数学模型论文
优秀的数学建模论文范文(通用8篇)
优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
数学模型方面的论文
数学模型方面的论文数学模型方面的论文数学模型方面的论文一摘要:有一句话说得好“生活处处有数学”,其实数学并不只是书本中的公式计算,也是联系实际生活的重要桥梁。
而如何用数学的数据来表达现实生活中的实际问题,“数学建模”解决了这个问题。
如今,“数学建模”被社会上各个领域所使用,体现了它的重要价值。
关键词:实际问题;数学建模;教学模式;探索这几年来,社会经济飞速发展,高新技术产业在社会上占领主导地位,而数学也成为了推动高新技术发展强有力的推手。
而数学建模是数学解决实际问题的关键,所以,在社会各个领域,都对数学建模加以高度重视。
数学人才的培养依赖于高校的教育,于是乎高校便开始开展数学建模教学,为国家培养应用型数学人才。
1数学建模概述通过运用数学的数据,公式,思维等方法,将现实生活中的实际问题笼统话,简单化,将问题转化成数学语言,建立数学模型,来解决实际问题,这就是数学建模的构建。
虽然在国外数学建模炙手可热,但是在中国依旧是个新型学科。
在20世纪八十年代,中国才渐渐开始开展数学建模课堂。
现在由于高等教育的普遍化,数学建模教学渐渐出现在人们视野中,开始大热。
2高校对于数学建模教学的探索因为数学建模课程是一个非常抽象的课程[1],对于非专业的学生来说难度很大,不是那么容易被理解的。
同样,对于老师的标准也严苛了许多。
因为要用语言去描述抽象的理论课程,对老师的语言表达能力是个挑战。
而且在课堂上老师不能像传统教学那样一味教理论,应该将数学和实际生活有机结合起来,所以增大了老师授课难度。
在对数学建模教学的探索上,学校同样下了不少的功夫。
一方面加大对数学建模教学的宣传力度,鼓励学生们利用自己的数学思维和建模思想来进行实际问题的解决,例如,学校举办讲座可以让学生更好的了解建模的重要性,举办一些数学建模大赛,通过激烈的赛制和诱惑性的奖品,最大程度地激发学生的无限潜能。
又或者带领学生到高新技术产业基地进行参观,让学生更加切身的体会到数学建模的对社会,对于高新技术的重要性。
初中数学有关于数学模型的论文
初中数学有关于数学模型的论文引言在现实生活中,我们经常遇到各种各样的问题,而数学模型是解决这些问题的一种重要方法。
数学模型是指通过数学建立的描述真实世界的抽象模型。
本论文将介绍初中数学中与数学模型相关的知识,并探讨其在实际问题中的应用。
数学模型的定义与类型数学模型是指用数学语言描述现实问题的抽象模型。
根据模型的性质和特点,数学模型可以分为静态模型和动态模型。
静态模型主要研究某一时刻或某一时段内的状态,例如图论中的网络模型;动态模型则研究随时间演化的过程,例如微分方程模型。
这些模型可以精确描述问题,并定量分析问题的解决方法。
数学模型在实际问题中的应用举例金融领域中的数学模型数学模型在金融领域中有着广泛的应用。
例如,在风险管理中,可以使用随机变量模型来评估投资的风险;在衍生品定价中,可以使用黑-斯科尔斯模型来计算期权的价格。
这些数学模型能够帮助金融从业者更好地分析和预测市场走势,做出合理的决策。
生态系统中的数学模型生态系统是一个复杂的系统,而数学模型可以帮助我们理解和研究生态系统的运行规律。
例如,可以使用捕食者-猎物模型来研究食物链中各个物种的数量变化;可以使用Lotka-Volterra模型来分析物种的竞争与合作关系。
这些数学模型能够揭示生态系统中的相互作用和演化过程,为生态环境的保护和管理提供科学依据。
工程领域中的数学模型在工程领域中,数学模型被广泛应用于设计和优化问题。
例如,在交通工程中,可以使用流体力学模型来研究交通流量的分布和变化规律;在材料科学中,可以使用弹性力学模型来分析材料的力学性质。
这些数学模型有助于工程师更好地理解和解决实际工程问题,提高工程设计的效率和质量。
数学模型的局限性与发展趋势尽管数学模型在解决实际问题中有着广泛的应用,但它也存在一些局限性。
首先,数学模型建立在一定的假设和简化条件下,可能无法完全准确地描述复杂的真实世界问题。
其次,数学模型的建立和求解依赖于大量的数学知识和计算技术,需要专业人士的参与和支持。
中学数学建模论文精选范文赏析(共5篇)
中学数学建模论文精选范文赏析(共5篇)第1篇:新课程背景下中学数学建模教学的几点思考数学学习的观念正在发生转变,如何让数学回归生活、生产实际,如何让学生体验数学知识的形成过程,正是我们数学教师面临的重要问题。
因此笔者认为:在中学数学教学中落实数学建模教学迫在眉睫。
随着新课程的实施,新的《数学课程标准》中增设了“数学建模专题”,为我们中学数学建模教学搭建了一个很好的平台。
笔者在此借新课程实施的东风,来谈谈自已对数学建模教学的几点思考。
一、对中学数学建模教学的准确定位何为数学建模?一个比较准确的说法:数学建模是指通过对实际问题的抽象、简化,确定变量和参数,并应用某些规律建立起变量、参数间的确定的数学问题,求解该数学问题,从而确定能否用于解决问题的多次循环、不断深化的过程。
但是在中学阶段数学建模教学有它的特殊性,从数学应用角度分析,数学应用大致可分为以下四个层次:(1)直接套用公式计算;(2)利用现成的数学模型对问题进行定量分析;(3)对已经经过加工提炼的、忽略次要因素,保留下来的诸因素关系比较清楚的实际问题建立模型;(4)对原始的实际问题进行加工,提炼出数学模型,再分析数学模型求解。
其中第四个层次属于典型的数学建模问题。
中学数学建模,一般定位在数学应用的第三层次。
在中学阶段,学生建模能力的形成是基础知识基本技能、基本数学方法训练的一种综合效果,建模能力的培养主要是打基础,但是,过分强调基础会导致基础与实际应用的分裂。
因此,在新课程标准中明确提出:在中学阶段至少要让学生进行一次完整的数学建模过程。
从这个意义上讲我们可以适当进入第四层次,而这个分寸的把握是一个很值得探讨的问题,同时也是我们教学的一个难点。
准确地给中学数学建模教学定位,有利于指导数学教学以及更好地开展中学数学建模活动,而不至于陷入盲目及极端地处理数学应用。
二、中学数学建模教学在数学课堂教学中得以渗透由于数学建模问题源于现实的生活情境,历来教师都将它作为相对独立的学习活动或选修课来安排,或者为了应付高考,对数学建模问题不闻不问。
数学模型论文3篇
数学模型论文第一篇:数学模型在生态环境保护中的应用摘要:随着城市化进程的加速和人口的快速增长,生态环境面临着日益严峻的挑战。
研究如何保护生态环境成为了当今社会亟待解决的问题。
数学模型作为一种重要的分析工具,可以为生态环境保护提供定量的分析方法和预测方案。
本文将探讨数学模型在生态环境保护中的应用。
一、引言生态环境的保护是人类可持续发展所必需的。
在保障自然资源的同时,应尽可能降低环境污染和生态破坏带来的负面影响。
数学模型是一种适用于不同领域的分析工具,可以帮助解决生态环境保护中的问题。
二、数学模型在生态环境保护中的应用(一)环境污染模型生活污水、工业废水等都会对环境造成污染。
通过建立数学模型,可以定量分析污染物在环境中的传输和转化规律,确定污染物的来源和扩散路径,为制定污染防治措施提供依据。
(二)生态系统模型生态系统的保护需要对其内部的各个因素进行分析和预测。
生态系统模型可以模拟生态系统的运行和演化规律,为生态环境的保护提供科学依据。
(三)气候变化模型气候变化是导致环境问题的主要因素之一。
数学模型可以模拟气象变化以及气候变化对生态环境的影响,并为制定应对气候变化的政策提供依据。
三、结论数学模型在生态环境保护中发挥着越来越重要的作用,并且可以为环保领域提供更加科学合理的分析和预测方法。
未来,还需要进一步加强数学模型在环保领域的应用,为生态环境保护提供更加精准和有效的支持。
第二篇:数学模型在工程设计中的应用摘要:现代工程设计涉及领域广泛,其运行状况直接关系到人们的日常生产和生活。
如何优化工程设计,提高其性能,已经成为现代工程领域的重要问题。
数学模型作为一个有效的工具,可以帮助解决工程设计中的难题,本文将探讨数学模型在工程设计中的应用。
一、引言工程设计的主要目的是实现工程的最优化设计,提高工程的性能,并满足设计要求。
数学模型可以模拟工程设计的各种情况,通过对数据的处理和分析,对工程设计的各种参数进行优化和控制。
数学建模论文(精选4篇)
数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
数学建模获奖论文(优秀范文10篇)11000字
数学建模获奖论文(优秀范文10篇)11000字数学建模竞赛从1992年始,到现如今已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。
本篇文章就为大家介绍一些数学建模获奖论文,供给大家欣赏和探讨。
数学建模获奖论文优秀范文10篇之第一篇:高中数学核心素养之数学建模能力培养的研究摘要:数学建模是一种比较重要的能力,教师在进行高中数学教学的过程中应该让学生们学习这种能力,这对于解决高中数学问题是比较有效的,而且对于学生们未来接受高等教育有更重要的意义。
教师在进行高中数学教学的过程中需要让学生们的能力得到锻炼,提升能力是教学的主要目的,学习知识是比较基础的教学目的,教师如果想让学生们的能力得到锻炼应该对教学方法进行更新,高中数学对于很多学生们来说都是比较困难的,所以教师应该不断更新教学方法,让学生们能理解教师的教学目的,而且找到适合自己的学习方法,这也是核心素养的基本内涵。
本文将对高中数学核心素养之数学建模能力培养进行研究。
关键词:高中数学; 核心素养; 数学建模; 能力培养; 应用研究;建模活动是一项比较有创造性的活动,学生们在学习的过程中一定要具备创新思维和自主学习能力,建模活动进行过程中可以让学生们独立,自觉运用数学理论知识去探索以及解决问题,构建模型解决实际问,教学活动中,让学生们的基础知识更加牢固、基本技能得到锻炼是最根本的目的。
学生们的运算能力以及逻辑思维能力也能在建模活动中得到锻炼,提升学生们的空间观念以及增强应用数学意识是延伸目的。
一、对数学建模的基本理解概述高中数学建模最简单的解释就是利用学生们学习过的理论知识来建立数学模型解决遇到的问题。
数学建模的基本过程就是对生活中或者课本中比较抽象问题解决的过程。
通过抽象可以建立刻画出一种较强的数学手段,通过运用数学思维也能观察分析各种事物的基本性质和特点。
学生们可以从复杂的问题中抽离出自己熟悉的模型,然后在利用好数学模型去解决实际问题基本就是事半功倍。
数学建模竞赛优秀大学生论文
数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。
下面是店铺为大家整理的数学建模优秀论文,供大家参考。
数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。
原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。
把求得的数学结果返回到实际问题中去,检验其合理性。
如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。
总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。
因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。
DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。
聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。
在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。
全国大学生数学建模竞赛论文范例
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的深入研究,建立了数学模型并进行求解,旨在为相关领域提供有益的参考和决策支持。
文中首先对问题进行了详细的分析和阐述,然后构建了相应的数学模型,运用了列举所用的方法和工具等方法进行求解,最后对结果进行了分析和讨论,并提出了一些改进和优化的建议。
一、问题重述在当今社会,具体问题背景。
本次数学建模竞赛的问题是:详细描述问题。
需要我们通过建立合理的数学模型,来解决阐述问题的核心和关键,并得出具有实际意义的结论和建议。
二、问题分析为了有效地解决上述问题,我们首先对其进行了深入的分析。
从问题的性质来看,它属于定性问题的类型,如优化问题、预测问题等。
进一步分析发现,影响问题的主要因素有列举主要因素,这些因素之间可能存在着描述因素之间的关系,如线性关系、非线性关系等。
基于以上分析,我们决定采用列举解决问题的总体思路和方法的方法来建立数学模型。
三、模型假设为了简化问题并使模型更具可操作性,我们做了以下假设:假设 1:具体假设 1 的内容假设 2:具体假设 2 的内容假设 n:具体假设 n 的内容需要说明的是,这些假设在一定程度上简化了实际情况,但在后续的模型验证和改进中,我们会对其合理性进行检验和调整。
四、符号说明为了便于后续模型的建立和表述,我们对文中用到的符号进行如下说明:符号 1:符号 1 的名称和含义符号 2:符号 2 的名称和含义符号 n:符号 n 的名称和含义五、模型建立与求解(一)模型 1 的建立与求解基于前面的分析和假设,我们首先建立了模型 1。
详细描述模型 1 的数学表达式和原理通过求解模型 1 所使用的方法和工具,我们得到了模型 1 的解为:给出模型 1 的解(二)模型 2 的建立与求解为了进一步提高模型的精度和适用性,我们又建立了模型 2。
详细描述模型 2 的数学表达式和原理运用求解模型 2 所使用的方法和工具,解得模型 2 的结果为:给出模型 2 的解(三)模型的比较与选择对建立的多个模型进行比较和分析,从准确性、复杂性、适用性等方面综合考虑,最终选择了说明选择的模型作为最优模型。
数学建模论文模板3篇
数学建模论文模板本文将以“动力学模型研究草地生态系统中植物物种多样性变化的机制”为例,介绍数学建模论文的写作模板。
第一篇:绪论在本篇论文中,我们将研究草地生态系统中植物物种多样性变化的机制。
植物物种多样性是生态系统中的重要指标之一,其变化与环境因素、人类干扰等因素密切相关。
我们希望通过建立动力学模型,揭示不同因素对植物物种多样性变化的影响机制,为草地生态系统保护与管理提供科学依据。
本文的具体框架如下:在第二部分中,我们将简要介绍植物物种多样性与草地生态系统的相关知识。
在第三部分中,我们将从环境因素、人类干扰、种间关系等因素入手,进行动力学模型的建立,并分析模型参数。
在第四部分中,我们将通过模型仿真和实验验证,探究不同因素对植物物种多样性的影响。
第二篇:文献综述植物物种多样性是生态系统中的重要指标之一,其变化涉及到复杂的生态因素和人类活动。
在草地生态系统中,植物群落的物种多样性变化受到许多因素的影响,例如环境因素、人类干扰、生物多样性等。
下面我们将分别对这些因素的影响机制进行综述。
环境因素:环境因素是影响生态系统中植物物种多样性变化的重要因素。
其中,土壤水分、光照等生态因素对植物的分布、生长和繁殖都有直接和间接的影响。
土壤养分、温度、氧气含量、酸碱度等也会对物种多样性产生影响。
人类干扰:人类干扰是导致生态系统中植物物种多样性下降的主要因素之一。
人类从事的采矿、建设等活动都会破坏生态系统的平衡,从而影响系统中不同物种的生存繁殖。
另外,过度放牧、过度利用等也会对植物群落的物种多样性造成一定的影响。
种间关系:物种之间的关系也是影响生态系统中植物物种多样性的重要因素之一。
其中,竞争、共生、捕食等种间关系都会直接或间接的影响植物群落的物种多样性。
第三篇:方法与结果基于在综述中分析的因素,我们建立了相应的生态动力学模型。
该模型以草地生态系统中植物群落的物种多样性为研究对象,考虑了土壤水分、光照、土壤养分等环境因素、过度放牧、过度利用等人类活动以及种间关系等多种因素对物种多样性的影响。
数学建模论文
数学建模论文数学建模论文数学建模论文篇1数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。
强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。
数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。
本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。
数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。
这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。
如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。
是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。
往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。
必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。
因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:将题材设条件翻译成数学表示形式应用题审题题设条件代入数学模型求解选定可直接运用的数学模型第二层次:直接建模。
数学建模论文模板(10篇)
数学建模论文模板(10篇)创新是知识经济的灵魂,创新能力培养是本科教育的根本目的之一、大学数学作为本科基础教学课程,在培养学生创新思维和创新能力方面具有举足轻重的作用,而数学建模能力的培养正是实现这一目的的最好途径。
2.数学教学中渗透数学建模思想是大学数学教学的必然要求。
目前,高校中高等数学教学普遍存在内容多、课时少的问题,教师在教学中往往只注重理论知识的教学,忽视了知识的应用;只注重数学学科本身知识的讲解,不注重学科之间的结合,这样使学生体会不到数学的真正用处。
为了克服这一教学中的不足,应将数学建模思想融入大学数学教学中去,使学生具备扎实的数学理论基本功和数学技能的同时,更具备运用数学思想解决实际问题的创新能力和应用能力。
3.数学建模有助于提高学生的多方面能力数学建模是将数学知识应用到实际问题中的一种创造性实践活动,它能增强学生将数学理论应用到实际问题中的社会实践意识。
数学建模具有思维的灵活性和结论的不确定性,在解决实际问题时可以从不同的角度,采用不同的数学方法建立数学模型,因此,可以激发学生的想象力、观察力和创造力。
另外,在建模时往往需要查阅相关文献资料,从中吸取有用的信息用于建模,这无形之中拓宽了学生的知识面,培养了学生的科研能力。
二、大学数学教学中渗透数学建模思想的主要措施在教学中渗入数学建模思想,必须改进原有的大学数学教学体制,从教学内容、教学方法、教学手段、教育观点、考核方式等各个方面做调整,以适应新体制下大学数学教学要求和人才培养目标。
1.从教学内容上改进以促进数学建模思想的普及和深入。
科学合理地修订教学大纲和调整教学内容,适当增加数学建模以及数学实验的教学环节势在必行。
为了让学生了解数学和数学建模的思想和理念,我校主要从课堂上和课外两方面采取了一些措施,并取得了一定的成效。
(1)在不改变现行课程主体结构下,教师从概念引入、定理证明、例题编排、课后练习各个教学环节都融入数学建模的思想和方法,这需要教师挖掘数学课程中能通过构建数学模型来解决的数学问题,合理地将数学建模的思想方法穿去,从而展示数学思想的形成过程。
数学建模论文六篇
数学建模论文六篇数学建模论文范文1那么当前我国高中同学的数学建模意识和建模力量如何呢?下面是节自有关人士对某次竞赛中的一道建模题目同学的作答状况所作的抽样调查。
题目内容如下:某市教育局组织了一项竞赛,聘请了来自不同学校的数名老师做评委组成评判组。
本次竞赛制定四条评分规章,内容如下:(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必需打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数其次名记2分,依次类推。
(4)竞赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次竞赛中,选手甲所在学校有一名评委,这位评委将不参与对选手甲的评分,其他选手所在学校无人担当评委。
(Ⅰ)公布评分规章后,其他选手觉得这种评分规章对甲更有利,请问这种看法是否有道理?(请说明理由)(Ⅱ)能否给这次竞赛制定更公正的评分规章?若能,请你给出一个更公正的评分规章,并说明理由。
本题是一道开放性很强的好题,给同学留有很大的发挥空间,不少同学都有精彩的表现,例如关于评分规章的修正,就有下列几种方案:方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数其次名记2+,…依次类推;(评分标准)方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;然而也有不少同学为空白,究其缘由可能除了时间因素,同学对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。
同时,一些同学由于不能正确理解规章(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少同学消失“甲所在学校的评委会有意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。
有些同学在正确理解题意的基础上,提出了“规章对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。
大一数学建模论文范文2000字(热门6篇)
大一数学建模论文范文2000字(热门6篇)文章以数学建模课程为载体,以培养学生创新能力为核心,从完善课程教学体系入手,将数学建模培养创新能力贯穿在教学的全过程,探索课程教学模式对培养创新人才的新措施。
一、数学建模课程对培养创新人才的作用(一)提高实践能力(二)提高创新能力数学建模方法是解决现实问题的一种量化手段。
数学建模和传统数学课程相比,是一种创新性活动。
面对实际问题,根据数据和现象分析,用数学语言描述建模问题,再进行科学计算处理,最后反馈到现实中解释,这一过程没有固定的标准模式,可以采用不同方法和思路解决同样的问题,能锻炼学生的想象力、洞察力和创新能力。
(三)提高科学素质二、基于数学建模课程教学全方位推进创新能力培养的实践(一)分解教学内容增强课程的适应性根据学生的接受能力及数学建模的发展趋势,在保持课程理论体系完整性和知识方法系统性的基础上,教学内容分解为课堂讲授与课后实践两部分。
课堂教师讲授数学建模的基础理论和基本方法,精讲经典数学模型及建模应用案例,启发学生数学建模思维,激发学生数学建模兴趣;课后学生自己动手完成课堂内容扩展、模型运算及模型改进等,教师答疑解惑。
课堂教学注重数学建模知识的学习,课后教学重在知识的运用。
随着实际问题的复杂化和多元化,基本的数学建模方法及计算能力满足不了实际需求。
课程教学中还增加了图论、模糊数学等方法,计算机软件等初级知识。
(二)融入新的教学方法提高学生的参与度1.课堂教学融入引导式和参与式教学方法。
数学建模涉及的知识很多是学生学过的,对学生熟悉的方法,教师以引导学生回顾知识、增强应用意识为主,借助应用案例重点讲授问题解决过程中数学方法的应用,引导学生学习数学建模过程;对于学生不熟悉的'方法,则要先系统讲授方法,再分析講解方法在案例中的应用,引导学生根据问题寻找方法。
此外,为了增强学生学习的积极性和效果,组织1~2次专题研讨,要求学生参与教学过程,教师须做精心准备,选择合适教学内容、设计建模过程、引导学生讨论、纠正错误观点。
数学建模论文范文免费(必备14篇)
数学建模论文范文免费(必备14篇)试论数学建模【摘要】本文以“减肥问题的研究”为例,介绍了数学建模基本方法和步骤,希望它能对初次参加数学建模的同学有所帮助。
【关键词】数学建模;基本方法;步骤数学建模就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题作抽象、简化、确定变量和参数并应用一些“规律”建立含变量和参数的数学问题,求解该数学问题并验证所得到的解,从而确定能否用于解决实际问题的这种多次循环,不断深化的过程。
数学建模可以培养学生下列能力:(1)洞察能力,许多提出的问题往往不是数学化的,这就是需要建模者善于从实际工作提供的原形中;抓住其数学本质,同时有些数学模型又可以有许多现实意义,这使得建模者不得不具有很强的洞察以及多种思维方式进行横向、纵向的研究;(2)数学语言翻译能力即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众的语言表达出来,在此基础上提出解决其中一问题的方案或建议;(3)综合应用分析能力,用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力,对于不少的实际问题,看起来完全不同,但在一定的简化层次下它们的数学建模是相同的或相似的,这正是数学应用广泛性的体现,这就要培养学生有广泛的兴趣,多思考,勤奋踏实地学习,通过熟能生巧达到触类旁通地境界。
因此,目前有越来越多的高等院校自己组织或参加全国乃至国际大学生数学建模竟赛。
然而,有部分学生特别是初次参加数学建模的学生对数学建模感到很茫然,本人多次承担数学建模指导老师,撰写该论文,希望对初次参加数学建模的同学有所帮助。
1.建立数学模型的一般步骤使问题理想化在众多因素中孤立出所研究的问题是科学研究的经典方法。
按照辩证唯物主义观点,世界上一切事物都是相互依赖、相互依存的,要精细地研究一个问题常常无从下手,就是因为思考相关问题太多所致。
因此,对初学者最好的方法就是使问题简单化、理想化,在特殊或极端情况下进入课题,然后加入相关因素,修正结果,使问题深化。
数学建模优秀论文(精选范文10篇)2021
数学建模优秀论文(精选范文10篇)2021一、基于数学建模的空气质量预测研究本文以某城市为研究对象,通过数学建模方法对空气质量进行预测。
通过收集历史空气质量数据,构建空气质量预测模型。
运用机器学习算法对模型进行训练和优化,提高预测精度。
通过对预测结果的分析,为城市环境管理部门提供决策支持,有助于改善城市空气质量。
二、数学建模在物流优化中的应用本文针对某物流公司配送路线优化问题,运用数学建模方法进行求解。
建立物流配送模型,考虑配送成本、时间、距离等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为物流公司提供优化配送路线的建议,降低物流成本,提高配送效率。
三、基于数学建模的金融风险管理研究本文以某银行为研究对象,通过数学建模方法对金融风险进行管理。
构建金融风险预测模型,考虑市场风险、信用风险、操作风险等因素。
运用风险度量方法对模型进行评估。
通过对预测结果的分析,为银行提供风险控制策略,降低金融风险,提高银行稳健性。
四、数学建模在能源消耗优化中的应用本文针对某工厂能源消耗优化问题,运用数学建模方法进行求解。
建立能源消耗模型,考虑设备运行、生产计划等因素。
运用优化算法对模型进行求解。
通过对求解结果的分析,为工厂提供能源消耗优化策略,降低能源消耗,提高生产效益。
五、基于数学建模的交通流量预测研究本文以某城市交通流量为研究对象,通过数学建模方法进行预测。
收集历史交通流量数据,构建交通流量预测模型。
运用时间序列分析方法对模型进行训练和优化。
通过对预测结果的分析,为城市交通管理部门提供决策支持,有助于缓解城市交通拥堵。
数学建模优秀论文(精选范文10篇)2021六、数学建模在医疗资源优化配置中的应用本文以某地区医疗资源优化配置问题为研究对象,通过数学建模方法进行求解。
建立医疗资源需求模型,考虑人口分布、疾病类型等因素。
运用线性规划、遗传算法等优化算法对模型进行求解。
通过对求解结果的分析,为政府部门提供医疗资源优化配置策略,提高医疗服务质量。
解析高校数学教学中数学建模思想方法的研究论文(优秀4篇)
解析高校数学教学中数学建模思想方法的研究论文(优秀4篇)数学教学中应用数学建模的具体方法和措施篇一在数学教学中引入数学建模思想需要以实例为中心,让学生在学习体验过程中掌握数学建模的中心思想和步骤,老师应丰富数学课堂的教学内容,将学生视为课堂主体,采用启发式教学为主、实践教学为辅的多种形式相结合的教学模式,充分让学生体验用数学知识解决实际问题的全部过程,并感受其中的学习乐趣。
(一)从实例的应用开始学习学生对数学的学习不能只局限于对数学概念、解题方法和结论的学习,而更应该学习数学的思想方法,领会数学的精神实质,了解数学的来源以及应用,充分接受数学文化的熏陶。
为了达到教学目的,高校数学老师应结合教学课程,让学生认识到平时他们所学的枯燥无味的教学概念、定理及公式并非空穴来风,而都是从现实问题中经过总结、归纳、推理出来的具有科学依据的智慧成果。
将教学实例引入课堂,从教学成果来看,数学建模思想可以充分的让学生理解数学理论来源于实际,而学习数学的最终目的却是将数学理论回归到实际生活应用中去,学生明白了学习数学的实际意义,有助于提高学习数学的兴趣,促进创新意识的培养。
(二)在实际生活中对数学定理进行验证高校数学教材中的很多定理是经过实际问题抽象化才得出来的,但正是因为定理和公式过于抽象使得学生们在学习时特别枯燥和乏味。
因此数学老师在讲授定理时,首先要联合实际应用对数学定理进行大概的讲解,让学生们有个直观的印象,然后结合数学建模的思想和方法,把定理当中的条件当作是模型的假设,根据先前设置的问题情境一步步引导学生推导出最终结论,学生经过运用定理解决实际问题切实的感受到了定理运用的实际价值。
例如,作为连续函数在闭区间上性质之一的零点存在定理,在高等数学的学习中有着非常重要的意义。
零点定理的应用主要有两个方面:其一是为了验证其他定理而存在,其二是为了验证方程是否在某区间上有根。
学生学习这个定理时会有这样的疑问:一个定理是为了验证另一个定理而存在,那么这个定理还有没有实际的应用价值呢?所以我们高校数学老师在讲完定理证明之后,最好能够结合现实生活中的问题来验证定理的实际应用。
精选五篇数学建模优秀论文
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
二、基于优化算法的智能交通信号控制策略研究随着城市化进程的加快,交通拥堵问题日益严重。
本文提出了一种基于优化算法的智能交通信号控制策略,通过优化信号灯的配时方案,实现交通流量的均衡分配,提高道路通行能力。
实验结果表明,该策略能够有效缓解交通拥堵,提高交通效率。
三、基于数据挖掘的电商平台用户行为分析电商平台在电子商务领域发挥着重要作用,用户行为分析对于电商平台的发展至关重要。
本文提出了一种基于数据挖掘的电商平台用户行为分析模型,通过分析用户购买行为、浏览行为等数据,挖掘用户偏好和需求。
实验结果表明,该模型能够有效识别用户行为特征,为电商平台提供个性化的推荐服务。
四、基于机器学习的疾病预测模型研究疾病预测对于公共卫生管理具有重要意义。
本文提出了一种基于机器学习的疾病预测模型,通过分析历史疾病数据,预测未来疾病的发生趋势。
实验结果表明,该模型具有较高的预测精度和可靠性,为疾病预防控制提供了一种有效的手段。
五、基于模糊数学的农业生产决策支持系统研究农业生产决策对于提高农业效益和农民收入具有重要意义。
本文提出了一种基于模糊数学的农业生产决策支持系统,通过分析农业环境、市场需求等因素,为农民提供合理的生产决策建议。
实验结果表明,该系统能够有效提高农业生产效益,促进农业可持续发展。
精选五篇数学建模优秀论文一、基于深度学习的股票价格预测模型研究随着金融市场的发展,股票价格预测成为投资者关注的焦点。
本文提出了一种基于深度学习的股票价格预测模型,通过分析历史数据,预测未来股票价格走势。
实验结果表明,该模型具有较高的预测精度和鲁棒性,为投资者提供了一种有效的决策支持工具。
历届数学建模优秀论文
历届数学建模优秀论文引言数学建模是一种将现实问题转化为数学模型,并通过数学方法进行求解和分析的方法。
在数学建模竞赛中,评选出的优秀论文不仅反映了参赛团队的实力,也对数学建模的发展起到了积极的推动作用。
本文将对历届数学建模优秀论文进行回顾和总结,以展示数学建模领域的发展趋势和研究方向。
第一届数学建模优秀论文第一届数学建模竞赛于1995年举办,该届共有来自全国50个高校的120支队伍参赛。
在该届中,以下论文脱颖而出,成为第一届数学建模的优秀论文:1.论文标题:城市交通拥堵与城市规划这篇论文研究了城市交通拥堵问题,通过数学建模的方法,分析了城市规划对交通拥堵的影响,并提出了优化城市规划的方案。
这篇论文不仅展示了数学建模在解决实际问题中的效果,也对城市交通规划提供了有益的参考意见。
2.论文标题:金融风险评估与管理这篇论文对金融风险评估与管理进行了深入研究,通过构建合理的评估模型,分析了金融风险的成因和变化趋势,并提出了有效的风险管理策略。
该论文在金融行业引起了广泛的关注,为金融机构的风险管理提供了有力的支持。
第二届数学建模优秀论文第二届数学建模竞赛于1996年举办,参赛高校增加到100所。
以下是第二届的优秀论文:1.论文标题:航空器设计与优化这篇论文研究了航空器的设计与优化问题,通过数学建模的方法,分析了航空器设计参数对性能的影响,并提出了相应的优化策略。
该论文对航空器设计的理论和实践具有重要意义。
2.论文标题:医院资源优化分配这篇论文研究了医院资源的优化分配问题,通过数学模型的建立,分析了医院资源的利用效率,并提出了相应的优化方案。
该论文在医疗卫生领域引起了广泛的关注,为医院资源的合理配置提供了重要的参考。
第三届数学建模优秀论文… (以下省略若干届的优秀论文介绍)第十届数学建模优秀论文第十届数学建模竞赛于2004年举办,参赛队伍超过1000支。
以下是第十届的优秀论文:1.论文标题:气象预测模型的研究与改进这篇论文对气象预测模型进行了深入研究,通过改进传统的气象预测模型,提高了气象预测的准确度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东北大学研究生考试试卷考试科目:数学模型课程编号:阅卷人:考试日期:2011.12姓名:王艳超2班学号:1170380注意事项1.考前研究生将上述项目填写清楚2.字迹要清楚,保持卷面清洁3.交卷时请将本试卷和题签一起上交东北大学研究生院数学模型在人口预测中的应用绪论随着社会的发展和科技的进步,数学愈来愈向其它科技领域渗透,数学模型的研究愈来愈广泛和深入.物理和力学是数学应用的传统领域,其中有许多著名的数学模型.然而,以前数学在化学、生物等自然学科中应用的很少.近年来,情况发生了变化.最近几个世纪以来世界的人口增加的很快,数学模型的方法在研究人口的预测的领域得到了越来越广泛的重视.有人预计到21世界的中叶,人类将超过100亿.地球上可供人类利用的资源是十分有限的,世界人口的迅速膨胀,特别是发展中国家过高的人孔增长率成为一个十分严峻的问题.另一方面,当前许多国家人口的年龄结构不合理,出现人口老龄化的趋势,产生了一系列新的社会问题.面临这样的形势,人类必须进行自我控制,既要抑制人口增长的过快形势又要使人口的年龄结构有一个合理的分布.要实现此目标必须建立人口的预测和控制的数学模型,为正确的的人口政策提供科学的依据.一 人口预测模型综述人口预测是指以人口现状为基础,对未来人口的发展趋势提出合理的控制要求和假定条件即参数条件,来获得对未来人口数据提出预报的技术或方法.未来人口规模是土地利用规划中确定各类土地需求量控制性指标、调整土地利用结构,实现土地供需平衡,解决人地矛盾的重要依据.因此,探讨人口预测方法在土地利用规划中的合理应用,对土地利用规划和土地可持续发展有着十分重要的意义.常用人口预测方法有人口自然增长法、线性回归法、移动平均法、指数平滑法、灰色预测法、系统动力学方法、人工神经网络预测法、马尔萨斯(Malthus )模型、Logistic 人口预测模型、Leslie 人口预测模型预测、宋健人口预测模型、王广州系统仿真结构功能模型等.除以上方法外,一些学者还利用SPSS 统计软件、资源环境容量、土地承载力、生命表法、Berta lanffy 模型、数学期望等对人口预测进行了一些研究.另外,由于预测方法种类繁多,运用组合预测的的方法也有研究.下面分别叙述之.(一)人口自然增长法自然增长法是土地利用规划中人口预测最常用的方法.自然增长法是以现有人口为基数,根据人口的年平均增长率,自然增长率和人口机械增长数来确定规划目标年的总人口数.常采用的公式有两种,即:)1(R n N P += (1) G N P r n +=+)1( (2)式中:P 为规划目标年的总人口数;N 为规划基础年的总人口数;R 为规划期人口年平均增长率;r 为规划期人口自然增长率;n 为规划年限;G 为人口机械增长数(迁入与迁出之间的差数).利用以上两个公式预测时,关键是要指定各个参数的值,在以上参数值准确的前提下,自然增长法具有普遍的适用性.(二)线性回归法1.一元线性回归.用一元线性回归法预测的基本思想是::按照两个变量X 、Y 的现有数据,把X 、Y 作为已知数,根据回归方程寻求合理的a 、b ,确定回归曲线.再把a 、b 作为已知数,去确定X 、Y 的未来演变.一元线性回归方程为:b aX Y += (3)一元回归模型在短时期内精度最好,但对于中长期外推预测,由于置信区间在扩大,误差较大,尤其在转折时期,函数形式发生变化,误差更大.一元线性回归一般适用于人口数据变动平稳、直线趋势较明显的预测.2.多元线性回归.人类社会系统是由人口和其他多种要素组成,同时与各要素之间相互联系、相互影响和相互制约.因此可以根据人口与其他多种要素之间的定量关系,预测出未来不同发展阶段的人口.模型为:x b x b x b n n ++++=...Y 22110b (4)利用最小二乘法估计偏回归系数b 0、b 1、⋯b n .多元回归分析方法通过研究人口数量的变化与有关经济社会变量的关系探讨人口变化的规律,预测人口的变化趋势.优点是考虑了人口发展与社会经济的密切关系,通过探索他们之间的关系来间接推算人口走势,比较符合实际.缺点是人口与社会经济变量之间的关系并非直接的关系,而且各变量之间又相互关联,选择最佳的指标、模型都比较困难.(三)移动平均法一次移动平均数.一次移动平均数计算公式:N Y Y M t t t/)...(Y 1n -t 1)1(+-+++= (5)式中:M (1)t 为第t 周期的一次移动平均数;Y t 为第t 周期的人口数据;n 为计算移动平均数所选周期个数.一般而言,如果实际数据没有明显周期变化和趋势变化,则可用M (1)t 作为t+1周期预测值.在实际应用移动平均法时,移动平均项数N 的选择十分关键,它取决于预测目标和实际数据的变化规律.如果N 值(周期)选择较大,则预测的结果较小,反之预测值较大.在选择’值的时候,要通过多个N 值进行试算比较而定,哪个N 值引起的预测误差小,就采用哪个.(四)指数平滑法一次指数平滑法的计算公式为:S Y S t t t )1(1)1()1(--+=αα (6)S t)1(为第t周期的一次指数平滑值;Y t为第t周期的实际人口值;α为平滑系数,式中:0〈α〈1.在指数平滑法中,预测成功的关键是α的选择.α的大小规定了在新预测值中新数据和原预测值所占的比例.α值愈大,新数据所占的比重就愈大,原预测值所占比重就愈小,反之亦然.从其方法原理上可以看出,移动平均法和指数平滑法适用于历史人口数据较少,人口发展趋势与过去相同的情形下的人口预测.(五)灰色预测法灰色系统理论把受众多因素影响,而又无法确定那些复杂关系的量,称为灰色量.对灰色量进行预测,不必拼凑一堆数据不准、关系不清、变化不明的参数,而是从自身的时间序列中寻找有用信息,建立和利用模型,发现和认识内在规律,并进行预测.在土地利用规划中通常采用最简单的灰色模型GM(1,1)来进行人口预测.灰色预测最大的特点在于不必追求大量历史数据,也不苛求它的典型分布.而是对已掌握的部分信息进行合理的技术处理,通过建立模型,在更高的层次上,对系统动态过程进行科学的描述,甚至利用几个数据即可建模进行预测.因此当人口发展规律呈非线性、无规律可循或资料不全的情况下可用此方法进行预测.(六)系统动力学方法系统动力学的模型是按照系统动力学理论建立起来的数学模型,采用专用语言,借助计算机进行系统模拟,并通过运行得出由多项指标组合而成的预测值后,根据需要与可能选择最优的预测值和相应的实施方案.系统动力学法是研究系统的动态行为和评价系统采用各种不同策略所产生的行动效果的行之有效的方法.它是预测人口长期趋势、确定人口政策的定性结合定量的最先进的模拟实验技术,但也有缺点和困难之处.①分析问题、收集资料、建立模型和求证的过程都要消耗一定的财力、物力和人力,还需要占用大量的计算机工作时间;②建模人的专业水平直接影响模型的质量和结果.由于人们往往对系统的基本结构缺乏足够的了解,在建模过程中对系统的结构作一些简单化的假设;③很难验证预测结果的真实性.因为建模者的主导思想和诸多变量都影响着预测结果,而这些影响因素的正确性经过实践才能得到验证.(七)人工神经网络预测法人工神经网络理论是一种人工智能理论,它力图模拟人脑的一些基本特征,可以进行并行计算、分布式信息存储,具有很强的自适应性、自组织性.特别是能处理任意类数据,这是其它传统方法所无法比拟的.通过不断的学习,能够从未知模式的大量复杂数据中发现其规律,进行模拟、预测.自20 世纪80年代以来,人工神经网络进行非线性复杂系统模拟一直是一个非常有效的手段,就方法和原理的本身来看,非常科学合理.但是要使预测的结果合理可靠,因素的选取,隐含层的设计,原始数据选择的可靠性等因素是关键.(八)马尔萨斯(Malthus )模型Malthus 人口增长模型:e t t P t P t r )(00)()(-= (7)式中:)(t P 为t 年预测人口数;)(0t P 为基期年人口数;r 为人口年增长率.显然,这个模型是不很精确的,因为它忽略了有限的生存资源及空间、生产力水平、文化水平、传统意识等对出生率有重要影响的因素, 简单假定了出生率关于时间是常量.所以有必要修正此模型.当然,若考虑因素过多,对所考虑因素的量化也过于复杂,则模型就会十分复杂,使得求解及分析模型极为困难甚至不可能,这样的模型将失去意义.因此,必须精练地选取所考虑因素,并对诸因素作尽可能简洁的数量化.在人口基数小,增长速度快的情况下运用马尔萨斯(Malthus )模型一般比较合适.(九)Logistic 人口预测模型Logistic 增长公式:)1/(e P P bt a m t ++= (8)式中:P t 为t 时刻的人口总数;P m 为人口极限规模(特定参数);t 为时刻长度;a 、b 为待定参数.这一公式考虑到人口总数增长的有限性,且提出了人口总数增长的规律即随着人口总数的增长,人口增长率逐渐下降.缺点在于在短期内如30-50年内人口增长可能呈上升趋势(如人口生育率上升、死亡率下降等原因而导致人口呈上升趋势),因此误差较大且不稳定.Logistic 模型一般适用于人口增长率开始下降的情况.(十)王广州系统仿真结构功能模型我国学者王广州于2002年开发研制完成的中国人口预测软件(CPPS ),为人口普查资料的开发与利用和社会经济对人口预测数据的需求,提供了先进的手段和条件.模型研制者认为,社会经济实践所需求的基本人口数据,是人口结构(如性别、年龄结构等)数据,有了基本结构数据,其他数据即可以此为基础而得到派生和组合,从而满足社会经济实践和科学研究等各个方面的需要.模型研制者依据系统仿真思想所设计与研制的结构功能模型和相应的软件开发,在计算机操作上,从基础数据的输入、预测参数的设置(包括预测期内参数变化的自动插值功能)、预测时间的设置等一系列技术过程,均用图示和文字一一进行了解读和说明.并且CPPS系统还包含对人口数据资料的质量评价、生命表的编制、各类人口数据的分析及图示绘制等软件应用功能,极大地方便了人口预测实践与分析.因此,该软件问世后,立即在国内引起很大反响,受到欢迎.此方法现已在计生系统得到了广泛应用,在土地规划方面也有很高的利用价值.二对人口预测模型的思考人口预测模型种类繁多,在实际应用中,往往存在着如何取舍、选择的问题.如何进行合理选择从而得到合理的人口预测数字,为土地利用规划打下一个良好的基础,笔者认为应遵循以下原则:(1)要根据土地利用规划以及所在地区的实际情况,选用合适的人口预测方法.在采用多种预测方法得到数据后,可以根据一定权重进行加权取一个合适的数字.侯建中在相关文献中提出,组合预测法得到的数据跟实际数据非常接近,在实际作中可以借鉴这种方法.(2)人口预测模型应符合人口繁衍变化的自然特征.由于未来人口的变化总是由生育、死亡和人口迁移三大基本要素所决定,因此,人口预测模型的研制与设计,通常都是以这三大要素来确立其模型的构建元素的.而人口变动的三大要素自身又有其各自的变化特点.由于人口变化趋势的复杂性,人口预测模型的多样性,而且在预测模型的构造上及其在元素的设置上都有其差异性,因而增加了对模型选择的困难性.但最根本的是,人口预测模型所能描述的人口变化过程,必须符合人口变动的自然特征.(3)人口预测模型应对社会经济发展情况有一定的前瞻性.人口预测的目的是为社会经济实践提供预期信息,因此,在人口预测模型选择上,就应依据社会经济的客观需求,具体确定模型的选择.对人口预测模型的选择,既要求对人口预测技术有深刻的把握,又要求对社会经济实践有透彻的分析,由此方能选择优秀与实用的预测模型.三对人口的预测方法展望(一)人口预测处理方法的复杂化决定了人口预测不仅是一门科学,而且还是一门艺术,既依赖于科学的理论、方法和可靠的数据,还依赖于预测者的经验、学识和判断力.因此,在进一步预测方法研究中,应充分注意将预测数学模型和相关专家经验相结合,建立和发展智能预测技术.(二)各种预测方法都存在一定的优点和局限性.近年来预测科学中出现一种倾向,即将多种方法综合集成.今后应该在分析各种预测方法特点及适用范围的基础上,有选择地发展组合预测技术.(三)上述介绍的大多预测方法所需的数据量都很大,如果采取传统的人工计算的方法,必将耗费大量的人力、物力和时间,而且正确性也得不到保证.所以在今后的工作中,要进一步摸索运用计算机进行处理的方法.但是根据目前的现状,人口预测要在计算机上进行实现,大多借助OFFICE、SPSS、SAS等国外软件中的数据分析模块.这些软件获得的成本很高,而且各软件之间的兼容性还不够好,国内用户入门不易.因此,期待能有土地利用规划专家参与设计面向土地利用规划的专用人口预测软件出现并普及.参考文献1.熊肇煜,等.对人口预测方法的思考[J].统计与预测,2001,(4):35-36.2.付营.回归分析在人口预测中的应用[J].辽宁高职学报,2000,2(1):56-58.3.仇健,等.水资源综合规划中的人口规模预测方法[J].浙江水利科技,2005,(2): 38-41.4.熊孟英.GM(1,1)在人口预测中的应用[J].河北大学学报,1995,15(2):50-55.5.黄荣清.关于人口预测问题的思考[J].人口研究,2004,28(1):90.6.迟灵芝.最优组合模型在人口预测中的应用[J].甘肃联合大学学报,2004,21(3):4-8.7.王雪萌,等.中国总人口的灰色动态预测[J].中国人口资源与环境,2001,11(S2):100-102.。