某商场以每千克20元的价格购进某种榴莲,计划以每千克40元的价格销售.为了让顾客得到更大的实惠,现决定降价销售,已知这种榴莲的销售量y(kg)与每千克降价x(元)(0<x<10)之间满足一次函数关系,其图象如图所示.(1)求y关于x的函数解析式.(2)该商场在销售这种榴莲中要想获利1105元,则这种榴莲每千克应降价多少元?21.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的三个数值为−2020,−1,3.乙袋中的三张卡片上所标的数值为−2,1,2021.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.(1)用树状图或列表法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.22.如图,在△ABC中,D是边BC上一点,AD=AB.(1)请用尺规作图法作△ABC绕点A旋转后得到的△ADE,使旋转后的AB边与AD边重合.(保留作图痕迹,不写作法)(2)连接CE,若∠B=60°,求证:CE=AE.23.如图,半圆O的直径是AB,AD、BC是两条切线,切点分别为A、B,CO平分∠BCD.(1)求证:CD是半圆O的切线.(2)若AD=20,CD=50,求BC和AB的长.24.如图,点P(3m−1,−2m+4)在第一象限的角平分线OC上,AP⊥BP,点A在x轴正半轴上,点B在y轴正半轴上.(1)求点P的坐标.(2)当∠APB绕点P旋转时,①OA+OB的值是否发生变化?若变化,求出其变化范围;若不变,求出这个定值.②请求出OA2+OB2的最小值.25.抛物线y=ax2+2x+c与x轴交于点A(−2,0)和点B(6,0),与y轴交于点C.(1)求抛物线的解析式及点C的坐标.(2)将抛物线y=ax2+2x+c右移5个单位,下移15个单位得到新抛物线y′,当自变2量x在3≤x≤9的范围时,求y′的最小值.(3)在x轴正半轴上有一动点E(m,0),过点E作直线l⊥x轴,交抛物线y=ax2+2x+c于点P,交抛物线y′于点Q,若△CPQ的面积为20,求m的值.答案和解析1.【答案】B【解析】解:A.是一元一次方程,故选项不合题意;B.符合一元二次方程的定义,选项符合题意;C.未知数最高次数是3,不是一元二次方程,故选项不合题意.D.不是整式方程,故选项不合题意;故选:B.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.【答案】A【解析】解:当x=1时,y=−x2=−1,当x=2时,y=−x2=−4,当x=3时,y=−x2=−9,当x=4时,y=−x2=−16,所以点(1,−1)在二次函数y=−x2的图象上.故选:A.分别计算自变量为1、2、3、4所对应的函数值,然后根据二次函数图象上点的坐标特征进行判断.本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.D【解析】解:把x=2代入可得22+3×2−m=0,解得m=10,故选:D.把x=2代入求值即可.本题主要考查对一元二次方程的解,解一元二次方程等知识点的理解和掌握,能得到方程22+3×2−m=0是解此题的关键.4.【答案】A【解析】解:①圆既是轴对称图形,又是中心对称图形,是真命题;②垂直于弦的直径平分这条弦,是真命题;③在同圆或等圆中,相等圆心角所对的弧相等,故本小题说法是假命题;故选:A.根据轴对称图形和中心对称图形的概念、垂径定理、圆心角、弧、弦之间的关系定理判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.【答案】D【解析】本题考查旋转对称图形的旋转角的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,根据旋转对称图形和旋转角的概念作答.【解答】解:正六边形被平分成六部分,因而每部分被分成的圆心角是60°,并且圆具有旋转不变性,因而旋转60度的整数倍,就可以与自身重合.则α最小值为60度.故选D.6.【答案】D【解析】解:∵三月已有500人接种新冠疫苗,四月、五月实现接种人数较前一个月的平均增长率为x,∴四月份接种人数为500(1+x),五月份为500(1+x)2人,∴方程为:500+500(1+x)+500(1+x)2=1820,故选:D.分别表示出四月和五月的人数即可列出方程.本题主要考查了一元二次方程的应用,解题的关键是分别表示出两个月的接种人数.7.【答案】B【解析】解:如图,P′(−2,5),故选:B.画出图形,利用图象法解决问题即可.本题考查坐标与图形变化−旋转,解题的关键是正确作出图形,属于中考常考题型.8.【答案】C【解析】解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠DAB=66°,∴∠B=90°−∠DAB=24°,∵CD⊥AB,∴AD⏜=AC⏜,∴∠B=∠ADC=24°,∴∠AOC=2∠ADC=48°,∴∠BOC=180°−∠AOC=132°,故选:C.连接BD,根据直径所对的圆周角是直角,可得∠ADB=90°,从而求出∠B,然后利用垂径定理可得AD⏜=AC⏜,从而根据等弧所对的圆周角相等求出∠B=∠ADC=24°,进而求出圆心角∠AOC的度数,即可解答.本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握圆周角定理,垂径定理是解题的关键.9.【答案】A【解析】解:设“物理、化学、政治、历史”分别用A、B、C、D表示,画树状图如图所示:共有16种可能性结果,其中李鑫和张锋恰好一人选物理,另一人选化学的结果有2种,∴李鑫和张锋恰好一人选物理,另一人选化学的概率为216=18,故选:A.根据题意画出树状图,共有16种可能性结果,其中他们恰好一人选物理,另一人选化学的结果有2种,再由概率公式求解即可.本题考查列表法与树状图法以及概率公式,解答本题的关键是明确题意,画出相应的树状图.10.【答案】C【解析】解:∵二次函数y=x2+bx+c的图象与x轴的两个交点分别是(−1,0)和(3,0),∴y=(x+1)(x−3)=x2−2x−3,∴x=−4时,y1=21,x=4时,y2=5,∴y1>y2>0,故选:C.先由点(−1,0)和(3,0)求得二次函数的解析式,然后求得y1和y2的大小,即可得到y1、y2的大小关系.本题考查了二次函数的解析式、二次函数图象上点的坐标特征,解题的关键是由函数图象与x轴的交点坐标求得函数解析式.11.【答案】2022【解析】解:∵点P(m,−1)与点Q(−2021,n)关于原点成中心对称,∴m=2021,n=1,则m+n=2021+1=2022.故答案为:2022.根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.12.【答案】9【解析】解:∵抛物线y=x2+6x+c与x轴有且只有1个公共点,∴62−4c=0,解得:c=9,故答案为:9.由二次函数图象与x轴的交点个数与系数间的关系求得c的取值.本题考查了二次函数图象与x轴的交点个数与系数的关系,解题的关键是熟知二次函数图象与x轴的交点与一元二次方程的解之间的关系.13.【答案】40【解析】解:根据题意得:100×0.4=40(个),答:估计纸箱内红球的个数约是40个.故答案为:40.用总球的个数乘以红球的频率即可得出答案.本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.14.【答案】9【解析】解:x2−5x+4=0,(x−4)(x−1)=0,x−4=0或x−1=0,所以x1=4,x2=1,因为1+1=2<4,不符合三角形三边的关系,所以等腰三角形的底边为1,腰为4,所以三角形的周长为4+4+1=9.故答案为:9.先利用因式分解法解方程得到x1=4,x2=1,再利用三角形三边的关系得到等腰三角形的底边为1,腰为4,然后计算三角形的周长.本题考查了解一元二次方程−因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系.15.【答案】54°【解析】解:如图,设正十边形内接于⊙O,连接A7O,A4O,∵正十边形的各边都相等,∴∠A7OA4=3×360°=108°,10×108°=54°.∴∠A4A1A7=12故答案为:54°.找出正十边形的圆心O,连接A7O,A4O,再由圆周角定理即可得出结论.本题考查了多边形的内角与外角,根据题意作出辅助线,构造出圆周角是解答此题的关键.16.【答案】①②④【解析】解:如图,连接AD,∵AB是直径,∴AD⊥BC,∵AB=AC=6,∠BAC=40°,∴BD=CD,∠BAD=∠CAD=20°,∴BD⏜=DE⏜,∴点D是BC的中点,点D是BE⏜的中点,故①②正确;∵∠ADC=∠DFC=90°,∠C=∠C,∴∠DAC=∠CDF=20°,故④正确;连接OE,∵OA=OE,∴∠AEO=∠OAE=40°,∴∠AOE=180°−40°−40°=100°,,∵S扇形AOE =100π×32360=52π,∴S阴影<52π,故③错误;故答案为:①②④.利用圆周角定理以及等腰三角形三线合一的性质即可判断①②;根据同角的余角相等即可判断④;求得扇形的面积即可判断③.本题考查了扇形面积公式,圆周角定理,等腰三角形的性质,直角三角形的性质等知识,解决问题的关键是熟练掌握相关基础知识.17.【答案】解:方程2x2−5x+3=0,因式分解得:(2x−3)(x−1)=0,可得:2x−3=0或x−1=0,解得:x1=32,x2=1.【解析】将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.考查了因式分解法解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.【答案】解:如图,连OA,设⊙O的半径为r,∵半径OD⊥弦AB于点C,∴AC=BC=12AB=12×6√5=3√5,∵CD=12OC,∴OC=23r,在Rt△OAC中,∵OC2+AC2=OA2,∴(23r)2+(3√5)2=r2,解得r1=9,r2=−9(舍),∴⊙O的半径为9.【解析】如图,连OA,设⊙O的半径为r,则OC=23r,根据垂径定理得到AC=3√5,接着根据勾股定理得到(23r)2+(3√5)2=r2,然后解方程即可.本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.19.【答案】解:设抛物线解析式为y=a(x−ℎ)2+k,依题意得ℎ=−1,k=9,将(−4,0)代入y=a(x+1)2+9中,得0=9a+9,解得a=−1,∴抛物线解析式为y=−(x+1)2+9.令x=0,则y=8,∴抛物线与y轴交点为(0,8).【解析】设抛物线解析式为y=a(x−ℎ)2+k,把(−1,9)和(−4,0)代入可得解析式,再把x=0代入可得与y轴的交点.本题考查待定系数法求二次函数的解析式,利用顶点式求出二次函数解析式是解题关键.20.【答案】解:(1)设y 关于x 的函数解析式为y =kx +b(k ≠0),将(2,60),(4,70)代入y =kx +b 得:{2k +b =604k +b =70, 解得:{k =5b =50, ∴y 关于x 的函数解析式为y =5x +50(0<x <10).(2)依题意得:(40−x −20)(5x +50)=1105,整理得:x 2−10x +21=0,解得x 1=3,x 2=7.又∵要让顾客得到更大的实惠,∴x =7.答:这种榴莲每千克应降价7元.【解析】(1)观察函数图象,根据图象上点的坐标,利用待定系数法即可求出y 关于x 的函数解析式;(2)利用该商场在销售这种榴莲中获得的总利润=每千克的销售利润×销售量,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合要让顾客得到更大的实惠,即可得出这种榴莲每千克应降价7元.本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据图象上点的坐标,利用待定系数法求出一次函数解析式;(2)找准等量关系,正确列出一元二次方程.21.【答案】解:(1)列表如下:−2020−13−2(−2020,−2)(−1,−2)(3,−2)1(−2020,1)(−1,1)(3,1)2021(−2020,2021)(−1,2021)(3,2021)由上表可知,点A(x,y)共有9种情况.(2)由(1)知,点A的坐标所有等可能的结果共有9种,其中点A落在第三象限的结果有2种,则点A落在第三象限的概率是2.9【解析】(1)根据题意列出图表得出所有等可能的情况数即可;(2)找出点A落在第三象限的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】解:(1)如图所示,△ADE即为所求.(2)证明:连接CE,∵AB=AD,∠B=60°,∴△ABD是等边三角形,∴∠BAD=60°.∵△ABC旋转至△ADE,∴△ABC≌△ADE,∴AC=AE,∠DAE=∠BAC,∴∠CAE=∠BAD=60°,∴△ACE是等边三角形,∴CE=AE【解析】(1)以AD为边,在AD上方作∠DAE=∠BAC,再在AE上截取AE=AC,从而得出答案;(2)先证△ABD是等边三角形得∠BAD=60°.结合△ABC≌△ADE知AC=AE,∠DAE=∠BAC,从而得∠CAE=∠BAD=60°,据此知△ACE是等边三角形,继而得证.本题主要考查作图—旋转变换,解题的关键是掌握旋转变换的性质、作一个角等于已知角与作一条线段等于已知线段的尺规作图、等边三角形的判定与性质.23.【答案】(1)证明:过点O作OE⊥CD,垂足为点E,∵BC是半圆O的切线,B为切点,∴OB⊥BC,∵CO平分∠BCD,∴OE=OB,∵OB是半圆O的半径,∴CD是半圆O的切线;(2)解:过点D作DF⊥BC,垂足为点F,∴∠DFB=90°,∵AD是半圆O的切线,切点为A,∴∠DAO=90°,∵OB⊥BC,∴∠OBC=90°,∴四边形ADFB是矩形,∴AD=BF=20,DF=AB,∵AD,CD,BC是半圆O的切线,切点分别为A、E、B,∴DE=AD=20,EC=BC,∵CD=50,∴EC=CD−DE=50−20=30,∴BC=30,∴CF=BC−BF=10,在Rt△CDF中,由勾股定理得:DF=√DC2−CF2=√502−102=20√6,∴AB=DF=20√6,∴BC的长为30,AB的长为20√6.【解析】(1)过点O作OE⊥CD,垂足为点E,利用角平分线的性质证明OE=OB,即可解答;(2)过点D作DF⊥BC,垂足为点F,先证明四边形ADFB是矩形,从而得AD=BF=20,DF=AB,再利用切线长定理求出DE=AD=20,EC=BC,从而求出CF,最后在Rt△CDF中,利用勾股定理进行计算即可解答.本题考查了切线的判定与性质,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.【答案】解:(1)∵点P(3m−1,−2m+4)在第一象限的角平分线OC上,∴3m−1=−2m+4,∴m=1,∴P(2,2);(2)①不变.过点P作PM⊥y轴于M,PN⊥OA于N.∵∠PMO=∠PNO=∠MON=90°,PM=PN=2,∴四边形QMPN是正方形,∴∠MPN=90°=∠APB,∴∠MPB=∠NPA.在△PMB和△PNA中,{∠MPB=∠NPA PM=PN∠PMB=∠PNA,∴△PMB≌△PNA(ASA),∴BM=AN,∴OB+OA=OM−BM+ON+AN=2OM=4,②连接AB,∵∠AOB=90°,∴OA2+OB2=AB2,∵∠BPA=90°,∴AB2=PA2+PB2=2PA2,∴OA2+OB2=2PA2,当PA最小时,OA2+OB2也最小.根据垂线段最短原理,PA最小值为2,∴OA2+OB2的最小值为8.【解析】(1)由题意知,3m−1=−2m+4,即可解决问题;(2)①过点P作PM⊥y轴于M,PN⊥OA于N.利用ASA证明△PMB≌△PNA,得BM=AN,从而得出OB+OA=OM−BM+ON+AN=2OM;②连接AB,由勾股定理得AB2=PA2+PB2=2PA2,则OA2+OB2=2PA2,当PA最小时,OA2+OB2也最小.根据垂线段最短,从而得出答案.本题是几何变换综合题,主要考查了坐标与图形的变化−旋转,全等三角形的判定与性质,勾股定理等知识,解题的关键是构造全等三角形,属于中考常考题型.25.【答案】(1)把点A(−2,0)和点B(6,0)代入y =ax 2+2x +c ,得{4a −4+c =0,36a +12+c =0,解得{a =−12,c =6.抛物线的解析式为y =−12x 2+2x +6.∵点C 是y =−12x 2+2x +6与y 轴的交点,∴点C 的坐标为(0,6).(2)将y =−12x 2+2x +6化为顶点式y =−12(x −2)2+8,将其右移5个单位,下移152个单位后,得y′=−12(x −7)2+12,∴当x <7时,y′随x 的增大而增大,当x >7时,y′随x 的增大为减小,∴在3≤x ≤9的范围内,x =3时,y′有最小值,令x =3,y′=−12(3−7)2+12=−152,∴y′的最小值为−152.(3)∵E(m,0),直线l ⊥x 轴,∴P 点坐标为(m,−12m 2+2m +6),Q 点坐标为(m,−12m 2+7m −24),∴PQ =|−5m +30|,∵△CPQ 的面积为20,∴12×m ×|−5m +30|=20,∴解得:m =2或m =4或m =3+√17或m =3−√17(舍),∴m 的值为2或4或3+√17.【解析】(1)把点A(−2,0)和点B(6,0)代入y =ax 2+2x +c ,求得a 与c 的值,得到函数的解析式,然后令x =0求得点C 的坐标;(2)将抛物线y 的解析式化为顶点式,然后求得平移后的抛物线y′的解析式,然后得到y′的增减性,进而求得函数在3≤x ≤9时的y′的最小值;(3)由点E求得点P和点Q的坐标,得到PQ的长,然后求得△CPQ的面积,再列出方程求得m的值.本题考查了二次函数的性质、二次函数图象上点的坐标特征、二次函数的解析式、二次函数的几何变换,解题的关键是会用待定系数法求得抛物线y的解析式.。

福建省莆田市荔城区擢英中学2025届九上数学期末监测模拟试题含解析

福建省莆田市荔城区擢英中学2025届九上数学期末监测模拟试题含解析

福建省莆田市荔城区擢英中学2025届九上数学期末监测模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题3分,共30分)1.如图,ODC △是由OAB 绕点O 顺时针旋转30︒后得到的图形,若点D 恰好落在AB 上,且ADO ∠的度数为( )A .30︒B .60︒C .75︒D .80︒2.已知在Rt ABC 中,90C ∠=︒,1sin 3A =,那么下列说法中正确的是( ) A .1cos 3B = B .1cot 3A = C .22tan 3A = D .22cot 3B = 3.如图,AB 是O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,ACB ∠的角平分线交O 于点D ,BAC ∠的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( )A .2B .2πC .32D .524.如图,△ABC 中,D 是AB 的中点,DE ∥BC ,连结BE ,若S △DEB =1,则S △BCE 的值为( )A .1B .2C .3D .45.小丽参加学校“庆元旦,迎新年演唱比赛,赛后小丽把七位评委所合的分数进行处理,得到平均数、中位数,众数,方差,如果把这七个数据去掉一个最高分和一个最低分,则数据一定不发发生变化的是 ( )A .平均数B .众数C .方差D .中位数6.如图, 在同一坐标系中(水平方向是x 轴),函数k y x=和3y kx =+的图象大致是( ) A . B . C .D .7.已知二次函数y=mx 2+x+m (m-2)的图像经过原点,则m 的值为( )A .0或 2B .0C . 2D .无法确定8.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴( ).… ……… A .只有一个交点 B .有两个交点,且它们分别在轴两侧C .有两个交点,且它们均在轴同侧D .无交点 9.若两个相似三角形的周长之比是1:4,那么这两个三角形的面积之比是( )A .1:4B .1:2C .1:16D .1:810.Rt ABC ∆中,90C ∠=︒,1AC =,2BC =,sin A 的值为( )A .12B 5C 25D .2二、填空题(每小题3分,共24分) 11.如图,正五边形ABCDE 内接于⊙O ,若⊙O 的半径为10,则AB 的长为____.12.已知关于x 的一元二次方程(2)0mx x x ++=有两个相等的实数根,则m 的值是__________.13.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,∠BAD =60°,则∠ACD =_____°.14.小明制作了一张如图所示的贺卡. 贺卡的宽为xcm ,长为40cm ,左侧图片的长比宽多4cm . 若1416x ,则右侧留言部分的最大面积为_________2cm .15.如图,点E 是矩形ABCD 的对角线AC 上一点,正方形EFGH 的顶点,G H 在边AD 上,3,4,AB BC ==则tan DAF ∠的值为__________ .16.抛物线2y ax bx c =++(a >0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,则a 的取值范围是____.17.若方程x 2﹣2x ﹣1009=0有一个根是α,则2α2﹣4α+1的值为_____.18.如图,四边形ABCD 中,AB ∥CD ,∠C =90°,AB =1,CD =2,BC =3,点P 为BC 边上一动点,若AP ⊥DP ,则BP 的长为_____.三、解答题(共66分)19.(10分)如图,大圆的弦AB 、AC 分别切小圆于点M 、N .(1)求证:AB=AC ;(2)若AB =8,求圆环的面积.20.(6分)如图①,四边形ABCD 与四边形CEFG 都是矩形,点E ,G 分别在边CD ,CB 上,点F 在AC 上,AB =3,BC =4(1)求AF BG的值; (2)把矩形CEFG 绕点C 顺时针旋转到图②的位置,P 为AF ,BG 的交点,连接CP (Ⅰ)求AF BG 的值; (Ⅱ)判断CP 与AF 的位置关系,并说明理由.21.(6分)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进21m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1m .参考数据:sin340.56︒≈,cos340.83︒=,tan340.67︒≈3 1.73≈)22.(8分)如图,一次函数y 1=k 1x +b (k 1、b 为常数,k 1≠0)的图象与反比例函数y 2=2k x(k 2≠0)的图象交于点A (m ,1)与点B (﹣1,﹣4).(1)求反比例函数与一次函数的解析式;(2)根据图象说明,当x 为何值时,k 1x +b ﹣2k x<0; (3)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,过点P 作y 轴的平行线交直线AB 于点C ,连接OC ,若△POC 的面积为3,求点P 的坐标.23.(8分)如图,某防洪堤坝长300米,其背水坡的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得加固后坡面的坡角∠ADB=50°(1)求此时应将坝底向外拓宽多少米?(结果保留到0.01米)(2)完成这项工程需要土石多少立方米?(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)24.(8分)计算:(1)x (x ﹣2y )﹣(x +y )(x +3y )(2)(53a -+a +3)÷2442a a a -+-25.(10分)如图,直线5y x =-+与x 轴交于点B ,与y 轴交于点D ,抛物线2y x bx c =-++与直线5y x =-+交于B ,D 两点,点C 是抛物线的顶点.(1)求抛物线的解析式;(2)点M 是直线BD 上方抛物线上的一个动点,其横坐标为m ,过点M 作x 轴的垂线,交直线BD 于点P ,当线段PM 的长度最大时,求m 的值及PM 的最大值.(3)在抛物线上是否存在异于B 、D 的点Q ,使BDQ ∆中BD 边上的高为32Q 的坐标;若不存在请说明理由.26.(10分)某超市销售一种饮料, 每瓶进价为9元,当每瓶售价10元时,日均销售量560瓶.经市场调查表明,每瓶售价每增加0.5元,日均销售量减少40瓶.(1)当每瓶售价为11元时,日均销售量为 瓶;(2)当每瓶售价为多少元时,所得日均总利润为1200元;(3)当每瓶售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?参考答案一、选择题(每小题3分,共30分)1、C【分析】由旋转的性质知∠AOD=30°、OA=OD ,根据等腰三角形的性质及内角和定理可得答案.【详解】解:由题意得30AOD ∠=︒,OA OD =, ∴180752AOD ADO ︒-∠∠==︒. 故选:C .【点睛】本题主要考查旋转的性质,熟练掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.2、A【分析】利用同角三角函数的关系解答.【详解】在Rt △ABC 中,∠C=90°,1sin 3A =,则A 、cosB=sinA=13,故本选项符合题意. B 、cotA=313cosA sinA == .故本选项不符合题意. C 、tanA=13sinA cosA == .故本选项不符合题意.D 、cotB=tanA=4.故本选项不符合题意. 故选:A .【点睛】 此题考查同角三角函数关系,解题关键在于掌握(1)平方关系:sin 2A+cos 2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比.3、A【解析】连接BE ,由题意可得点E 是△ABC 的内心,由此可得∠AEB =135°,为定值,确定出点E 的运动轨迹是是弓形AB 上的圆弧,此圆弧所在圆的圆心在AB 的中垂线上,根据题意过圆心O 作直径CD ,则CD ⊥AB ,在CD 的延长线上,作DF =DA ,则可判定A 、E 、B 、F 四点共圆,继而得出DE =DA =DF ,点D 为弓形AB 所在圆的圆心,设⊙O 的半径为R ,求出点C 的运动路径长为R π,DAR ,进而求出点E 的运动路径为弧AEB ,弧长为2R ,即可求得答案.【详解】连结BE ,∵点E 是∠ACB 与∠CAB 的交点,∴点E 是△ABC 的内心,∴BE 平分∠ABC ,∵AB 为直径,∴∠ACB=90°,∴∠AEB=180°-12(∠CAB+∠CBA)=135°,为定值,AD BD=,∴点E的轨迹是弓形AB上的圆弧,∴此圆弧的圆心一定在弦AB的中垂线上,∵AD BD=,∴AD=BD,如下图,过圆心O作直径CD,则CD⊥AB,∠BDO=∠ADO=45°,在CD的延长线上,作DF=DA,则∠AFB=45°,即∠AFB+∠AEB=180°,∴A、E、B、F四点共圆,∴∠DAE=∠DEA=67.5°,∴DE=DA=DF,∴点D为弓形AB所在圆的圆心,设⊙O的半径为R,则点C的运动路径长为:Rπ,DA2R,点E的运动路径为弧AEB,弧长为:90221802RR π=,C、E2 22Rπ=故选A.【点睛】本题考查了点的运动路径,涉及了三角形的内心,圆周角定理,四点共圆,弧长公式等,综合性较强,正确分析出点E运动的路径是解题的关键.4、B【解析】根据三角形中位线定理和三角形的面积即可得到结论.【详解】∵D是AB的中点,DE∥BC,∴CE=AE.∴DE=12 BC,∵S△DEB=1,∴S△BCE=2,故选:B.【点睛】本题考查了三角形中位线定理,熟练掌握并运用三角形中位线定理是解题的关键.5、D【分析】根据中位数的定义即位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数进行分析即可.【详解】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.【点睛】本题考查统计量的选择,解题的关键是了解中位数的定义,难度较小.6、A【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A、由函数y=kx的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=kx的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=kx的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=kx的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7、C【分析】根据题意将(0,0)代入解析式,得出关于m的方程,解之得出m的值,由二次函数的定义进行分析可得答案.【详解】解:∵二次函数y=mx1+x+m(m-1)的图象经过原点,∴将(0,0)代入解析式,得:m(m-1)=0,解得:m=0或m=1,又∵二次函数的二次项系数m≠0,∴m=1.故选:C.【点睛】本题考查二次函数图象上点的坐标特征以及二次函数的定义,熟练掌握二次函数图象上的点满足函数解析式及二次函数的定义是解题的关键.8、B【分析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断. 【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.9、C【分析】根据相似三角形的面积的比等于相似比的平方可得答案.【详解】解:∵相似三角形的周长之比是1:4,∴对应边之比为1:4,∴这两个三角形的面积之比是:1:16,故选C.【点睛】此题主要考查了相似三角形的性质,关键是掌握相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.10、C【分析】根据勾股定理求出斜边AB的值,在利用余弦的定义直接计算即可.【详解】在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB=225AC BC+=,∴sin A=25BCAB==255,故选:C.【点睛】本题主要考查锐角三角函数的定义,解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数是定义.二、填空题(每小题3分,共24分)11、2π【分析】利用正五边形的性质得出中心角度数,进而利用弧长公式求出即可.【详解】解:如图所示:连接OA、OB.∵⊙O为正五边形ABCDE的外接圆,⊙O的半径为10,∴∠AOB=3605︒=72°,∴AB的长为:72?102360ππ⨯=.故答案为:2π.【点睛】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.12、12- 【解析】根据方程有两个相等的实数根,可得b 2-4ac=0,方程化为一般形式后代入求解即可.【详解】原方程化为一般形式为:mx 2+(2m+1)x=0,∵方程有两个相等的实数根∴(2m+1)2-4m×0=0 12m =- 【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.13、1【解析】连接BD .根据圆周角定理可得.【详解】解:如图,连接BD .∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠B =90°﹣∠DAB =1°,∴∠ACD =∠B =1°,故答案为1.【点睛】考核知识点:圆周角定理.理解定义是关键.14、320【分析】先求出右侧留言部分的长,再根据矩形的面积公式得出面积与x 的函数解析式,利用二次函数的图像与性质判断即可得出答案.【详解】根据题意可得,右侧留言部分的长为(36-x)cm∴右侧留言部分的面积()()()22363632432418324x x x x x =-=--++=--+ 又14≤x≤16 ∴当x=16时,面积最大()21618324320=--+=(2)cm故答案为320.【点睛】本题考查的是二次函数的实际应用,比较简单,解题关键是根据题意写出面积的函数表达式.15、37【分析】先证明△AHE ∽△CBA ,得到HE 与AH 的倍数关系,则可知GF 与AG 的倍数关系,从而求解tan ∠GAF 的值.【详解】∵四边形EFGH 是正方形,∴HE HG =,∵∠AHE=∠ABC=90°,∠HAE=∠BCA ,∴△AHE ∽△CBA , ∴HE AH AB BC =,即34HE AB AH BC ==, 设3HE a =,则A 4H a =,∴A 73AG H HG a GF a =+==,, ∴3377GF a tan GAF AG a ∠===. 故答案为:37. 【点睛】本题主要考查相似三角形的判定和性质、正方形、矩形的性质、解直角三角形.利用参数求解是解答本题的关键. 16、0<a <3.【解析】试题解析:∵二次函数2(0)y ax bx c a =++>的图象与坐标轴分别交于点(0,−3)、(−1,0),∴c =−3,a −b +c =0,即b =a −3,∵顶点在第四象限, 240,024b ac b a a-∴-><, 又∵a >0,∴b <0,∴b =a −3<0,即a <3,故0 3.a <<故答案为0 3.a <<点睛:二次函数()20y ax bx c a =++≠的顶点坐标为:24,.24b ac b a a ⎛⎫-- ⎪⎝⎭ 17、1【分析】先利用一元二次方程根的定义得到α2﹣2α=1009,然后求出2α2﹣4α的值代入即可.【详解】解:方程x 2﹣2x ﹣1009=0有一个根是α,则α2﹣2α﹣1009=0,α2﹣2α=1009,2α2﹣4α+1=2(α2﹣2α)+1=1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18、1或2【分析】设BP=x ,则PC=3-x ,根据平行线的性质可得∠B=90°,根据同角的余角相等可得∠CDP=∠APB ,即可证明△CDP ∽△BPA ,根据相似三角形的性质列方程求出x 的值即可得答案.【详解】设BP=x ,则PC=3-x ,∵AB ∥CD ,∠C =90°,∴∠B=180°-∠C=90°,∴∠B=∠C ,∵AP ⊥DP ,∴∠APB+∠DPC=90°,∵∠CDP+∠DPC=90°,∴∠CDP=∠APB ,∴△CDP ∽△BPA , ∴AB PB PC CD=, ∵AB =1,CD =2,BC =3, ∴132x x =-, 解得:x 1=1,x 2=2,∴BP 的长为1或2,故答案为:1或2【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的对应边成比例列方程是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)S圆环=16π【解析】试题分析:(1)连结OM、ON、OA由切线长定理可得AM=AN,由垂径定理可得AM=BM,AN=NC,从而可得AB=AC.(2)由垂径定理可得AM=BM=4,由勾股定理得OA2-OM2=AM 2=16,代入圆环的面积公式求解即可.(1)证明:连结OM、ON、OA∵AB、AC分别切小圆于点M、N.∴AM=AN,OM⊥AB,ON⊥AC,∴AM=BM,AN=NC,∴AB=AC(2)解:∵弦AB切与小圆⊙O相切于点M∴OM⊥AB∴AM=BM=4∴在Rt△AOM中,OA2-OM2=AM 2=16∴S圆环=πOA2-πOM2=πAM 2=16π20、(1)54AFBG=;(2)(Ⅰ)54AFBG=;(Ⅱ)CP⊥AF,理由:见解析.【解析】(1)根据矩形的性质得到∠B=90°,根据勾股定理得到AC=5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF,根据旋转的性质得到∠BCG=∠ACF,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC=∠AFC,推出点C,F,G,P四点共圆,根据圆周角定理得到∠CPF=∠CGF =90°,于是得到结论.【详解】(1)∵四边形ABCD是矩形,∴∠B=90°,∵AB=3,BC=4,∴AC=5,∴54 ACBC=,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF ∽△CBA , ∴54CF CA CG CB ==, ∵FG ∥AB , ∴54AF CF BG CG ==; (2)(Ⅰ)连接CF ,∵把矩形CEFG 绕点C 顺时针旋转到图②的位置,∴∠BCG =∠ACF ,∵54AC CF BC CG ==, ∴△BCG ∽△ACF , ∴54AF AC BG BC ==; (Ⅱ)CP ⊥AF ,理由:∵△BCG ∽△ACF ,∴∠BGC =∠AFC ,∴点C ,F ,G ,P 四点共圆,∴∠CPF =∠CGF =90°,∴CP ⊥AF .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.21、51【解析】由三角函数求出82.1tan34CE AC m ︒=≈,得出61.1BC AC AB m =-=,在Rt BCD ∆中,由三角函数得出3105.7CD BC m =≈,即可得出答案.【详解】解:90ACE ︒∠=,34CAE ︒∠=,55CE m =,tan CE CAE AC∴∠=,5582.1tan340.67CE AC m ︒∴==≈, 21AB m =,61.1BC AC AB m ∴=-=,在Rt BCD ∆中,tan 60CD BC︒==,1.7361.1105.7CD m ∴=≈⨯≈,105.75551DE CD EC m ∴=-=-≈,答:炎帝塑像DE 的高度约为51m .【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形,利用三角函数的知识求解,难度适中.22、(1)y 1=x ﹣3;24y x =;(2)x <﹣1或0<x <4;(3)点P 的坐标为45,5⎛⎫ ⎪⎝⎭或(1,4)或(2,2) 【分析】(1)把B 点坐标代入反比例函数解析式可求得k 2的值,把点A (m ,1)代入求得的反比例函数的解析式求得m ,然后利用待定系数法即可求得一次函数的解析式;(2)直接由A 、B 的坐标根据图象可求得答案;(3)设点P 的坐标为4(,)(0)m m m>,则C (m ,m ﹣3),由△POC 的面积为3,得到△POC 的面积14|(3)|32m m m=⨯--=,求得m 的值,即可求得P 点的坐标. 【详解】解:(1)将B (﹣1,﹣4)代入22k y x =得:k 2=4 ∴反比例函数的解析式为24y x=, 将点A (m ,1)代入y 2得41m=,解得m =4, ∴A (4,1)将A (4,1)、B (﹣1,﹣4)代入一次函数y 1=k 1x +b 得11414k b k b +=⎧⎨-+=-⎩ 解得k 1=1,b =﹣3∴一次函数的解析式为y 1=x ﹣3;(2)由图象可知:x <﹣1或0<x <4时,k 1x +b ﹣2k x<0;(3)如图:设点P的坐标为4(,)(0)m mm>,则C(m,m﹣3)∴4|(3)|PC mm=--,点O到直线PC的距离为m∴△POC的面积=14|(3)|3 2m mm=⨯--=,解得:m=5或﹣2或1或2,又∵m>0∴m=5或1或2,∴点P的坐标为45,5⎛⎫⎪⎝⎭或(1,4)或(2,2).【点睛】本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,三角形面积,熟练掌握待定系数法是解题的关键.23、(1)应将坝底向外拓宽大约6.58米;(2)21714立方米【分析】(1)过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE-BE即可求解;(2)用△ABD的面积乘以坝长即为所需的土石的体积.【详解】解:(1)过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°≈25×0.88=22米,BE=AB•cos62°≈25×0.47=11.75米,在Rt △ADE 中,∠ADB=50°,∴DE=tan 50AE ︒=18.33米, ∴DB=DE-BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.(2)6.58×22×12×300=21714立方米. 【点睛】本题考查了解直角三角形的应用-坡度坡角问题,两个直角三角形有公共的直角边,先求出公共边的解决此类题目的基本出发点.24、(1)﹣6xy ﹣3y 2;(2)23a a +- 【分析】(1)根据整式的混合运算顺序和运算法则,即可求解;(2)根据分式的混合运算顺序和运算法则即可求解.【详解】(1)原式=x 2﹣2xy ﹣(x 2+3xy +xy +3y 2)=x 2﹣2xy ﹣x 2﹣3xy ﹣xy ﹣3y 2=﹣6xy ﹣3y 2;(2)原式=(53a -+293a a --)÷2(2)2a a -- =243a a --÷(a ﹣2) =(2)(2)3a a a +--•12a - =23a a +-. 【点睛】本题主要考查整式的混合运算和分式的混合运算,掌握合并同类项法则和分式的通分和约分是解题的关键.25、(1)245y x x =-++;(2)当52m =时,PM 有最大值254;(3)存在,理由见解析;1(2,9)Q ,2(3,8)Q ,3(1,0)Q -,4(4,5)Q -【分析】(1)先求得点B 、D 的坐标,再代入二次函数表达式即可求得答案;(2)设M 点横坐标为m ()0m >,则(),5P m m -+,()2,45M m m m -++,求得PM 关于m 的表达式,即可求解; (3)设()2,45Q x x x -++,则(,5)G x x -+,求得25QG x x =-+,根据等腰直角三角形的性质,求得6QG =,即可求得答案.【详解】(1)5y x =-+,令0x =,则5y =,令0y =,则5x =, 故点B 、D 的坐标分别为()5,0、()0,5,将()5,0、()0,5代入二次函数表达式为25505b c c ⎧-++=⎨=⎩, 解得:45b c ==,,故抛物线的表达式为:245y x x =-++.(2)设M 点横坐标为m ()0m >,则(),5P m m -+,()2,45M m m m -++, 22252545(5)524PM m m m m m m ⎛⎫∴=-++--+=-+=--+ ⎪⎝⎭, ∴当52m =时,PM 有最大值254; (3)如图,过Q 作//QG y 轴交BD 于点G ,交x 轴于点E ,作QH BD ⊥于H , 设()2,45Q x x x -++,则(,5)G x x -+, 2245(5)5QG x x x x x ∴=-++--+=-+,BOD ∆是等腰直角三角形,45DBO ∴∠=︒,45HGQ BGE ∴∠=∠=︒,当BDQ ∆中BD 边上的高为QH HG ==6QG ∴==,256x x ∴-+=,当256x x -+=时,解得2x =或3x =,(2,9)Q ∴或()3,8,当256x x -+=-时,解得1x =-或6x =,(1,0)Q ∴-或(6,7)-,综上可知存在满足条件的点Q ,其坐标为1(2,9)Q ,2(3,8)Q ,3(1,0)Q -,4(4,5)Q -.【点睛】本题主要考查的知识点有:利用待定系数法确定函数解析式、等腰直角三角形的判定和性质以及平行四边形的判定和性质;第(2)问中,利用二次函数求最值是解题的关键;最后一问利用两点之间的距离公式和等腰直角三角形的性质构建等式是解题的关键.26、(1)480;(2)12元或14元;(3)13元时利润最大,最大利润1280元【分析】(1)当每瓶售价为11元时,每瓶售价增加1元,日均销售量减少80瓶,即可求解.(2)设每瓶售价为x 元,根据题意表示出每瓶利润,日销售量,根据等量关系列方程解答即可.(3)设每瓶售价为a 元,日均总利润为y 元,求出y 关于a 的函数表达式,配方即可求解.【详解】(1)当每瓶售价为11元时,每瓶售价增加1元,日均销售量减少80瓶,560-80=480瓶故答案为:480(2)设每瓶售价为x 元时,所得日均总利润为1200元,根据题意得:()1095604012000.5x x ⎛⎫---⨯= ⎪⎝⎭解得:x 1=12,x 2=14答:当每瓶的售价为12元或14元时,所得日均总利润为1200元.(3)设每瓶售价为a 元,日均总利润为y 元,根据题意得:()()210956040=-801312800.5a y a a ⎛⎫-=--⨯-+ ⎪⎝⎭答:每瓶售价为13元时利润最大,最大利润1280元.【点睛】本题考查的是一元二次方程及二次函数的利润问题,解题关键在于对利润问题中等量关系的把握,由于计算量颇大,所以计算时要细心,避免出错.。

福建省莆田市2021年九年级上学期数学期末考试试卷A卷

福建省莆田市2021年九年级上学期数学期末考试试卷A卷

福建省莆田市2021年九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2020九上·潮南期末) 下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A . 4B . 3C . 2D . 12. (1分)反比例函数的图象在每个象限内y随x的增大而增大,则k的值可为()A . - 1B . 1C . -2D . 03. (1分)一个布袋中有1个红球,3个黄球,4个蓝球,它们除颜色外完全相同. 从袋中随机取出一个球,取到黄球的概率是()A .B .C .D .4. (1分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于()A . 55°B . 45°C . 40°D . 35°5. (1分) (2017八上·云南期中) 九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意列出方程为()A . x(x-1)=2070B . x(x+1)=2070C . x(x+1)=2070D . x(x-1)=20706. (1分)(2017·大冶模拟) 如图所示,反比例函数y= (k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值()A . 1B . 2C . 3D . 47. (1分)一个袋子中只装有两种颜色的球,这些球的形状、质地等完全相同,其中白色球有4个,黑球有n个.在看不到球的条件下,随机地从袋子中摸出一个球,记录颜色后,放回袋中并摇匀.同学们进行了大量重复试验,发现摸出白球的频率稳定在0.4附近,则n的值为()A . 2B . 3C . 4D . 68. (1分) (2019九上·鄞州期末) 在Rt△ABC ,∠C=90°,A B=6.△ABC的内切圆半径为1,则△ABC的周长为()A . 13B . 14C . 15D . 169. (1分)(2017·岱岳模拟) 二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A . 4个B . 3个C . 2个D . 1个10. (1分)(2017·鹤壁模拟) 如图,点C是⊙O上一点,⊙O的半径为,D、E分别是弦AC、BC上一动点,且OD=OE= ,则AB的最大值为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为________ cm12. (1分)如图, ΔOAB绕点O旋转180°得到ΔOCD,连结AD、BC,得到四边形ABCD,则AB________CD(填位置关系),与ΔAOD成中心对称的是________,由此可得AD________BC(填位置关系).13. (1分)(2012·朝阳) 如图,△ABC三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点C顺时针旋转到△A′B′C的位置,且A′、B′仍落在格点上,则线段AC扫过的扇形所围成的圆锥体的底面半径是________单位长度.14. (1分)(2018·嘉定模拟) 抛物线y=x2+4x+3向下平移4个单位后所得的新抛物线的表达式是________.15. (1分) (2020九上·潮南期末) 这样铺地板:第一块铺2块,如图1,第二次把第一次的完全围起来,如图2;第三次把第二次的完全围起来,如图3;…依次方法,铺第5次时需用________木块才能把第四次所铺的完全围起来.16. (1分) (2018八上·宁波月考) 如图,点O在直线m上,在m的同侧有A,B两点,∠AOB=90°,OA=10cm,OB=8cm,点P以2cm/s的速度从点 A 出发沿A—O—B 路径向终点 B 运动,同时点 Q 以1cm/s的速度从点B出发沿 B—O—A路径向终点A运动,两点都要到达相应的终点时才能停止运动.分别过点P,Q作PC⊥m于点 C,QD⊥m 于点C,QD⊥m于点D.若△OPC与△OQD全等,则点Q运动的时间是________秒.三、解答题 (共8题;共18分)17. (1分)已知关于x的一元二次方程x2+mx﹣3=0有一个根等于3,求它的另一个根和m的值.18. (2分)(2012·盘锦) 如图,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度,在第二象限内有横、纵坐标均为整数的A、B两点,点B(﹣2,3),点A的横坐标为﹣2,且OA= .(1)直接写出A点的坐标,并连接AB,AO,BO;(2)画出△OAB关于点O成中心对称的图形△OA1B1,并写出点A1、B1的坐标;(点A1、B1的对应点分别为A、B)(3)将△OAB水平向右平移4个单位长度,画出平移后的△O1A2B2.19. (3分)(2018·清江浦模拟) 一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)当n =1时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性是否相同?(在答题卡相应位置填“相同”或“不相同”)(2)从袋中随机摸出1个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,则n的值是________;(3)在一个摸球游戏中,所有可能出现的结果如下:根据树状图呈现的结果,求两次摸出的球颜色不同的概率.20. (2分) (2019九上·淅川期末) 已知关于x的方程(m-1)x2-(m-2)x+ m=0.(1)当m取何值时方程有一个实数根?(2)当m取何值时方程有两个实数根?(3)设方程的两根分别为x1、x2,且x1x2=m+1,求m的值.21. (2分)(2018·姜堰模拟) 在平面直角坐标系xOy中,O为坐标原点,一次函数的图像与反比例函数的图像交于点A(1, ),交x轴于点B.(1)求k的值;(2)求△AOB的面积.22. (2分)(2016·苏州) 如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D 匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为________;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.23. (3分)(2017·重庆模拟) 如图,抛物线y=﹣ x2﹣ x+ 与x轴交于A,B两点(A点在B 点的左侧),与y轴交于点C,已知点D(0,﹣).(1)求直线AC的解析式;(2)如图1,P为直线AC上方抛物线上的一动点,当△PBD面积最大时,过P作PQ⊥x轴于点Q,M为抛物线对称轴上的一动点,过M作y轴的垂线,垂足为点N,连接PM,NQ,求PM+MN+NQ的最小值;(3)在(2)问的条件下,将得到的△PBQ沿PB翻折得到△PBQ′,将△BPQ′沿直线BD平移,记平移中的△PBQ′为△P′B′Q″,在平移过程中,设直线P′B′与x轴交于点E.则是否存在这样的点E,使得△B′EQ″为等腰三角形?若存在,求此时OE的长.24. (3分) (2019九上·椒江期末)(1)尺规作图:已知:如图,线段AB和直线且点B在直线上求作:点C,使点C在直线上并且使△ABC为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C.(2)特例思考:如图一,当∠1=90°时,符合(1)中条件的点C有________个;如图二,当∠1=60°时,符合(1)中条件的点C有________个.(3)拓展应用:如图,∠AOB=45°,点M,N在射线OA上,OM=x,ON=x+2,点P是射线OB上的点.若使点P,M,N构成等腰三角形的点P有且只有三个,求x的值。

福建省莆田市擢英中学2022年数学九上期末调研试题含解析

福建省莆田市擢英中学2022年数学九上期末调研试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.菱形的两条对角线长分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm2.如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以40海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为().A.20海里B.103海里C.202海里D.30海里3.如图,⊙A、⊙B、⊙C、⊙D、⊙E相互外离,它们的半径都是1,顺次连接五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()A.πB.1.5πC.2πD.2.5π4.二次函数y=ax2+bx+c(a≠0)和正比例函数y=23x的图象如图所示,则方程ax2+(b﹣23)x+c=0(a≠0)的两根之和()A .大于0B .等于0C .小于0D .不能确定5.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是( )A .B .C .D .6.有一副三角板,含45°的三角板的斜边与含30°的三角板的长直角边相等,如图,将这副三角板直角顶点重合拼放在一起,点B ,C ,E 在同一直线上,若BC =2,则AF 的长为( )A .2B .23﹣2C .4﹣23D .23﹣67.用半径为3cm ,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为( )A .2cm πB .1.5cmC .cm πD .1cm8.如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC 的面积为1,则△BCD 的面积为( )A .1B .2C .3D .49.下列式子中表示y 是x 的反比例函数的是( )A .24y x =-B .25y x =C .21y x =D .13y x= 10.下列几何体中,主视图和左视图都是矩形的是( )A .B .C .D .11.如图,在ABC ∆中,D 在AC 边上,12AD DC :=:,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE EC :=( )A .1:2B .1:3C .1:4D .2:312.下列图象能表示y 是x 的函数的是( )A .B .C .D .二、填空题(每题4分,共24分)13.已知a +b =0目a ≠0,则20202019a b a+=_____. 14.如图,在△ABC 中,点A 1,B 1,C 1分别是BC ,AC ,AB 的中点,A 2,B 2,C 2分别是B 1C 1,A 1C 1,A 1B 1的中点……依此类推,若△ABC 的面积为1,则△A n B n C n 的面积为__________.15.如图,让此转盘自由转动两次,两次指针都落在阴影部分区域(边界宽度忽略不记)的概率是____________.16.菱形有一个内角为60°,较短的对角线长为6,则它的面积为_____.17.若a ,b 是一元二次方程22510x x -+=的两根,则11a b +=________. 18.如图,ABC 的顶点均在O 上,4,30AB C =∠=︒,则O 的半径为_________.三、解答题(共78分)19.(8分)如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF=EC ,DE=4cm ,矩形ABCD 的周长为32cm ,求AE 的长.20.(8分)如图,在△ABC 中,∠C =90°,点O 在AC 上,以OA 为半径的⊙O 交AB 于点D ,BD 的垂直平分线交BC 于点E ,交BD 于点F ,连接DE .(1)判断直线DE 与⊙O 的位置关系,并说明理由;(2)若AC =6,BC =8,OA =2,求线段DE 的长.21.(8分)小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A 、B (如图),在(1)处小颖能看到B 建筑物的一部分,(如图),此时,小明的视角为30°,已知A 建筑物高25米.(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?(精确到0.1)22.(10分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长(3≈1.73).23.(10分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.(1)求y与x的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?∠,过点D作AC的垂线,与AC的延24.(10分)如图,AB是O的直径,点C、D在O上,且AD平分CAB长线相交于E,与AB的延长线相交于点F,G为AB的下半圆弧的中点,DG交AB于H,连接DB、GB.()1证明EF是O的切线;()2求证:DGB BDF∠∠=;()3已知圆的半径R5=,BH3=,求GH的长.25.(12分)已知,如图在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发沿AB方向向终点B匀速移动,速度为1cm /s ,点Q 由点B 出发沿BC 方向向终点C 匀速移动,速度为2cm /s .如果动点P ,Q 同时从A ,B 出发,当P 或Q 到达终点时运动停止.几秒后,以Q ,B ,P 为顶点的三角形与△ABC 相似?26.在菱形ABCD 中,60ABC ∠=︒,延长BA 至点F ,延长CB 至点E ,使BE AF =,连结CF EA ,,AC ,延长EA 交CF 于点G .(1)求证:ACE CBF ≅;(2)求CGE ∠的度数.参考答案一、选择题(每题4分,共48分)1、B【分析】根据菱形的对角线互相垂直平分求出OA 、OB 的长,再利用勾股定理列式求出边长AB ,然后根据菱形的周长公式列式进行计算即可得解.【详解】解:如图,∵菱形的两条对角线的长是6cm 和8cm ,∴OA =12×80=40cm ,OB =12×60=30cm , 又∵菱形的对角线AC ⊥BD ,∴AB=223040+=50cm,∴这个菱形的边长是50cm.故选B.【点睛】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.2、C【分析】如图,根据题意易求△ABC是等腰直角三角形,通过解该直角三角形来求BC的长度.【详解】如图,∵∠ABE=15°,∠DAB=∠ABE,∴∠DAB=15°,∴∠CAB=∠CAD+∠DAB=90°.又∵∠FCB=60°,∠CBE=∠FCB=60°,∠CBA+∠ABE=∠CBE,∴∠CBA=45°.∴在直角△ABC中,sin∠ABC=ACBC=140222BC⨯=,∴BC=202海里.故选C.考点:解直角三角形的应用-方向角问题.3、B【分析】本题考查的是扇形面积,圆心角之和等于五边形的内角和,由于半径相同,那么根据扇形的面积公式2360n R Sπ=计算即可.【详解】图中五个扇形(阴影部分)的面积是2180(52)11.5360ππ⨯-⨯⨯=,故选B.4、A【解析】试题分析:设ax2+bx+c=1(a≠1)的两根为x1,x2,由二次函数的图象可知x1+x2>1,a>1,设方程ax2+(b﹣)x+c=1(a≠1)的两根为a ,b 再根据根与系数的关系即可得出结论.设ax 2+bx+c=1(a≠1)的两根为x 1,x 2, ∵由二次函数的图象可知x 1+x 2>1,a >1, ∴﹣>1.设方程ax 2+(b ﹣)x+c=1(a≠1)的两根为a ,b ,则a+b=﹣=﹣+, ∵a >1, ∴>1,∴a+b >1.考点:抛物线与x 轴的交点5、C【分析】找到从正面看所得到的图形即可.【详解】解:它的主视图是:故选:C .【点睛】本题考查了三视图的知识,掌握主视图是解题的关键.6、D【分析】根据正切的定义求出AC ,根据正弦的定义求出CF ,计算即可.【详解】解:在Rt △ABC 中,BC =2,∠A =30°,AC =tan BC A=3 则EF =AC =3∵∠E =45°,∴FC =EF •sinE 6,∴AF =AC ﹣FC =36,故选:D .【点睛】本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键. 7、D【详解】解:设此圆锥的底面半径为r , 根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,12032180r ππ⨯=,解得:r=1.故选D .8、C【详解】∵∠ACD=∠B ,∠A=∠A ,∴△ACD ∽△ABC , ∴12AC AD AB AC ==, ∴2ACD ABC S AD SAC ⎛⎫= ⎪⎝⎭, ∴2112ABCS ⎛⎫= ⎪⎝⎭, ∴S △ABC =4,∴S △BCD = S △ABC - S △ACD =4-1=1.故选C考点:相似三角形的判定与性质.9、D【解析】根据反比例函数的定义逐项分析即可.【详解】A. 24y x =-是一次函数,故不符合题意;B. 25y x =二次函数,故不符合题意;C. 21y x =不是反比例函数,故不符合题意; D. 13y x =是反比例函数,符合题意; 故选D.【点睛】本题考查了反比例函数的定义,一般地,形如k y x=(k 为常数,k ≠0)的函数叫做反比例函数. 10、C【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C .【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.11、B【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出12AD DC :=:,根据已知和平行线分线段成比例得出2121AD DG GC AG GC AO OF ==,:=:,:=:,再由同高不同底的三角形中底与三角形面积的关系可求出BF FC :的比.【详解】解:如图,过O 作//OG BC ,交AC 于G ,∵O 是BD 的中点,∴G 是DC 的中点.又12AD DC :=:,AD DG GC ∴==,2121AG GC AO OE ∴:=:,:=:,2AOB BOE S S ∆∆∴:=设2BOE AOB S S S S ∆∆=,=,又BO OD =,24AOD ABD S S S S ∆∆∴=,=,12AD DC :=:,287BDC ABD CDOE S S S S S ∆∆∴四边形==,=,93AEC ABE S S S S ∆∆∴=,=, 3193ABE AEC S BE S EC S S ∆∆∴=== 故选B .【点睛】考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.12、D【解析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定答案.【详解】A .如图,,对于该x 的值,有两个y 值与之对应,不是函数图象; B .如图,,对于该x 的值,有两个y 值与之对应,不是函数图象;C .如图,对于该x 的值,有两个y 值与之对应,不是函数图象;D .对每一个x 的值,都有唯一确定的y 值与之对应,是函数图象.故选:D .【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.二、填空题(每题4分,共24分)13、1【分析】先将分式变形,然后将0a b +=代入即可. 【详解】解:20202019a b a+ 20192019a b b b++= 020192019b b+=20192019b b= 1=,故答案为1【点睛】本题考查了分式,熟练将式子进行变形是解题的关键.14、14n【分析】由于1A 、1B 、1C 分别是ABC ∆的边BC 、CA 、AB 的中点,就可以得出△111A B C ABC ∽,且相似比为12,就可求出S △11114A B C ,同样地方法得出S △222116A B C 依此类推所以就可以求出AnBnCn S 的值. 【详解】解:1A 、1B 、1C 分别是ABC ∆的边BC 、CA 、AB 的中点,11A B ∴、11A C 、11B C 是ABC ∆的中位线,∴△111A B C ABC ∽,且相似比为12, 111:1:4A B C ABC S S ∆∴=,且1ABC S ∆=11114A B C S ∴=, 2A 、2B 、2C 分别是△111A B C 的边11B C 、11C A 、11A B 的中点,∴△111A B C 的∽△222A B C 且相似比为12, 222116A B C S ∴=, 依此类推333164A B C S ∴=, 21124n n n A B C n n S ∆∴==. 故答案为:14n . 【点睛】 本题考查了三角形中位线定理的运用,相似三角形的判定与性质的运用,解题的关键是有相似三角形的性质:面积比等于相似比的平方.15、19【分析】先将非阴影区域分成两等份,然后根据列表格列举所有等可能的结果与指针都落在阴影区域的情况,再利用【详解】解:如图,将非阴影区域分成两等份,设三份区域分别为A,B,C,其中C为阴影区域,列表格如下,由表可知,共有9种结果,且每种结果出现的可能性相同,其中两次指针都落在阴影区域的有1种,为(C,C),所以两次指针都落在阴影区域的概率为P=1 9 .故答案为:1 9【点睛】本题考查了列表法或树状图求两步事件概率问题,将非阴影区域分成两等份,保证是等可能事件是解答此题的关键.16、183【分析】根据菱形对角线垂直且互相平分,且每条对角线平分它们的夹角,即可得出菱形的另一条对角线长,再利用菱形的面积公式求出即可.【详解】解:如图所示:∵菱形有一个内角为60°,较短的对角线长为6,∴设∠BAD=60°,BD=6,∵四边形ABCD是菱形,∴∠BAC=∠DAC=30°,DO=BO=3,∴AO=3tan30=3,∴AC=3则它的面积为:12×6×63=183. 故答案为:183.【点睛】本题考查菱形的性质,熟练掌握菱形的面积公式以及对角线之间的关系是解题关键.17、25【分析】将11a b+通分变形为a b ab +,然后利用根与系数的关系即可求解. 【详解】∵a 、b 是一元二次方程22510x x -+=的两根∴25+=a b ,1ab =∴11=25++=a b a b ab故答案为:25.【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握12b x x a +=-,12c x x a =是解题的关键. 18、1【分析】连接AO,BO ,根据圆周角的性质得到60AOB ∠=︒,利用等边三角形的性质即可求解.【详解】连接AO,BO ,∵30C ∠=︒∴60AOB ∠=︒又AO=BO∴△AOB 是等边三角形,∴AO=BO=AB=1即O 的半径为1故答案为1.此题主要考查圆的半径,解题的关键是熟知圆周角的性质.三、解答题(共78分)19、6cm【详解】解:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,在矩形ABCD中,∠A=∠D=90°,∴∠ECD+∠DEC=90°,∴∠AEF=∠ECD.∵EF=EC∴Rt△AEF≌Rt△DCE.∴AE=CD.∵ DE=1cm,∴AD=AE+1.∵矩形ABCD的周长为2 cm,∴2(AE+AE+1)=2.解得,AE=6cm.20、(1)直线DE与⊙O相切;(2)4.1.【分析】(1)连接OD,通过线段垂直平分线的性质和等腰三角形的性质证明∠EDB+∠ODA=90°,进而得出OD⊥DE,根据切线的判定即可得出结论;(2)连接OE,作OH⊥AD于H.则AH=DH,由△AOH∽△ABC,可得AH OAAC AB,推出AH=65,AD=125,设DE=BE=x,CE=8-x,根据OE2=DE2+OD2=EC2+OC2,列出方程即可解决问题;【详解】(1)连接OD,∵EF垂直平分BD,∴EB=ED,∵OA=OD,∴∠ODA=∠A,∵∠C=90°,∴∠A+∠B=90°,∴∠EDB+∠ODA=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)连接OE,作OH⊥AD于H.则AH=DH,∵△AOH∽△ABC,∴AH OA AC AB=,∴2 610 AH=,∴AH=65,AD=125,设DE=BE=x,CE=8﹣x,∵OE2=DE2+OD2=EC2+OC2,∴42+(8﹣x)2=22+x2,解得x=4.1,∴DE=4.1.【点睛】本题考查切线的判定和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.21、(1)汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)他向前行驶了18.3米.【解析】1)连接FC并延长到BA上一点E,即为所求答案;(2)利用解Rt△AEC求AE,解Rt△ACM,求AM,利用ME=AM-AE求出他行驶的距离.【详解】解:(1)如图所示:汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)∵小明的视角为30°,A建筑物高25米,∴AC=25,tan30°==,∵∠AEC=45°,∴AE=AC=25m,∴ME=AM﹣AE=43.3﹣25=18.3m.则他向前行驶了18.3米.【点睛】本题考查解直角三角形的基本方法,先分别在两个直角三角形中求相关的线段,再求差是解题关键.22、隧道AB的长约为635m.【分析】首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算. 【详解】如图,过点C作CO⊥直线AB,垂足为O,则CO=1500m∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO 中,OA=1500tan60=1500×33m在Rt△CBO 中,OB=1500×tan45°=1500m∴AB=1500-5003≈1500-865=635(m)答:隧道AB的长约为635m.考点:锐角三角函数的应用.23、(1)y=﹣5x2+110x+1200;(2) 售价定为189元,利润最大1805元【解析】利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y=(200﹣x﹣170)(40+5x)=﹣5x2+110x+1200;(2)y=﹣5x2+110x+1200=﹣5(x﹣11)2+1805,∵抛物线开口向下,∴当x=11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.24、(1)详见解析;(1)详见解析;(3)29.【解析】(1)由题意可证OD∥AE,且EF⊥AE,可得EF⊥OD,即EF是⊙O的切线;(1)由同弧所对的圆周角相等,可得∠DAB=∠DGB,由余角的性质可得∠DGB=∠BDF;(3)由题意可得∠BOG=90°,根据勾股定理可求GH的长.【详解】解:(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA又∵AD平分∠BAC,∴∠OAD=∠CAD∴∠ODA=∠CAD,又∵EF⊥AE,∴OD⊥EF,∴EF是⊙O的切线(1)∵AB是⊙O的直径,∴∠ADB=90°∴∠DAB+∠OBD=90°由(1)得,EF是⊙O的切线,∴∠ODF=90°∴∠BDF+∠ODB=90°∵OD=OB,∴∠ODB=∠OBD∴∠DAB=∠BDF又∠DAB=∠DGB∴∠DGB=∠BDF(3)连接OG,∵G是半圆弧中点,∴∠BOG=90°在Rt△OGH中,OG=5,OH=OB﹣BH=5﹣3=1.∴GH.【点睛】本题考查了切线的判定和性质,角平分线的性质,勾股定理,圆周角定理等知识,熟练运用切线的判定和性质解决问题是本题的关键.25、2.4秒或18 11秒【分析】设t秒后,以Q,B,P为顶点的三角形与△ABC相似;则PB=(6-t)cm,BQ=2tcm,分两种情况:①当PB BQ AB BC=时,②当PB BQBC AB=时,分别解方程即可得出结果.【详解】解:设t秒后,以Q,B,P为顶点的三角形与△ABC相似,则PB=(6﹣t)cm,BQ=2tcm,∵∠B=90°,①当PB BQ AB BC =时, 即6t 2t =68-, 解得:t =2.4;②当PB BQ BC AB=时, 即6t 2t =86-, 解得:t =1811; 综上所述:2.4秒或1811秒时,以Q ,B ,P 为顶点的三角形与△ABC 相似.【点睛】本题主要考查了相似三角形的判定,掌握相似三角形的判定是解题的关键.26、(1)见详解;(2)60°【分析】(1)先判断出△ABC 是等边三角形,由等边三角形的性质可得BC=AC ,∠ACB=∠ABC ,再求出CE=BF ,然后利用“边角边”证明即可;(2)由△ACE ≌△CBF ,根据全等三角形对应角相等可得∠E=∠F ,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CGE=∠ABC 即可.【详解】(1)证明:∵菱形ABCD ,60ABC ∠=︒,∴ABC 是等边三角形,∴BC AC =,∠=∠ACB ABC ,∵BE AF =,∴BE BC AF AB +=+,即CE BF =,在ACE △和GBF 中,∵CE BF ACE CBF CA BC =⎧⎪∠=∠⎨⎪=⎩,,,,∴ACE CBF SAS ≌(). (2)解:∵ACE CBF ≌,∴E F ∠=∠,∴E BAE F FAG ∠+∠=∠+∠,∴CGE ABC ∠∠=,∵60ABC ∠=︒,∴60CGE ∠=︒.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质等知识;熟记性质并确定出三角形全等的条件是解题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.D
解析:D
【解析】
试题分析:根据轴对称图形和中心对称图形的概念,可知:
A既不是轴对称图形,也不是中心对称图形,故不正确;
B不是轴对称图形,但是中心对称图形,故不正确;
C是轴对称图形,但不是中心对称图形,故不正确;
D即是轴对称图形,也是中心对称图形,故正确.
故选D.
考点:轴对称图形和中心对称图形识别
A.25°B.40°C.35°D.30°
12.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( )
A.正三角形B.矩形C.正八边形D.正六边形
二、填空题
13.有一人患了流感,经过两轮传染后共有 人患了流感,每轮传染中平均一个人传染了__人.
14.如图,将二次函数y= (x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.
7.A
解析:A
【解析】
【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x2+x﹣3=0有两个不相等的实数根.
【详解】∵a=1,b=1,c=﹣3,
∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,
∴方程x2+x﹣3=0有两个不相等的实数根,
故选A.
【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.
三、解答题
21.在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.
(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);
(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
【详解】
∵点O是△ABC的内切圆的圆心,∴∠OBC= ∠ABC,∠OCB= ∠ACB.
∵∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∴∠OBC+∠OCB= (∠ABC+∠ACB)=50°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣50°=130°.
故选B.
【点睛】
本题主要考查对三角形的内角和定理,三角形的内切圆与内心等知识点的理解和掌握,能求出∠OBC+∠OCB的度数是解答此题的关键.
A.x(x-20)=300B.x(x+20)=300C.60(x+20)=300D.60(x-20)=300
5.如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为()
A.100°B.130°
C.50°D.65°
6.下列图标中,既是轴对称图形,又是中心对称图形的是()
A. B. C. D.
3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知 ,则球的半径长是()
A.2B.2.5C.3D.4
4.现有一块长方形绿地,它的短边长为20 m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m2,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
解析:C
【解析】
【分析】
由AC是⊙ 的切线可得∠CAB= ,又由 ,可得∠ABC=40 ;再由OD=OB,则∠BDO=40 最后由∠AOD=∠OBD+∠OBD计算即可.
【详解】
解:∵AC是⊙ 的切线
∴∠CAB= ,
又∵
∴∠ABC= - =40
又∵OD=OB
∴∠BDO=∠ABC=40
又∵∠AOD=∠OBD+∠OBD
2020-2021莆田擢英中学初三数学上期末试题含答案
一、选择题
1.如图,AB是⊙ 的直径,AC是⊙ 的切线,A为切点,BC与⊙ 交于点D,连结OD.若 ,则∠AOD的度数为( )
A. B. C. D.
2.已知 , 是方程 的两个实数根,则 的值是( )
A.2023B.2021C.2020D.2019
【详解】
连接AC,OD.
∵AB是直径,
∴∠ACB=90°,
∴∠ACD=125°﹣90°=35°,
∴∠AOD=2∠ACD=70°.
∵OA=OD,
∴∠OAD=∠ADO,
∴∠ADO=55°.
∵PD与⊙O相切,
∴OD⊥PD,
∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.
故选:C.
【点睛】
本题考查了切线的性质、圆周角定理及推论,正确作出辅助线是解答本题的关键.
∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.
故选D.
【点睛】
本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.
11.C
解析:C
【解析】
【分析】
连接AC,OD,根据直径所对的圆周角是直角得到∠ACB是直角,求出∠ACD的度数,根据圆周角定理求出∠AOD的度数,再利用切线的性质即可得到∠ADP的度数.
故选A.
【点睛】
本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.
5.B
解析:B
【解析】
【分析】
根据三角形的内切圆得出∠OBC= ∠ABC,∠OCB= ∠ACB,根据三角形的内角和定理求出∠ABC+∠ACB的度数,进一步求出∠OBC+∠OCB的度数,根据三角形的内角和定理求出即可.
【详解】
如图:
EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,
∵四边形ABCD是矩形,
∴∠C=∠D=90°,
∴四边形CDMN是矩形,
∴MN=CD=4,
设OF=x,则ON=OF,
∴OM=MN-ON=4-x,MF=2,
在直角三角形OMF中,OM2+MF2=OF2,
即:(4-x)2+22=x2,
22.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE
(1)求∠DCE的度数;
(2)若AB=4,CD=3AD,求DE的长.
23.解下列方程3(x-2)2=x(x-2).
24.在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.
故选C.
10.D
解析:D
【解析】
【分析】
根据旋转的性质可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性质即可求得 的度数.
【详解】
∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,
∴∠B′=∠B=30°,
∵△AOB绕点O顺时针旋转52°,
∴∠BOB′=52°,
∵∠A′CO是△B′OC的外角,
【详解】
, 是方程 的两个实数根,
∴ , , ,
∴ ;
故选A.
【点睛】
本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.
3.B
解析:B
【解析】
【分析】
取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.
15.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.
16.若直角三角形两边分别为6和8,则它内切圆的半径为_____.
17.如图,在直角坐标系中,已知点 、 ,对 连续作旋转变换,依次得到 ,则 的直角顶点的坐标为__________.
8.D
解析:D
【解析】
【分析】
根据二次函数的性质,利用数形结合的思想一一判断即可.
【详解】
解:∵抛物线的开口向上,
∴a>0,
∵对称轴在y轴的右侧,
∴a,b异号,
∴bHale Waihona Puke 0,∵抛物线交y轴于负半轴,
∴c<0,
∴abc>0,故①正确,
∵x=1时,y<0,
∴a+b+c<0,故②错误,
∵x=-1时,y>0,
∴a-b+c>0,
x=12或x=-14(舍去).
平均一人传染12人.
故答案为12.
14.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B(4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x轴交B′B的延长线于点
解析:y=0.5(x-2) +5
12.C
解析:C
【解析】
因为正八边形的每个内角为 ,不能整除360度,故选C.
二、填空题
13.12【解析】【分析】【详解】解:设平均一人传染了x人x+1+(x+1)x=169x=12或x=-14(舍去)平均一人传染12人故答案为12
解析:12
相关文档
最新文档