2.4--语义网络表示法
人工智能_3知识表示_语义网络法

▪ 这个三元关系可转换成一组二元关系的合取,
即CAT(a,b)∧CAT(b,c)∧CAT(c,a)
▪ 其中,CAT表示串行连接。
2020/2/25
12
▪ 要在语义网络中进行这种转换需要引入附 加节点。对于上述球赛,我们可以建立一 个G25节点来表示这场特定的球赛。然后, 把有关球赛的信息和这场球赛联系起来。 这样的过程如图2.16所示。
▪ 1.表示简单的事实 例1. 所有的燕子都是鸟
2020/2/25
6
▪ 2.表示占有关系 例2. 小燕是一只燕子, 燕子是鸟;巢-1是小燕的巢,巢-1是巢中的 一个。
ISA
ISA
XIAOYAN
SWALLOW
BIRD
OWNS
ISA NEST-1
NEST
2020/2/25
7
▪ 3.选择语义基元 选择语义基元就是试图用一组基元来
2020/2/25
13
图2.16 多元关系的语义网络表示
2020/2/25
14
2.4.3 语义网络系统中求解问题的基本过程 语义网络系统由两部分组成:由语义网络组成的知 识库; 用于求解问题的解释程序,称为语义网 络推理机。 在语义网络中,问题的求解一般是通过匹配实现的, 主要过程为:
(1) 根据求解问题的要求构造一个网络片断,其中 有些节点或弧的标识是空的,反映待求解的问题。
(2) 依此网络片断到知识库中去寻找可匹配的网络, 以找出所需要的信息。当然这种匹配一般是不完全 的,具有不确定性,因此需要解决不确定性匹配问 题。
(3) 当问题的语义网络片断与知识库中的某些语义 网络片断匹配时,则与询问处匹配的就是问题的解。
第二章 知识表示方法

第二章知识表示方法教学内容智能系统问题求解所采用的几种主要的知识表示方法(状态空间法.问题归约法.谓词逻辑法.语义网络法)以及基于不同表示法的问题求解方法。
教学重点1. 状态空间表示法中问题的状态描述.改变状态的操作和问题目标状态的搜索;2. 问题规约的一般步骤.规约的与或图表示;3. 谓词逻辑的语法和语义.量词的辖域.谓词公式的置换与合一;4. 语义网络的构成.语义基元的选择.语义网络的推理等。
教学难点状态描述与状态空间图示.问题归约机制.置换与合一。
教学方法课堂教学为主,同时结合《离散数学》等已学的内容实时提问.收集学生学习情况,充分利用网络课程中的多媒体素材来表示抽象概念。
教学要求1. 重点掌握用状态空间法.问题归约法.谓词逻辑法.语义网络法来描述问题.解决问题;2. 掌握这些表示方法之间的差别;并对其它表示方法有一般了解2.1 状态空间法教学内容本节讨论基于解答空间的问题表示和求解方法,即状态空间法,它以状态和操作符为基础来表示和求解问题。
教学重点问题的状态描述,操作符。
教学难点选择一个好的状态描述与状态空间表示方案。
教学方法以课堂教学为主;充分利用网络课程中的多媒体素材来阐述抽象概念。
教学要求重点掌握对某个问题的状态空间描述,学会组织状态空间图.用搜索图来求解问题。
2.1.1 问题状态描述1.基本概念状态(state)它是为描述某类不同事物间的差别而引入的一组最少变量q0,q1,…,qn的有序集合,其矢量形式如下:Q=[q0,q1,…,qn]' (2.1)式中每个元素qi(i=0,1,…,n)为集合的分量,称为状态变量。
给定每个分量的一组值就得到一个具体的状态,如Qk=[q0k,q1k,…,qnk]' (2.2)操作符(operator)称使问题从一种状态变化到另一种状态的手段为操作符或算符。
状态空间(state space)它是表示一个问题全部可能状态及其关系的图,它包含所有可能的问题初始状态集合S、操作符集合F以及目标状态集合G。
王万森《人工智能》配套教案02

第2章知识表示按照符号主义的观点,知识是一切智能行为的基础,要使计算机具有智能,首先必须使它拥有知识。
2.1 知识表示的概念2.1.1 知识的概念2.1.2 知识表示的概念2.2 谓词逻辑表示法2.3 产生式表示法2.4 语义网络表示法2.5 框架表示法2.6 面向对象表示法12.1.1 知识的概念知识的定义一般观点:知识是人们在改造客观世界的实践中积累起来的认识和经验典型定义:(1) Feigenbaum: 知识是经过剪裁、塑造、解释、选择和转换了的信息(2) Bernstein:知识由特定领域的描述、关系和过程组成(3) Heyes-Roth:知识=事实+信念+启发式知识的类型按适用范围:常识性知识:通用通识的、普遍知道的、适应所有领域的知识。
领域性知识:面向某个具体专业领域的知识。
如:专家经验。
按信息加工观点陈述性知识或事实性知识:用于描述事物的概念、定义、属性,或状态、环境、条件等;回答“是什么?”、“为是么?”过程性知识或程序性知识:用于问题求解过程的操作、演算和行为的知识,即如何使用事实性知识的知识。
回答“怎么做?”控制性知识或策略性知识:是关于如何使用过程性知识的知识,如:推理策略、搜索策略、不确定性的传播策略。
按确定性:确定性知识,不确定性知识(不精确、模糊、不完备)22.1.2 知识表示的概念什么是知识表示是对知识的描述,即用一组符号把知识编码成计算机可以接受的某种结构。
其表示方法不唯一。
知识表示的要求表示能力:是指能否正确、有效地将问题求解所需要的知识表示出来。
可利用性:是指表示方法应有利于进行有效的知识推理。
包括:对推理的适应性,对高效算法的支持程度可组织性:是指可以按某种方式把知识组织成某种知识结构可维护性:是指要便于对知识的增、删、改等操作可实现性:是指知识的表示要便于计算机上实现自然性:符合人们的日常习惯可理解性:知识应易读、易懂、易获取等知识表示的方法逻辑表示法:一阶谓词逻辑产生式表示法:产生式规则结构表示法:语义网络,框架面向对象表示法:3第2章知识表示2.1 知识表示的概念2.2 谓词逻辑表示法2.2.1 谓词逻辑表示的逻辑学基础2.2.2 谓词逻辑表示方法2.2.3 谓词逻辑表示的应用2.2.4 谓词逻辑表示的特性2.3 产生式表示法2.4 语义网络表示法2.5 框架表示法2.6 面向对象表示法42.2.1 谓词逻辑表示的逻辑学基础命题、真值、论域命题断言:一个陈述句称为一个断言.命题:具有真假意义的断言称为命题.(定义2.1)真值T:表示命题的意义为真F:表示命题的意义为假说明:一个命题不能同时既为真又为假一个命题可在一定条件下为真,而在另一条件下为假论域由所讨论对象的全体构成的集合。
语义网络表示法

A-Member-of:直观含义“是……的一员”, 即表示一个事物是另一个事物的成员,反映 了个体与集件(类或集合)之间的关系。
Instance-Of:关系用来建立AKO关系的逆关系, 表示一个事物是另一个事物的实例。
类属关系
属性关系
属性关系一般是指事物和其属性之间的关系。一 个类的对象一般都有一个以上的属性,而每个属 性又有一个值。属性和值组合成特性。
多元语义网络的表示
从本质上讲,节点之间的连接是二元关系,因 此语义网络很适合于表示二元关系。但是一元 关系和多元关系都可以用二元关系来表示。 如果所要表示的事实是多元关系的,可以把这 个多元关系转化成一组二元关系的组合,或二 元关系的合取。具体来说,多元关系R(XI, X2,…,Xd)总可以转换成 R1(X11,X12)∧ R2(X21,X22)∧……∧ Rn (Xn1 , Xn2)
事件(Event)的语义网络
1. the event is 事件 2. the agent of the event is 施动者 3. the object of the event is 受动者
实例
Micheal is an employee and Jack is his boss. Someday Micheal kicked his boss.
例如:香港回归之后,澳门也会回归了。
位置关系
位置关系是指不同事物在位置方面的关 系。 常用的位置关系:
Located-on:一物在另一物之上。 Located-at:一物在何位置。 Located-under: 一物在另一物之下。 Located-inside: 一物在另一物之中。 Located-outside: 一物在另一物之外。
类属关系
人工智能课程教学大纲

《人工智能》课程教学大纲课程代码:H0404X课程名称:人工智能适用专业:计算机科学与技术专业及有关专业课程性质:本科生专业基础课(学位课)主讲教师:中南大学信息科学与工程学院智能系统与智能软件研究所蔡自兴教授总学时:40学时(课堂讲授36学时,实验教学4学时)课程学分:2学分预修课程:离散数学,数据结构一. 教学目的和要求:通过本课程学习,使学生对人工智能的发展概况、基本原理和应用领域有初步了解,对主要技术及应用有一定掌握,启发学生对人工智能的兴趣,培养知识创新和技术创新能力。
人工智能涉及自主智能系统的设计和分析,与软件系统、物理机器、传感器和驱动器有关,常以机器人或自主飞行器作为例子加以介绍。
一个智能系统必须感知它的环境,与其它Agent和人类交互作用,并作用于环境,以完成指定的任务。
人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。
这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。
此外,人工智能还提供一套工具以解决那些用其它方法难以解决甚至无法解决的问题。
这些工具包括启发式搜索和规划算法,知识表示和推理形式,机器学习技术,语音和语言理解方法,计算机视觉和机器人学等。
通过学习,学生能够知道什么时候需要某种合适的人工智能方法用于给定的问题,并能够选择适当的实现方法。
二. 课程内容简介人工智能的主要讲授内容如下:1.叙述人工智能和智能系统的概况,列举出人工智能的研究与应用领域。
2.研究传统人工智能的知识表示方法和搜索推理技术,包括状态空间法、问题归约法谓词逻辑法、语义网络法、盲目搜索、启发式搜索、规则演绎算法和产生式系统等。
3.讨论高级知识推理,涉及非单调推理、时序推理、和各种不确定推理方法。
4.探讨人工智能的新研究领域,初步阐述计算智能的基本知识,包含神经计算、模糊计算、进化计算和人工生命诸内容。
知识的语义网络表示方法

张山
主体
一本书 客体2
给予事件 客体1 动作
给
肖红
2020/3/29
7
例2:有下述事实: “小信使”这只鸽子从春天到秋天占有一个窝。
小信使 是一只
占有者
占有
占有物
开始于
鸽子 ቤተ መጻሕፍቲ ባይዱ 春天
是一种 是一种
▪ 过程部分:说明访问过程,这些过程能用来建立和修正 描述,以及回答相关问题。
2020/3/29
2
一个最简单的语义网络是如下一个三元组: (节点1,弧,节点2)
它可用图表示,称为一个基本网元。
A
RAB
B
其中,A,B分别代表两个节点;RAB表示A与B之间的语某种语义联系。
例如:
是一种
猎狗
狗
其中,在猎狗与狗之间的语义关系”是一种”具体的指出了猎狗与狗的语 义关系,即猎狗是狗的一种,两者之间存在类属关系。
2.4 知识的语义网络表示方法
1. 概述
语义网络1968年由J.R.Quillian提出,开始是作为人类联想记忆的一 个显式心理学模型提出,随后在AI中用于自然语言理解,表示命题 信息(具有逻辑真的事实)。目前语义网络已广泛应用于人工智能 的许多领域,是一种表达能力强而且灵活的知识表达方式。
• 语义网络是通过概念及其语义关系来表示知识的一种网络图 ; • 从图论的观点看,他们就是一个“带标识的有向图” ; • 语义网络由节点和节点间的弧组成;
身上有毛 狗
有尾巴
有生命
动物 会 吃
能运动
:表示节点—— :表示狐 :该节点描述对象的属性
语义网络表示法

A-Member-of:直观含义“是……的一员”, 即表示一个事物是另一个事物的成员,反映 了个体与集件(类或集合)之间的关系。
Instance-Of:关系用来建立AKO关系的逆关系, 表示一个事物是另一个事物的实例。
类属关系
属性关系
属性关系一般是指事物和其属性之间的关系。一 个类的对象一般都有一个以上的属性,而每个属 性又有一个值。属性和值组合成特性。
John
ISA
Huma
Giving-Events
Giver
ISA
G1
Object
Receiptor
ISA
Mary
Book1
ISA
Book
逻辑关系的表示:
合取与析取
1. 合取 在语义网络中,如不加标志,就意味着
连接之间的关系是合取关系。 2. 析取
在语义网络中,为与合取关系相区别,析 取关系可以加上析取界限,并标记DIS。当合取 关系嵌套在析取关系之内时,如果合取关系不 被标注就会引起误解。
例如:香港回归之后,澳门也会回归了。
位置关系
位置关系是指不同事物在位置方面的关 系。 常用的位置关系:
Located-on:一物在另一物之上。 Located-at:一物在何位置。 Located-under: 一物在另一物之下。 Located-inside: 一物在另一物之中。 Located-outside: 一物在另一物之外。
AKO
WEDGE SHAPE
ISA
WEDGE19
TRIANGULAR
BLOCK
AKO
BRICK ISA
SHAPE
RECTANGLUAR
BRICK12
1. 值继承
人工智能 状态空间法 第二章主讲

2.2 问题规约法
• 不可解节点的一般定义
–没有后裔的非终叶节点为不可解节点。 –全部后裔为不可解的非终叶节点且含有或后继节点, 此非终叶节点才是不可解的。 –后裔至少有一个为不可解的非终叶节点且含有与后 继节点,此非终叶节点才是不可解的。
• 与或图构成规则
2.2 问题规约法
3.定义图解
有解节点
A
B
C D
G E F N
A
M
H
B
C D E F G
2.2 问题规约法
2.一些关于与或图的术语
父节 点
A
或节 点 弧线 与节 点 B 终叶节 点 C D
子节 点
H
N
M
E
F
G
3.定义
一些关于与或图的术语: 父节点、子(后继)节点、弧线、起始节点。 终叶节点:对应于原问题的本原节点。 或节点:只要解决某个问题就可解决其父辈问题的节点 集合,如(M,N,H)。 与节点:只有解决所有子问题,才能解决其父辈问题的 节点集合,如(B,C)和(D,E,F)各个结点之间用一端小圆弧 连接标记。
主讲人: XXX
状态空间法
第2 章 知识表示方法
(一)
问题归约法 谓词逻辑表示
语义网络表示
框架表示
第2 章 知识表示方法
(二)
本体技术 过程表示
小结
2.1状态空间法 (State Space Representation)
• 问题求解技术主要是两个方面:
– 问题的表示 – 求解的方法
• 状态空间法
2.3 谓词逻辑法
• 前面具有符号~的公式叫做否定。一个合适公式的否定也是 合适公式。 例:~INROOM(ROBOT,r2)(机器人不在2号房间内。)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2.10 位置关系实例 2013-7-24 人工智能 丁世飞
2.4 语义网络表示法
人工智能
6. 相近关系 相近关系,又称相似关系,是指不同事物在形状、 内容等方面相似和接近。常用的相近关系有: Similar-to:表示一事物与另一事物相似。 Near-to: 表示一事物与另一事物接近。 例如,“狗长得像狼” 其对应的语义网络表示 如图2.11所示。
人工智能
第2章 知识表示
2.1 概 述 2.2 谓词逻辑表示法 2.3 产生式表示法
2.4 语义网络表示法
2013-7-24
人工智能 丁世飞
2.4 语义网络表示法
人工智能
语义网络是J.R.Quillian 1968年在研究人类联 想记忆时提出的一种心理学模型,他认为记忆是由 概念间的联系实现的。随后在他设计的可教式语言 理解器(Teachable Language Comprehendent)中 又把它用作为知识表示方法。1972年,西蒙(Simon) 在他的自然语言理解系统中也采用了语义网络知识 表示法。1975年,亨德里克(G .G .Hendrix) 又对全 称量词的表示提出了语义网络分区技术。目前,语 义网络已经成为人工智能中应用较多的一种知识表 示方法,尤其是在自然语言处理方面的应用。
鸟 Have 翅膀 电视机 Can 电视节目
图2.8 属性关系实例
2013-7-24
人工智能 丁世飞
2.4 语义网络表示法
4.时间关系
人工智能
时间关系是指不同事件在其发生时间方面的先后关系,节 点间的不具备属性继承性。常用的时间关系有: Before:表示一个事件在一个事件之前发生。 After:表示一个事件在一个事件之后发生。 例如,“香港回归之后,澳门也会回归了”,“王芳在黎 明之前毕业”。其对应的语义网络表示如图2.9所示
体育比赛
AKO
中国国家足球队
主队
足球赛
客队
结局
3:2
日本国家足球队
2013-7-24 图2.17 带有事件节点的语义网络 人工智能 丁世飞
3.连词和量词的表示 在稍微复杂一点的知识中,经常用到象“并且”、“或者” 、“所有的”、“有一些”等这样的联结词或量词,在谓词逻辑 表示法中,很容易就可以表示这类知识。而谓词逻辑中的连词和 量词可以用语义网络来表示。因此,语义网络也能表示这类知识 。 (1)合取与析取的表示 当用语义网络来表示知识时,为了能表示知识中体现出来的 “合取与析取”的语义联系,可通过增加合取节点与析取节点来 表示。只是在使用时要注意其语义,不应出现不合理的组合情况 。 例如,对事实“参观者有男有,A、B、C、D分别代表4 2013-7-24
轮胎 Part_of 汽车
图2.7 包含关系实例
2013-7-24
人工智能 丁世飞
2.4 语义网络表示法
3.属性关系
人工智能
属性关系是指事物和其属性之间的关系。常用的属 性关系有: Have:表示一个结点具有另一个结点所描述的属性。 Can:表示一个结点能做另一个结点的事情。 例如,“鸟有翅膀”,“电视机可以放电视节目”。 其对应的语义网络表示如图2.8所示。
意复杂的语义联系是可以实现的。这里只给出一些
经常使用的最基本语义关系。
2013-7-24
人工智能 丁世飞
2.4 语义网络表示法
1. 类属关系
人工智能
类属关系是指具体有共同属性的不同事物间的分类关系、 成员关系或实例关系,它体现的是“具体与抽象”、“个体 与集体”的层次分类。其直观意义是“是一个”,“是一 种”,“是一只”……。在类属关系中,其一个最主要特征 是属性的继承性,处在具体层的结点可以继承抽象层结点的 所有属性。常用的类属关系有: AKO(A-Kind-of):表示一个事物是另一个事物的一种类型。 AMO(A-Member-of):表示一个事物是另一个事物的成员。 ISA(Is-a):表示一个事物是另一个事物的实例。
2013-7-24 人工智能 丁世飞
2.4 语义网络表示法
人工智能
从结构上来看,语义网络一般由一些最基本的语义单元 组成。这些最基本的语义单元被称为语义基元,可用如下三 元组来表示为 (节点1,弧,节点2) 可用如图2.3所示的有向图来表示。其中A和B分别代表节点, 而R则表示A和B之间的某种语义联系。 当把多个语义基元用相应的语义联系关联在一起的时候,就 形成了一个语义网络。如图2.4所示。
书
客体2
校长
主体
送给
客体1
李老师
图2.16 带有动作节点的语义网络 2013-7-24 人工智能 丁世飞
2.4 语义网络表示法
人工智能
(3)事件的表示 如果要表示的知识可以看成是发生的一个事件, 那么可以增加一个事件节点来描述这条知识。 例如:用语义网络表示知识“中国队与日本队两 国的国家足球队在中国进行一场比赛,结局的比分是 3 :2”。其语义网络表示如图2.17所示。
Compsoed-of
整数 与 正整数 零 负整数 图2.13 组成关系实例 2013-7-24
人工智能 丁世飞
2.4 语义网络表示法
2.4.3 语义网络表示知识的方法及步骤
人工智能
1.事实性知识的表示 对于一些简单的事实,例如“鸟有翅膀”,“轮胎是汽车 的一部分”,这里要描述这些事实需要两个节点,用前面给 出的基本语义联系或自定义的基本语义联系就可以表示了。 对于稍微复杂一点的事实,比如在一个事实中涉及到多个事 物时,如果语义网络只被用来表示一个特定的事物或概念, 那么当有更多的实例时,就需要更多的语义网络,这样就使 问题复杂化了。 通常把有关一个事物或一组相关事物的知识用一个语义网 络来表示。
人工智能 丁世飞
2.4 语义网络表示法
人工智能
2.4 语义网络表示法
人 ISA 参观者 部分 A 状态 部分 B 状态 部分 C 状态 状态 部分 D
人工智能
与 或 或
男
女
年老
年轻
图2.18 具有合取与析取关系的语义网络 2013-7-24
人工智能 丁世飞
2.4 语义网络表示法
(2)存在量词与全称量词的表示
2013-7-24 人工智能 丁世飞
2.4 语义网络表示法
2. 包含关系
人工智能
包含关系也称为聚集关系,是指具有组织或结构特征的 “部分与整体”之间的关系,它和类属关系的最主要的区别就 是包含关系一般不具备属性的继承性。常用的包含关系的有: Part-of,Member-of,含义为一部分,表示一个事物是另一个事 物的一部分,或说是部分与整体的关系。用它连接的上下层节 点的属性很可能是很不相同的,即Part_of联系不具备属性的 继承性。例如,“轮胎是汽车的一部分”其语义网络表示如图 2.7所示。
2013-7-24
人工智能 丁世飞
2.4 语义网络表示法
人工智能
例如,用语义网络表示知识“请在2006年6月前归还图 书”。这条知识只涉及到一个对象就是“图书”,它表示了 在2006年6月前“归还”图书这一种情况。为了表示归还的 时间,可以增加一个“归还”节点和一个情况节点,这样不 仅说明了归还的对象是图书,而且很好地表示了归还图书的 时间。其语义网络表示如图2.15所示。归还图书情况2006年 6月AKO,Object,Before, 图2.15为带有情况节点的语义网络:
2013-7-24 人工智能 丁世飞
2.4 语义网络表示法
人工智能
例如,用一个语义网络来表示事实“苹果树是一种果树, 果树又是树的一种,树有根、有叶而且树是一种植物”。这 一事实涉及“苹果树”、“果树”和“树”这3个对象,树两 个属性“有根”、“有叶”。首先建立“苹果树”节点,为 了进一步说明苹果树是一种果树,增加一个“果树”节点, 并用AKO联系连接着两个节点。为了说明果树是树的一种,增 加一个“树”节点,并用AKO联系连接着两个节点。为了进一 步描述树 “有根”、“有叶”的属性,引入两个 “根”节 点和“叶”节点,并分别用HAVE联系与“树”节点连接。这 个事实可用如图2.14所示的语义网络表示。 叶
王芳毕业 Before 黎明毕业 澳门回归 After 香港回归
图2.9 时间关系实例
2013-7-24
人工智能 丁世飞
2.4 语义网络表示法
人工智能
5. 位置关系 位置关系是指不同事物在位置方面的关系。节点间的不 具备属性继承性。常用的位置关系有: Located-on:表示一物体在另一物体之上。 Located-at: 表示一物体在某一位置。 Located-under: 表示一物体在另一物体之下。 Located-inside: 表示一物体在另一物体之中。 Located-outside: 表示一物体在另一物体之外。 例如,“华中师范大学坐落于桂子山上”,其对应的语 义网络表示如图2.10所示。
2013-7-24 人工智能 丁世飞
2.4 语义网络表示法
2.4.1 语义网络的概念及结构
人工智能
语义网络是一种通过概念及其语义联系(或语义关系) 来表示知识的有向图,节点和弧必须带有标注。其中有向图 的各节点用来表示各种事物、概念、情况、属性、状态、事 件和动作等,节点上的标注用来区分各节点所表示的不同对 象,每个各节点可以带有多个属性,以表征其所代表的对象 的特性。 在语义网络中,节点还可以是一个语义子网络;弧是有 方向的、有标注的,方向表示节点间的主次关系且方向不能 随意调换。标注用来表示各种语义联系,指明它所连接的节 点间的某种语义关系。
人工智能
在用语义网络表示知识时,对存在量词可以直接用“是 一种”、“是一个”等语义关系来表示。对全称量词可以采 用亨德里克(G.G.Hendrix)提出的语义网络分区技术来表示, 也称为分块语义网络(Partitioned Semantic Net),以解决量词 的表示问题。该技术的基本思想是:把一个复杂的命题划分 成若干个子命题,每一个子命题用一个简单的语义网络来表 示,称为一个子空间,多个子空间构成一个大空间。每个子 空间看作是大空间中的一个节点,称为超节点。空间可以逐 层嵌套,子空间之间用弧相互连接。