船舶电力推进系统

合集下载

船舶推进系统电力电子电控

船舶推进系统电力电子电控
通过建立船舶推进系统的数学模型,对系统状态 进行实时监测和故障诊断,具有高精度和可靠性 。
基于信号的故障诊断
通过对船舶推进系统各种信号进行采集、处理和 分析,提取故障特征并进行诊断,具有实时性和 灵敏性。
基于知识的故障诊断
利用专家系统、模糊逻辑等人工智能技术,对船 舶推进系统故障进行智能诊断,具有自学习和自 适应能力。
06 船舶推进系统安全管理 和法规要求
安全管理体系建设
01
建立完善的安全管理制 度和流程,明确各级职 责和权限。
02
设立安全管理机构,配 备专业安全管理人员。
03
定期开展安全风险评估 和隐患排查,制定并落 实整改措施。
04
建立安全奖惩机制,激 励员工积极参与安全管 理工作。
法规要求和标准解读
01
定义
船舶推进系统是船舶动力装置的 核心部分,负责将动力装置产生 的能量转化为船舶前进的推力。
功能
船舶推进系统的主要功能包括提 供船舶航行所需推力、控制船舶 航速和航向,以及实现船舶的倒 车、停泊等操作。
船舶推进方式分类
01
机械推进
通过机械传动装置将主机动力传递至螺旋桨,推动船舶前进。机械推进
具有结构简单、可靠性高等优点,但传动效率较低,且难以实现灵活控
包括船舶航速、加速度、推力等,反映推进 系统的动力输出能力。
可靠性指标
考虑推进系统的故障率、维修性等因素,评 估其可靠运行的能力。
经济性指标
如燃油消耗率、能效比等,衡量推进系统在 经济性方面的表现。
环保性指标
针对推进系统排放的废气、噪音等污染物, 制定相应的环保性评估指标。
仿真模拟与实验验证方法
仿真模拟方法
组织开展各类安全培训活动,提高员 工安全意识和技能水平。

船舶电力推进技术pdf

船舶电力推进技术pdf

船舶电力推进技术
船舶电力推进技术是指使用电力驱动船舶推进系统的技术。

相比于传统的机械推进技术,电力推进技术具有更高的效率、更低的噪音和更少的污染排放,因此在现代船舶设计中得到了越来越广泛的应用。

船舶电力推进系统通常由以下几个部分组成:
1. 发电机:将机械能转换成电能,产生所需的电力。

2. 电动机:将电能转换成机械能,驱动船舶的螺旋桨旋转,产生推进力。

3. 电池组:作为备用电源,提供紧急电力供应或在需要时提供额外的电力。

4. 控制系统:负责监测和调节电力系统的运行,确保系统的稳定和安全。

船舶电力推进技术的优点包括:
1. 高效节能:电力推进系统可以实现高效节能,降低船舶的燃料消耗和排放。

2. 噪音低:电力推进系统的运转噪音较低,减少了对周围环境的噪音污染。

3. 灵活性高:电力推进系统可以根据需要调节输出功率,提高船舶的操纵灵活性。

4. 维护方便:电力推进系统的维护相对简单,可以减少
船舶的维护成本和停机时间。

船舶电力推进技术的缺点包括:
1. 初始成本高:电力推进系统的建设成本相对较高,需要投入大量资金。

2. 技术要求高:电力推进系统的设计和维护需要具备较高的技术水平。

3. 受电网限制:电力推进系统的运行需要依赖电网供电,受到电网供电的限制。

船舶电力推进系统综述报告

船舶电力推进系统综述报告

船舶电力推进系统综述报告张文超201221024017一、船舶电力推进系统的发展船舶电力推进系统已有近百年历史,但是由于受各种因素制约,发展缓慢,且大多数只应用在特种船舶上。

从20世纪80年代起,供电系统、推进电机和微电子及信息技术的迅猛发展,使船舶电力推进装置打破了长期徘徊局面,得到了大力的发展。

电力推进系统基本由机械原动机(柴油机、燃气轮机或核动力)构成,用以驱动交流发电机,发电机再为推进电动机提供动力。

电动机可能是直流、交流同步电动机或交流感应电动机。

同传统的机械推进方式相比,采用电力推进系统的船舶在经济性、振动噪声、船舶操纵、布置和安全可靠性等方面具有明显优点。

船舶综合全电力推进系统包括:发电、输电、配电、变电、拖动、推进、储能、监控和电力管理,是现行船舶平台的电力和动力两大系统发展的综合;它不是电力推进加自动电站的简单组合,而是从概念到方案、组成、配置、技术等均发生重大变化,给未来的船舶带来一场革命。

二、电力推进系统的组成船舶电力推进装置一般由原动机﹑发电机﹑电动机﹑螺旋桨以及控制单元组成。

原动机带动发电机,发电机带动推进电机,电机驱动螺旋桨,推动船舶航行。

因螺旋桨所需功率很大,一般需要设置两个单独的电站:推进电机电站和辅机电站,分别给推进电机和辅机供电。

目前的原动机一般使用高速或中高速的柴油机,推进装置一般有直流电力推进和交流电力推进两种。

目前世界上使用电力推进的船舶,主要可分为两类:一类是电力推进与其他发动机推进结合的混合推进;另一类是全电力推进,即使用一个电站供电给推进装置和其他辅助装置。

三、船舶电力推进方式的优缺点1.电力推进方式的优点(1)操纵灵活,机动性能好,靠离码头时可不需拖轮协助,有更好的经济性;(2)电力推进装置的操纵由驾驶台直接控制,应付紧急状态能力强,有利于提高安全。

(3)有很好的低速特性,恒功率特性,恒电流特性和陡转特性;(4)因省去了主机与螺旋桨之间的轴系以及舵,节省了大量的空间,可以增加船舶有效空间和有效载荷;(5)可采用中高速的非反转原动机,主机的选择有很大的灵活性;(6)原动机和螺旋桨系柔性连接,使得螺旋桨的转速不受原动机转速的限制,彼此都可以工作在最佳状态;(7)噪声小,震动小,废气NOx排放减少;(8)若采用吊舱式电力推进系统,省去了长轴系,操舵装置和舵,可不设舵机房,也省去了bow throuster,减轻了设备的重量,增加了有效载荷。

船舶电力推进系统

船舶电力推进系统

船舶电力推进系统Edited by 阳光的cxf 第一章1. 电力推进系统的优缺点P10优点:(1)机动性能好(2)机舱小,布置灵活可增加船舶的载货载客能力(3)推进效率高(4)节能,有利于环保(5)适合于特种船舶的应用P47优点:(1)通过减少燃料消耗和维护费用减少生命周期成本,尤其是在负载变化大的地方(2)增强了系统对单一故障的抵抗性,使优化原动机负载分配成为可能(3)中高速柴油机重量轻(4)占用空间少,甲板空间利用更加灵活(5)推进器位置布置更加灵活(6)更好的机动性(7)更小的推进噪声和震动缺点:(1)初始投资增加(2)原动机和推进器之间有额外的器件,增加了满负荷运行时的损耗(3)新型设备需要不同的操作,维护策略2. 不同推进方式船舶操纵性能对比项目机械推进常规电力推进POD推进回转直径120% 100% 75%零航速回转180 度所需时间118% 100% 41%全速回转180 度所需时间145% 100% 42%全速到停止所需时间280% 100% 42%零航速至全速所需时间210% 100% 90%第二章3. 电力推进系统类型(1)可控硅整流器+直流电动机。

应用:船舶推进所应用的直流推进电机的容量,在2~3MW 之间。

优点:1)启动电流和启动转矩接近零2)动态响应快缺点:1)转矩控制不精准2)换向器易发生故障3)谐波污染较大4)直流电动机结构复杂,成本高,体积大,维护困难,效率低(2)交流异步电动机+可调螺距螺旋桨模式。

应用:这种推进方式只适合于中、小功率船舶,或1000kW 以下的侧推装置,因为微软起动器目前还只有中、小功率的低压产品。

优点1)几乎没有谐波污染2)转矩稳定没有脉动3)设计点运行效率高缺点:1)启动电流大2)启动瞬间机械轴承受转矩大3)功率因数低4)功率及转矩动态响应慢5)反转慢,制动距离长6)变矩桨结构复杂,价格贵,可靠性差7)变距桨液压控制系统复杂(3)电流型变频器CSI (Current Source Inverter) + 交流同步电动机。

海运船舶的船舶动力与推进系统

海运船舶的船舶动力与推进系统

海运船舶的船舶动力与推进系统船舶动力和推进系统是海运船舶的核心组成部分,它们直接决定了船舶的运行效率和能源利用率。

本文将探讨海运船舶的船舶动力与推进系统,介绍其基本原理、常见类型及其发展趋势。

一、船舶动力系统的基本原理与组成船舶动力系统主要由发动机、传动装置和船舶的推进装置组成。

发动机是船舶动力系统的核心,其作用是将能源(如燃油、天然气等)转化为机械能,进而驱动船舶前进。

传动装置负责将发动机输出的动力传输至推进装置,常用的传动装置包括液力传动和机械传动。

推进装置是船舶的“动力发射器”,它将能源转化为推进力,驱动船舶在水中运行。

二、海运船舶常见的动力与推进系统1. 内燃机与传统推进系统内燃机是目前海运船舶中最常见的动力设备之一,其主要包括柴油机和涡轮机两种类型。

柴油机具有功率大、效率高的特点,常用于大型远洋船舶;而涡轮机则适用于小型船舶和高速船舶。

传统推进系统主要包括螺旋桨和水喷推进器两种形式,螺旋桨是目前最常用的推进装置,通过调整桨叶的转速和角度来实现推进力的调控。

2. 涡轮电力推进系统涡轮电力推进系统是一种较新的船舶动力与推进系统,它将柴油发电机和电动机相结合,通过电力传输实现船舶的推进。

涡轮电力推进系统具有能源利用率高、噪音低、污染少等优点,在环保节能方面具有较大的潜力。

3. 涡轮帆船推进系统涡轮帆船推进系统是将风能与动力系统相结合的一种创新推进方式。

它采用了先进的涡轮技术,将风能转化为动力,并通过转子驱动船舶前进。

涡轮帆船推进系统减少了对化石燃料的依赖,具有环保节能的特点,是未来船舶发展的一种趋势。

三、船舶动力与推进系统的发展趋势随着科技的不断进步和环保意识的不断提升,船舶动力与推进系统也在不断创新和发展。

首先,船舶动力系统将更加注重能源的利用效率,提高动力装置的效率,减少能源的浪费和环境污染。

其次,船舶推进系统将继续向着高效、低噪音和低振动的方向发展,以提升船舶的航行性能和舒适性。

此外,随着新能源技术的不断成熟和应用,如太阳能、风能等,未来船舶动力系统可能会采用更多的清洁能源,并实现多能源混合驱动。

第5章船舶电力推进自动控制系统

第5章船舶电力推进自动控制系统

按照上述要求, 电动机的输出特性应控制在如图 5-5 所示的由最高转速 nmax、 最大转矩 Temax 和最大功率围成的工作区间内,其最大值的限制为:
nmax = (1.2 ~ 1.4 )n N Temax = (1.5 ~ 2.5)TeN
(5-1) (5-2) (5-3)
Te Temax
Pmax = Pe
(5-11)
U a Ra U = 0 F
0 I a + RF I F
ψ E p a + a ψ F 0
(5-12)
式中:ψa=Laia 为电枢绕组磁链,ψF=LFiF 为励磁绕组磁链。 这样,由式(5-10)~(5-12)就构成了他励直流电动机的动态数学模型。 当直流电动机稳态运行时, 其电流为直流并保持恒定不变,可得直流电动机 的稳态模型,即
u s R s u = 0 r
0 i s + Rr i r
Ψ p s Ψ r
(5-14)
式中: u s = [u s1 ,u s2 u sN ]和 i s = [is1 ,is2 isN ] 为定子电压和电流向量; Rs 为定子电阻矩阵,表示如下
旋桨对电动机产生阻力矩 QP,即为电动机的负载转矩 TL,且有 TL=QP。
Te 电动机 nm 电力传动 动力学 Qp np 螺旋桨 水动力学 Tp vsh 船舶 水动力学
图 5-2 船舶推进系统的力学关系
由此分析, 电动机传动控制应采用转矩控制方法,使螺旋桨按一定的转速旋 转,以产生所需的船舶推力,保持船舶的航速。这样,船舶运动系统的反馈闭环 控制结构应如图 5-3 所示,船速作为系统的指令,控制器根据给定船速 vsh*与实 际船速 vsh 比较产生电动机的转速指令 与实际转速ωm 的误差产生转矩控制信号 ; 而电力推进控制系统则根据给定转速 ,使电动机输出所需的电磁转矩 Te,

现代船舶电力推动系统的发展PPT

现代船舶电力推动系统的发展PPT
总结词
高效能电机技术采用了先进的电磁设计、材料和制造工艺,提高了电机的效率和可靠性。它能够有效地将电能转化为机械能,为船舶推进提供强大的动力。同时,该技术还能够降低能耗和排放,减少对环境的影响。
详细描述
高效能电机技术
总结词
船舶电网技术是现代船舶电力推动系统的重要组成部分,它能够实现船舶各系统的高效、安全供电,提高船舶的稳定性和可靠性。
船舶电力推动系统的挑战与机遇
05
结论
船舶电力推动系统是指通过电力方式驱动船舶推进器的一种技术。随着科技的不断进步,现代船舶电力推动系统已经成为船舶领域的重要发展方向。
自20世纪中叶以来,随着电力电子技术和电机控制技术的飞速发展,船舶电力推动系统逐渐成为研究的热点。经过几十年的发展,船舶电力推动系统的技术已经日趋成熟,并在大型船舶、特种船舶和海洋工程装备等领域得到广泛应用。
详细描述
船舶电网技术通过优化船舶电力系统的结构和布局,实现了船舶各系统的高效、安全供电。它采用了先进的电力电子技术和智能控制技术,提高了船舶电网的稳定性和可靠性。同时,该技术还能够降低船舶电网的能耗和排放,减少对环境的影响。
船舶电网技术
智能船舶与无人船舶技术
智能船舶与无人船舶技术是现代船舶电力推动系统的重要发展方向,它能够提高船舶的自主航行能力和智能化水平,降低人工成本和安全风险。
高效稳定
电力推动系统能够实现快速启动和稳定运行,提高船舶的机动性和稳定性。
降低成本
电力推动系统的长期运营成本相对较低,能够节省大量的维护和运营费用。
03
现代船舶电力推动系统的技术发展
大功率电力电子变换器技术是现代船舶电力推动系统的核心技术之一,它能够实现高效率、高功率密度的电能转换,为船舶推进系统提供稳定、可靠的动力。

舰船电力推进系统优势和新能源

舰船电力推进系统优势和新能源

舰船电力推进系统优势和新能源舰船电力推进系统的优势主要包括以下几个方面:1. 环保节能:舰船电力推进系统采用电力作为动力源,相比传统的燃油推进系统,能够减少燃油的使用量,降低碳排放和空气污染,对环境更加友好。

2. 高效稳定:舰船电力推进系统具备高效稳定的特点,电动机的功率输出可以根据需求进行调整,能够实现快速启动和停止,提高舰船的操控性能。

3. 低噪音和振动:相比传统的内燃机推进系统,电力推进系统噪音和振动更低,能够提供更加安静和舒适的工作环境,有利于舰员的工作和休息。

4. 灵活性和可靠性:舰船电力推进系统可以根据需要进行灵活配置,可以采用多台电动机进行推进,提高系统的可靠性和冗余性,同时也有利于舰船的机动性能。

5. 整合新能源:舰船电力推进系统可以与新能源技术相结合,如太阳能、风能等,通过利用可再生能源来供电,进一步减少对传统能源的依赖,提高能源利用效率。

新能源在舰船电力推进系统中的应用主要包括以下几个方面:1. 太阳能:舰船上的太阳能电池板可以将太阳能转化为电能,为舰船提供部分电力需求,如照明、通信等。

此外,太阳能还可以用于充电设备,如电动舰艇的电池组。

2. 风能:舰船上的风力发电机可以利用风能产生电能,为舰船提供部分电力需求。

风能可以通过舰船上的风帆或风轮来捕捉,转化为机械能,再经过发电机转化为电能。

3. 潮汐能:舰船可以利用潮汐能发电,通过潮水的涨落来驱动发电机,产生电能。

潮汐能是一种可再生能源,可以提供稳定的电力供应。

4. 氢能:舰船可以利用氢能作为燃料,通过燃料电池将氢气与氧气反应产生电能,为舰船提供动力。

氢能是一种清洁能源,只产生水蒸气作为副产品,对环境无污染。

综上所述,舰船电力推进系统具有环保节能、高效稳定、低噪音和振动、灵活性和可靠性等优势,并可以与新能源技术相结合,实现对可再生能源的利用,从而进一步提高舰船的能源利用效率。

第1章 船舶电力推进介绍

第1章  船舶电力推进介绍
电动机可以采用直流他励电动机、交流同步电动机、 异步电动机或永磁电动机等。
船舶推进器一般采用定距螺旋桨,因为其效率高,尺 寸较小。
1.1.2电力推进系统的分类
1.按原动机类型分类 (1)柴油机电力推进 (2)蒸汽轮机电力推进 (3)燃气轮机电力推进 (4)原子能反应堆装置电力推进 (5)燃料电池电力推进
电力推进的缺点:
(1)在最高速度时的总效率通常较低。 (2)采用电气设备可能引来一些需要防避的附加危害,如电气设备 中可能的火灾,故障引起的扰乱(闪络、短路和接地)、电击造成 的人身伤害等等。
(3)电力推进装置需要受过较好训练且具有较高技能的操作人员。 (4)需要种类繁多的备件。
1.2船舶电力推进的应用
1.电力推进现状 船舶综合电力系统主要包括发电、配电、电能 变换、电力推进、监测与控制等内容。
原动机 发电机 G
脉冲负载
电力交 换模块
推进变 流器 M 推进电机
推进负载 发电和推进系统
区域配电 交/直流母线
交/直流母线 监测与控制系统
原动机 G 发电机
电力交 换模块
脉冲负载
推进变 流器
M 推进电机
(3)推进器
推进器的种类有:常规轴系推进器、Z型 推进器和吊舱式推进器等
2.电力推进的发展趋势
船舶操纵的灵活性、高可靠性、高效率、装备的高功率密度等必 然是电力推进追求的目标。随着科学技术的不断进步,船舶电力推 进技术也将不断地向前发展。
美、英、法等国正在开展新一代综合电力系统的关键技术研究。 其中,一些新技术如推进电机采用高温超导电机、变频调速装置采 用基于碳化硅的功率器件以及输电电网采用直流电网等,将大大降 低新一代综合电力系统的体积、重量,提高其应用范围和应用灵活 性。

船舶综合电力推进系统

船舶综合电力推进系统

电缆和变压器参数计算
确定电缆截面积、绝缘材料和变压器 容量等,以满足系统电压、电流和功 率要求。
优化策略及实施方法
能量管理策略优化
01
通过智能算法和实时数据分析,优化能量分配和管理,提高系
统效率和稳定性。
设备布局与空间优化
02
合理布局设备,减少空间占用和重量,提高船舶载货量和航行
性能。
控制系统集成与优化
制技术等。
技术挑战分析
分析综合电力推进系统在市场推 广过程中遇到的困难,如成本较 高、船东接受度有限等,并提出 相应的解决策略。
市场推广难题
研究国际和国内法规政策对综合 电力推进系统发展的影响,以及 如何通过政策引导推动其更广泛 的应用。
2023 WORK SUMMARY
THANKS
感谢观看
REPORTING
控制策略
采用先进的控制算法和技术,如矢量控制、直接转矩控制等,实现推进装置的高 效控制和优化运行。
储能装置及其应用
储能装置
包括电池、超级电容、飞轮等储能设 备,用于储存和释放电能。
应用场景
在船舶电力推进系统中,储能装置可 用于峰值削峰、能量回收、备用电源 等场景,提高电力系统的稳定性和经 济性。
PART 03
02
采用先进的故障诊断算 法,及时发现并定位故 障点。
03
制定详细的故障排除流 程,指导船员快速有效 地解决故障问题。
04
建立故障数据库,对常 见故障进行分类整理, 为后续的故障预防提供 参考。
预防性维护计划制定
01
02
03
04
根据船舶电力推进系统的特点 和运行状况,制定针对性的预
防性维护计划。
合理安排维护周期和项目,确 保关键部件得到及时维护和更

船舶电力推进第三讲

船舶电力推进第三讲
电力推进系统可以灵活 地布置在船舶的不同位 置,有利于优化船舶总 体布局。
降低噪音和振动
与传统的机械推进方式 相比,电力推进系统的 电动机工作噪音和振动 较小,提高了船舶的舒 适性。
船舶电力推进的应用场景
大型游轮
大型游轮需要大功率的推进系统,同 时要求船舶布局更加灵活,因此电力 推进系统成为大型游轮的首选。
船舶电力推进第三讲
目录
• 船舶电力推进系统概述 • 船舶电力推进系统的组成 • 船舶电力推进系统的运行与维护 • 船舶电力推进技术的发展趋势 • 船舶电力推进系统的未来展望 • 船舶电力推进案例分析
01 船舶电力推进系统概述
船舶电力推进的定义
船舶电力推进是指通过电动机直接驱 动船舶螺旋桨,实现船舶推进的一种 技术方式。
科考船的电力推进系统
01
科考船的电力推进系统通常采用柴油发电机组或燃料电池作为主电源, 以满足科考任务的需求。
02
科考船的推进电机通常采用电动机,通过减速器和推进轴将动力传递 到螺旋桨上。
03
科考船的电力推进系统还需要配备多种传感器和控制系统,以实现精 确的航行控制和动力分配。
04
科考船的电力推进系统还需要考虑环保性能,以降低排放和噪音对环 境的影响。
THANKS FOR WATCHING
感谢您的观看
军用舰艇的电力推进系统
军用舰艇通常采用燃气轮机或柴油发电机组作为主电源, 以满足高功率和快速响应的需求。
为了提高机动性和作战能力,军用舰艇通常配备有多种 推进系统,如全电力推进、柴电联合推进等。
军用舰艇的推进电机通常采用电动机或柴油发电机,通 过减速器和推进轴将动力传递到螺旋桨上。
军用舰艇的电力推进系统还需要考虑隐身性能,以降低 电磁、声学和红外信号特征。

舰船电力推进系统优势和新能源

舰船电力推进系统优势和新能源

舰船电力推进系统优势和新能源1. 引言舰船的电力推进系统是舰船的重要组成部分,对舰船的性能和效能起着至关重要的作用。

随着科技的发展和环境保护意识的增强,越来越多的舰船开始使用新能源作为电力推进系统的主要源。

本文将探讨舰船电力推进系统的优势以及新能源在舰船电力推进系统中的应用,并分析其带来的益处和挑战。

2. 传统电力推进系统的优势传统舰船电力推进系统主要由燃料发动机和发电机组成。

这种系统的优势在于:2.1 高效性传统电力推进系统采用燃料发动机进行发电,可以实现较高的能量转换效率。

同时,发电过程中产生的余热可以被回收利用,提高系统的整体效能。

2.2 稳定性传统电力推进系统通过燃料供应控制燃料发动机的运转,并通过发电机将机械能转化为电能。

这种系统结构简单、稳定可靠,并且在长时间航行情况下仍能保持良好的工作状态。

2.3 易于维护传统电力推进系统使用广泛,配件供应充足,维护和维修相对容易。

船舶设备工程师具备相关技能,可以快速定位和解决问题。

3. 新能源在舰船电力推进系统中的应用随着环境保护意识的增强和新能源技术的不断进步,越来越多的舰船开始采用新能源作为电力推进系统的主要能源源。

以下是几种常见的新能源在舰船电力推进系统中的应用。

3.1 太阳能太阳能是一种常见的新能源,可以通过光伏电池板将太阳能转化为电能。

舰船可以在船体上安装太阳能电池板,收集太阳能供电给电力推进系统。

太阳能的应用能够降低舰船的碳排放,减少航行对环境的影响。

3.2 风能利用风能进行舰船推进是一种传统但经济高效的方法。

船只可以配备风能发电机,通过捕捉风能并将其转化为电能,驱动舰船的电力推进系统。

这种方法可以减少对传统能源的依赖,降低运营成本。

3.3 潮汐能潮汐能是近年来新兴的能源形式,可以通过潮汐发电机将潮汐能转化为电能。

舰船可以在需要的地区利用潮汐能发电,应用于电力推进系统。

潮汐能的特点是稳定性高,可预测性强,适用于远洋航行的舰船。

4. 新能源在舰船电力推进系统中的益处和挑战4.1 益处使用新能源作为舰船电力推进系统的能源源,具有以下益处:•增强环境可持续性:新能源的使用可以降低舰船的碳排放,减少对环境的影响,有利于维护海洋生态环境的可持续发展。

船舶电力推进系统

船舶电力推进系统

船舶电力推进系统Edited by 阳光的cxf 第一章1.电力推进系统的优缺点P10优点:(1)机动性能好(2)机舱小,布置灵活可增加船舶的载货载客能力(3)推进效率高(4)节能,有利于环保(5)适合于特种船舶的应用P47优点:(1)通过减少燃料消耗和维护费用减少生命周期成本,尤其是在负载变化大的地方(2)增强了系统对单一故障的抵抗性,使优化原动机负载分配成为可能(3)中高速柴油机重量轻(4)占用空间少,甲板空间利用更加灵活(5)推进器位置布置更加灵活(6)更好的机动性(7)更小的推进噪声和震动缺点:(1)初始投资增加(2)原动机和推进器之间有额外的器件,增加了满负荷运行时的损耗(3)新型设备需要不同的操作,维护策略第二章3.电力推进系统类型(1)可控硅整流器+直流电动机。

应用:船舶推进所应用的直流推进电机的容量,在2~3MW之间。

优点:1)启动电流和启动转矩接近零2)动态响应快缺点:1)转矩控制不精准2)换向器易发生故障3)谐波污染较大4)直流电动机结构复杂,成本高,体积大,维护困难,效率低(2)交流异步电动机+可调螺距螺旋桨模式。

应用:这种推进方式只适合于中、小功率船舶,或1000kW以下的侧推装置,因为微软起动器目前还只有中、小功率的低压产品。

优点1)几乎没有谐波污染2)转矩稳定没有脉动3)设计点运行效率高缺点:1)启动电流大2)启动瞬间机械轴承受转矩大3)功率因数低4)功率及转矩动态响应慢5)反转慢,制动距离长6)变矩桨结构复杂,价格贵,可靠性差7)变距桨液压控制系统复杂(3)电流型变频器CSI (Current Source Inverter) +交流同步电动机。

应用:10MW以上容量的电力推进装置优点:1)启动电流小2)价格便宜3)控制方便,操作灵活4)能匹配特大功率电机缺点:1)时间常数大,动态响应慢2)电感重量和体积大3)低速运行时,电流变频器将电流控制在零附近脉动,,输出转矩也脉动,给轴系带来震动(4)电压型变频器VSI (V oltage Source Inverter) +交流异步电动机。

船舶电力推进系统OK

船舶电力推进系统OK

a. DC variable control system of thirstier rectifier as the power supply b. AC variable control system of AC - AC converter as the power supply c .AC variable control system of AC -DC-AC current source inverter-fed d .AC variable control system of PWM inverter AC-DC-AC converter-fed
变频装置及控制系统(Control system):
It controls the speed of the motor,be divided int进电动机(Propulsion motors ): Synchronous motor,asynchronous motor.The trend is the permanent magnet motor.
变频装置及控制系统
Frequency Changer Drives And Control systems
The new pulse width modulation inverter device which the rectifier uses diodes,the inverter which uses IGBT,the filter is voltage-type has been used by more and more ships to promote the power.
正弦波PWM即SPWM控制方式 (Sinusoidal Pulse Width Modulation)

船舶电力推动系统的现状及发展前景

船舶电力推动系统的现状及发展前景

(3)船舶电力系统适装性技术研究。电力推进系统装备船舶,不仅需要研究其与船舶总体的关系,还 应考虑 其与船上其他系统、设备的关系。需主要开展以下方面的研究:系统装备于船舶的适装性问 题,并研究与 此相关的对船舶安全性、可靠性等的影响,以及系统对船舶海洋环境的适装性问题等; 解决系统内部及与 其他船用电子设备之间的电磁兼容性问题。
船舶电力推进装置
• 常用船舶电力推进装置一般由下述几部分 组成:原动机、发电机、电动机、螺旋桨 以及控制调节设备。 • 船舶电力推进系统的方案分类:永磁电机技 术、超导电磁推进技术、潜艇燃料电池电 力推进装置、吊舱式电力推进系统
永பைடு நூலகம்电机技术
• 现代永磁电机采用稀土材料励磁,不仅使 电机尺寸大大减小,重量减轻,而且使之 维护方便,运行可靠, 效率提高。与同容 量的异步电动机相比,永磁电机效率提高 了 4%~13%,功率因子提高了 5%~20%。 但 由于转子磁场强度受到当前永磁材料的 限制,10~30 MW 额定功率的永磁电动机 的设计仍面临极大的困 难。
电力推进系统的优点
• • • • • 空间配置灵活。 节省燃油,提高经济性。 提高了船舶的操纵性。 振动小,噪音低。 提高了船舶的安全性。
普及电力推进系统需要研发的关键技术
1)全船电力系统总体技术研究。由于电力推进系统的设计是当今先进的电力电子技术、交流调速技 术、电 机制造技术、永磁材料技术、计算机控制技术、原动机技术等的综合运用,技术含量高。许 多不同专业的 各个设备的研制需要相互协调,功能相当且接口一致。综合电力系统各个模块是否运 行良好并相互协调以 发挥系统最佳效能,是事关整个系统优劣和良好运行的关键。需要开展构成综 合电力系统的各个模块,以 及各模块集成的技术研究,主要包括:发电模块关键技术研究,包括全 船环形电网关键技术的研究;配电 模块关键技术研究,主要包括区域配电模式研究等;电力变换模 块关键技术研究,主要包括大容量电能变 换技术研究,中、高压电网的安全性研究等;电力控制模 块关键技术研究,主要包括电力系统智能化综合 监控与管理技术研究等;能量储存模块关键技术研 究等等。在船舶电力推进系统中,电力的产生、维护、 管理就成为船舶的生命线,船舶综合电力系 统总体技术的研究必须取得突破。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

船舶电力推进系统
船舶电力推进系统是现代船舶设计中的重要部分,它的作用是为船舶提供高效、可靠的动力,以满足船舶的各种需求。

本文将详细介绍船舶电力推进系统的构成、特点、应用场景及其发展趋势。

一、系统构成
船舶电力推进系统主要由发电机、变压器、配电板、变频器、推进器等组成。

其中,发电机负责将机械能转化为电能,变压器则将发电机输出的电压和电流进行调节,配电板负责对电能进行分配和控制,变频器则将电源频率转换为推进器所需的频率,推进器则最终将电能转化为机械能,推动船舶前行。

二、系统特点
船舶电力推进系统具有以下优点:
1、能量利用率高:电力推进系统中的电动机能量转换效率高达90%以上,相比传统燃油发动机,能量利用率更高。

2、航行平稳:由于电力推进系统可以通过调节电动机的转速和转向来控制推进器,因此可以实现船舶的平稳航行,减少震动和噪音。

3、维护方便:电力推进系统的机械部件相对较少,因此维护相对简单,寿命也更长。

4、环保:由于电力推进系统使用的燃料是电力,因此不会产生废气和噪音,对环境更加友好。

三、应用场景
电力推进系统在船舶中的应用非常广泛,尤其是在大型船舶、高速船和军舰中,电力推进系统的优势更加明显。

例如,在大型油轮中,电力推进系统可以更好地满足油轮的平稳航行和货物运输需求;在高速船中,电力推进系统可以实现更高的航速和更好的舒适性;在军舰中,电力推进系统可以提高舰船的隐蔽性和作战能力。

四、发展趋势
随着科技的不断进步,船舶电力推进系统也在不断发展。

未来,电力推进系统将更加智能化、高效化和环保化。

具体来说,以下是一些发展趋势:
1、智能控制:未来的电力推进系统将更加智能化,可以通过传感器和人工智能技术实现自动化控制和优化,提高系统的效率和可靠性。

2、高效能源:未来的电力推进系统将更加注重能源的高效利用,例如采用更高效的发电机和电动机,以及更先进的能量储存技术,以提高系统的能量利用率。

3、环保技术:未来的电力推进系统将更加注重环保,例如采用更环保的燃料电池或太阳能等可再生能源技术,以减少对环境的影响。

总之,船舶电力推进系统是现代船舶设计中的重要部分,具有广泛的应用前景和发展空间。

随着科技的不断进步,电力推进系统将更加智能化、高效化和环保化,为船舶行业的发展注入新的动力。

相关文档
最新文档