水力射孔介绍

合集下载

水力喷射射孔工具的研制与应用

水力喷射射孔工具的研制与应用

!开发应用#水力喷射射孔工具的研制与应用胡风涛Ξ(胜利石油管理局采油工艺研究院)摘要 简述了水力喷射射孔的基本原理,介绍了喷管式、对称割缝式和3孔固定式三种不同射孔工具的基本结构、工作原理和技术特点。

在地面对喷管式和三孔固定式两种射孔工具做了试验,表明水力喷射射孔是一种高效的射孔手段,可满足油水井射孔需要。

从3种工具的现场施工效果看,大部分井经射孔后有明显的增油效果,有少数井效果不够理想的原因是:对地质情况分析不透、工作介质选择不当,以及工艺设计不合理等。

建议对水力喷射射孔工具的结构进行优化改进设计,合理选用工作介质,优化工作参数,认真研究井况,确定最佳射孔部位。

主题词 水力喷射 射孔 射孔器 应用 进入80年代,水力喷射射孔技术作为一种完井和原油增产措施进入了工业性试验阶段,并取得飞速发展。

目前已研制了多种射孔工具,其中喷管式、对称割缝式和三孔固定式3种射孔工具在现场得到了推广应用,并见到了不同的增油效果。

基 本 原 理水力喷射射孔是通过高速流体撞击岩石完成的,喷嘴射出的高压流体在遇到岩石壁面时,对岩石表面产生冲击力。

根据射流的动力性能分析,射孔对岩石的冲击力为F=2ρA0v2(1)式中 ρ———流体密度,kg/m3; A0———喷嘴截面积,m2; v———射流速度,v=φ2p n/ρ,m/s。

F=4φ2A0p n(2)而射流对岩石的冲击压力为p jet=4φ2A0Ap n(3)式中 φ———流速系数,流线型喷嘴φ=0198; p n———喷嘴压力降,即喷嘴内外压差,Pa; A———射流的喷射面积,m2。

其中,喷嘴压力降为泵压p p与除喷嘴外的整个循环系统压力损失p r之差,即p n=p p-p r(4) 由式(3)、(4)可知,要提高射流对岩石的冲击压力就要提高喷嘴压力降,而提高喷嘴压力降既要提高泵压,也要减少循环系统压力损失。

当射流对岩石的冲击压力超过一定值时,岩石将被切割破碎,能够切割破碎岩石的压力被定义为“临界压力”,临界压力是岩石抗压和抗拉强度的函数,当射流对岩石冲击压力超过临界压力时,便可穿透岩石在地层中形成清洁的油流通道。

水力喷射射孔压裂原理

水力喷射射孔压裂原理


起初,喷射流体 冲回到环空中
在孔洞根部 的压力增加
一、水力喷射射孔压裂原理
2、水力喷射射孔压裂原理
孔洞根部的压力 进一步增加
液体开始聚集, 使得压力超过破裂压力
P P P 增压 环空 破裂
一、水力喷射射孔压裂原理
2、水力喷射射孔压裂原理
环空液体被喷射流 引入孔洞中
裂缝开始形成, 压裂液进入地层
一、水力喷射射孔压裂原理
2、水力喷射射孔压裂原理
环空液体继续 被喷射流引入孔洞中
压力最高处
裂缝继续延伸
一、水力喷射射孔压裂原理
2、水力喷射射孔压裂原理
开始喷射
由Bernoulli方程
V p C 2
2
流体通过喷射工具,油管中的高压流体能量被转换成动能,产生高 速流体冲击岩石形成射孔通道,完成水力射孔
一、水力喷射射孔压裂原理
2、水力喷射射孔压裂原理
砂段塞冲击 并且形成孔洞
实际应用中通常要使用低砂浓度携砂液来完成水力喷射射孔任务

油井水力射孔技术研究及应用

油井水力射孔技术研究及应用

油井水力射孔技术研究及应用油井水力射孔技术研究及应用摘要:随着油气行业的不断发展,油井水力射孔技术作为一种常用的提高产能和增强井筒通透性的方法,得到了广泛的应用。

本文通过对水力射孔技术的研究和应用现状进行分析,揭示了水力射孔技术的优势和局限性,并提出了一些改进方案和展望。

1. 引言油井水力射孔技术是通过高压水射流作用,将井筒底部的岩层进行破碎,从而提高产能和增强井筒通透性的一种方法。

这种技术在石油工业中被广泛运用,取得了显著的效果。

本文将对水力射孔技术的研究和应用现状进行分析,并对其优势、局限性和改进方案进行探讨。

2. 水力射孔技术的原理和方法水力射孔技术主要是通过高压水射流产生的冲击力和高速水流对岩石的冲刷作用,使岩石发生破碎和剥蚀,从而形成射孔孔道。

水力射孔技术主要包括以下几个步骤:(1)选择合适的射孔工具和射孔液;(2)控制射孔液的压力和流量;(3)在井筒底部进行射孔操作,将射孔液通过射孔工具注入井筒。

3. 水力射孔技术在油井生产中的应用水力射孔技术在油井生产中具有广泛的应用,主要包括以下几个方面:(1)提高产能:水力射孔技术可以通过增加井筒通透性和开启新的生产层,提高油井的产能。

(2)改善井筒通透性:如果井筒存在堵塞或者通透性不佳的问题,可以通过水力射孔技术来清除堵塞物或者增加井筒通透性。

(3)修复井筒问题:例如,如果井筒发生坍塌或者泥层分离等问题,可以通过水力射孔技术来修复井筒。

4. 水力射孔技术的优势水力射孔技术具有以下几个优势:(1)操作简单:水力射孔技术的操作相对简单,不需要复杂的工具和设备。

(2)施工周期短:水力射孔技术的施工周期相对较短,可以快速提高油井的产能。

(3)有效改善井筒通透性:水力射孔技术可以有效地改善井筒的通透性,提高油井的产能和生产效益。

5. 水力射孔技术的局限性水力射孔技术也存在一定的局限性:(1)孔径控制困难:水力射孔技术在孔径控制上还存在一定的困难,无法精确控制射孔孔径和位置。

水力深穿透射孔新技术

水力深穿透射孔新技术

0前言在钻井、完井、增产措施、生产和注入等各个作业过程中,由于入井液体中固相的侵入或生产、注入等引起的地层内微粒的运移、物质沉淀等多种原因,进行油田生产的油气水井的近井地带都存在不同程度的地层伤害。

水力深穿透射孔技术利用高压水射流钻孔的方式形成清洁孔道,借助对喷管、喷嘴的送进实现深穿透,孔深能达到2m,孔径能达到20mm 以上,孔道的流通能力能为常规射孔的10-20倍。

通过近20年来相关研究人员和现场作业人员的研究和应用表明,水力深穿透射孔对于油田增产增注、低渗透油田近井地带改造具有重要的意义。

1水力深穿透射孔技术的国外发展情况国外早在20世纪40年代已应用水力喷射技术进行油水井射孔,最早的水力射孔主要以喷嘴固定和套管对称割缝等形式来实现,它们都有一个共同的缺点:喷嘴在井下不能径向移动延伸,射出的孔眼径向距离短,孔道尺寸形状不规则,对油井套管和固井水泥环都有不同程度的伤害,射孔达不到预期增产增注的目的和效果。

该技术在十多年的发展过程中,进行了多次技术升级和产品更新换代,但其模式主要为两种:①套管冲孔+高压水力喷射切割岩石射孔;②套管钻孔开窗+水力地层径向钻孔射孔。

这两种模式在作业的过程中都是利用油管传输动力液,在地面控制压力的变化,进而控制井下射孔工具的动作,从而实现深穿透射孔的目标。

2水力深穿透射孔新技术2.1PeneDRILLPeneDRILL 钻进式射孔系统由Penetrators Canada Inc.(加拿大射孔器有限公司)开发,并已获得专利。

Penedrill 工具在加拿大、美国和阿曼等国家的油田现场已经应用了数百口井,见到了良好的油井增产和水井增注效果,平均增产增注1~3倍,最高可达10倍以上,尤其在致密的低渗透油藏应用效果更好。

该工具由油管输送下入井中,首先在套管上钻一个26mm 的孔,然后再向地层钻一个直径17mm、长2m 的孔。

钻一个孔需要10~20分钟的时间,一次下井可以钻多个孔,钻孔的数量由井深、岩性、流体类型决定,一般情况下每次下井可钻4~8个孔。

水力喷射射孔新工艺应用研究

水力喷射射孔新工艺应用研究
理。
() 9 射孔作业 时, 非岗位人员远离高压区域 , 以防
伤人 。
4 现场 应用
层清洁无污染 。选井条件 : 油藏是砂岩, 孔隙度>1 ; O 套管外径19 7 m、7. m 井筒状况完好 。 3. m 178 m 3 2 施工 步骤 .
()通 洗井 : 井 规 +油 管 通井 至人 工 井 底 , 井 1 通 洗
管。
() 6水力喷射射孔作业 : 下水力喷射射孔钻具, 钻具 结构为 : 喷头十 1.m 喷射软管+ 1.mm连续 22 m 24 钢管至井 口; 用活性水以 9 L m n 4 / i 排量和 5MP 泵压 3 a 进行水力喷射射孔作业 ; 射孔水平钻进深度为 5m, 0 水
明 , 产 增注效 果 明显 。 增
关键 词 : 水力喷 射 ; 水力射 孔 ; 增产增 注 ; 用研 究 应
中图分类 号 : 2 文献标 识码 : 文章编 号 :o4 5 1(0 10一 O 4一O TE A l0~ 7 62 1)8 O6 3
1 概述
12 水 力 喷射射 孔技 术的 适用范 围 .
11 水 力喷 射射 孔的 特点 .
() 1水力喷射射孑 深度较深 , L 一般在 l 以上 , m 甚至 长达几十米 , 能穿透近井地带的伤害 区, 而且孔道面积
也 比较 大 。 () 2 在井 下岩层 里 形 成 大孔 径 的水 平 孔道 , 径 可 孔 达 2 mm, 5 比炮 弹射 孔具有 更 高 的导流能 力 。
2 世纪 5 年代 , 嘴被用于牙 轮钻 头和刮刀 钻 O O 喷 头 ;0 2 世纪 6 年代和 7 年代 , 0 O 国内对高压喷射钻井进 行 了 大规模 的室 内和 现场试 验 , 括在 液体 介质 中加 入 包 磨料 ;O 2 世纪 8 0年代 , 水力 喷射射孔技术作为一种完

深穿透水力射孔技术及其应用

深穿透水力射孔技术及其应用

深穿透水力射孔技术及其应用
深穿透水力射孔技术是一种水力地质勘探和处理技术,是指用高压流
体射出符合特定深度要求或射出特定深度射孔。

此技术能实现多种深度孔
洞的自动射出,并可达到高度精确的射孔深度,甚至是极小的尺寸。

因此,深穿透水力射孔技术可以用于地质勘探、工程建设以及其他工程领域的应用。

1、地质勘探:深穿透水力射孔技术可以用于勘查岩石的组成,构造
及地应力等信息,可以用于准确确定油气资源的储量以及评价地层的可采
用性。

2、应用于工程建设:深穿透水力射孔技术可以用于工程建设,可以
提供坚固的基础,包括地下水、地下结构、交通和公共基础设施等,可以
为其他后续操作提供必要的参数,保证其正常运行。

3、应用于建筑工程:深穿透水力射孔技术可以用于建筑工程中,用
于建筑物的加固及承重分析,以及建筑物地基的设计和施工。

4、用于环境监测:深穿透水力射孔技术可以用于环境监测,可以获
得准确的土壤、水文参数,可以对环境污染物进行快速侦测。

深穿透水力射孔技术及其应用

深穿透水力射孔技术及其应用

深穿透水力射孔技术是一种把现有的排水、给排水、供电等设施新增
或修改的建设技术,它使用高压水的反压来将孔眼抬向地表或材料的
表面,可以节省50%以上的施工周期。

深穿透水力射孔技术由水力射流管道、电动马达、防爆宝塔、电源和
控制系统组成,深穿透水力射孔工艺主要步骤是:首先测量房屋、框
架或混凝土混合物的厚度,然后将高压水泵放置在需要射孔的位置,
回水管和排水管铺设到地面上,再将防爆宝塔安装在建筑物位置,防
爆宝塔使用高压油,此时,高压油将孔眼抬向建筑物的表面,再将射
流管道安装后,电源、水泵、电动机按要求呈Y形联接,安装完毕后,即可开始操作。

深穿透水力射孔技术应用非常广泛,不仅可以拔高护壁、拓宽街道,
还可以用于新建楼房、地坑、旧建筑改造等施工,它有效地减少了施
工量、存在射孔技术的设施的老化程度,简化了原有设施的更新维护。

深穿透水力射孔技术可以解决城市管网施工更新替换的困难,它运行
稳定、操作安全,大大的提高了施工效率、降低了成本,不仅能节约
施工时间,而且还可以降低噪音污染,提高施工环境。

可以看出,深穿透水力射孔技术实用性很强,应用前景广阔,几乎可
以解决城市建设管网技术相关的各种问题。

可以说,它给城市建设提
供了一种更先进、更全面的技术手段,优化和革新城市建设进程。

水力喷砂射孔技术介绍

水力喷砂射孔技术介绍

机具及规格
工具名 序号 称 单枪 喷嘴 数量 3 喷嘴 内径 直径 (mm) (mm) 5 外径 (mm) 长度 (mm)
套管 压井阀
水力锚 319.0m
1
喷枪A 喷枪A
58.0 145.0 280.0
喷枪B B 321.5mm 油管短节 324.00m
2
喷枪B 喷枪B
3
6
58.0 145.0 280.0
(3 )泵 注 程
序 号 1 2 3 4 5 作业内容 排量 m3/min 压力 MPa 55.0 0.80.8-1.0 2.0-5.0

砂 比 % 砂量 m3 液量 m3 时间 min 3.0 2.0--3.0 3.0 备注
地面试压 清洗油管 停泵投球 携砂液 顶替液 2.3 2.3
原液 原液( 原液(套管 见液) 见液) Φ45.0 mm
水力喷砂射孔(磨料射流) 水力喷砂射孔(磨料射流)是在高压水作用下加砂 射穿套管沟通地层的一种新技术和新工艺。 射穿套管沟通地层的一种新技术和新工艺。
1.1 技术应用范围
a. b. c. d. e. f.
油层较薄(厚度1.0米)、无法进行压裂增产的井 油层较薄(厚度1.0米)、无法进行压裂增产的井 1.0 特低渗透致密油藏,降低井底渗流阻力, 特低渗透致密油藏,降低井底渗流阻力,常规射孔 难以求产的井 不宜实施酸化增产的酸敏油藏 油层污染严重的各种套管井的射孔 压裂前期预处理来降低地层破裂压力等场合 适用井深:<4000米 适用井深:<4000米
40-44 40-44
6-7
2-3
51 8-10
22 5
石英砂 原液
停泵(放压为零),上提管柱 重复序号4、 步骤 步骤。 停泵(放压为零),上提管柱1.0m,重复序号 、5步骤。 ),上提管柱 重复序号 总计 6-7 8-10 160.0 66.0

水力喷射深穿透射孔技术应用(报告)1

水力喷射深穿透射孔技术应用(报告)1

TUHA R&D水力喷射深穿透射孔技术研究及应用吐哈石油钻采工艺研究院2005年8月目录前言一、立项背景二、水力喷射深穿透射孔技术简介三、水力喷射深穿透射孔技术的优点及应用范围四、水力喷射深穿透射孔技术在吐哈油田的适应性分析及选井条件五、射孔工具改进研究六、现场应用效果和经济效益七、认识和结论八、存在问题及改进方向水力深穿透射孔技术研究及应用吐哈油田钻采工艺研究院(2005.8)摘要:水力深穿透射孔的井下工具主要由控制部分、喷射系统和冲孔部分组成。

它利用油管传输动力液,分别驱动井下两个不同的液马达,一个马达驱动铣刀完成套管铣孔开窗,另一马达实现地层径向钻孔实现深穿透射孔的目的,从而在油层和井筒之间建立一个直径大、长度长、清洁无污染的液流通道,同时将地层岩屑带走,套管和水泥环不会受伤害。

由此克服了炮弹射孔粉压作用造成的二次污染。

水力深穿透射孔技术,是低渗地层完井、地层改造、提高采收率的一项有效新技术,为油田提供了一种改变传统增产增注和改善剖面矛盾的新技术。

本文主要介绍水力射孔技术在吐哈油田的研究、应用情况及效果等。

主题词:水力深穿透射孔控制部分地面系统井下工具应用效果前言最早的水力射孔主要以喷嘴固定和套管对称割缝等形式来实现,但它们都有一个共同的缺点,喷嘴在井下不能径向移动延伸,射出的孔眼径向距离短,孔道尺寸形状不规则,对油井套管和固井水泥环都有不同程度的伤害或损坏,射孔达不到预期的目的和效果。

从20世纪80年代中期开始,先后在美国、加拿大逐步发展起来的一种新型射孔技术,虽然该技术在数十年的发展中,进行了多次技术升级,但归根到底不外乎以下两种主要模式:第一、套管冲孔+高压水力喷射切割岩石射孔;第二、套管钻孔开窗+水力地层径向钻孔射孔。

前者是最早研制开发的,高压水力喷射深穿透射孔技术的实质是完全利用水力作用,液压冲击头冲开套管,带软管的喷射头从冲击头的中心孔中径向向外伸出,以高压流体切割地层的方式完成射孔的。

水力喷砂射孔安全要求

水力喷砂射孔安全要求

水力喷砂射孔安全要求水力喷砂射孔技术是一种常用的隧道工程施工工艺,该工艺的施工安全性直接关系到工程的施工质量和进度。

以下为水力喷砂射孔的安全要求:一、施工前的准备工作1.应有充分的施工计划和措施,在射孔施工前进行必要的安全会议,明确施工过程中的安全注意事项和应急措施。

2.由专业技术人员对射孔设备的状态、工作情况和作业环境进行全面检查和评估,在确保设备完好,作业环境安全前,方可开展喷砂射孔施工作业。

3.确保喷砂射孔施工过程中,现场安全、环境、交通等管理服务保障到位。

二、喷砂射孔作业安全要求1.喷砂射孔作业必须由专业技术人员操作,工作者要经过专业培训后,经过考核合格后方可进行喷砂射孔作业。

2.工作者必须穿戴必要的劳保用品,如工作服、安全鞋、护目镜、口罩等,并按规定穿戴安全带,防止意外事故发生。

3.喷砂时,应进行剂量控制以确保喷砂的质量和深度,同时遵守施工技术规范进行实际施工操作。

4.喷砂时应有专人监督、把控、并及时检查现场情况,如喷砂管头的磨损情况和现场人员是否安全。

5.在喷砂作业前,应确认周边人员已全部撤离,防止施工中发生人员伤害事故。

三、作业后的清理和安全处理1.施工完成后,现场必须进行安全检查,包括砂石堆放、施工设备的清理、处理喷砂设备处的紧急情况以及清理周边工作区域等,确保施工现场安全干净。

2.原材料和备件的存放应按规定进行标识、安放,现场必须保持整洁、通风、干燥等蓄积条件,如有其他危险物品应在标注之前就行妥善处理。

3.喷砂射孔施工现场如有必要进行消防和空气质量控制处理,保证现场状况安全合规。

总之,喷砂射孔施工是一项技术要求较高的工程,施工中必须重安全、重管理、重防范,对于施工现场的安全,我们不容马虎,必须严格把控,确保施工人员的人身安静,同时工程的质量也需要保证。

浅析水力深穿透射孔技术

浅析水力深穿透射孔技术
1 0 4
内蒙 古石 油化 工
2 0 1 3 年第 1 3 期
浅 析 水 力深 穿 透 射 孔 技 术
张Hale Waihona Puke 义 萍 ( 锦州采油 厂工艺研究 所 , 辽 宁 锦州 1 2 1 2 0 9 )
摘 要: 水 力深 穿透射 孔技 术 可用 于 油 田油气 井 的增产 作 业 , 提 高产 量 和 采收 率 , 降低 含 水 率等 方 面, 同时也 可 用于 油 田注入 井 的增 注作 业 , 降低 油 井注入 压 力 , 增 大 注入 量 , 改善 注入 剖 面。 关键词: 水 力 深 穿透 ; 射孔 ; 井眼 ; 解堵 中 图分类 号 : TE 2 4 8 文 献 标识码 : A 文章编 号 : 1 0 0 6 -7 9 8 1 ( 2 0 1 3 ) 1 3 —0 1 O 4 —0 1
封 问题 。
另外 , 喷射 送进 系统 , 在 超 高压 清 水介 质条 件下 实 现 了喷射 系 统 的 低速 平 稳 送 进 , 这 是 该 项技 术 的
另 一关 键 点 和难 点 , 是 利 用 基 于 密 闭 隔离 结构 和减 压 后调 速 与 差动 控 制 的专 利 技术 , 来 实 现 喷 管送 进 速 度与 射 流破 岩 钻 孔 速 度 的 合理 匹 配 与适 应 调 节 。 在 高达 6 O MP a压 力下 , 送进 控 制液 缸 的驱动 力在 不 超过4 5 0 0 KN 的范 围 内 自动 词整 , 使 喷 管 实现 1 — 2 mm/ s 量 级 的超 低速 平稳 送进 与 回收 。由于超 高压 差 和水 介 质 的低 粘 度 , 加 上井 下 使用 条 件 下 的 尺寸 空 间 限制 和 高污 染 环 境 , 常规 液 压调 速 系 统很 难 找 到适 用 的减 压 阀和调 速 阀来控 制 驱动 力 和速度 。通 过 创新 研 究 , 采 用独 创 的减 压 机 构 和 密闭 隔离 设 计 取代 常规 的 控制 阀调 压 、 调速 方 式 , 在 密 闭隔离容 腔 内使用 液 压 油配 合 节 流 机 构 调速 , 将 液 压 系统 的常 规 调速 技 术 用 于井 下 清 水 介 质 条件 , 满 足 了超 高压 系 统低 速 平 稳送 进 的要 求 ; 减 压后 的差 动 控 制可 有 效 控 制超 高 压 系统 的送 进 力 , 可 在 系统 中采用 常 规 液 缸结构 。 冲孔 机 构 的主要 功 能是 冲开 钢质 的套管 并在 机 构 内提 供 喷 管转 向 的导 向弯 道 , 为射 孔 工 具直 接 对 地层 喷射 钻 孔提 供初 始通 道 。其 难点是 在空 间狭 小 的 情况 下解 决机 构 研 究 与 组 合通 道 设计 、 控制 流 道 的布置 、 高接 触应 力 摩擦 副 的匹 配与 冲头 。 通 过空 间 分 析计 算 , 设 计 的 喷管 进 出组 合 通道 充 分 利用 工 具 内狭 小 的径 向空 间 , 允许 使用 最 小 弯 曲半 径更 大 的 高 压 软管 , 降低 了高 压 软管选 型 与制作 的技术难 度 ; 成 功在 壁 厚 为 1 5 mm 的 筒壁 上 制 作 孔 径 为 6 mm 长 为2 m、 承 压 高达 8 0 MP a的流道 孔 , 解决 井下 筒式 结 构 径 向尺寸 小 而造成 的管路 布 置 的难 题 和具有 世界 先 进 水平 的 细 长孔 加 工 工 艺 ; 通 过 对 基体 分 别进 行 淬 火 与调质 , 硬 软搭 配 辅助 表面 处理 技术 , 解决 了恶 劣 环 境下 重 载摩 擦 副 的易 损 伤难 题 和 选 材 、 热 处 理 及 表 面处理 技 术 。冲头 是 套管 冲孔 开窗 系统关 键 的 部 件 。通过 系列 设计 与试验 验证 , 对 冲头 的外形 、 结 构、 行程、 工 作 方位 进 行 了优 选 , 研究 分析 了冲头 外 形 结 构参 数 对 外 层 固井 水 泥 环 以及 不 同套 管材 质 、 厚 度 等因素 的适 应 性 。 采取 增加 冲孔液 缸 行程 、 加 大 楔 块倾 角 以求 增 大 冲头 行 程 , 并 选 取适 当的 冲孔 方 位, 最 终实 现 了最佳 的冲孑 L 效果 。 配套 采用将 冲头 体 与 连接 底座 分离 , 设 置安 全 剪切 环节 , 简化 易损件 结

水力喷砂射孔技术介绍

水力喷砂射孔技术介绍

水力喷砂射孔技术介绍水力喷砂射孔技术的原理是通过水流和砂粒的高速碰撞,利用水力冲击能量将砂粒投射到目标表面,形成高速冲击力,从而将表面的污垢、油渍、老旧涂层等物质冲刷掉。

水力喷砂射孔技术通常需要采用高压水泵将水流推送到水枪或喷嘴中,同时加入砂粒,通过控制水流和砂粒的速度和压力来实现不同的射孔效果。

水力喷砂射孔技术的优点主要体现在以下几个方面。

首先,由于水力喷砂射孔技术使用的是水和砂粒,不需要使用任何化学溶剂或有害物质,因此对环境无污染,对人体无害,符合环保要求。

其次,水力喷砂射孔技术具有高效快速的特点,可以迅速清理大面积的杂质、油污或涂层,节省了人力和时间成本。

此外,水力喷砂射孔技术对于硬度较高的材料,如混凝土、岩石等,也有较好的清理效果,可以有效提高表面的粗糙度和附着力,为后续的修复和涂装提供良好的基础。

水力喷砂射孔技术在许多领域都有广泛的应用。

首先,在建筑和房屋装修领域,水力喷砂射孔技术可以用于清理墙面、地面或天花板上的污渍和涂层,恢复表面的平整度和粗糙度,提供更好的装修效果。

其次,在桥梁和道路维修中,水力喷砂射孔技术可以用来清理老旧涂层、路面修补和防腐保护,延长桥梁和道路的使用寿命。

此外,水力喷砂射孔技术还可以应用于船舶、管道、储罐等重工业领域的清洗和防腐维护工作。

使用水力喷砂射孔技术时需要注意以下几点。

首先,射孔时需要根据不同的工作要求调整水流和砂粒的速度、压力和喷嘴型号,以确保达到预期的清洁效果。

其次,操作人员需要佩戴适当的个人防护装备,如防护眼镜、口罩、手套等,以避免射孔过程中的飞溅物伤害。

同时,要注意施工环境的通风和安全管理,防止射孔过程中的意外事故发生。

最后,使用水力喷砂射孔技术时,需要根据不同材料的硬度和表面性质选择合适的砂粒类型和粒径,避免过度冲击导致损坏表面。

综上所述,水力喷砂射孔技术是一种高效、环保且广泛应用的射孔技术。

在建筑、桥梁、道路等各个领域都有着广泛的应用前景。

但在实际施工过程中,需要根据不同的工作要求和材料性质来进行调整和选择,以达到最佳的清洁效果和使用效果。

压裂,射孔,簇,定义

压裂,射孔,簇,定义

压裂,射孔,簇,定义
压裂、射孔、簇的定义如下:
1. 压裂:压裂是利用水力作用,使油层形成裂缝的一种方法,又称油层水力压裂。

油层压裂工艺过程是用压裂车,把高压大排量具有一定粘度的液体挤入油层,当把油层压出许多裂缝后,加入支撑剂(如石英砂等)充填进裂缝,提高整个油层的渗透能力,改善原油在地层条件下的流动状态,从而达到增产的目的。

2. 射孔:射孔是利用专用设备向油层或气层注入一定压力的高能气体或液体,使地层内部形成一定深度的径向孔洞。

射孔主要用于油、气井的勘探和开发,使地层内部形成一定深度的径向孔洞,以便通过油管或套管将地层或油气层中的油气采到地面。

3. 簇:在石油工业中,“簇”通常指的是一组相互连接的射孔枪。

这些枪通过串联或并联的方式连接在一起,以在同一井段进行多次射孔作业。

这样可以提高产能,同时降低每枪的成本。

以上内容仅供参考,如需更全面准确的信息,可查阅石油工程相关书籍或咨询该领域专家。

径向水射流射孔辅助压裂技术分析

径向水射流射孔辅助压裂技术分析

径向水射流射孔辅助压裂技术分析摘要近年来,采油厂投产新区主要以低渗透油藏为主,采取以压裂投产为主的增产工艺技术,但采油厂低渗透油藏存在着层多、层薄储层特征,缝高控制难度大,缝长延伸不出去,不利于地质井网开发,为此推广应用了径向水射流射孔辅助压裂技术。

本文介绍了径向水射流射孔技术特点,与压裂工艺技术配合后的应用效果及工艺技术对比分析,为今后薄互层油藏开发提供一定的技术依据。

关键词径向水射流;压裂;射孔;裂缝;效果1 径向水射流技术简介径向水力喷射技术是最近几年在国际上刚刚兴起的一种油层改造增产的新工艺技术,工作原理是在油层部位套管上机械开窗,利用高压射流的水力破岩作用在油层的不同方向上定向钻出多个直径1.5英寸~2英寸,长度可达100m的定向井眼,从而增加原井眼的泄流半径,进而达到增加原油产量的目的。

在国外该技术的研究和开展应用的深度和广度较我国要领先一步,尤其是美国在这方面的研究走在了该领域的前列,已经投入到了现场的工业化实施阶段,取得了一定的成果和经验。

2 径向水射流射孔辅助压裂技术的应用2.1 技术概述径向水射流射孔与常规压裂联合作业技术就是通过径向水射流技术在目的层定向水力喷射出一条长70m~100m,直径40mm的细长通道,结合常规压裂技术,达到定向压裂的目的。

2.2 实施效果该技术在梁108块上实施2口井-梁108-11、梁108-10井,两口井压裂后至目前均自喷生产,初期平均日液11.8t/d,日油8.6 t/d,含水29%。

相比同区块采取常规压裂投产井(梁108-8井)日油增加5.6t/d,单井增油效果明显。

从人工测试裂缝来看,径向钻孔与压裂复合技术使裂缝方向与径向水射流孔道延伸方向一致,达到定向压裂的目的。

3 常规压裂技术井与联合压裂作业技术井对比与分析3.1 油层数据对比梁108-11井与梁108-8井同属于梁108块油井,井距240m。

压裂储层层位都是c1-c2,渗透率10-50×10-3um2,孔隙度10%~20%,泥质含量29%~39%;地层物性相近,具有一定的可比性(见表1)。

水力深穿透射孔

水力深穿透射孔

水力深穿透射孔在钻井、完井、增产措施、生产和注入等各个作业过程,由于入井液体中固相的浸入或生产、注入等引起的地层内微粒的运移、物质沉淀等多种原因,用于油田生产的油气水井的近井带都存在不同程度的地层伤害。

在低渗透油藏中,这种伤害更为严重,对生产的影响也更大。

地层伤害造成油气井产量下降,注水井的注水量降低或注不进去。

如何有效消除近井带的地层伤害,提高单井产量或注入量,是石油工程中一直在力求解决的问题之一。

到2004年底,我国石油探明可采储量67.91亿吨,其中低渗透占28%,动用程度仅50%左右;预计今后每年新增探明储量低渗透占50%以上。

目前,我国的低渗油田开发效果并不理想,开采效率低、经济效益差的现象普遍存在。

据我国部分已开发的低渗油田统计,单井自然产能一般<5t,采收率≤20%,开采速度<0.5%,产油量年递减率一般在25~45%之间,最高达60%。

如何找到经济有效的开发手段,进一步改善低渗油田开发总体效益,对我国石油工业的持续稳定增长具有重要的作用。

近20 年来的相关研究和应用表明,水力深穿透射孔技术对于油田增产增注、低渗透油田近井带改造都具有重要的意义。

在我国部分气田的开发中,采取打悬空水泥塞或井口水泥塞的方式完井后,再次入井作业时直接钻开水泥塞存在井喷失控的危险。

用水力深穿透垂直钻孔系统钻泄压孔泄压后再作业,可保障作业安全。

1 水力深穿透射孔技术的研究与应用1.1 系统构成与基本原理水力深穿透射孔技术利用高压水射流钻孔的方式形成清洁孔道,借助对喷管、喷嘴的送进实现深穿透,孔深达到2m,孔径为φ20以上,孔道的流通能力为常规射孔的10~20倍。

属于一种零转向半径的微型水平孔钻进技术。

系统主要由井下工具和锚定器、过滤器等井下配套工具构成。

地面采用小型高压泵组(配套功率110kw)供液,也可使用压裂车或水泥车分流后供液。

目前形成的系统主要适用于φ139.7mm或φ177.8mm垂直套管井。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c 完成试验准备和打靶试验
接泵车
靶 件
1200mm
管 串 示 意 图

堵丝
返排管线
水泥靶
套管 油管短节 喷枪 丝堵
ф 2548mm
套 管 (5 1/2″ 、 7″两种)
地面靶件射孔前的实物照片
地面靶件射孔后的实物照片
地面靶件射孔后剖开前的实物照片
7″靶件试验参数
作业时间:2004.10.19 靶件岩样强度: 44.4 MPa
井下管柱结构图
3.7.1 23254井水力喷砂射孔施工总结
(1)油、水层基本数据
射开 稠 射 孔 厚度 油 井 段 (m) 层 (m) 位 319.0 324.0 完钻 日期 人工 井底 (m) 套管 套管 直径 壁厚 (mm) (mm)
常规射孔 水力射孔 2.4孔/米 YD-89 20孔 /m
J3q
2005.12.20
水力喷砂射孔(磨料射流)是在高压水作用下加砂 射穿套管沟通地层的一种新技术和新工艺。
1.1 技术应用范围
a. b. c. d. e. f.
油层较薄(厚度1.0米)、无法进行压裂增产的井 特低渗透致密油藏,降低井底渗流阻力,常规射孔 难以求产的井 不宜实施酸化增产的酸敏油藏 油层污染严重的各种套管井的射孔 压裂前期预处理来降低地层破裂压力等场合 适用井深:<4000米
17 16 15 14 13 12 11 10 9 8 3 4 5 6 7 喷嘴直径(mm) 8 9
套管壁面上的孔眼直径(mm)
图3 套管壁上孔眼直径 VS 喷嘴直径
650
射孔深度(mm)
160
600 550 500 450 400 3 4 5 6 7 8 9
射孔孔眼平均直径(mm)
140 120 100 80 3 4 5 6 7 8 9
5
2005. 5.24
342.68
177.8
8.05
套管接箍:323.42、313.29
(2)设计/施工参数
携 用砂 喷 射孔 施 工 总 套 施工 砂 砂粒 量 枪 间距 时 间 管 排量 液 直径 压力 3) 间 (m) (min) 尺 (L/min) (m 3) 距 (MPa) (m (m m) 寸 (m)
1—10
胍胶与地层配伍性 能较好,携砂性能 稳定
另外,我们可以根据不同的情况,或者特殊的油藏 添加各类处理剂,如助排剂,粘土防膨剂,破乳剂, 杀菌剂等。
2.4 现场施工设计软件编制
该软件用visual basic6.0开发 主要功能包括: (1)数据输入 (2)数据计算与处理,计算所有数据,处理得 出所需结果数据 (3)数据输出功能 a 形成施工工艺设计说明书,包括技术所 需的所有最终结果 b 打印功能,包括数据打印和图像打印
7″靶件岩样中的孔道直径大小
5 1/2″靶件试验参数
作业时间:2004.10.19 (三次射孔) 靶件岩样强度: 44.02 MPa 施工参数:
施工泵压: 39~41 MPa(5.5min), 加砂作业时间:16分钟 总液量: 27m3 总砂量:3.1 m3 喷嘴组合为: 4-5mm, 6-8mm 37 MPa (10.5min) 清水为携砂液 砂比:5~7 %
40.0 2.3 (38-40) 10 60.0 0.47″ 160 2.5 1.0 0.8 (2.4)(38.3(7) (21+20) 39) 注:(1)括号内为实际施工参数,未标注的与设计相同 (2)顶替液为原液,砂比为6%—8%
(3)/min
射孔参数
喷嘴直径 mm 套管孔眼直径 mm 射 深 mm 孔道直径 mm 射孔后的喷嘴直径 mm
8
12~19
600
130~150
8.02,8.05,8.04
6
9~13
550
130~140
6.12,6.18,6.1
5 4
12.2 11.6~22.0
360 350
70~80 80~90
6.1,6.2,5.66 4.6,4.58,4.86
3.7.3 现场试验结论
a. 该工艺技术成熟可靠,可以推广使用。 (喷嘴寿命、射孔参数、管柱结构和工艺可靠性) b. 岩石物性对射孔参数、射孔密度有较大的影响 c. 水力射孔不仅污染小,而且还有一定的造缝功能 d. 建议在有污染层的稀油井和薄油层上应用
欢迎各位专家批评指正
40.0
34.0
6.48,6.28,6.38
由于地层较软,地层射孔深度和孔道直径远远大于地面打靶试 验数据 c.由于管柱底部加反向单流阀,施工时地面管线不落地,用原液顶 替,提出管柱后井内未发现有沉砂的现象。 d.施工开始时套管有返出液,加砂6 ~ 7%,排量升到2.4方/分钟, 压力升高到40.0 Mpa后,套管无返出液达近3分钟。说明喷砂射 孔有一定的造缝功能。 e.由于水力射孔孔眼较大,因此必须要避开套管接箍位置。 f.从这两口井的施工情况看,套管孔眼与地层孔道都比较大,射孔 间距的选择与岩石硬度和地层物性有很大关系,成为影响产能的 关键。
4
a. b. c. d.
现 场 实 验
完成现场试验配套工具的加工准备 确定现场试验管柱工艺方案 确定现场施工水力喷砂射孔方案 完成现场施工两口井,井号为三厂克 浅十稠油井23254和23255
接泵车
闸门
防喷器
丝堵丝
压力表 闸门 返排管线
机具及规格
工具名 序号 称 单枪 喷嘴 数量
3
套管
压井阀
喷嘴 内径 直径 (mm) (mm)
喷砂剂的筛选
影响因素:砂粒的粒径、椭圆度、硬度和砂比 实验表明: (1)含砂比(体积比)为5--8%时, 喷射效果最佳 (2)取粒径为0.4—0.8mm的石英砂可满足现场 施工要求
水力携砂液的筛选
要求: 携砂性能好、低磨阻、低滤失、不污染环境、 成本低。优选YSBD-1胍胶缓交联体系作为携砂液。该 体系具有以下特点: 交联时间 分钟 原液粘度 流动摩阻 mPa.S 30—40 是清水摩 阻的30% 携砂稳定性
由于地层较软,地层射孔深度和孔道直径远远大于 地面打靶试验数据 c.第二次射孔时排量降至1.5方/分钟,提出管柱后发现 4~ 5 mm喷嘴组合砂堵。原因分析:地面砂进入造成; 地层砂上返。整改措施:管柱底部加反向单流阀,地 面管线不落地。针对井内有10米沉砂的现象,改用原 液顶替。
23254井 a 在连接喷枪的短节上(2.5米)有一个圆形(直径分别为Φ 36mm×Φ 43

压力 MPa 55.0

砂 比 % 砂量 m3 液量 m3 时间 min 3.0 2.0--3.0 3.0 备注
地面试压 清洗油管 停泵投球 携砂液 顶替液 2.3 2.3 0.8-1.0
原液 原液(套管 见液) Φ45.0 mm
2.0-5.0
40-44 40-44
6-7
2-3
51 8-10
22 5
1.2 技术特点
a.
和常规射孔相比,水力喷砂射孔技术克服了射孔弹 的压实作用,减少了对油藏的污染和伤害
射孔孔眼达 20mm ,地层孔道直径达 100 深度达 800 mm以上
~
b.
160mm,
c.
有一定的压裂效应和造缝功能,提高地层渗流面积
d.
一孔的产量相当于炮眼的 3
~
5 倍
1.3 主要技术参数
mm)和半圆形(直径为Φ 37mm)凹坑,两圆形凹坑在一个水平线上呈周 向分布,相位差为120度。
23254井连接喷枪的短节上被打出的圆形印迹
23254井
b.射孔参数分析 喷嘴直径 mm 套管孔眼直径 mm 射孔后的喷嘴直径 5.16, 5.1, 5.1 mm
6.12
5.05
35.0
32.0
~ ~
石英砂 原液
停泵(放压为零),上提管柱1.0m,重复序号4、5步骤。 总计 6-7 8-10 160.0 66.0
3.7.2 现场施工现象分析
23255井 a. 在连接喷枪的短节上(2.0米)有两个明显的圆形凹坑,直径分别为
Φ 35mm×Φ 33 mm与Φ 35 mm×Φ 28 mm,两圆形凹坑沿短节轴线呈直线 分布,相距52cm.
图4 射孔深度 VS 喷嘴直径
喷嘴直径(mm)
图5 靶件中射孔孔眼平均直径 VS 喷嘴直径
喷嘴直径(mm)
7″靶件试验分析
从中可以明显看出,随着喷嘴直径的增加,套管壁面上的孔眼直径、 射孔深度以及靶件中的孔眼平均直径都随之增加。同时,喷射24分钟 停泵后,测量喷嘴直径变化情况,结果发现,这四个喷嘴直径扩大均 在2%以内,说明选择的喷嘴材料耐冲蚀性很好 。
a 最大射深620mm,套管孔眼直径21.8mm,孔道直径160mm b 喷嘴耐磨性能良好
不论是作业一次的7″靶件(泵压:45 ~ 50 MPa ,加 砂作业时 间 24分钟)还是作业三次的5 1/2″靶件喷枪喷嘴的直径变化均不 大,耐磨情况良好。
c 射穿套管时间大约为60秒 d 靶件在水射流的冲击力和压力作用下发生部分破碎、错位, 致使水射流转向分流,因此降低了水射流的水平穿深能力。 现场作业时的射孔效果应会优于本次试验结果 e.有一定的压裂效应
压井阀
水力锚 319.0m
喷枪B B 321.5mm 油管短节 324.00m
喷枪 A 单流阀 反向单流阀
人工井底 342.68m
2.2 喷枪与喷嘴的优化设计
a. b. c. d. e.
喷枪外径与套管间距的最佳匹配 喷嘴几何参数的优化设计 喷嘴材料优选 水力性能参数的检测 结构定型
2.3 水力射孔喷砂剂/携砂液的研究
5
外径 (mm)
长度 (mm)
水力锚 319.0m
1
喷枪A
58.0 145.0 280.0
相关文档
最新文档