金属材料与热处理概论
机械基础03-3.3金属材料的热处理
![机械基础03-3.3金属材料的热处理](https://img.taocdn.com/s3/m/c2748aeb76c66137ef06196e.png)
第三节金属材料的热处理一、概论:1.热处理:热处理是将固态金属或合金采用适当的方式进行加热、保温和冷却以获得所需要的组织结构与性能的工艺。
2.热处理的目的:①提高零件的使用性能;②充分发挥钢材的潜力;③延长零件的使用寿面;④改善工件的工艺性能,提高加工质量,减小刀具的磨损。
3.钢的热处理方法:退火、正火、淬火、回火及表面热处理等五种。
4.热处理使钢性能发生变化的原因:由于铁有同素异转变,从而使钢在加热和冷却过程中,发生了组织与结构变化。
二、退火:1.概念:将钢加热到适当温度,保持一定时间,然后缓慢冷却(一般随炉冷却)的热处理工艺称为退火。
2.退火的主要目的是:①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工;②细化晶粒,均匀钢的组织及成分,改善钢的性能或为以后的热处理作组织上的准备;③消除钢中的残余内应力,以防止变形帮开裂。
3.退火的方法:①完全退火的应用:中碳钢及低、中碳合金结构钢的锻件、铸件、热轧型材等。
②球化退火的应用:适用于共析钢及过共析钢。
如碳素工具钢,合金工具钢、轴承钢等。
③去应力退火的应用:消除塑性变形、焊接、切削加工、铸造等形成的残余内应力。
三、正火1.概念:将钢加热到一定温度,保温适当的时间,在空气中冷却的工艺方法。
2.应用:①善低碳钢和低碳合金钢的切削加工性;②正火可细化晶粒;③消除过共析钢中的网状渗碳体,改善钢的力学性能,并为球化退火作组织准备;④代替中碳钢和低碳合金结构钢的退火。
四、淬火1.概念:将钢加热到Ac3或Ac1以上某一温度,保温一定时间,然后以适当速度冷却,获得马氏体或下马贝氏组织的热处理工艺称为淬火;2.目的:主要获得马氏体,提高钢的强度和硬度。
3.钢的淬氏性和淬硬性4.淬火缺陷:①氧化与脱碳②过热和过烧③变形与开裂④硬度不足五、回火1.概念:将钢淬火后,再加热到Ac1点以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。
2.回火目的:①消除内应力;②获得所需要的力学性能;③稳定组织和尺寸。
金属材料热处理
![金属材料热处理](https://img.taocdn.com/s3/m/6cd603b6f605cc1755270722192e453610665b01.png)
金属材料热处理简介金属材料热处理是指通过加热和冷却等工艺来改变金属材料的结构和性能的一种方法。
热处理可以提高材料的强度、硬度、耐腐蚀性和韧性等特性,从而满足特定的工程要求。
本文将介绍金属材料热处理的基本原理、常用方法和应用领域。
基本原理金属材料的性能主要受其晶体结构和组织状态的影响。
热处理通过改变金属材料的晶体结构和组织状态来改善其性能。
常见的金属材料热处理方法包括退火、淬火、回火和时效等。
•退火:将金属材料加热到一定温度保温一段时间后缓慢冷却。
退火可以消除材料内部的应力和组织缺陷,使材料变得柔软和韧性增加。
•淬火:将金属材料加热到临界温度,然后迅速冷却。
淬火可以使材料迅速形成硬而脆的组织,提高材料的硬度和强度。
•回火:在淬火后将金属材料加热到较低的温度并保持一段时间后冷却。
回火可以减轻淬火过程中产生的应力和脆性,提高材料的韧性和耐腐蚀性。
•时效:将金属材料在较低的温度下长时间保持,使其达到更稳定的状态。
时效可以进一步改善材料的硬度、强度和耐腐蚀性。
常用方法退火退火是金属材料热处理中最常用的一种方法。
根据材料的需求不同,退火可以分为完全退火、球化退火和油墨退火等。
•完全退火:将金属材料加热到其临界温度以上,保温一段时间后冷却到室温。
完全退火可以降低金属材料的硬度和强度,提高其韧性和延展性。
•球化退火:将金属材料加热到其临界温度以上,保温一段时间后冷却到室温。
球化退火可以改善材料的塑性和加工性能,使其更容易进行成型和加工。
•油墨退火:将金属材料加热到临界温度以上,然后快速冷却到低温,再将其加热到较低温度进行保温一段时间后冷却。
油墨退火可以提高材料的硬度、强度和耐腐蚀性。
淬火和回火淬火和回火常常一起进行,以获得所需的材料性能。
淬火可以使材料快速形成硬而脆的组织,而回火可以减轻淬火过程中产生的应力和脆性。
•全淬火:将金属材料加热到临界温度以上,然后迅速冷却。
全淬火可以使材料达到最大的硬度和强度。
•部分淬火:将金属材料加热到临界温度以上,然后将其冷却到特定温度进行保温一段时间后冷却。
金属材料及热处理基础知识
![金属材料及热处理基础知识](https://img.taocdn.com/s3/m/920312733868011ca300a6c30c2259010202f322.png)
VS
金属材料可以根据其晶体结构、相组 成、显微组织等特征进行分类。例如 ,根据晶体结构,金属材料可分为面 心立方晶格、体心立方晶格和密排六 方晶格等。根据相组成,金属材料可 分为单相合金和多相合金。根据显微 组织,金属材料可分为奥氏体、铁素 体、马氏体等。
金属材料的性质与用途
金属材料的性质包括物理性质、化学性质和机械性能等。物理性质包括密度、熔点、导热性、导电性 和磁性等。化学性质包括耐腐蚀性、抗氧化性和抗疲劳性等。机械性能包括强度、硬度、韧性、塑性 和耐磨性等。
金属材料及热处理基础知识
2023-11-08
contents
目录
• 金属材料概述 • 金属材料的结构与性能 • 金属材料热处理原理及工艺 • 常用金属材料及其热处理 • 金属材料及热处理的应用与发展 • 金属材料及热处理案例分析
01
金属材料概述
金属材料的定义与分类
金属材料是指具有金属特性的材料, 通常包括纯金属和合金。纯金属是由 同种元素组成的金属材料,如铁、铜 、铝等。合金是由两种或两种以上的 金属元素组成的金属材料,如不锈钢 、钛合金等。
热处理缺陷及防止措施
热处理过程中可能出现多种缺陷,如裂 纹、变形、氧化、脱碳等。
裂纹是热处理过程中最常见的缺陷之一 ,它主要是由于加热或冷却速度过快、和冷却速度、选
择合适的加热温度等。
变形是热处理过程中常见的缺陷之一, 它主要是由于加热或冷却过程中产生的 应力引起的。防止变形的措施包括采用 多阶段加热或冷却、合理安排工件的放
性能。
退火
将金属材料加热到适当温度后缓慢 冷却,以消除内应力、提高韧性等 。
正火
将金属材料加热到适当温度后保温 一定时间,然后空冷,使金属材料 内部结构更均匀、硬度更高。
金属材料与热处理绪论课件
![金属材料与热处理绪论课件](https://img.taocdn.com/s3/m/f8de338eab00b52acfc789eb172ded630b1c980a.png)
高性能金属材料的研发与应用
高强度钢
高强度钢具有较高的抗拉强度和屈服点,广泛应用于汽车、建筑 和船舶制造等领域。
轻质金属材料
如钛合金和铝合金,具有密度低、强度高、耐腐蚀等优点,在航空 航天、汽车和体育器材等领域得到广泛应用。
功能金属材料
如形状记忆合金、超导合金和磁性合金,具有特殊的功能性质,在 医疗器械、能源和通讯等领域有广阔的应用前景。
相变和组织转变过程的调控,从而达到改善材料性能的目的。
热处理的方法与分类
• 总结词:热处有其特定的工艺参数和应用范围。
• 详细描述:退火是将金属加热到适当温度后保温一段时间,然后缓慢冷却至室温的一种工艺方法,主要用于消除内应力、 降低硬度、改善切削加工性等。正火是将金属加热到临界点以上适当温度后保持一定时间,然后空冷至室温的一种工艺 方法,主要用于细化晶粒、提高强度和韧性等。淬火是将金属加热到临界点以上适当温度后迅速冷却至室温的一种工艺 方法,主要用于提高硬度和耐磨性等。回火则是将淬火后的金属加热到适当温度后保温一段时间,然后缓慢冷却至室温 的一种工艺方法,主要用于稳定组织、消除内应力、提高韧性等。
03 金属材料的性能与测试
金属材料的力学性能
弹性性能
金属材料在受到外力作用时, 能够迅速恢复其原始状态的能力。
塑性性能
金属材料在受到外力作用时, 能够发生永久变形而不破裂的 能力。
强度性能
金属材料抵抗外力作用而不被 破坏的能力。
硬度性能
金属材料抵抗表面变形或破坏 的能力。
金属材料的物理性能
热导率
金属材料的性质与用途
金属材料的性质
金属材料的性质主要包括物理性质、化学性质和力学性质。
金属材料的用途
金属材料广泛应用于建筑、机械、航空航天、能源、交通、 电子等领域。
金属材料与热处理
![金属材料与热处理](https://img.taocdn.com/s3/m/ea305689db38376baf1ffc4ffe4733687e21fcc7.png)
金属材料与热处理金属材料是工程领域中使用最广泛的材料之一,其性能的优劣直接影响着工程产品的质量和使用寿命。
而热处理作为一种重要的金属材料加工工艺,对金属材料的性能改善起着至关重要的作用。
本文将从金属材料的特性、热处理的基本原理和常见的热处理工艺等方面进行介绍。
首先,金属材料的性能受到其组织结构的影响。
金属材料的晶粒结构、晶界、位错等微观结构对其力学性能、物理性能和化学性能有着重要的影响。
通过热处理工艺,可以改善金属材料的晶粒结构,消除内部应力,提高材料的硬度、强度和耐磨性,同时还可以改善材料的塑性和韧性。
其次,热处理是通过加热、保温和冷却等工艺对金属材料进行控制加工,以改善其组织结构和性能的工艺。
常见的热处理工艺包括退火、正火、淬火、回火等。
退火是将金属材料加热至一定温度后进行缓慢冷却,以消除材料的内应力、提高材料的塑性和韧性;正火是将金属材料加热至一定温度后进行保温一段时间,再进行空气冷却,以提高材料的硬度和强度;淬火是将金属材料加热至临界温度后迅速冷却,以获得高硬度和高强度;回火是在淬火后将金属材料加热至较低温度后进行保温一段时间,以降低材料的脆性。
最后,热处理工艺的选择需要根据金属材料的具体情况和要求来确定。
不同的金属材料对热处理工艺的要求也不同,因此在进行热处理前需要对金属材料的性能和组织结构进行全面的分析和测试,以确定最合适的热处理工艺。
同时,在进行热处理时需要严格控制加热温度、保温时间和冷却速度等参数,以确保热处理效果。
综上所述,金属材料与热处理是密不可分的关系,热处理工艺的选择和控制对金属材料的性能改善至关重要。
通过合理的热处理工艺,可以使金属材料获得更好的力学性能、物理性能和化学性能,从而满足不同工程产品对材料性能的要求。
希望本文的介绍对大家有所帮助,谢谢阅读!。
金属材料与热处理原理
![金属材料与热处理原理](https://img.taocdn.com/s3/m/41447136f342336c1eb91a37f111f18583d00ce0.png)
金属材料与热处理原理一、金属材料的分类与性质金属材料是指以金属元素或以金属元素为主要成分,具有金属特性的工程材料。
金属材料的性质包括物理性质和化学性质,其物理性质主要体现在密度、熔点、导热性、导电性和磁性等方面。
根据成分和用途,金属材料可以分为结构金属材料和功能金属材料两大类。
结构金属材料主要用于制造各种结构件,如桥梁、船舶、飞机等;功能金属材料则主要用于制造具有特殊性能的零件或产品,如不锈钢、高温合金、磁性材料等。
二、金属的晶体结构与缺陷金属的晶体结构是指其原子在空间中的排列方式。
金属的晶体结构决定了其性质和加工性能。
常见的金属晶体结构有体心立方、面心立方和密排六方等。
金属中的晶体缺陷是影响其力学性能的重要因素,如点缺陷、线缺陷和面缺陷等。
了解和掌握金属的晶体结构和缺陷对其热处理工艺的影响是至关重要的。
三、金属的塑性变形与再结晶金属的塑性变形是指在外力作用下,金属的形状和尺寸发生永久性变化的过程。
金属的塑性变形能力与其晶体结构、温度和变形速率等因素有关。
在塑性变形过程中,金属的内部结构会发生改变,如晶粒细化、位错增加等,从而提高其力学性能。
再结晶是指通过退火等热处理手段使金属内部结构重新排列的过程,其可以消除加工硬化现象,提高金属的塑性和韧性。
四、金属的强化机制与热处理金属的强化机制是指提高其力学性能的方法和原理。
常见的强化机制包括固溶强化、析出强化、弥散强化和晶界强化等。
热处理是通过改变金属内部结构来提高其力学性能的一种工艺方法。
热处理过程中,金属会经历加热、保温和冷却三个阶段,使其内部结构发生变化,从而达到所需性能的要求。
五、热处理的基本原理与工艺热处理的基本原理是将金属加热到一定的温度,并保持一定时间,然后以适当的速度冷却,使其内部结构发生变化,从而提高其力学性能。
热处理的工艺方法有很多种,包括退火、正火、淬火和回火等。
不同的热处理工艺适用于不同的材料和用途,需要综合考虑各种因素来确定最佳的热处理方案。
金属材料与热处理
![金属材料与热处理](https://img.taocdn.com/s3/m/623a0421001ca300a6c30c22590102020740f200.png)
金属材料与热处理金属材料是工业生产中常用的材料之一,其具有良好的导电性、导热性和机械性能,因此在各行各业中得到广泛应用。
然而,金属材料的性能在制造过程中往往不能达到最佳状态,这就需要进行热处理。
热处理是对金属材料进行加热或冷却处理,以改变其组织结构和性能的一种工艺。
通过控制材料的加热温度、冷却速率和保温时间等参数,可以使金属材料达到理想的机械性能、延展性和强度等特性。
金属材料的热处理可以分为多种类型,包括退火、淬火、回火等。
其中,退火是指将金属材料加热到一定温度,然后缓慢冷却,以降低硬度、改善延展性和强度等性能。
淬火则是指将金属材料加热到相变温度,然后迅速冷却,以提高硬度和强度等性能。
回火是在淬火后对材料进行再加热处理,以减轻淬火时的残余应力和脆性。
热处理的过程非常关键,不同的热处理工艺对金属材料的性能影响很大。
例如,合理的退火处理可以使金属材料获得较好的塑性和韧性,适用于制造弯曲、拉伸等工艺要求较高的产品;而淬火处理则适用于需要获得较高硬度和强度的零部件。
另外,金属材料的选择也会影响热处理效果。
不同金属材料具有不同的热处理特性和需求,因此需要根据具体情况选择合适的金属材料和热处理工艺。
一些常见的金属材料包括钢铁、铝、铜等,它们各自有不同的机械性能和热处理特点。
总的来说,金属材料与热处理密不可分。
通过合理的热处理工艺,可以改善金属材料的性能,提高产品的质量和使用寿命。
因此,在金属加工和制造领域,热处理是一项重要的工艺,需要专业人员严格控制各项参数,以保证金属材料的优良性能和性价比。
热处理在金属材料加工和制造中起着至关重要的作用,它可以改善金属材料的组织结构和性能,提高其强度、耐磨性、耐腐蚀性等特性,同时也能够消除金属材料制造过程中产生的应力、缩小尺寸误差等问题,从而提高产品的质量和使用寿命。
一种常见的热处理工艺是退火。
退火是指将金属材料加热到其临界温度以上,然后进行缓慢冷却。
通过退火处理,金属材料的晶粒可以重新长大,原来的晶界处的碎屑得到消除;同时,还能消除金属的内应力,提高塑性和韧性。
金属材料与热处理(全)精选全文
![金属材料与热处理(全)精选全文](https://img.taocdn.com/s3/m/093b7fdd8662caaedd3383c4bb4cf7ec4bfeb65e.png)
2、常用的细化晶粒的方法:
A、增加过冷度
B、变质处理 C、振动处理。
三、同素异构转变
1、金属在固态下,随温度的改变有一种晶格转变为另一晶格的现象称为 同素异构转变。
2、具有同素异构转变的金属有:铁、钴、钛、锡、锰等。同一金属的同素 异构晶体按其稳定存在的温度,由低温到高温依次用希腊字母α,β,γ, δ等表示。
用HBS(HBW)表示,S表示钢球、W表示硬质合金球 当F、D一定时,布氏硬度与d有关,d越小,布氏硬度值越大,硬度越高。 (2)布氏硬度的表示方法:符号HBS之前的数字为硬度值符号后面按以下顺 序用数字表示条件:1)球体直径;2)试验力;3)试验力保持的时间 (10~15不标注)。
应用范围:主要适于灰铸铁、有色金属、各种软钢等硬度不高的材料。
2、洛氏硬度
(1)测试原理:
采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后即 除主试验力,以测量的压痕深度来计算洛氏硬度值。
表示符号:HR
(2)标尺及其适用范围:
每一标尺用一个字母在洛氏硬度符号HR后面加以注明。常用的洛氏硬度标 尺是A、B、C三种,其中C标尺应用最为广泛。
见表:P21 2-2
§2-2金属的力学性能
学习目的:★了解疲劳强度的概念。 ★ 掌握布氏硬度、洛氏硬度、维氏硬度的概念、硬
度测试及表示的方法。 ★掌握冲击韧性的测定方法。 教学重点与难点 ★布氏硬度、洛氏硬度、维氏硬度的概念、硬度测
试及表示的方法。
§2-2金属的力学性能 教学过程:
复习:强度、塑性的概念及测定的方法。
2、 非晶体:在物质内部,凡原子呈无序堆积状态的(如普通玻璃、松 香、树脂等)。 非晶体的原子则是无规律、无次序地堆积在一起的。
《金属材料及热处理》课件
![《金属材料及热处理》课件](https://img.taocdn.com/s3/m/15954a610622192e453610661ed9ad51f01d5499.png)
热处理:通过加热和冷却,改变金属材料的微观结构,提高耐磨性
合金化:添加其他元素,形成合金,提高耐磨性
表面处理:如电镀、喷涂、涂层等,提高耐磨性
结构设计:优化金属材料的形状和尺寸,提高耐磨性
05
金属材料的应用领域
航空航天领域
飞机制造:铝合金、钛合金、不锈钢等金属材料广泛应用于飞机制造
热处理的应用
提高金属材料的强度和硬度
改善金属材料的塑性和韧性
消除金属材料的内应力和变形
提高金属材料的耐磨性和耐腐蚀性
改善金属材料的表面质量和尺寸精度
提高金属材料的使用寿命和可靠性
04
金属材料的性能改善
金属材料的强度提升
热处理:通过加热和冷却改变金属的微观结构,提高强度
合金化:通过添加其他元素形成合金,提高强度
03
淬火是将金属材料加热到一定温度后迅速冷却,使材料内部形成马氏体组织,提高硬度和耐磨性
04
回火是将淬火后的金属材料加热到一定温度后保温一定时间,使马氏体组织转变为回火马氏体,降低硬度和脆性,提高韧性和塑性
05
正火是将金属材料加热到一定温度后保温一定时间,使材料内部组织均匀化,提高塑性和韧性
06
退火是将金属材料加热到一定温度后保温一定时间,使材料内部组织软化,降低硬度和脆性,提高塑性和韧性
热处理工艺流程
加热:将金属材料加热到预定温度
保温:保持金属材料在预定温度下保温一段时间
冷却:将金属材料冷却到室温或低于室温
回火:将金属材料加热到一定温度后冷却,以消除内应力,提高韧性和塑性
淬火:将金属材料加热到一定温度后快速冷却,以获得高硬度和耐磨性
退火:将金属材料加热到一定温度后缓慢冷却,以消除内应力,提高塑性和韧性
金属材料与热处理
![金属材料与热处理](https://img.taocdn.com/s3/m/314dc13af342336c1eb91a37f111f18583d00cff.png)
金属材料与热处理引言。
金属材料是人类社会发展的重要基础之一,其在工业、建筑、交通等领域都有着广泛的应用。
而金属材料的性能往往受到热处理工艺的影响,通过适当的热处理可以改善金属材料的力学性能、耐磨性和耐腐蚀性等,从而满足不同领域的应用需求。
本文将从金属材料的基本特性、热处理的原理和方法以及热处理对金属材料性能的影响等方面进行介绍和探讨。
一、金属材料的基本特性。
金属材料是由金属元素或金属合金组成的材料,具有良好的导电、导热、塑性和机械性能等特点。
金属材料的性能主要受其晶粒结构、晶界、位错等因素的影响。
晶粒是金属材料的基本结构单元,晶界是相邻晶粒之间的界面,而位错则是晶体结构中的缺陷。
这些因素决定了金属材料的塑性、强度、硬度和韧性等性能。
二、热处理的原理和方法。
热处理是通过加热和冷却等方法改变金属材料的组织结构和性能的工艺过程。
热处理的原理主要是利用金属材料的相变规律和固溶、析出等现象来改善其性能。
常见的热处理方法包括退火、正火、淬火、回火等。
1. 退火。
退火是将金属材料加热到一定温度,然后缓慢冷却至室温的热处理方法。
退火可以消除金属材料中的残余应力,改善其塑性和韧性,同时还可以提高其导热性能。
2. 正火。
正火是将金属材料加热到一定温度,然后保持一段时间后冷却的热处理方法。
正火可以使金属材料的晶粒细化,提高其硬度和强度。
3. 淬火。
淬火是将金属材料加热到临界温度,然后迅速冷却至室温的热处理方法。
淬火可以使金属材料产生马氏体组织,从而提高其硬度和强度。
4. 回火。
回火是将经过淬火处理的金属材料加热到一定温度,然后冷却的热处理方法。
回火可以消除淬火时产生的脆性,同时还可以调节金属材料的硬度和强度。
三、热处理对金属材料性能的影响。
热处理可以显著影响金属材料的性能,主要表现在以下几个方面:1. 强度和硬度。
通过热处理可以提高金属材料的强度和硬度,使其更适合于承受高强度和高硬度的工作环境。
例如,通过淬火可以使钢材产生马氏体组织,从而提高其硬度和强度。
金属材料与热处理
![金属材料与热处理](https://img.taocdn.com/s3/m/00eaa959a66e58fafab069dc5022aaea998f4108.png)
金属材料与热处理金属材料是一类常用的工程材料,具有优良的导电性、导热性和机械性能。
然而,金属材料在使用过程中常常会遇到各种问题,例如变形、腐蚀和疲劳等。
为了增强金属材料的性能并解决这些问题,热处理技术被广泛应用。
本文将简要介绍金属材料与热处理的相关知识。
一、金属材料金属材料是由金属元素或金属合金组成的材料。
常用的金属材料包括铁、铝、铜、钛等。
金属材料具有高强度、良好的导电性和导热性,广泛应用于各个领域,如建筑、航空航天、汽车制造等。
金属材料的性能包括力学性能、物理性能和化学性能。
力学性能主要包括强度、韧性、硬度等指标,物理性能包括导电性、导热性等指标,化学性能包括耐腐蚀性等指标。
金属材料的性能直接影响其在具体应用中的效果和寿命。
二、热处理技术热处理是指通过控制金属材料的加热和冷却过程,改变其组织结构和性能的一种技术。
热处理技术可以分为四种类型:退火、正火、淬火和回火。
退火是将金属材料加热到一定温度,保持一段时间后缓慢冷却的过程。
退火可以消除材料的内部应力,改善其塑性,提高加工性能。
正火是将金属材料加热到一定温度,保持一段时间后以适当速度冷却的过程。
正火可以提高材料的强度和硬度。
淬火是将金属材料加热到一定温度,保持一段时间后迅速冷却的过程。
淬火可以使材料产生马氏体组织,提高强度和硬度,但会使材料变脆。
为了解决材料脆性的问题,需要进行回火处理。
回火是将淬火材料加热到一定温度,保持一段时间后缓慢冷却的过程。
回火可以降低材料的脆性,提高韧性。
三、金属材料与热处理的关系金属材料的性能受到其组织结构的影响。
通过热处理技术可以改变金属材料的组织结构,从而达到改善材料性能的目的。
热处理可以改变金属材料的晶粒大小、相含量和相组成等。
例如,通过退火可以使晶粒长大,提高材料的塑性;通过正火可以改变相组成,提高材料的强度和硬度;通过淬火和回火可以形成马氏体组织和回火组织,使材料达到优良的强度和韧性的均衡。
总之,金属材料与热处理密不可分。
金属材料与热处理 绪论ppt课件
![金属材料与热处理 绪论ppt课件](https://img.taocdn.com/s3/m/89cedd12f01dc281e53af05e.png)
金属材料与热处理
绪论
杜岭方鼎
1974年出土于河南省郑 州杜岭张寨前街,共两件。
一件高1米,重86.4千 克,腹上部饰兽面纹,两侧 及下部饰乳丁纹,形体质朴 庄重,现藏于中国历史博物 馆。
另一件较小,高0.87米, 重64.25千克,藏于河南省 博物馆。为“河南博物院 ‘九大镇院之宝’”
山东工程技师学院
属
材
轻有色金属:铝、镁、铍等
料 重有色金属:铜、锌、铅等
有色金属 贵金属:金、银、等
稀有金属及稀土金属
金属材料与热处理
绪论
山东工程技师学院
①来源丰富:铝在地壳中占8.13% ②金属材料品种多,性能各异。 ③金属材料可通过热处理或加工方法来改善性能。 ④有良好的加工工艺性。
金属材料与热处理
绪论
课程主要内容:
由于铁器比青铜器的硬度高4倍,极大地促进了社会 生产力的发展 。
铁和(锻)钢的出现,改变了冷兵器时代的“格局”, 锻造的铁或钢制兵器,大大提高了游牧民族的战斗力。 到了西汉时期,中国制铁技术才由春秋战国时代铁器 的“铸造为主”,向“百炼铁”(锻造)转变。
战国后期由于锋利的钢铁兵器用于实战,促使了防护 工具的改变:到西汉时期铁铠已取代了皮甲。
三星堆的金面罩铜质圆顶、平顶人头像 , 大者与人相似
金属材料与热处理
商代晚期青铜神树
绪论
山东工程技师学院
东汉青铜摇钱树
金属材料与热处理
曾候乙墓:
1978年湖北 随县擂鼓墩曾 候乙墓(公元 前433年)出土 文物数量共有 15404件.青铜 器达到10吨: 礼、乐、兵器、 日用品,马车 器等。
绪论
金属材料与热处理
绪论
山东工程技师学院
金属材料与热处理技术
![金属材料与热处理技术](https://img.taocdn.com/s3/m/66f6262df4335a8102d276a20029bd64793e6275.png)
金属材料与热处理技术金属材料是工程领域中广泛应用的材料之一,其性能的优劣直接影响着工程产品的质量和使用寿命。
而热处理技术作为一种重要的材料加工工艺,对金属材料的性能改善和调控起着至关重要的作用。
本文将就金属材料与热处理技术进行详细介绍和探讨。
首先,金属材料的性能与热处理技术密切相关。
金属材料的性能包括力学性能、物理性能、化学性能和加工性能等多个方面。
而热处理技术可以通过调整材料的组织结构和晶粒尺寸,改善其力学性能;通过消除或减少内部应力,提高材料的物理性能;通过调整材料的组织形态,提高材料的化学性能和加工性能。
因此,热处理技术是实现金属材料性能优化的重要手段。
其次,热处理技术包括多种方法和工艺。
常见的热处理方法包括退火、正火、淬火、回火等。
每种方法都有其特定的工艺参数和处理效果。
例如,退火可以使金属材料的组织细化,消除残余应力,提高塑性和韧性;淬火可以使金属材料获得高硬度和强度,但会降低其塑性和韧性;回火可以在淬火后对材料进行一定温度和时间的加热处理,以调整其硬度和强度。
通过选择合适的热处理方法和工艺参数,可以实现对金属材料性能的有针对性改善。
此外,热处理技术还与金属材料的选择和设计密切相关。
在工程实践中,需要根据具体的工程要求和使用环境,选择合适的金属材料,并结合热处理技术对其进行处理,以满足工程产品对材料性能的需求。
同时,在金属材料的设计和制造过程中,也需要充分考虑热处理工艺对材料性能的影响,合理设计工艺流程,确保最终产品达到预期的性能指标。
综上所述,金属材料与热处理技术是工程领域中不可或缺的重要内容。
通过合理选择和应用热处理技术,可以实现对金属材料性能的有效调控和改善,从而满足不同工程产品对材料性能的需求。
因此,对金属材料与热处理技术的深入了解和研究,对于提高工程产品质量和技术水平具有重要意义。
在工程实践中,需要根据具体的工程要求和使用环境,选择合适的金属材料,并结合热处理技术对其进行处理,以满足工程产品对材料性能的需求。
金属材料与热处理(最全)
![金属材料与热处理(最全)](https://img.taocdn.com/s3/m/a247596e4a35eefdc8d376eeaeaad1f3469311b3.png)
热处理的应用与效果
应用
热处理广泛应用于各种金属材料,如钢铁、有色金属、合金 等。通过合理的热处理工艺,可以显著提高金属材料的机械 性能、物理性能和化学性能,满足各种工程应用的需求。
效果
热处理可以改变金属材料的硬度、韧性、强度、耐磨性、耐 腐蚀性等机械性能,提高其抗疲劳性能和抗腐蚀性能,延长 使用寿命。同时,热处理还可以改善金属材料的加工性能和 焊接性能,提高生产效率和产品质量。
04 金属材料与热处理的关系
金属材料的性能与热处理的关系
金属材料的性能
金属材料的性能包括力学性能、物理性能和化学性能等,这些性能在很大程度上取决于 其内部结构和相组成。
热处理对金属材料性能的影响
通过控制加热、保温和冷却等热处理工艺参数,可以改变金属材料的内部结构和相组成,从而显著提 高或改善其各种性能。例如,热处理可以细化金属材料的晶粒,提高其强度和韧性;可以改变金属材
时间,可以改变金属材料内部的相组成。
金属材料的缺陷与热处理的关系
要点一
金属材料的缺陷
要点二
热处理对金属材料缺陷的影响
金属材料的缺陷包括裂纹、气孔、夹杂物和未熔合等,这 些缺陷可能会降低金属材料的性能。
通过适当的热处理工艺,可以减少或消除金属材料的缺陷 ,提高其性能。例如,通过退火处理可以软化金属材料, 减少其内应力,从而减少裂纹的产生;通过固溶处理可以 溶解金属材料中的杂质和气体,提高其纯净度。
03 金属材料的热处理工艺
退火工艺
总结词
退火是热处理工艺中的一种,通过加热和缓慢冷却金属材料,以消除内应力、 提高塑性和韧性,达到改善材料性能的目的。
详细描述
退火工艺通常包括将金属材料加热到再结晶温度以下,保持一段时间,然后缓 慢冷却至室温。退火可以细化晶粒、消除内应力、降低硬度、提高塑性和韧性, 改善金属材料的加工性能和综合力学性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
c
a
y
x b
d 晶胞
二、 金属晶体典型结构
布拉菲在1948年根据“每个阵点 环境相同”的要求,用数学分析 法证明晶体的空间点阵只有14种, 称为布拉菲点阵,分属7个晶系。
晶系 三斜晶系 单斜晶系
斜方晶系 正方晶系 菱方晶系 六方晶系 立方晶系
轴(棱边)之间的夹角
三种 典型 晶体 结构
体心立方 面心立方 密排六方
a
fcc 晶体结构特征: 1 点阵参数:a=b=c α= β =γ 2 晶胞原子数: N=3+1=4 3 原子半径 r=√2a/4 4 配位数= 12 5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
(三)密排六方结构 金属有:Zn、Mg、Be、α-Ti、α-Co等 晶体结构特征: 1、点阵参数:a1=a2=a3=a,α1=α2=α3=1200 平面轴X1、X2、X3和Z轴的夹角=9OO Z轴的单位长度=c,一般用a、c两个量来度量。 2、晶胞原子数 N=Ni+Nf/2+Nc/6=3+2/2+12/6=6 3、原子半径:当c/a=1.633时,三层原子紧挨着,
2 晶面指数─用数字符号定量地表示晶面
晶面指数标定方法 (1)以晶胞的三条互相垂直的棱边为座标轴X、Y、Z,
坐标原点0应位于待定晶面之外。 (2)以晶格常数为单位求出待定晶面在各轴上的截距。 (3)取各截距的倒数,最小整数化, ( h k l )
晶面族─晶面指数的数字相同,但排列顺序不同的 一系列晶面。原子排列完全相同。用{ h k l } 表示。
4、8 配位数越大,原子排列越紧密。
Ba
C
a
A
D
2a
A
C
a
a
F
G
E H
E
F
5、致密度=晶胞中所含原子占体积的总和/晶胞体积 = n·V原子/V晶胞
§1.2 金属晶体典型结构 面心立方晶格参数
Al、Cu、 Ni和γ-Fe 等约20种
§1.2 金属晶体典型结构 面心立方晶格参数
§1.2 金属晶体典型结构 面心立方晶格参数
原子半径 原子半径是指晶胞中原子密度最大方向相邻两原子之间距离的
一半。
晶胞中所含原子数 晶胞中所含原子数是指一个晶胞内真正包含的原子数目。
配位数 是指在晶体结构中,与任一原子最近邻且等距离的原子数。
致密度 是指晶胞中原子所占体积分数,即K = n v′/ V 。式中,n为
晶胞所含原子数、v′为单个原子体积、V为晶胞体积。
第一章 金属的晶体结构与结晶
• 金属的特性和金属键;晶体与非晶体; • 金属晶体结构是决定性能的内在基本因素之一; • 实际晶体中晶体缺陷普遍存在,对金属的许多性质,尤其
是力学性能有着重大的影响; • 纯金属结晶过程; • 晶粒细化对提高金属材料力学性能的显著作用,凝固时细
化晶粒的途径和方法。
❖ 金属 ── 金属键结合。 ❖ 具有正的电阻温度系数、导电性和导热性、
代表着晶体空间内的一个方向,称为晶向。 晶面─在晶体点阵中,由阵点所组成的任一平
面,代表着晶体的原子平面,称为晶面。 1 晶向指数 晶向指数─用数字符号定量地表示晶向,这种数
字符号称为晶向指数。
晶向指数的标定方法: (1) 确定坐标系,对立方晶系选用三轴直角坐
标系,X、Y、Z 轴互相垂直,以晶格常数a、b、 c 作为三个轴的单位长度。
此时 d=a,r=a/2。 4、配位数=12 5、致密度=0.74
Z
X3 X1
X2
金属中常见的三种晶体结构特征小结(P5)
结构类型 晶胞原 晶格常数 原子半 配位数 致密度
子数
径
体心立方 2
a √3a/4
8
0.68
面心立方 4
a √2a/4
12
0.74
密排六方 6
a,面指数 晶向─在晶体点阵中,由阵点组成的任一直线,
a 原子堆垛模型
2、晶格、空间点阵、晶胞
空间点阵:几何点(原子)在空间排列的阵列。 晶 格:几何点(原子)排列的空间格架。 晶 胞:晶格中体积最小,对称性最高的平行六 面体。是能代表原子排列形式特征的最小几何单元。 点阵参数:点阵常数 a, b, c;
棱间夹角 α,β,γ。
c 晶格
晶胞在三维空间的重复排列,构成点阵。 P
(2)以晶向上的任一原子作为坐标原点,找出 该晶向上另一原子的坐标值,并化为最小整数。 (或者从座标原点引一条平行于待测晶向的直线 )
(3) [u v w]
晶向族─ 同一种晶体结构中空间位向不同,但原子
排列情况相同的一系列晶向。< u v w > <100> :[100]、[010]、[001]、[100]、[010] [001]。 <110>:[110]、[101]、[011]、[110]、[101]、[011]
如在立方晶系中:
{100}晶面族包括(100)、(010)、(001)、 (100)、(010)、(001)。
{111}晶面族包括(111)、(111)、(111)、(111)、 (111)、(111)、(111). (111)
延展性和金属光泽。 ❖ 固体: 晶体和非晶体。 ❖ 绝大多数金属与合金都是晶体。
❖ 晶体:原子在空间呈有规则的周期性重复排 列。
金属原子间的键合特点
金属键
共有价电子→电子 云→键无方向性和
饱和性
晶体与非晶体最本质的区别在于:
(1)晶体的原子、离子、分子等质点是 规则排列,
而非晶体中这些质点是无规则堆积在一起的。
天然晶体的外形对称性。
非晶体
(2)晶体具有明显、固定的熔点。如蜂蜡铁、的玻璃熔点等。为 1538℃ ,铜的熔点为1083℃ 。
液体
(3)晶体有各向异性。 金属是晶体,晶体学理论研究金属的内部结构。
一、 晶体学简介 1 晶体结构模型 理想晶体中,原子规则排列,原子在空间周期性
地重复,每个原子具有相同的环境。 假设:原子、离子等为固定不动的刚性小球; 将原子、离子等抽象为几何的点。
§1.2 金属晶体典型结构 体心立方晶格参数
Cr、V、 Mo、W和 α-Fe等30 多种
§1.2 金属晶体典型结构 体心立方晶格参数
§1.2 金属晶体典型结构 体心立方晶格参数
bcc 晶体结构特征分析: 1、点阵参数a=b=c α=β=γ=90°
2、晶胞中原子数=1+8×1/8=2
3、原子半径 r = √3 /4 a