人工智能 知识表示方法ppt
合集下载
人工智能知识表示方法第四章

清华大学
VISITING TEAM
篮球比赛
ISA SCORE
G25
HOME TEAM
北京大学
85:89
语义网络法
❖ 连接词和量词的表示
✓ 合取和析取的表示:可通过
增加合取节点和析取节点来实 现
✓ 例如:用语义网络表示:“参 赛者有教师有学生,参赛者的 身高有高有低”
✓ 分析参赛者的不同情况,可得 到以下四种情况:
✓ 蕴含的表示:通过增加蕴含关系节点来实现。在蕴含关系中,有 两条指向蕴含节点的弧,一条代表前提条件(Antecedent) ,标记为 ANTE;另一条代表结论(Consequence) ,标记为CONSE
✓ 例如:用语义网络表示:“如果学校组织大学生机器人竞赛活动, 那么李强就参加比赛”
智能机器
比赛 AKO
Artificial Intelligence (AI)
人工智能
第4章:知识 表示
内容提要
第4章:知识表示
1.状态空间法 2.问题归约法 3.谓词逻辑法 4.语义网络法 5.其他方法
语义网络法
❖语义网络法( Semantic Network Representation )
✓ 语义网络是奎廉(J. R. Quillian) 1968年在研究人类联想 记忆时提出的一种心理学模型,认为记忆是由概念间的 联系实现的。随后,奎廉又把它用作知识表示。
Can
Can
运动
动物
吃
语义网络法
❖ 二元关系:二元语义网络表示
✓ 可用二元谓词P(x,y)表示的关系。其中,x,y为实体,P为实 体之间的关系。
✓ 单个二元关系可直接用一个基本网元来表示 ✓ 对复杂关系,可通过一些相对独立的二元或一元关系的组合
人工智能第二章知识表示方法

框架的构建与实现
80%
确定框架的结构
根据实际需求和领域知识,确定 框架的槽和属性,以及它们之间 的关系。
100%
填充框架的实例
根据实际数据和信息,为框架的 各个槽和属性填充具体的实例值 。
80%
实现框架的推理
通过逻辑推理和规则匹配,实现 基于框架的知识推理和应用。
框架表示法的应用场景
自然语言处理
模块化
面向对象的知识表示方法可以将 知识划分为独立的模块,方便管 理和维护。
面向对象表示法的优缺点
• 可扩展性:面向对象的知识表示方法可以通过继承和多态实现知识的扩展和复用。
面向对象表示法的优缺点
复杂性
面向对象的知识表示方法需要建立复 杂的类和对象关系,可能导致知识表 示的复杂性增加。
冗余性
面向对象的知识表示方法可能导致知 识表示的冗余,尤其是在处理不相关 或弱相关的事实时。
人工智能第二章知识表示方法
目
CONTENCT
录
• 知识表示方法概述 • 逻辑表示法 • 语义网络表示法 • 框架表示法 • 面向对象的知识表示法
01
知识表示方法概述
知识表示的定义
知识表示是人工智能领域中用于描述和表示知识的符号系统。它 是一种将知识编码成计算机可理解的形式,以便进行推理、学习 、解释和利用的过程。
知识表示方法通常包括概念、关系、规则、框架等元素,用于描 述现实世界中的实体、事件和状态。
知识表示的重要性
知识表示是人工智能的核心问题之一,它决定了知 识的可理解性、可利用性和可扩展性。
良好的知识表示方法能够提高知识的精度、可靠性 和一致性,有助于提高人工智能系统的智能水平和 应用效果。
知识表示方法的发展对于推动人工智能技术的进步 和应用领域的拓展具有重要意义。
知识表示方法第五部分

框架名:<计算机系教师>
类属:<教师> 性格:内向 兴趣:操作计算机
框架名:<方园>
类属:<计算机系教师>
性格:内向
态度:不刻苦
兴趣:? 举止:?
推理
框架表示法
❖ 框架的推理:在框架网络中,问题求解主要是通过对框
架的继承与匹配来实现的。
❖继承
✓ 下层框架从上层框架继承相关属性、属性值、条件
❖匹配
✓ 框架通常只能与现实做到部分匹配,完全匹配是一个 特殊情况。因为框架是对一类事物的完整或典型的描 述,待匹配的具体个体不可能做到完全一致。
1 2× 3×
×××
Step(4)
123
××
×××
(d)
Step(5)
过程表示法
✓ 过程表示法的例子:八数码问题
பைடு நூலகம்
(6)依次移动棋牌,使得空格位置沿
图 (e)所示的箭头方向移动,直到数
码4在位置f为止,如图Step(6) 中所
(e)
示。若这时刚好数码5在位置i则转
(9)。
(7)依次移动棋牌,使得空格位置沿
✓ 不匹配的情况:某个属性不存在,或与规定的属性值 不符,或属性类型不符
框架表示法
❖ 框架表示法的优点:
✓ 结构性:最突出特点是善于表示结构性知识,它能够把知识 的内部结构关系以及知识间的特殊联系表示出来。
✓ 深层性: 框架表示法不仅可以从多个方面、多重属性表示 知识,而且还可以通过ISA、AKO等槽以嵌套结构分层地对 知识进行表示,因此能用来表达事物间复杂的深层联系。
沿图(c)所示的箭头方向移动,直到
数码3位于e为止。这时空格刚好在
类属:<教师> 性格:内向 兴趣:操作计算机
框架名:<方园>
类属:<计算机系教师>
性格:内向
态度:不刻苦
兴趣:? 举止:?
推理
框架表示法
❖ 框架的推理:在框架网络中,问题求解主要是通过对框
架的继承与匹配来实现的。
❖继承
✓ 下层框架从上层框架继承相关属性、属性值、条件
❖匹配
✓ 框架通常只能与现实做到部分匹配,完全匹配是一个 特殊情况。因为框架是对一类事物的完整或典型的描 述,待匹配的具体个体不可能做到完全一致。
1 2× 3×
×××
Step(4)
123
××
×××
(d)
Step(5)
过程表示法
✓ 过程表示法的例子:八数码问题
பைடு நூலகம்
(6)依次移动棋牌,使得空格位置沿
图 (e)所示的箭头方向移动,直到数
码4在位置f为止,如图Step(6) 中所
(e)
示。若这时刚好数码5在位置i则转
(9)。
(7)依次移动棋牌,使得空格位置沿
✓ 不匹配的情况:某个属性不存在,或与规定的属性值 不符,或属性类型不符
框架表示法
❖ 框架表示法的优点:
✓ 结构性:最突出特点是善于表示结构性知识,它能够把知识 的内部结构关系以及知识间的特殊联系表示出来。
✓ 深层性: 框架表示法不仅可以从多个方面、多重属性表示 知识,而且还可以通过ISA、AKO等槽以嵌套结构分层地对 知识进行表示,因此能用来表达事物间复杂的深层联系。
沿图(c)所示的箭头方向移动,直到
数码3位于e为止。这时空格刚好在
人工智能 第2章 知识表示

2.1.1 知识的概念
按知识的作用范围划分
➢ 常识性知识 ➢ 领域性知识
按知识的确定性划分
➢ 确定知识 ➢ 不确定知识
按知识的作用及表示来划分
➢ 事实性知识 ➢ 规则性知识 ➢ 控制性知识 ➢ 元知识
按人类的思维及认识方法划分
➢ 逻辑性知识 ➢ 形象性知识
2.1.2 知识表示的概念
知识表示就是研究用机器表述上述知识的可行性、有效性的一 般方法,可以看成将知识符号化,即编码成某种数据结构,并输 入到计算机的过程和方法,即:
规则库: 用于描述相应领域内知识的产生式集合。
2. 综合数据库
综合数据库(事实库、上下文、黑板等):用于存放输 入的事实、从外部数据库输入的事实以及中间结果(事 实)和最后结果的工作区。
2.3.2 产生式系统的基本结构
3. 推理机
推理机:用来控制和协调规则库与综合数据库的 运行,包含了推理方式和控制策略。
一阶谓词逻辑表示法的缺点:
效率低
由于推理是根据形式逻辑进行的,把推理演算和知识含义截然分开, 抛弃了表达内容所含的语义信息,往往是推理过程太冗长,降低系统 效率。另外,谓词表示越细,表示越清楚,推理越慢、效率越低。
灵活性差
不便于表达和加入启发性知识和元知识。不便于表达不确定性的指示, 但人类的知识大都具有不确定性和模糊性,这使得它表示知识的范围 受到了限制。
R10:IF 该动物是哺乳动物 AND 是食肉动物 AND 是黄褐色 AND 身上有黑色条纹 THEN 该动物是虎
R11: IF 该动物是有蹄类动物 AND 有长脖子 AND 有长腿 AND 身上有暗斑点 THEN 该动物是长颈鹿
R12:IF 该动物有蹄类动物 AND 身上有黑色条纹 THEN 该动物是斑马
人工智能及其应用完整版本ppt课件

精选ppt
32
2.2 问题规约法
梵塔问题归约图
•数据结构介绍
(111)(333)
•思考题:四圆盘问题
(111)(122) (122)(322)
()(333)
(111)(113) (113)(123) (123)(122) (322)(321) (321)(331) (331)(333)
精选ppt
精选ppt
19
解题过程
将原始问题归约为一个较简单问题集合 将原始梵塔难题归约(简化)为下列子
难题
– 移动圆盘A和B至柱子2的双圆盘难题 – 移动圆盘C至柱子3的单圆盘难题 – 移动圆盘A和B至柱子3的双圆盘难题
详细过程参看下图
精选ppt
20
2.2 问题规约法
解题过程(3个圆盘问题)
123
123
叫做从节点ni1至节点nik的长度为k的路径
代价 用c(ni,nj)来表示从节点ni指向节点nj
的那段弧线的代价。两点间路径的代价等于连
接该路径上各节点的所有弧线代价之和.
精选ppt
6
图的显示说明 对于显式说明,各节点及其具
有代价的弧线由一张表明确给出。此表可能列出 该图中的每一节点、它的后继节点以及连接弧线 的代价
问题归约的实质:
–从目标(要解决的问题)出发逆向推理,建立 子问题以及子问题的子问题,直至最后把初 始问题归约为一个平凡的本原问题集合。
精选ppt
18
2.2 问题规约法
2.2.1 问题归约描述 (Problem Reduction Description)
梵塔难题
1
2
3
A B C
思考:用状态空间法有多少个节点?为什么?
人工智能之产生式系统 (PPT 49张)

6
2/21/2019
二、产生式系统的例
八数码难题 由8个标有1-8的棋子和一个3×3的棋盘 组成。把8个棋子放在棋盘里,形成一个初始状态,然 后移动棋子,想办法达到规定的目标状态。在移动棋 子时,只能把棋子移进相邻的空格中。 2 8 3 1 2 3
1 6 4
7 5
8 4 7 6 5
图2.1 八数码难题的初始状态与目标状态
1
2/21/2019
常用的知识表示方法
非结构化方法
– –
逻辑表示法 产生式系统
框架 语义网络
QA3,STRIPS,DART,MOMO DENDRAL,MYCIN
结构化方法
– –
2
过程式知识表示法
2/21/2019
第二章 产生式系统
2.1 产生式系统概述 一、产生式系统的定义 产生式系统是人工智能系统中常用的一种程序 结构,是一种知识表示系统。 通常由以下三部分组成: 综合数据库 产生式规则集 控制系统
知识表示
知识是一切智能行为的基础,也是软件智能化的重要 研究对象。要使软件具有智能,就必须使它具有知识, 而要使软件具有知识,首先必须解决知识的表示问题。 所谓知识表示实际上就是对知识的一种描述,即用一 些约定的符号把知识编码成一组计算机可以接受的数 据结构。所谓知识表示过程就是把知识编码成某种数 据结构的过程。 一般来说,同一知识可以有多种不同的表示形式,而 不同表示形式所产生的效果又可能不一样。
设爬山函数CF(S) :不在目标位数码个数的 负值。
初始状态S0
2 8 1 6 7 3 4 5 1 2 3 8 4
目标状态Sg
7 6 5
CF(S0)= - 4 CF(Sg)= 0
人工智能知识表示方法ppt课件

2024/2/15
2.2.2 谓词逻辑表示知识举例
例3
用谓词逻辑表示下列知识: 人人爱劳动。 自然数都是大于零的整数。 所有整数,不是偶数就是奇数。
第一步
定义谓词如下: MAN(x):x是人 LOVE(x,y):x爱y N(x): x是自然数 I(x):x是整数 E(x): x是偶数 O(x): x是奇数 GZ(x): x大于零
效率低,过程冗长 灵活性差,不确定知识
组合爆炸
优点
缺点
2024/2/15
返回
2.3 产生式表示法1943年由美国数学家Fra bibliotek.Post提出。
产生式知识 表示方法
它使用类似文法的规则。用该方法求解 问题时的思路与人类很相似。目前大部 分的专家系统都采用产生式系统的结构 来构建。
2024/2/15
产生式系统的组成
例1
张三是学生,李四也是学生。
第一步
定义谓词如下: ISStudent(x):x是一个学生 张三是个体 李四也是个体
第二步
将个体代入谓词中,得到 ISStudent(张三), ISStudent(李四)
第三步
根据语义,用逻辑连接符连接 ISStudent(张三) ∧ISStudent(李四)
2024/2/15
能否在同一层次上和不同层次上模块化
是否适于推理
知识和元知识能否用统一的形式表示
是否适于计算机处理
是否适合于加入启发信息
是否有高效的求解算法 能否表示不精确知识
过程性表示还是说明性表示 表示方法是否自然
2024/2/15
返回
2.2 一阶谓词逻辑表示法
一阶谓词逻 辑表示法
一种重要的知识表示方法,它以数理逻辑 为基础,是到目前为止能够表达人类思维 和推理的一种最精确的形式语言。它的表 现方式和人类自然语言非常接近,它能够 被计算机进行精确推理。
2.2.2 谓词逻辑表示知识举例
例3
用谓词逻辑表示下列知识: 人人爱劳动。 自然数都是大于零的整数。 所有整数,不是偶数就是奇数。
第一步
定义谓词如下: MAN(x):x是人 LOVE(x,y):x爱y N(x): x是自然数 I(x):x是整数 E(x): x是偶数 O(x): x是奇数 GZ(x): x大于零
效率低,过程冗长 灵活性差,不确定知识
组合爆炸
优点
缺点
2024/2/15
返回
2.3 产生式表示法1943年由美国数学家Fra bibliotek.Post提出。
产生式知识 表示方法
它使用类似文法的规则。用该方法求解 问题时的思路与人类很相似。目前大部 分的专家系统都采用产生式系统的结构 来构建。
2024/2/15
产生式系统的组成
例1
张三是学生,李四也是学生。
第一步
定义谓词如下: ISStudent(x):x是一个学生 张三是个体 李四也是个体
第二步
将个体代入谓词中,得到 ISStudent(张三), ISStudent(李四)
第三步
根据语义,用逻辑连接符连接 ISStudent(张三) ∧ISStudent(李四)
2024/2/15
能否在同一层次上和不同层次上模块化
是否适于推理
知识和元知识能否用统一的形式表示
是否适于计算机处理
是否适合于加入启发信息
是否有高效的求解算法 能否表示不精确知识
过程性表示还是说明性表示 表示方法是否自然
2024/2/15
返回
2.2 一阶谓词逻辑表示法
一阶谓词逻 辑表示法
一种重要的知识表示方法,它以数理逻辑 为基础,是到目前为止能够表达人类思维 和推理的一种最精确的形式语言。它的表 现方式和人类自然语言非常接近,它能够 被计算机进行精确推理。
人工智能课件-框架表示法

02
未来,框架表示法将会与深度学习、强化学习等技术进行 更加紧密的结合,从而进一步提高机器对复杂问题的处理 能力。
03
另外,随着大数据和云计算技术的发展,框架表示法将会 在处理大规模数据和复杂计算方面发挥更大的作用。同时 ,随着可解释性和透明度需求的增加,框架表示法也将会 在提高机器学习模型的可解释性和透明度方面发挥重要作 用。
Keras
Keras是一个基于Python的深度学习框架,可以运行在TensorFlow、Theano和CNTK等后端之上。它提 供了简洁的API和模块化的设计,使得开发人员能够轻松地构建和训练深度学习模型。
框架表示法的应用案例
图像识别
框架表示法可以用于图像识别任 务,如人脸识别、物体检测等。 通过训练深度学习模型,可以实 现对图像的自动分类和识别。
特点
框架表示法具有灵活性、可扩展性和 模块化等优点,能够表达复杂的概念 和关系,并且可以方便地进行推理和 查询。
框架表示法的应用领域
自然语言处理
用于构建语义网、问答系统、机器翻译等。
智能决策支持系统
用于构建决策支持系统、专家系统等。
智能机器人
用于机器人的感知、认知和行为控制。
智能推荐系统
用于个性化推荐、智能推荐等。
优化计算方法
通过改进算法和计算方法,降低 框架表示法的计算复杂度,提高 系统的实时性和效率。
02
03
增强数据利用能力
提高鲁棒性
研究更加有效的数据利用方法, 提高框架表示法在数据量不足情 况下的表现。
研究更加鲁棒的框架表示法,使 其能够更好地处理非结构化或噪 声数据,提高系统的稳定性。
05
框架表示法的发展 趋势
法的应用场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识表示的分类
•陈述性知识表示:将知识表示与知识的运用分开处理,在表示知识时,并不
涉及如何运用知识的问题,是一种静态的描述方法。如学生统计表。
•过程性知识表示:将知识表示与知识的运用相结合,知识包含于程序中,是
一种动态的描述方法。如转置矩阵的程序隐含了专职矩阵的知识。
选取知识表示的因素
表示知识的范围是否广泛 是否适于推理
■ ~P为真,当且仅当P为假。 ■ P∧Q为真,当且仅当P和Q都为真。 ■ P∨Q为真,当且仅当P为真,或者Q为真。 ■ P→Q为真,当且仅当P为假,或者Q为真。 ■ P↔Q 为真,当且仅当P→Q为真,并且Q→P为真。
真值表
P
Q
~P P∧Q P∨Q P→Q P↔Q
T
T
F
T
T
T
T
T
F
F
F
T
F
F
F
T
T
F
第二章 知识表示方法
2020/7/7
内容简介
1 2.1 概述 2 2.2 一阶谓词逻辑表示法 3 2.3 产生式表示法 4 2.4 框架表示法 5 2.5 语义网络表示法 6 2.6 面向对象表示法
2020/7/7
2.1.1 知识
知识定义
Bacon 知识就是力量 Feigenbaum 知识与信息不一样,知识信息经过加工整理、解释、挑选和 改造而形成。简单地说,知识是经过加工的信息。 Bernstein 知识是由特定领域的描述、关系和过程组成的。 Hayes-Roth 知识是事实、信念和启发式规则。从知识库的观点看,知识 是某领域中所涉及的各有关方面的一种符号表示。
元知识 有关知识的知识,是知识库中的高层知识。例如,怎样使用规则,解释 规则、校验规则、解释程序结构等知识。 它可以决定哪一个知识库适 用。
2020/7/7
2.1.1 知识
知识分类
事实性知识 过程性知识 行为性知识 实例性知识 类比性知识
元知识
例如
北京是中国的首都;太湖在苏州的西边 怎样制作松鼠桂鱼;手机维修法。 微分方程刻划了一个函数的行为。 燕子低飞;南京是江苏省的省会。
Graduate(张静)
谓词形式:P(x1,x2,……,xn) 其中,P是谓词,x1,x2,……,xn是个体。
谓词逻辑的语法元素表示
(1) 常量符号:如张静。 (2) 变量符号:通常用小写字母表示,如x,y,z (3)函数符号:通常用小写英文字母或小写英文字母串表示,如plus、f、g (4)谓词符号:通常用大写英文字母或(首字母)大写英文字母串表示。 (5) 联结词:~、∧、∨、→、↔。 (6)量词:全称量词∀,存在量词∃。∀x表示“对个体域中所有x”, ∃x表示“在 个体域中存在个体x”。 ∀和∃后面的x叫做量词的指导变元。
T
T
F
F
F
T
F
F
T
T
2020/7/7
谓词
• 一阶谓词逻辑根据对象和对象上的谓词(即 对象的属性和对象之间的关系),通过使用 联结词和量词来表示世界。
• 主要思想:世界是由对象组成的,可以由 标识符和属性来区分它们。在这些对象中, 还包含着相互间的关系。
2020/7/7
谓词语法
谓词
用于刻画个体的性质、状态和个体之间关系的语言成分就是谓词。 如,李静是研究生。
能否在同一层次上和不同层次上模块化 知识和元知识能否用统一的形式表示
是否适于计算机处理 是否有高效的求解算法 能否表示不精确知识
是否适合于加入启发信息 过程性表示还是说明性表示 表示方法是否自然
2020/7/7
返回
2.2 一阶谓词逻辑表示法
一阶谓词逻 辑表示法
一种重要的知识表示方法,它以数理逻辑 为基础,是到目前为止能够表达人类思维 Байду номын сангаас推理的一种最精确的形式语言。它的表 现方式和人类自然语言非常接近,它能够 被计算机进行精确推理。
2020/7/7
语法
命题符号包括以下几种
(1) 命题常元: True(T)或False(F)表示; (2) 命题符号:P、Q、R等; (3) 连接词:
①~(否定,not),~P称为“非P”; ②∧(合取,conjunction),P∧Q表示“P∧Q”; ③∨(析取,disjunction),P∨Q表示“P∨Q”; ④→(蕴含,implication),P→Q表示“P蕴含Q”,P称为蕴含的前件,Q称为蕴 含的后件; ⑤↔ (等价,equivalent),P↔Q表示“P当且仅当Q”。
2020/7/7
相关概念
命题逻辑 所谓命题就是具有真假意义的陈述句。如“今天下雨”、 “1+100=101”,真或假用符号T或F表示。
命题的分类
•原子命题:不能分解成更简单的陈述语句。 •复合命题:由联结词、标点符号和原子命题等复合构成的命题。
命题逻辑
命题逻辑就是研究命题和命题之间关系的符号逻辑系统。通常用大写字母P、Q 、R、S等来表示命题。如: P:今天下雨 P是命题的名或命题标识符 命题常量:命题标识符表示一个确定的命题。 命题变元:命题标识符只表示任意命题的位置标志。当命题变元P用一个特定的 命题取代时,P才能确定真值,这时称为对P进行指派。
2020/7/7
知识
• 总之,可以认为知识是经过加工的信息,它包括事 实、信念和启发式规则。
2020/7/7
2.1.1 知识
知识要素
事实
是关于对象和物体的知识,常以“…是…”的形式出现。事实是静态、 可共享、可公开获得、公认的知识,位于知识库的底层 规则 有关问题中与事物的行动、动作相联系的因果关系知识,是动态的, 常以“如果…那么…”形式出现。特别是启发式知识属于专门经验知识 控。制 有关问题的求解步骤、技巧性知识,告诉怎么做一件事。
命题公式
(1) 命题常元和命题变元是命题公式,也称为原子公式。 (2) 如果P、Q是命题公式,那么~P、P∧Q、P∨Q、P→Q和P↔Q也是命题公式。 (3)只有有限步引用(1)、(2)条款所组成的符号串是命题公式。
5个联结词的优先级顺序为:~、∧、∨、→、↔。
2020/7/7
联结词的语义
联结词的语义定义如下
谜语“山叠叠而不高,路遥遥而不远,雷 轰轰而不雨,雪飘飘而不寒”--(石磨) 一个计算机辅助教学系统要知道用户理解 的程度;
2020/7/7
2.1.2 知识表示
知识表示的定义 可看成是一组事物的约定,以把人类知识表示成机器能处理 的数据结构。对知识进行表示的过程就是把知识编码成某种 数据结构的过程。