整理人工智能简答题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.简答题

1.在什么情况下需要采用不确定推理或非单调推理?

答:一般推理方法在许多情况下,往往无法解决面临的现实问题,因而需要应用不确定性推理等高级知识推理方法,包括非单调推理、时序推理和不确定性推理等。

例如,当一个人打开电灯的开关而发现灯泡未亮时,就会根据以往的经验而觉得“停电了”。但当他打开另外一只灯的开关发现灯亮时,就否定了先前“停电了”的结论,想到也许是开关或者灯具出问题了。这个改变原先推导结论的过程其实就是一个非单调推理。即,随着信息与知识的增加,并没有在肯定原来的结论基础上,增加了更多并立的知识与结论,

而是否定了原先结论并有了新的看法。以下情况需要采用不确定推理:所需知识不完备,不精确所需知识描述模糊,多种原因导致同一结论,问题的背景知识不足,解题方案不唯一。不确定性推理,是指其推理过程中,由于各种偶然性误差、干扰以及证据的不确定性等因素,导致所获得的结果或结论本身具有未置可否的不确定性。

一般来说,出现不精确推理的原因和特征可能有:

①证据不足或称为证据的不确定性;②规则的不确定性;③研究方法的不确定性。

由于以上“三性”的存在,决定了推理的最后结果具有不确定但却近乎合理的特性,人们把这种性质的推理及其理论和方法总称为不确定推理

2.产生式系统有哪几种推理方式?各自特点为何?

答:(1)正向推理(正向链接推理):从一组表示事实的谓词或命题出发,使用一组产生式规则,用以证明该谓词公式或命题是否成立。

(2)逆向推理(后向链接推理):从表示目标的谓词或命题出发,使用一组产生式规则证明事实谓词或命题成立,即首先提出一批假设目标,然后逐一验证这些假设。(其基本原理是从表示目标的谓词或命题出发,使用一组规则证明事实谓词或命题成立,即提出一批假设(目标),然后逐一验证这些假设。

(3)双向推理:又称为正反向混合推理,它综合了正向推理和逆向推理的长处,克服了两者的短处。双向推理的推理策略是同时从目标向事实推理和从事实向目标推理,并在推理过程中的某个步骤,实现事实与目标的匹配。

3.算法A*直到一个目标节点被选择扩展才会终止。然而,到达目标节点的一条路经可能在那个节点被选择扩展前早就找到了。一旦目标节点被发现,为什么不终止搜索呢?用一个例子说明你的答案。

4.结合你的研究方向,论述哪些人工智能技术可以得到应用?解决什么问题?

答:人工智能目前总结出了对实现人工智能系统来说具有普遍意义的核心课题:知识的模型化和表示方法,启发式搜索理论,各种推理方法,人工智能系统结构和语言。主要研究和应用领域:机器学习,知识表示和推理,智能搜索,模糊逻辑,人工神经网络,遗传算法,自然语言理解,博弈论,知识发现和数据挖掘等。

5.在选择知识表示的方法时,应该考虑哪些因素?

答:表示能力:能够将问题求解所需的知识正确有效地表达出来,可理解性:所表达的知

识简单、明了、易于理解,可访问性:能够有效地利用所表达的知识,可扩充性:能够方便灵活地对知识进行扩充。表示范围是否广泛、是否适于推理、是否适于计算机处理、是否有高效的算法、能否表示不精确知识、能否模块化、知识和元知识能否用统一的形式表示、是否加入启发信息、过程性表示还是说明性表示、表示方法是否自然。总之,人工智能问题的求解是以知识表示为基础的,如何将已获取的有关知识以计算机内部代码形式加以合理地描述、存储、有效利用便是知识表示所应解决的问题。

6.什么是语义网络知识表示?给出这种表示方法的优缺点。

答:语义网络是一种用实体及其语义关系来表达知识的有向图。结点代表实体,表示各种事物、概念、情况、属性、状态、事件、动作等;弧代表语义关系,表示它所连结的两个实体之间的语义联系,它必须带有标识。

主要优点:

结构性:把事物的属性以及事物间的各种语义联系显式地表示出来,是一种结构化的知识表示方法。在这种方法中,下层结点可以继承、新增、变异上层结点的属性。

联想性:本来是作为人类联想记忆模型提出来的,它着重强调事物间的语义联系,体现了人类的联想思维过程。

自索引性:把各接点之间的联系以明确、简洁的方式表示出来,通过与某一结点连结的弧可以很容易的找出与该结点有关的信息,而不必查找整个知识库。这种自索引能力有效的避免搜索时所遇到的组合爆炸问题。

自然性:这种带有标识的有向图,可比较直观地把知识表示出来,符合人们表达事物间关系的习惯,并且与自然语言语义网络之间的转换也比较容易实现。

主要缺点:

非严格性:没有象谓词那样严格的形式表示体系,一个给定语义网络的含义完全依赖于处理程序对它所进行的解释,通过语义网络所实现的推理能保证其正确性。

复杂性:语义网络表示知识的手段是多种多样的,这虽然对其表示带来了灵活性,但同时也由于表示形式的不一致,使得它的处理增加了复杂性。

组合爆炸问题和不充分性。

7.什么是产生式知识表示?给出这种表示方法的优缺点。

答:早期产生式知识表示是一种计算形式体系里所使用的术语,主要是使用类似文法的规则,对符号串做替换运算。一般用三元组(对象,属性,值)或(关系,对象1,对象2)

产生式的基本形式:P→Q或者IF P THEN Q ,P是产生式的前提,也称为前件,它给出了该产生式可否使用的先决条件,由事实的逻辑组合来构成;Q 是一组结论或操作,也称为产生式的后件,它指出当前题 P满足时,应该推出的结论或应该执行的动作。产生式的含义:如果前提P满足,则可推出结论 Q或执行Q所规定的操作

优点:(1)模块性:规则与规则之间相互独立。(2)灵活性:知识库易于增加、修改、删除。(3)自然性:方便地表示专家的启发性知识与经验。(4)透明性:易于保留动作所产生的变化、轨迹。缺点:知识库维护难,效率低,理解难。

8.写出利用归结原理求解问题答案的步骤。

答:(1)写出谓词关系公式。(2)用反演法写出谓词表达式。(3)SKOLEM标准形式。(4)命题表示成合取范式并求子句集S。(5)将结论否定并加入S中,对S中可归结的子句做归结。(6)归结式仍放入S中,反复归结过程。(7)得到空子句。(8)得证。

9.什么是不确定性推理?不确定推理中需要解决的基本问题有哪些?

答:不确定性推理是一种建立在非经典逻辑基础上的基于不确定性知识的推理,它从不确定性的初始证据出发,通过运用不确定性知识,推出具有一定程度的不确定性的和合理的或近乎合理的结论。

基本问题:不确定性的表示与度量,不确定性的匹配,不确定性的传播和更新,不确定性的合成。

10.同传统的计算机程序相比,人工智能程序有哪些特点?

答:(1)人工智能首先研究的是以符号表示的知识,而不是数值数据为研究对象(2)人工智能采用的是启发式推理方法,而不是常规算法

(3)人工智能的控制结构与知识领域是分离的,并允许出现不正确的解答

11.谓词逻辑表示法为什么是应用最广泛的表示方法之一?

答:(1)谓词逻辑与数据库,特别是关系数据库就有密切的关系。在关系数据库中,逻辑代数表达式是谓词表达式之一。因此,如果采用谓词逻辑作为系统的理论背景,则可将数据库系统扩展改造成知识库。

(2)一阶谓词逻辑具有完备的逻辑推理算法。如果对逻辑的某些外延扩展后,则可把大部分的知识表达成一阶谓词逻辑的形式。

(3)谓词逻辑本身具有比较扎实的数据基础,知识的表达方式决定了系统的主要结构。因此,对知识表达方式的严密科学性要求就比较容易得到满足。这样对形式理论的扩展导致了整个系统框架的发展。

(4)逻辑推理是公理集合中演绎而得出结论的过程。由于逻辑及形式系统具有的重要性质,可以保证知识库中新旧知识在逻辑上的一致性(或通过相应的一套处理过程检验)和所演绎出来的结论的正确性。而其它的表示方法在这点上还不能与其相比。

12.什么是过程性知识表示?给出它的优缺点。

答:过程性知识是将有关某一问题领域的知识,连同如何使用这些知识的方法,均隐式地表示为一个求解问题的过程。其包含两个含义:(1)把解决一个问题的过程描述出来。可以称它为解题知识的过程表示。(2)把客观事物的发展过程用某种方式表示出来。

优点:控制系统就比较容易设计,过程表示用程序来描述问题,具有很高的问题求解效率。缺点:复杂、不直观、容易出错、不便于修改。由于知识隐含在程序中,难于添加新的知识和扩充功能,所以适用范围较窄。

13.简述人工智能的研究目标。

答:可分为两个阶段:(1)近期目标:近期目标的中心任务是研究如何使计算机去做那些过去只有靠人的智力才能完成的工作。主要研究依赖于现有计算机去模拟人类某些智力行为的

相关文档
最新文档