空调水系统水力平衡调节
浅谈空调水系统水力平衡
浅谈空调水系统水力平衡摘要:随着空调在建筑中变得越来越普遍,空调水系统中选用水力平衡,则通过水力平衡的特点来进行介绍水力平衡调节的步骤和详细的方式,通过空调水系统水力平衡调节的各个方面进行分别的介绍和总结分析,对于空调的各个部分,对人类生活的各部分的影响都有着非常大的作用。
它使人们在生活中变得更舒适,说明人们的生活在不断的进步,社会在不断的向好的方向发展。
关键词:空调水系统;水利平衡1 空调水系统平衡概述空调水系统的平衡是保证空调系统正常运转,水系统的平衡是保证一种能量的低消耗,由于设计中存在的某些问题常常会导致系统存在着误差,在空调水系统中,由于各支路及末端设备的水流量都各不相同,所以需进行水系统的平衡调节;设置有效合理的方案来满足客户使用的最大效益。
2空调水系统对于现在大部分空调水系统都分为两用形式,夏天可以制冷,冬天可以制暖。
空调可以冬夏两种共同使用,水系统可以分为同程或异程系统,根据自己需要进行选择。
3平衡阀的特点在空调调节过程中调节平衡的过程需要平衡阀(静态或动态)来进行实现,它在其中起着一个非常重要的作用,有着非常准确开度指标,不是专业的人员不能随便的进行改变开度的数值。
在进行安装时,必须需要平衡阀的存在,在空调方面的使用能变得更加简单容易。
4空调水系统水力平衡空调水系统水力平衡在运行过程中,利用水作为媒介,实现空调的运作,平衡调节决定空调运行的整体效率,是否能正常地发挥其作用,它的传输需要一个完善的循环水系统,进行各部分的流入和流出,不会导致空调温度过高或者过低而造成一种不平衡的现象;这种水系统平衡的调节能使能量利用达到最大化,运行费用降到最低节约运行成本,是一种低碳环保的形式。
5水力平衡调节概况通过空调水力平衡调节,分析过程中虽然其中对于阀门的调节存在着一定的影响,但是这种调节只能说是不太精准,常常给安装的工人带来一定后期的影响和麻烦,因此需要进一步的改进,特别对于一些设计,需要大量的工作人员进行相关的设计,并进行一些改装。
空调水系统水力平衡调试施 工工法
空调水系统水力平衡调试施工工法空调水系统水力平衡调试施工工法一、引言随着空调设备在生活和工业领域中的广泛应用,空调水系统的设计和施工变得越来越重要。
水力平衡调试是保证空调系统正常运行的关键步骤之一。
本文将介绍一种常用的空调水系统水力平衡调试施工工法。
二、水力平衡调试的意义空调系统的水力平衡调试是指通过合理分配和调整水流量,在空调系统中达到供水和回水相等,各个水路分支水流量分配合理的状态。
实施水力平衡调试的目的是确保系统在各种负荷条件下的高效和平衡运行,减少能源消耗和运维成本,提高空调设备的使用寿命。
三、水力平衡调试施工工法的步骤1. 设计阶段在空调水系统的设计阶段,需要合理地选择和布置水力调节阀、流量计、压力表等设备。
同时,还需根据实际情况确定系统中各个支路的水流量、压力设计值,以便后续施工阶段进行水力平衡调试。
2. 施工准备施工前,需要对系统中的阀门、流量计和压力表进行检查和校准,确保设备的灵敏度和准确度。
3. 初始调试系统完成安装后,首先进行初始调试。
在初始调试阶段,需要逐一开启系统中的阀门,并观察各个支路的压力和流量变化。
通过调整支路阀门的开度,使得各个支路的水流量逐渐接近设计值,并保证系统中各个支路的回水压力与供水压力相等。
4. 动态调试完成初始调试后,开始进行动态调试。
动态调试时,需要调整系统中各个支路阀门的开度,使得各个支路的水流量达到设计值,并保持一定的压力稳定度。
通过反复调整阀门开度,逐步实现系统的水力平衡。
5. 维护和监测水力平衡调试完成后,并不代表工作的结束。
为了确保系统的长期稳定运行,需要定期对系统进行维护和监测。
维护工作包括定期检查和清洗阀门、流量计和压力表,确保其正常工作;监测工作包括定期监测各个支路的流量和压力,及时发现并排除故障。
四、调试过程中的注意事项1. 施工工人必须具备一定的专业技术和经验,了解水力平衡调试的原理和操作方法。
2.调试过程中需仔细观察和记录各个支路的水流量、压力和温度变化情况,及时发现并解决问题。
暖通空调系统全面水力平衡解决方案
暖通空调系统全面水力平衡解决方案暖通空调系统是建筑中关键的基础设施之一,而水力平衡则是暖通空调系统中最为重要的技术之一。
水力平衡指的是各个部分的流量、压力和温度等物理量在系统内达到协调统一的状态,使整个系统运行稳定、节能、舒适。
本文将介绍暖通空调系统全面水力平衡解决方案。
水力平衡问题暖通空调系统的水力平衡问题主要体现在管道系统中。
管道系统的水力平衡问题,属于流体力学的范畴,具有复杂性、时变性和非线性等特点。
在管道系统中,水流的速度、流量、压力和温度等物理量会因系统的长度、管径、流量、节流器等因素而不同,这些因素的差异会导致系统中的局部水力失衡。
这种失衡会导致流量的变化、压力的不均匀和能量的浪费,从而影响系统的运行效率和舒适度。
解决方案为了解决暖通空调系统中的水力平衡问题,需要采取以下解决方案:管道设计管道设计是解决暖通空调系统水力平衡问题的关键。
在设计管道系统时,需要考虑到管径、管道长度、管道材质、弯头角度等因素,以确保系统可以满足流量和压力的要求。
设计流量控制流量控制是暖通空调系统中流量平衡的关键。
通过使用节流器、流量控制阀、平衡阀等设备,可以控制管道中的流量,达到水力平衡的目的。
管道调试管道调试是水力平衡实现的重要环节之一。
调试过程中需要测试流量、压力和温度等参数,根据实际情况对管道中的设备进行调整和改进,以实现水力平衡。
建立水力网络模型建立水力网络模型可以帮助工程师更好地理解管道系统中的水力平衡问题,优化系统设计和调试方案。
水力网络模型可以通过计算机模拟来实现,这种方法可以减少试错成本,并提高系统设计的精度。
定期维护系统维护是确保水力平衡可以持续有效的关键。
定期检查管道系统中的设备、清洗管道内部的沉积物、更换老化的管道等操作,可以保持系统的正常运行,并有效减少系统的故障率。
结论暖通空调系统的全面水力平衡是建筑节能和舒适性的关键环节。
通过管道设计、流量控制、调试、建立水力网络模型和定期维护等措施,可以解决水力平衡问题,使系统运行更加节能、稳定和舒适。
空调系统中使用水力平衡阀的水力调试方法
各 个 平衡 阀
变时 . 其流 量与开度成线性关 系; )流 量实时可测性 。通过专 (、 2
用 的 流 量 测 量 仪 表 可 以在 现 场 对 流 过 水 力 平 衡 阀 的流 量 进 行 实测
的 流 量 是 相
同 的. 如 图 1
V L
理调节 , 文主要阐述 的是前者 , 本 也可作后 者的参考 ) 。
水 力 平 衡 阀 有两 个 特 性 : )具 有 良好 的调 节 特 性 。一 般 质 (、 1
量 较 好 的水 力 平 衡 阀都 具 有 直 线 流 量 特 性 , 在 阀 二 端 压 差 不 即
(1 串联 2、
量 . 此这 种调 节 只 能 说 是 定 性 的和 不 ; 的 , 常 给 工 程 安 因 隹确 常 装 完 毕 后 的 调 试 工 作和 运 行 管理 带来 极 大 的 不便 。因此 近 些 年
量 Q 1、 v Q 3的 比值保持不 变。如果将调 节阀 V 、 2 v 0 2、 v 1V 、
调定 后. V 、V 、V K 1K 2 K 3保 持 不 变 .则调 节 阀 V1V 、 3的 流 、 2V
虽 然 某 些 通 用 阀 门 如 截止 阀 、 阀 等 也 具 有 一 定 的调 节 能 球
力 .但 由于 其调 节 性 能 不 好 以 及 无 法 对调 节 后 的流 量 进 行 测
价。 关键 词 : 水力失调 水力平衡 阀 系统平衡调试
1 、引言 :
在 建 筑 物 暖通 空调 水 系 统 中 , 水 力 失 调 是 最 常 见 的 问题 。
压 差 , 且 系统 中 包 含 多个 水 力平 衡 阀 . 调 节 时 这 些 阀 的 流 而 在
空调水系统的水力平衡调试
例。 显然, 对于已经设计和安装完毕的管路, 只能通过改变 局部阻力当量长度 的手段来改变管段的阻 力数 , 而改变局 部阻力最常用的方法就是调整管路上的阀门。
上述分析 结论 ,为在水 力平衡调试 中提供 了一定的 理论依据 ,使我们在调试方法选择上更趋于合理 。
一
采 用 同程 式管 路 ,并在 各 主要支 干 管上安 装平衡 调 节
阀 ,以利 于将来 的水量调 节分 配。
一
每米管长的沿程损 失 ( 阻 ) P / ; 比摩 , a m
管路长 度 , m;
l水力工况分析
大家 知道 ,在 空调 系统 中 ,各 空调设 备 ( 空调 机 组 、风机 盘管等 ) 中的实际流量与设计流量之间 的不一
往给 系统平衡调试带来许 多困难 ,有时甚 至无法满足设 计要求。 因此建议在大型 的空调 系统设计 时水 平支 干管
式 中 : A P一 计算 管路 的阻 力损失 , Pa ; A 尸 一 计 算管路 的沿程损失 , Pa ; A ,- P。 管路 的局部损 失 , Pa _ ;
维普资讯
・
通 风 空 调 技 术 ・
空调水系统的水力平衡调试
丁希 文
( 北京市设备安 装工程公 司,北京 10 4 ) 05 0
摘
要: 本文是根据本人多年 的施 工实践, 对空调水系统的水力失调进行分析, 找出原因 , 并进行调 试 , 以满足 空调水 量
d一 管子 内径 ,m;
() 2 当并联管段中任一分支管段的阻力状况 ( 5 ) 即 值 发生变化时, 网路总阻力数必然随着变化 , 而且网路总流量 在各分支管段 中的分配比例也相应地发 生变化 。 () 3 可以通过改变管段的管径 、 长度、 管段 的摩擦阻 力系数以及管段 局部 阻力当量 长度大 小, 来改 变管段的 阻力数 , 从而改 变网路总流量在各分支管段中的分配的比
暖通空调水系统水力平衡调节
简介:本文阐述了暖通空调水系统中选用水力平衡阀的原因,并介绍了水力平衡阀的特性,以及应用水力平衡阀对水系统进行水力平衡调节的步骤、方法,特别是结合工程实例详细阐述了系统联调的要求、过程和评价。
关键字:水力失调水力平衡阀系统平衡调试1、引言:在建筑物暖通空调水系统中,水力失调是最常见的问题。
由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。
因此,必须采用相应的调节阀门对系统流量分配进行调节。
虽然某些通用阀门如截止阀、球阀等也具有一定的调节能力,但由于其调节性能不好以及无法对调节后的流量进行测量,因此这种调节只能说是定性的和不准确的,常常给工程安装完毕后的调试工作和运行管理带来极大的不便。
因此近些年来,在越来越多的暖通空调工程水系统的关键部位(如集水器)、特别是在一些国外设计公司设计的工程项目中,均大量地选用水力平衡阀来对系统的流量分配进行调节(包括系统安装完后的初调节和运行管理调节,本文主要阐述的是前者,也可作后者的参考)。
水力平衡阀有两个特性:⑴、具有良好的调节特性。
一般质量较好的水力平衡阀都具有直线流量特性,即在阀二端压差不变时,其流量与开度成线性关系;⑵、流量实时可测性。
通过专用的流量测量仪表可以在现场对流过水力平衡阀的流量进行实测。
2、系统水力平衡调节:水系统水力平衡调节的实质就是将系统中所有水力平衡阀的测量流量同时调至设计流量。
2.1 单个水力平衡阀调节单个水力平衡阀的调节是简单的,只需连接专用的流量测量仪表,将阀门口径及设计流量输入仪表,根据仪表显示的开度值,旋转水力平衡阀手轮,直至测量流量等于设计流量即可。
2.2 已有精确计算的水力平衡阀的调节对于某些水系统,在设计时已对系统进行了精确的水力平衡计算,系统中每个水力平衡阀的流量和所分担的设计压降是已知的。
空调水系统水力平衡及平衡阀的应用
浅谈空调水系统水力平衡及平衡阀的应用摘要:随着人们对生活品质的要求和节能意识的不断提高,水力平衡装置在空调水系统中的应用越来越广泛,本文对水力失调及水力平衡的概念及分类,水力平衡装置的原理及其在空调水系统中的应用进行了详细的阐述。
关键词:水力失调水力平衡平衡装置当前,节能减排已经成为我国的一项基本国策,而建筑节能则是其中最重要的环节之一。
由于暖通空调系统能耗在建筑整体能耗中占据很大比例,因此近些年来,影响暖通空调系统节能、舒适的关键因素之一—水力平衡技术,已经成为暖通空调行业的主要热点之一。
一、水力失调及水力平衡概念及分类:在暖通空调水系统中,水力失调是普遍存在的问题,由于系统中水力失调问题的存在,导致系统流量分配不合理使得空调区域实际需求的冷、热量与实际供给的冷、热量不匹配,从而造成某些区域冬天不热、夏天不冷的情况出现。
在系统运行中为解决这个问题,通常采用提高水泵扬程的措施,但仍会产生冷(热)不均的问题。
这种长期的不合理的运行,不仅不能解决供热或供冷品质不高的问题,还造成了大量的能源浪费。
因此,必须采用相应的水力平衡措施对系统流量分配进行调节,才能从根本上彻底解决这个问题。
1. 静态水力失调和静态水力平衡静态水力失调:是由于设计、施工、设备材料等原因导致的系统管道特性阻力数比值与设计要求管道特性阻力数比值不一致,, 从而使系统各用户的实际流量与设计要求流量不一致,引起的水力失调。
是稳态的、根本性的、是系统本身所固有的。
静态水力平衡:通过在管道系统中增设静态水力平衡设备,在水系统初调试时对系统管道特性阻力数比值进行调节,使其与设计要求管道特性阻力数比值一致,此时当系统总流量达到设计总流量时,各末端设备流量同时达到设计流量,实现静态水力平衡。
2.动态水力失调和动态水力平衡动态水力失调:是系统实际运行过程中当某些末端阀门开度改变引起水流量变化时,系统的压力产生波动,其它末端的流量也随之发生改变,偏离末端要求流量,引起的水力失调。
暖通空调系统水力平衡的简述
暖通空调系统水力平衡的简述摘要:随着社会经济的快速发展及人们生活水平的不断提高,暖通空调成为人们生活中的一类重要设备,在四季中能为人们提供更加舒适的温湿度。
在暖通空调水系统中,水力平衡是确保流量在各个区域合理分配的关键,但是在暖通空调系统实际使用中,水力失衡却也是一个常见的问题,不仅给人们的生活带来极大的不便,而且容易造成电力资源浪费及影响设备的使用寿命。
因此,暖通空调系统水力失衡是人们非常重视的一个问题关键词:暖通空调水系统;水力平衡;平衡调节1水力平衡概述对于建筑的暖通空调系统,如果在运行过程中,因为某一或部分用户的制冷或制热需求的改变而使系统网路的流量分配与各热用户所要求的流量偏离,造成各用户的供冷供热量不符合要求,这种现象就是的水力失调。
相对而言,水力平衡就是说在暖通空调制冷或制热过程中,系统内任何一个用户制冷制热需求的改变都不会给系统中其他的用户制冷制热带来影响,即系统水力稳定性强。
在空调行业中,通常运用水力稳定系数来衡量暖通空调水力平衡的程度,水力稳定系数用y来表示。
y值是暖通系统中热用户的规定流量与工况变化后可能达到的最大流量的比值,y值越大,就说明设计越成功,y值过小,用户的制冷制热要求就难以得到保证。
2水力失调和水力平衡的分类2.1静态水力失调和静态水力平衡静态水力失调是一种暖通空调系统自带的、稳态的、根本性的失调现象,这种水力失调情况的出现主要是由于系统管道特性阻力数偏离设计要求管道特性阻力数而造成的,而系统管道特性阻力数比是受到设计、施工、设备材料等多因素影响的。
静态水力失调是暖通空调系统中水力失调的重要原因,这种情况下,暖通空调系统中用户的实际流量与设计要求的流量很难实现一致。
目前,针对静态水力失调现象,通常采用在管道系统中增设平衡设备(水力平衡阀)的方法来解决,水力平衡阀可以有效调节管道系统特性阻力数比值,使其与设计要求管道特性阻力数比值一致,这种情况下,如果系统总流量达到设计流量,各末端设备流量均同时达到设计流量,系统实现静态水力平衡。
空调水系统调试过程中水力平衡问题
空调水系统调试过程中水力平衡问题摘要:近年来我国大型公建迅猛发展,中央空调供热/制冷日益普及,然而空调系统运行中存在诸多问题,水力失调便是其中的突出问题,所以保证空调系统的水力平衡是其运行中的重要环节。
本文归纳了供热/供冷管网水力平衡失调的原因,并提出了调节水力平衡的几种方法一、供冷/热管网水里平衡失调的表现及原因(一)供冷/热管网水力平衡失调的表现在中央空调系统中,水里失衡的表现主要是:各环路的流量输配不均衡,致使各用户冷热输配不均,距循环泵近的房间供热时室温偏高,供冷时室温偏低,据循环泵较远的用户供热时室温偏低,供冷时室温偏高。
另外还产生一些其他问题,如系统在大流量小温差的工况下运行,冷/热源难以达到其额定出力,投入运行的设备超过实际负荷需要,水泵工作点偏离高效区,燃料和电能消耗过高,水里平衡失调已成为空调系统中普遍存在又难以根治的难题。
(二)中央空调水力平衡失调的原因1实际施工与设计存在偏差设计人员在进行设计时,已经进行了精确的管网水力平衡计算,选定了适当合理的管径,但施工人员在施工过程中未严格按图施工,造成实际施工情况和理论设计之间出现较大偏差2设计人员设计时存在设计不合理现象供热管网一般采用异程式枝状管网,在异程管网中各环路的路程不同,阻力不同,这种方式使得热水流经近端用户的路程短,而流经远端用户的路程长,使得近端用户作用压差大,而远端用户作用压差小,这种管网如果设计、调节不合理就会造成近端用户流量远超过设计流量,远端用户流量远小于设计流量,造成近热远冷的现象,二、供热管网水里平衡调解原理1. 水力工况的基本公式供热管网水力平衡调节就是通过调节管路的阻力使各用户的流量接近于设计流量,对于简单管路来说,压力降和阻力系数、流量之间有如下关系:ΔP=S×G2其中,ΔP为管段两端的压力降,G为流经该管段的流量,S为该管段的阻力系数,只与管段的材料,管径,内壁粗造度等有关可见,作用压力一定情况下管路阻力与流量的平方成反比,对于空调管网来说,各系统是并联的,存在如下流量分配关系阻力系数S大的支管其流量小,阻力S小的支管其流量大。
中央空调冷冻水系统的水力平衡调试
动态水力 失调是指在 中央空调 系统运 行过 程 中, 由于 终
端 空 调 设 备数 量 多 , 当终 端 空 调 设 备 开 关 或 阀 门开 度 变 化 时 ,
对水 力平衡 的重要性 没有 足够的认识 , 对系统水 力平衡 的标
K e y wo r d s : h y d r a u l i c m a l a d j u s t m e n t ; H y d r a u l i c b a l a n c e ; d e b u g g i n g 1前 言
态水力失调 。对于安装 后 的管 道系 统 , 各 管路 的阻力 仅与 管 径、 管段长度 、 管段局部 阻力 等效长度及管段摩擦 阻力 系数 相 关, 即对 于已安装 的 管路其 阻力 仅 取决 于管 段本 身 , 是 固 定不变 的, 因此 , 静 态水 力失调是管道系统本身所 固有 的。
d e b u g g i n g .T h i s p a p e r i n t r o d u c e s t h e d e b u g g i n g me t h o d o f h y d r a u l i c b a l a n c e o f a i r c o n d i t i o n i n g wa t e r s y s t e m ,a n d c o mb i n e d w i t h t h e e n g i — n e e r i n g p r a c t i c e ,e mp h a s i z e s t h e p r i n c i p l e a n d p r o c e s s o f s t a t i c h y d r a u l i c b a l a n c i n g b y t h e l f o w r a t i o c o n t r o l me t h o d .
超高层空调水系统水力平衡调试
超高层空调水系统水力平衡调试发布时间:2021-07-05T15:50:02.313Z 来源:《基层建设》2021年第10期作者:李敏高松涛张宏深翟洪昆高维杨洪[导读] 摘要:为了保障建筑物的日常使用的安全性、舒适性,建筑设计时要考虑设置完善舒适的空调系统,以满足建筑日常使用的舒适性。
中国建筑第八工程局有限公司总承包公司摘要:为了保障建筑物的日常使用的安全性、舒适性,建筑设计时要考虑设置完善舒适的空调系统,以满足建筑日常使用的舒适性。
如今高层建筑的建设越来越多,这也给暖通空调系统的设计、安装和调试提出来更高要求。
系统通过数据采集并控制,利用水泵变频技术、静态与动态平衡阀组的结合技术、压差旁通阀组技术、末端设备支路调节与平衡技术,达到主干管道、支干管道、支管、末端设备分级水力平衡。
通过介绍水力平衡系统中主要的几种阀门特性和控制原理,探讨在超高层建筑中空调水系统中为达到水力平衡的设计、安装和调试。
关键词:空调水系统;分级式;水力平衡;调试一、引言目前我国正在大力发展新能源、环保节能工程,中央空调水系统水力是否平衡关系到整个系统的性能表现和运行成本的高低。
目前国内空调系统的平衡能耗占建筑体总能耗的40%~60%,而此项数据在发达国家约为20%,其中系统水力达不到理想的水力平衡条件是造成能耗比有如此差距的重要原因之一。
以前国内大部分工程中,广泛采用的水力平衡技术为定流量水力平衡技术。
在定流量水力系统中只考虑静态水力失调,而一般进行水力平衡的措施为采用节流板、设置手动调节阀、安装静态平衡阀等元器件的方式来控制空调水系统的管路和元器件阻力和流量,系统在各元器件设置完成后将不做其它动作,以理想的工况状态保持系统各种流量恒定。
而超高层空调水系统分级式水力平衡技术,不仅延续了以前的定流量水力平衡技术,更多的加入了变流量系统的水力平衡技术,变流量系统更多考虑在综合工况下,各主干、支干、支路、末端水力是相互影响的。
在运行过程中不但要求各末端设备的流量达到要求流量,而且要求各末端设备只随负荷的变化而变化,而不受其它末端的影响。
空调同程水系统水力平衡问题探讨
位于起始端的大流量设备参与同程循环。
(2)大流量的空调箱或新风箱位于水管循
环的中间,对于同程系统的水力平衡影响不大。
雷诺数
空调水系统根据管道布置形式可分为同程 和异程两种类型。其中,同程系统中空调水流
Re =
(5)
经各并联环路的管道总长度相等,各设备水量
式中,R —单位长度直管段的摩擦阻力(习
分配比较均匀,便于水力平衡,初投资较高。 称比摩阻),Pa/m ;λ—摩擦阻力系数,m ;ρ— 异程系统中空调水流经各并联环路的管道总长 水的密度,kg/m3 ;v —水的流速,m/s ;v—运动 度不相等,各设备水量分配容易产生失调,特 黏度,m2/s;k—管内表面的当量绝对粗糙度,m;
别是系统比较大时,失调现象比较突出,初投 闭式循环水系统 ;k=0.2mm ;d —管道直径,m。
资相对较低。所以,通常的做法是末端数量较
(3)局部阻力计算 :
多时将空调冷热水系统设计为同程系统,以减 少水系统中水力失调,便于调节以及达到使用 要求。
但是,在实际工程设计中,经常遇到风机 盘管和新风空调箱或空调箱使用同一水平环路 的情况,大流量的设备和小流量设备布置在同
(1)
(2)沿程阻力计算见式(2):
DPm
=
m
$
1 d
(2)
当直管段长度 l =1 时,
R
=
m d
$
t $ v2 2
Hale Waihona Puke (3)对于紊流过渡区的摩擦阻力系数λ,可按
热水管道
i
R=0.0089·d
G · -4.87
N
1.85
(9)
式中,i L—冷水管道单位长度摩擦压力损 失,kPa/m ;i R—热水管道单位长度摩擦压力损 失,kPa/m ;d N—管道的计算内径,m ;G —设计 流量,m3/s[1]。
暖通空调水系统的水力平衡调节
暖通空调水系统的水力平衡调节暖通空调水系统的平衡调节在集中供热和中央空调的水系统运行中,水力失调是常见的问题。
水力系统的失调有两方面的含义。
一方面是指虽然经过详细的水力计算并达到规定要求,但在实际运行后,各用户的流量与设计要求不符,这种水力失调是稳定的、根本性的,称之为稳态失调。
另一方面是指系统运行中,当一些用户的水流量改变时,会使其它用户的流量随之变化,这涉及到水力稳定性的概念。
对其它用户影响小,则水力失调程度小,水力稳定性好,称之为动态(稳定性)失调。
管网水力失调的原因是多方面的,归纳起来主要有两种情况。
一种是管网中流体流动的动力源提供的能量与设计要求不符,例如泵的型号、规格的变化及其性能参数的差异、动力电源的波动、流体自由液面差的变化等,导致管网中压头和流量偏离设计值。
另一种是管网的流动阻力特性发生变化,例如在管路安装中管材实际粗糙度的差别、焊接光滑程度的差别、存留于管道中泥沙、焊渣多少的差别、管路走向改变而使管长度的变化、弯头、三通等局部阻力部件的增减等,均会导致管网实际阻抗与设计值偏离。
尤其是一些在管网设置的阀门,改变其开度即可能改变管网的阻力特性。
水力失调对管网系统运行会产生不利影响。
管网系统往往是多个循环环路并联在一起的管路系统。
各并联环路之间的水力工况相互影响,必然会引起其他环路的流量发生变化。
如果某一管段的阀门开大或关小,必然导致管路流量的重新分配,即引起了水力工况的改变。
当某些环路因发生水力失调而流量过小,如锅炉循环系统中水冷壁管路流量分配不均,使部分管束水流停滞则有可能发生爆管事故;在制冷机水循环系统中,蒸发器管束因此可能发生冻管事故。
在供热空调系统中流体流量的变化使其负担输配的冷热量改变,即其水力失调必然会导致热力失调。
在水力失调发生的同时,管网中的压力分布也发生了变化。
在一些特殊情况下,局部管路和设备内的压力超过一定的限值,则可能使之破坏。
为了解决水力失调问题,可以采用静态水力平衡阀、动态平衡阀、动态平衡电动调节阀等阀门进行平衡调节。
空调水系统平衡阀调试方案
空调水系统平衡阀调试方案空调水系统平衡阀调试方案一、项目概况该空调水系统为集中新风系统,不分高低区,由冷、热源机房直供。
制冷工况供回水温12/18℃,制热工况供回水温46/40℃。
二次侧采用一级泵闭式变流量双管制水系统。
换热机组(含补水定压装置)设在地下室新风机房内。
每层每户环路分支处设水流静态平衡阀。
二、平衡方案1、每层每户环路分支处回水管上安装静态平衡阀。
2、立管回水管上安装静态平衡阀。
3、每组板式换热器一次侧总管回水管上安装静态平衡阀。
4、集水器主管上安装静态平衡阀。
三、调试前准备工作1、平衡阀安装前,厂家安排技术人员到现场做安装指导工作,并提交详细的安装指导说明文件。
现场负责人必须按照厂家提供说明进行平衡阀安装。
2、平衡阀正确安装完毕系统运行后,项目负责人须提前联系厂家技术人员,确认系统运行情况,并提供系统调试所需资料:水系统原理图、平面图、设备设计参数(流量、水阻、冷量、温差)以及各平衡阀设计流量,协商调试前准备工作及确认调试时间。
3、现场须满足以下运行条件,才能进行水力平衡调试工作:平衡阀是否安装完毕:是/否平衡阀的安装位置是否符合设计规范要求:是/否空调水系统是否通过了强度实验和严密性实验:是/否/未定空调水系统内循环水泵是否能正常运转:是/否/未定空调水系统是否通过整体试运行24小时:是/否/未定空调水系统内的循环水质情况:好/一般/差/未定管路中是否出现堵塞:是/否/未定在以上对该系统调试前的调查中,若第1、2、3、4、6其中任意一项为“否”或“未定”则该系统需将此问题解决后,方可进行调试。
若第5项条件不满足,也需在调试前及时处理,以免影响调试测量精度。
在进行平衡阀调试前,请先检查系统中是否有细渣,如有请进行排污和清洗过滤器,以免堵塞仪器口和阀门,影响调试结果和仪器损坏。
调试前应派专人检查系统管路、阀门、设备等是否有异常情况,并作好笔录以免干扰调试。
在调试之前请将水系统中除旁通阀门外的所有阀门按设计要求全部打开,按照设计要求打开所有末端设备系统,满负荷运转。
中央空调冷冻水系统的水力平衡调试
中央空调冷冻水系统的水力平衡调试摘要:近年来由于中国大中型建筑的迅猛发展,中央空调供暖/制冷已经越来越普遍,但是在中央空调系统运行中面临一系列重大问题,而水力失衡就是当中的重要主要问题,所以提高中央空调系统的水力平衡就是其运作中的关键。
关键字:中央空气;冷冻水体系;水力平衡前言在空调水设计中,尽管设计中采用了水力控制、合理配管等手段,以尽可能地实现系统的水力平衡,但因为空调水设计的复杂性"系统水力失衡仍是很普遍的现象。
水力失调导致系统中各管道、系统流体不合理分布,从而导致流经末端系统的水流量与设备流量不符出现在不同空调区域产生冷暖不均的状况,严重危害了中央空调系统的节能安全工作。
随着科学技术进步和社会节约意识的日益增强,各种水力平衡装置也在空调式给水系统中获得了日益普遍的使用。
根据不同的中央空调控制系统标准,在管路控制系统中设置的静止、移动水力平衡装置都是处理管路的水力失调的最普遍方式,而控制系统的水力平衡调试也就成为了空调控制系统中调试的最主要内容之一。
但是由于在实际施工实践中,施工人员往往对水力平衡的意义缺乏充分的了解,对系统水力平衡的标准模糊不清,加之目前也缺乏一个统一的完善的调试方式,从而造成注重于产品的配置,而忽略了水力平衡调试,使得控制系统中设置了许多平衡阀,但水力失调的现象却经常发生。
1供冷/热管网水里温度平衡下降的现象以及成因1.1供冷/热管网水力平衡失调的表现在中央空调控制系统中,水里失衡的现象主要有:各回路的水流输配不平衡,造成各系统冷热输配不平衡,距循环泵最近的房间在供暖时温度偏高,供冷时温度偏低,据循环泵较远的用户供暖时温度较少,供冷时温度也偏高。
此外还出现若干特殊情况,如设备在大流量小温度的情况下运转,冷/热难以达到其额定出力,投入工作的系统超出实际负载要求,水泵运行位置远离有效区域,功率耗费过多,水里平衡紊乱等是空调设备中普遍存在的无法根除的问题。
1.2中央空调水力平衡失调的原因1)实际施工和设计出现了误差。
空调系统水平衡调试
空调系统水平衡调试摘要:随着工业化和新的城市化的加速,能源和环境问题变得越来越重要,能源需求的迅速增长导致环境迅速退化,成为阻碍我国经济未来发展的一个主要问题。
分布式能源是一种高效、清洁和灵活的能源供应系统,以天然气或可再生能源为主要动力来源,并利用国际电联的冷却、热能和电力技术,直接满足用户的多种需求。
本文对空调系统水平衡调试进行分析,以供参考。
关键词:空调系统;水平衡调试;分析引言空调冷却塔作为制冷主机的冷凝器冷却终端设备,在空调系统中发挥着重要作用。
冷却塔设计良好,适应性强,使用方便,经济可靠,节省了大量人力和财政资源,减少了水资源的浪费。
相反,这将造成浪费,增加不必要的工作量,如果情况严重,将影响该股的正常运作,对生产和生活产生不利影响。
对于单塔而言,如果多塔系统的设计不合理,结果将更加严重。
1能源站热力系统及供能系统内燃机车尾气首先进入烟气热水溴化群作为热源,然后进入烟气热水交换器继续热回收,然后通过单独的烟囱排出。
内燃机高温缸壳内的水在夏季运行时作为热源进入烟气热水锂单元,7.0℃的冷水被替换用于夏季制冷;在冬季加热状态下,用空调热交换器代替60℃热水进行加热。
内燃机缸套的一部分水进入家用热水交换器,取代70℃热水作为家用热水的主要热水来源,并与家用热水交换器取代的家用热水系统连接,满足家用热水负荷。
发电厂的空调水进入分水器,然后由各建筑物的主管管泵至各建筑物的蛇形处,热变化后再转移到集水池,再从集水池返回到发电厂。
每栋建筑物的空调水流由水泵调节,也有流量阀对空调水流稍作调节。
根据设计标准,集水区和集水区之间存在平衡的连接。
在实践中,流量不平衡,即电站的空调水量与每栋建筑物使用的空调水量不匹配,称为电站一侧的空调水量与分离器和集热器之间的每栋建筑物的空调水量。
2比例式调节的电动两通阀2.1静态平衡调节阀+电动两通阀调节静态平衡调节阀是一种具有等百分比流量特性且有数字锁定功能的调节阀,在系统初运行阶段对不同区域的风机盘管水流量进行调节,能够合理地分配进入风机盘管的水流量,通过改变系统管道特性阻力数比值,达到与设计要求一致。
中央空调水力平衡分配器工作原理
中央空调水力平衡分配器是一种用于调节和平衡中央空调系统中不同分区间冷热水流量的设备。
它能够有效地提高中央空调系统的运行效率,并且能够保证不同区域的舒适度。
下面,我们将详细介绍中央空调水力平衡分配器的工作原理。
一、水力平衡的概念1. 水力平衡的定义水力平衡是指在给定的管网系统中,通过调节流体的流量、压力和速度等参数,使得管网中各个分支的流量和压力达到一定的平衡状态。
在中央空调系统中,不同区域的冷热负荷是不同的,因此需要通过水力平衡来保证冷热水在各个分支管道中的流量和压力达到平衡。
2. 水力平衡的重要性水力平衡是中央空调系统中至关重要的一环,它能够有效地提高系统的热效率,减少能源消耗,并且能够保证系统稳定运行,延长设备使用寿命,提高设备的舒适度和环境适应性。
二、中央空调水力平衡分配器的工作原理1. 结构组成中央空调水力平衡分配器通常由主体壳体、流量计、流量调节阀、阀门、调节手柄等部件组成。
主体壳体上安装有多个分支出口,每个分支出口连接着对应的区域冷热水供应管道。
2. 工作原理(1)进水分配中央空调系统的冷热水由主体壳体的进水口进入水力平衡分配器,流经流量计进行计量,并且经过流量调节阀进行调节,然后进入分支供应管道,根据不同区域的冷热负荷需求分配到各个分支管道中。
(2)流量调节在分支供应管道上的流量调节阀能够根据实际需要对流量进行调节,进而保证各个分支管道中的冷热水流量达到平衡状态,不因区域冷热负荷变化而产生过热或者过冷现象。
(3)压力平衡水力平衡分配器在分流冷热水的还能够通过阀门进行压力平衡,确保各分支管道中的冷热水压力均衡,不会因管道长度和材质的差异而导致部分区域的供水压力过大或者过小。
(4)平衡调整水力平衡分配器上的调节手柄可以根据实际需要对各个分支管道的流量进行微调,能够动态地根据实际情况对系统进行平衡调整,确保系统运行效率和能源利用率最优化。
三、中央空调水力平衡分配器的优势1. 提高运行效率水力平衡分配器能够有效地平衡不同区域的冷热水流量和压力,提高冷热水的利用率,减少能源浪费,提高系统的运行效率。
空调水系统平衡及节能建议
空调水系统平衡及节能建议
空调管路的系统的环路划分应遵循满足空调系统的要求,以节能、运行管理方便、节省管材等为原则,按照建筑物不同的使用功能,不同的使用时间、不同的负荷特性等设置空调管路。
本项目现空调水支干管设计为异程系统,需通过调节阀来实现管路的平衡调节,建议采用同程三管式的设计理念来实现管路平衡。
异程系统
以本项目5#三层空调水系统为例,下图为现设计异程系统:
5#三层局部中温水空调系统调整前-异程系统
各并联环路中的流程各不相同,及各环路的总长也不一样。
特点:由于流动阻力不易平衡,常导致水流量分配不均。
同程系统
5#三层局部中温水空调系统调整后-同程系统
各并联环路中水的流程基本相同,即各个环路的管路总长基本相等。
特点:系统各环路间的流动阻力容易平衡,因此系统的水力稳定性好,流量分配均匀,避免水力失调及冷热不均、大流量小温差的问题造成能源的浪费。
先设计的调节方式为调节阀调节,调节阀是通过关小阀门增加支路的阻力从而调节系统的平衡,因此增加了管道阻力。
且通过实际调查,调节阀用处不大,可调节范围十分有限。
虽然可以通过增设平衡阀,使通过每个阀组空调水流量的可调范围增大,但使用平衡阀后系统的阻力也会显著增大,且阀门的增设同时也增加了漏水点的风险。
因此,建议采用同程系统,可在更加节能的运行工况下达到系统的平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空调水系统水力平衡调节
摘要:本文阐述了暖通空调水系统中水力平衡阀的特性,以及应用水力平衡阀对水系统进行水力平衡调节的步骤、方法。
关键词:水力失调水力平衡阀系统平衡调试
在建筑物暖通空调水系统中,水力失调是最常见的问题。
由于水力失调导致系统流量分配不合理,某些区域流量过剩,某些区域流量不足,造成某些区域冬天不热、夏天不冷的情况,系统输送冷、热量不合理,从而引起能量的浪费,或者为解决这个问题,提高水泵扬程,但仍会产生热(冷)不均及更大的电能浪费。
因此,必须采用相应的调节阀门对系统流量分配进行调节。
虽然某些通用阀门如截止阀、球阀等也具有一定的调节能力,但由于其调节性能不好以及无法对调节后的流量进行测量,因此这种调节只能说是定性的和不准确的,常常给工程安装完毕后的调试工作和运行管理带来极大的不便。
水力平衡阀有两个特性:
⑴、具有良好的调节特性。
一般质量较好的水力平衡阀都具有直线流量特性,即在阀二端压差不变时,其流量与开度成线性关系;
⑵、流量实时可测性。
通过专用的流量测量仪表可以在现场对流过水力平衡阀的流量进行实测。
对于目前绝大部分的暖通空调水系统,其设计只有水力平衡阀的设计流量,而不知道压差,而且系统中包含多个水力平衡阀,在调节时这些阀的流量变化会互相干扰。
这时如何对系统进行调节,使所有的水力平衡阀同时达到设计流量呢?
系统水力平衡调节的分析:①并联水系统流量分配的特点:并联系统各个水力平衡阀的流量与其流量系数KV值成正比(由于管道中水流速度较低,假定各并联支路上平衡阀两端的压差相等),如图1所示,调节阀V1、V2、V3组成的并联系统,则QV1 :QV2 :QV3= KV1 :KV2 :KV3(Q为流量,KV为流量系数)。
当调节阀V1、V2、V3调定后,KV1、KV2 、KV3保持不变,则调节阀V1、V2、V3的流量QV1 、QV2 、QV3的比值保持不变。
如果将调节阀V1、V2、V3流量的比值调至与设计流量的比值一致,则当其中任何一个平衡阀的流量达到设计流量时,其余平衡阀的流量也同时达到设计流量。
②串联水系统流量分配的特点:串联系统中各个平衡阀的流量是相同的, 如图1所示,调节阀G1和调节阀V1、V2、V3组成一串联系统,则QG1= QV1 +QV2 +QV3;③串并联组合系统流量分配的特点:如图1所示,实际上是一个串并联组合系统。
其中平衡阀V1、V2、V3组成一并联系统,平衡阀V1、V2、V3又与平衡阀G1组成一串联系统。
根据串并联系统流量分配的特点,实现水力平衡的方式如下:首先将平衡阀组V1、V2、V3的流量比值调至与设计流量
比值一致;再将调节阀G1的流量调至设计流量。
这时,平衡阀V1、V2、V3、G1的流量同时达到设计流量,系统实现水力平衡。
实际上,所有暖通空调水系统均可分解为多级串并联组合系统。
2、水力平衡联调的步骤:如图2所示,该系统为一个二级并联和二级串联的组合系统,(V1~V3、V4~V6、….V16~V18)为一级并联系统,又分别与阀组I(G1、G2…G6)组成一级串联系统;阀组I为二级并联系统,又与系统主阀G组成为二级串联系统。
该系统水力平衡联调的具体步骤如下:①、将系统中的断流阀(图中未表示)和水力平衡阀全部调至全开位置,对于其它的动态阀门也将其调至最大位置,例如,对于散热器温控阀必须将温控头卸下或将其设定为最大开度位置;
②、对水力平衡阀进行分组及编号:按一级并联阀组1~6、二级并联阀组I、系统主阀G顺序进行,见图2;③、测量水力平衡阀V1~V18的实际流量Q实,并计算出流量比q=Q实/Q设计;④、对每一个并联阀组内的水力平衡阀的流量比进行分析,例如,对一级并联阀组1的水力平衡阀V1~V3的流量比进行分析,假设q1<q2<q3,则取水力平衡阀V1为基准阀,先调节V2,使q1=q2,再调节V3,使q1=q3,则q1=q2=q3;⑤、按步骤④对一级并联阀组2~6分别进行调节,从而使各一级并联阀组内的水力平衡阀的流量比均相等;⑥、测量二级并联阀组I内水力平衡阀G1~G6的实际流量,并计算出流量比Q1-Q6;⑦、对二级并联阀组的流量比Q1~Q6进行分析,假设Q1<Q2<Q3<Q4<Q5<Q6,将水力平衡阀G1设为基准阀,对G2~G6依次进行调节,直至调至Q1=Q2=Q3=Q4=Q5=Q6,即二级并联阀组内的水力平衡阀的流量比均相等;⑧、调节系统主阀G,使G的实际流量等于设计流量。
这时,系统中所有的水力平衡阀的实际流量均等于设计流量,系统实现水力平衡。
但是,由于并联系统的每个分支的管道流程和阀门弯头等配件有差异,造成各并联平衡阀两端的压差不相等。
因此,当进行后一个平衡阀的调节时,将会影响到前面已经调节过的平衡阀,产生误差。
当这种误差超过工程允许范围时(如实例中的5%),则需进行再一次的测量和调节。
参考文献
1、陆耀庆等主编,供暖通风设计手册。
北京:中国建筑工业出版社,1987年
2、贺平、孙刚主编,供热工程。
北京:中国建筑工业出版社,1990年。