2018年甘肃省定西市、白银市、张掖市、武威市、平凉市、酒泉市、临夏中考数学试卷(带解析答案)

合集下载

甘肃省定西市2018年中考数学试卷(含答案)

甘肃省定西市2018年中考数学试卷(含答案)

2018年甘肃省定西市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3分)下列计算结果等于3的是()A.6÷2 B.4﹣C.+2D.2•3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b5.(3分)若分式的值为0,则的值是()A.2或﹣2 B.2 C.﹣2 D.06.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.(3分)关于的一元二次方程2+4+=0有两个实数根,则的取值范围是()A.≤﹣4 B.<﹣4 C.≤4 D.<48.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°10.(3分)如图是二次函数y=a2+b+c(a,b,c是常数,a≠0)图象的一部分,与轴的交点A在点(2,0)和(3,0)之间,对称轴是=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:2sin30°+(﹣1)2018﹣()﹣1=.12.(3分)使得代数式有意义的的取值范围是.13.(3分)若正多边形的内角和是1080°,则该正多边形的边数是.14.(3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.(3分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c 为奇数,则c=.16.(3分)如图,一次函数y=﹣﹣2与y=2+m的图象相交于点P(n,﹣4),则关于的不等式组的解集为.17.(3分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(3分)如图,是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为.三、解答题(一)解(本大题共5小题,满分26分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)19.(4分)计算:÷(﹣1)20.(4分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(6分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.(6分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)23.(6分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二)解(本大题共5小题,满分40分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)24.(7分)“足球运球”是中考体育必考项目之一兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位教会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?25.(7分)如图,一次函数y=+4的图象与反比例函数y=(为常数且≠0)的图象交于A(﹣1,a),B两点,与轴交于点C.(1)求此反比例函数的表达式;(2)若点P在轴上,且S△ACP =S△BOC,求点P的坐标.26.(8分)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.27.(8分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.28.(10分)如图,已知二次函数y=a2+2+c的图象经过点C(0,3),与轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=a2+2+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C 为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.2018年甘肃省定西市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.【解答】解:﹣2018的相反数是:2018.故选:B.2.【解答】解:A、6÷2=4,不符合题意;B、4﹣不能再计算,不符合题意;C、+2不能再计算,不符合题意;D、2•=3,符合题意;故选:D.3.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.4.【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.5.【解答】解:∵分式的值为0,∴2﹣4=0,解得:=2或﹣2.故选:A.6.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.7.【解答】解:根据题意得△=42﹣4≥0,解得≤4.故选:C.8.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.9.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.10.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<<3时,y不只是大于0.故错误.故选:A.二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)11.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.12.【解答】解:∵代数式有意义,∴﹣3>0,∴>3,∴的取值范围是>3,故答案为:>3.13.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.14.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.15.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.16.【解答】解:∵一次函数y=﹣﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣﹣2与轴的交点是(﹣2,0),∴关于的不等式2+m<﹣﹣2<0的解集为﹣2<<2.故答案为﹣2<<2.17.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.18.【解答】解:当=625时,=125,当=125时,=25,当=25时,=5,当=5时,=1,当=1时,+4=5,当=5时,=1,当=1时,+4=5,当=5时,=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1三、解答题(一)解(本大题共5小题,满分26分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)19.【解答】解:原式=÷(﹣)=÷=•=.20.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,21.【解答】解:设合伙买鸡者有人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.22.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,不吃20,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.23.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA(B,A)(C,A)(D,A)(E,A)(F,A)B(A,B)(C,B)(D,B)(E,B)(F,B)C(A,C)(B,C)(D,C)(E,C)(F,C)D(A,D)(B,D)(C,D)(E,D)(F,D)E(A,E)(B,E)(C,E)(D,E)(F,E)F(A,F)(B,F)(C,F)(D,F)(E,F)由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.四、解答题(二)解(本大题共5小题,满分40分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)24.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.25.【解答】解:(1)把点A(﹣1,a)代入y=+4,得a=3,∴A(﹣1,3)把A(﹣1,3)代入反比例函数y=∴=﹣3,∴反比例函数的表达式为y=﹣(2)联立两个的数表达式得解得或∴点B的坐标为B(﹣3,1)当y=+4=0时,得=﹣4∴点C(﹣4,0)设点P的坐标为(,0)∵S△ACP =S△BOC∴解得1=﹣6,2=﹣2∴点P(﹣6,0)或(﹣2,0)26.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.27.【解答】解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=28.【解答】解:(1)将点B和点C的坐标代入函数解析式,得,解得,二次函数的解析是为y=﹣2+2+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴E(0,),∴点P的纵坐标,当y=时,即﹣2+2+3=,解得1=,2=(不合题意,舍),∴点P的坐标为(,);(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=+b,将点B和点C的坐标代入函数解析式,得,解得.直线BC的解析为y=﹣+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣2+2+3=0,解得1=﹣1,2=3,OA=1,AB=3﹣(﹣1)=4,S四边形ABPC=S△ABC+S△PCQ+S△PBQ=AB•OC+PQ•OF+PQ•FB=×4×3+(﹣m2+3m)×3=﹣(m﹣)2+,当m=时,四边形ABPC的面积最大.当m=时,﹣m2+2m+3=,即P点的坐标为(,).当点P的坐标为(,)时,四边形ACPB的最大面积值为.。

2018年甘肃省白银市中考数学试题含答案解析(word版)

2018年甘肃省白银市中考数学试题含答案解析(word版)

2018 年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.(3 分)﹣2018 的相反数是()A.﹣2018B.2018 C.﹣D.2.(3 分)下列计算结果等于x3 的是()A.x6÷x2 B.x4﹣x C.x+x2 D.x2•x3.(3 分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°4.(3 分)已知= (a≠0,b≠0),下列变形错误的是()A.= B.2a=3b C.= D.3a=2b5.(3 分)若分式的值为0,则x 的值是()A.2 或﹣2B.2 C.﹣2D.06.(3 分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10 次,他们成绩的平均数与方差s2 如下表:甲乙丙丁平均数(环)11.1 11 .1 10.9 10.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.(3 分)关于x 的一元二次方程x2+4x+k=0 有两个实数根,则k 的取值范围是()A.k≤﹣4B.k<﹣4C.k≤4D.k<48.(3 分)如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE=2,则AE 的长为()A.5 B.C.7 D.9.(3 分)如图,⊙A 过点O(0,0),C(,0),D(0,1),点B 是x 轴下方⊙A 上的一点,连接BO,BD,则∠OBD 的度数是()A.15°B.30°C.45°D.60°10.(3 分)如图是二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m 为实数);⑤当﹣1<x<3 时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、填空题:本大题共8小题,每小题4分,共32分11.(4 分)计算:2sin30°+(﹣1)2018﹣()﹣1=.12.(4 分)使得代数式有意义的x 的取值范围是.13.(4 分)若正多边形的内角和是1080°,则该正多边形的边数是.14.(4 分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.(4 分)已知a,b,c 是△ABC 的三边长,a,b 满足|a﹣7|+(b﹣1)2=0,c 为奇数,则c=.16.(4 分)如图,一次函数y=﹣x﹣2 与y=2x+m 的图象相交于点P(n,﹣4),则关于x 的不等式组的解集为.17.(4 分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(4 分)如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018 次输出的结果为.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6 分)计算:÷(﹣1)20.(6 分)如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O,再以点O 为圆心,OB 的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.21.(8 分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9 文钱,就会多11 文钱;如果每人出6 文钱,又会缺16 文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.(8 分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A,B 两地的直达高铁可以缩短从A 地到B 地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640 公里,求隧道打通后与打通前相比,从A 地到B 地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)23.(10 分)如图,在正方形方格中,阴影部分是涂黑3 个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多 少?(2)现将方格内空白的小正方形(A ,B ,C ,D ,E ,F )中任取 2 个涂黑,得到新图案, 请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共 5 小题,共 50 分。

2018届中考数学复习 专题25 等腰三角形、等边三角形试题(B卷,含解析)

2018届中考数学复习 专题25 等腰三角形、等边三角形试题(B卷,含解析)

等腰三角形、等边三角形一、选择题 1. .(广东省广州市,13,3分)如图,△ABC 中,AB =AC ,BC =12cm ,点D 在AC 上,DC =4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E ,F 分别落在边AB ,BC 上,则△EBF 的周长为 cm .【答案】13【逐步提示】利用平移的性质可以求得EF 与FC 的长,进而可得BF 的长;再根据等腰三角形的判定可得BE =EF ,这样求得了△EBF 的三边长,其和即为△EBF 的周长.【详细解答】解:根据平移的性质,将线段DC 沿着CB 的方向平移7cm 得到线段EF ,则EF =DC =4cm ,FC =7cm ,∠EFB =∠C .∵AB =AC ,∴∠B =∠C ,∴∠B =∠BFE ,∴BE =EF =4cm .又BF =BC -FC =12-7=5cm ,∴△EBF 的周长=4+4+5=13(cm ).故答案为13.【解后反思】图形平移后,对应线段平行(或在同一条直线上)且相等,这样往往存在平行四边形与全等三角形或等腰三角形,给我解决问题提供了重要途径. 【关键词】平移的性质;等腰三角形的判定2. ( 河北省,16,2分)如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有( )A .1个B .2个C .3个D .3个以上【答案】D【逐步提示】先找出符合要求的特殊点,如点M 与点O 重合,点N 与点O 重合等,不难发现以上特殊情形都满足OM+ON=2,再研究一般情形下△PMN 是否为等边三角形,问题得解. 【详细解答】解:如图,在OA 上截取OC=OP=2,∵∠AOP =60°,∴△OCP 是等边三角形,∴CP=OP ,∠OCP=∠CPO=60°.在线段OC 任取一点M ,在OB 上截取ON ,使ON+OM=2,连接MN ,PM ,PN.∵MC+OM =2,∴CM=ON.在△MCP 和△NOP 中,∵CM=ON,∠MCP =∠NOP =60°,CP=OP ,∴△MCP ≌△NOP (SAS ),∴PM=PN ,∠MPC=∠NPO ,∴∠MPC+∠MPO=∠NPO+∠MPO ,即∠CPO =∠MPN,∴∠MPN =60°,∴△PMN 是等边三角形.故满足条件的△PMN 有无数个,答案为选项D.A B CE D F【解后反思】如图所示,本题是含有60°内角的菱形问题的变式,掌握其中等边三角形和全等三角形的判定有助于我们解决此题.【关键词】等边三角形的判定和性质;全等三角形的判定;存在性问题3.(湖南省怀化市,8,4分)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A. 16cmB. 17cmC. 20cmD. 16cm或20cm【答案】C.【逐步提示】此题考查等腰三角形的定义和三角形三边的关系.题中给出了等腰三角形的两条边长,而没有明确其腰长或底边长,因此需要分腰为4cm长或腰为8cm长两种情况讨论等腰三角形的周长即可.【详细解答】解:若4cm的边长为腰,8cm的边长为底,4+4=8,由三角形三边的关系知,该等腰三角形不存在;若8cm的边长为腰,4cm的边长为底,则等腰三角形的周长为20cm,故选择C.【解后反思】此题考查等腰三角形的定义和三角形三边的关系,解此题的关键是能根据题意,考虑到需要分类讨论等腰三角形的周长.此题的易错点是审题不认真,忽略分类讨论.【关键词】等腰三角形的定义;三角形三边的关系4.(湖南湘西,14,4分)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是A.13cm B .14cm C. 13 cm或14cm D.以上都不对【答案】C【逐步提示】本题考查了三角形的三边关系及等腰三角形的性质,解题的关键是应用三角形三边关系定理讨论.分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.【详细解答】解:①当等腰三角形的腰为4,底为5时,等腰三角形的周长为2×4+5=13;②当等腰三角形的腰为5,底为4时,等腰三角形的周长为2×5+4=14,∴这个等腰三角形的周长是13 cm或14cm,故选择C . 【解后反思】在解有关等腰三角形边长问题时,通常要进行讨论,注意分类讨论后一定要运用三边关系检验,所求的结果若能够组成三角形后,才能继续进行有关的计算.【关键词】三角形三边的关系;等腰三角形的性质5.(山东滨州6,3分)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE 的度数为()A.50° B.51° C.51.5° D.52.5°【答案】D .【逐步提示】先根据AC =CD ,∠A =50°,计算出∠ADC 的度数,再由CD =BD ,可知∠B=∠BCD ,从而求出∠B 的度数,BD =BE ,∠BDE =∠BED ,求出∠BDE 的度数,最后根据∠ADC +∠CDE +∠BDE =180°,计算出∠CDE 的度数. 【详细解答】解:∵AC =CD ,∴∠ADC=∠A =50°,又∵CD =BD ,∴∠B=∠BCD ,∠ADC=∠B+∠BCD ,∴∠B=25°,∵BD =BE ,∠BDE =∠BED=77.5°,∠ADC +∠CDE +∠BDE =180°,∴∠CDE =52.5°. 【解后反思】根据“等腰三角形两底角相等”得到角的度数,再根据三角形的一个外角等于和它不相邻的2个内角的度数之和.【关键词】等腰三角形 三角形的外角和定理6.(江苏省扬州市,8,3分)如图,矩形纸片ABCD 中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是 ( )A .6B .3C .2.5D .2(第8题)BC【答案】C【逐步提示】本题考查了操作活动中的估算和大小比较,解题的关键是合理构造等腰直角三角形,使得剩余部分面积的最小,此时每次都要考虑以最大边做斜边才使得剪去的等腰直角三角形面积最大.【详细解答】解:如图所示,剩余三角形的面积为24—1442创—12—1332创=2.5,故选择C .【解后反思】本题属于数学实验的简单类的问题,在构造等腰直角三角形时,学生可能会构造出如图所示的方法,剩余三角形的面积为24—1442创—12创—12创,错选答案B .【关键词】 三角形;等腰三角形与直角三角形;等腰三角形的性质;勾股定理;四边形;特殊的平行四边形;矩形的性质;面积最小化;化归思想二、填空题1. ( 甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,17,4分)将一张矩形纸片折叠成如图所示的图形,若AB =6cm ,则AC =_____________cm .第17题图 【答案】6【逐步提示】本题考查轴对称变换的性质,解题的关键是画出折叠之前的矩形纸片,画出折叠之前的矩形纸片之后,一目了然,通过角度之间代换得到△ABC 是等腰三角形,得解.【详细解答】解:由折叠得∠1=∠2,再由矩形纸片对边平行得到∠1=∠3,从而得到∠2=∠3,所以△ABC 是等腰三角形且AB =AC =6cm ,故答案为6.【解后反思】折叠也就是翻折或轴对称,它连同平移、旋转一样是全等变换,即不改变图形的形状和大小,所以看到折叠就要想到全等,进一步得到对应角相等、对应边相等为进一步解题提供条件. 【关键词】 折叠;矩形的性质;等腰三角形的判定;2. ( 河北省,19,4分)如图,已知∠AOB =7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A =90°-7°=83°.当∠A <83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A =_____°. ……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=_______°.【答案】76 6 【逐步提示】本题属于规律探究题,对于(1)先在Rt△A1A2O中根据三角形内角和定理求出∠2的度数,由此得到∠1和∠AA1A2的度数,再在△AA1A2中根据三角形内角和定理求出∠A的度数;(2)由(1)可知当光线垂直于OA时光线会沿原路返回,画出符合题意的图形,分别求出有公共顶点的光线夹角的度数,从而找出夹角变化的规律,问题可解.【详细解答】解:(1)∵A1A2⊥AO,∴∠A1A2A=∠A1A2O=90°.在Rt△A1A2O中,∠O=7°,∴∠2=90°-7°=83°,∴∠1=83°,∴∠AA1A2=180°-2×83°=14°.在Rt△AA1A2中,∴∠A=90°-14°=76°.(2)如图,当A n-1A n ⊥OA时,易求得∠A n A n-1A n-2=14°=1×14°,∠A n-1A n-2A n-3=28°=2×14°,∠A n-2A n-3A n-4=42°=3×14°,……,由此可知当∠A1AC=12×14°=168°时,∠A1AO=12×(180°-168°)=6°,且此时∠A1AO最小.【解后反思】对于规律探究题,解决问题的一般思路是从特殊情形中发现一般规律,进而应用一般规律求解. 【关键词】规律探究题3.(湖北省黄冈市,12,3分)如图,⊙O是ΔABC的外接圆,∠AOB=700,AB=AC,则∠ABC= 。

甘肃省武威市(凉州区)2018年中考数学试卷(解析版)

甘肃省武威市(凉州区)2018年中考数学试卷(解析版)

甘肃省武威市(凉州区)2018年中考数学真题试题一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1. -2018的相反数是()A. -2018B. 2018C.D.【答案】B【解析】分析:直接利用倒数的定义进而分析得出答案.详解:-2018的倒数是:-.故选B.点睛:此题主要考查了倒数,正确把握倒数的定义是解题关键.2. 下列计算结果等于的是()A. B. C. D.【答案】D【解析】【分析】A、根据同底数幂的乘法法则计算.B、不是同类项,不能合并.C、不是同类项,不能合并.D、根据同底数幂的乘法法则计算;【点评】考查同底数幂的除法,合并同类项,同底数幂的乘法,熟记它们的运算法则是解题的关键.3. 若一个角为,则它的补角的度数为()A. B. C. D.【答案】C【解析】【分析】两个角的和等于则这两个角互为补角.【解答】一个角为,则它的补角的度数为:故选C.【点评】考查补角的定义,熟练掌握补角的定义是解题的关键.4. 已知,下列变形错误的是()A. B. C. D.【答案】B【解析】【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】由得,3a=2b,A. 由得,所以变形正确,故本选项错误;B. 由得3a=2b,所以变形错误,故本选项正确;C. 由可得,所以变形正确,故本选项错误;D.3a=2b变形正确,故本选项错误.故选B.【点评】考查比例的性质,熟练掌握比例的性质是解题的关键.5. 若分式的值为0,则的值是()A. 2或-2B. 2C. -2D. 0【答案】A【解析】【分析】分式值为零的条件是:分子为零,分母不为零.【解答】根据分式有意义的条件得:解得:故选A.【点评】考查分式值为零的条件,分式值为零的条件是:分子为零,分母不为零.6. 甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差如下表:甲乙丙丁平均数(米)11.1 11.1 10.9 10.9 方差 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A. 甲B. 乙C. 丙D. 丁【答案】A【解析】【分析】根据平均数和方差的意义解答.【解答】从平均数看,成绩好的同学有甲、乙,从方差看,甲、乙中,甲方差小,甲发挥稳定.故选A.【点评】考查平均数和方差的意义,方差越小,乘积越稳定.7. 关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【答案】C【解析】【分析】关于的一元二次方程有两个实数根,得解不等式即可.【解答】关于的一元二次方程有两个实数根,得解得:故选C.【点评】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.8. 如图,点是正方形的边上一点,把绕点顺时针旋转到的位置,若四边形的面积为25,,则的长为()A. 5B.C. 7D.【答案】D【解析】【分析】利用旋转的性质得出正方形边长,再利用勾股定理得出答案.【解答】∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,故选D.【点评】考查旋转的性质,正方形的性质,勾股定理等,熟练掌握旋转的性质是解题的关键.9. 如图,过点,,,点是轴下方上的一点,连接,,则的度数是()A. B. C. D.【答案】B【解析】【分析】连接CD,根据圆周角定理可知∠OBD=∠OCD,根据锐角三角形函数即可求出∠OCD的度数.【解答】连接CD,∵∠OBD与∠OCD是同弧所对的圆周角,∴∠OBD=∠OCD.∵∴故选B.【点评】考查圆周角定理,解直角三角形,熟练掌握在同圆或等圆中,同弧所对的圆周角相等是解题的关键.10. 如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A【解析】【分析】由开口方向和对称轴的位置可判断①;由对称轴为直线x=1可判断②;由x=3时可判断③;根据函数在时取得最大值,可以判断④,由-1<x<3时,函数图象位于x轴上方可判断⑤.【解答】∵抛物线的开口向下,∴a<0,抛物线的对称轴可知:∵抛物线的对称轴∴b=−2a,即2a+b=0,故②正确;由图象知当x=3时,把b=−2a代入得:故③错误;故④正确;由图象可知,当−1<x<3时,函数图象有些部分位于x轴上方,故⑤错误.故选A.【点评】考查二次函数的图象与系数的关系,二次函数图象上点的坐标特征,不等式等知识点,难度适中,属于高频考点.二、填空题:本大题共8小题,每小题3分,共24分.11. 计算:__________.【答案】0【解析】【分析】按照实数的运算顺序进行运算即可.【解答】原式故答案为:0.【点评】本题考查实数的运算,主要考查负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.12. 使得代数式有意义的的取值范围是__________.【答案】【解析】【分析】根据二次根式有意义和分式有意义的条件列出不等式进行计算即可. 【解答】代数式有意义的条件是:解得:故答案为:【点评】考查二次根式和分式有意义的条件,二次根式有意义的条件是被开方数大于等于零,分式有意义的条件是分母不为零.13. 若正多边形的内角和是,则该正多边形的边数是__________.【解析】【分析】根据多边形内角和公式进行计算即可.【解答】设正多边形的边数是根据题意得:解得:故答案为:8.14. 已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为__________.【答案】108【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称。

2018年甘肃省武威市(凉州区)中考数学真题试题含答案解析

2018年甘肃省武威市(凉州区)中考数学真题试题含答案解析

甘肃省武威市(凉州区)2018 年中考数学真题试题一、选择题:本大题共10 小题,每题 3 分,共 30 分 . 每题只有一个正确选项.1. -2018的相反数是()A. -2018B. 2018C.D.【答案】 B【分析】剖析:直接利用倒数的定义从而剖析得出答案.详解: -2018 的倒数是: -.应选 B.点睛:本题主要考察了倒数,正确掌握倒数的定义是解题重点.2.以下计算结果等于的是()A. B. C. D.【答案】 D【分析】【剖析】A、依据同底数幂的乘法法例计算.B、不是同类项,不可以归并.C、不是同类项,不可以归并.D、依据同底数幂的乘法法例计算;【评论】考察同底数幂的除法,归并同类项,同底数幂的乘法,熟记它们的运算法例是解题的重点 .3.若一个角为,则它的补角的度数为()A. B. C. D.【答案】 C【分析】【剖析】两个角的和等于则这两个角互为补角.【解答】一个角为,则它的补角的度数为:应选 C.【评论】考察补角的定义,娴熟掌握补角的定义是解题的重点.4.已知,以下变形错误的选项是()A. B. C. D.【答案】 B【分析】【剖析】依据两内项之积等于两外项之积对各选项剖析判断即可得解.【解答】由得, 3a=2b,A. 由得,因此变形正确,故本选项错误;B. 由得3a=2b,因此变形错误,故本选项正确;C. 由可得,因此变形正确,故本选项错误;D.3 a=2b变形正确,故本选项错误.应选 B.【评论】考察比率的性质,娴熟掌握比率的性质是解题的重点.5.若分式的值为0,则的值是()A.2 或-2B.2C.-2D.0【答案】 A【分析】【剖析】分式值为零的条件是:分子为零,分母不为零.【解答】依据分式存心义的条件得:解得:应选 A.【评论】考察分式值为零的条件,分式值为零的条件是:分子为零,分母不为零.6.甲、乙、丙、丁四名同学在一次扔掷实心球训练中,在同样条件下各扔掷10 次,他们成绩的均匀数与方差以下表:甲乙丙丁均匀数(米)11.111.110.910.9方差 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳固的同学参加竞赛,则应当选择()A.甲B.乙C.丙D.丁【答案】A【分析】【剖析】依据均匀数和方差的意义解答.【解答】从均匀数看,成绩好的同学有甲、乙,从方差看,甲、乙中,甲方差小,甲发挥稳固.应选 A.【评论】考察均匀数和方差的意义,方差越小,乘积越稳固.7. 对于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【答案】 C【分析】【剖析】对于的一元二次方程有两个实数根,得解不等式即可 .【解答】对于的一元二次方程有两个实数根,得解得:应选 C.【评论】考察一元二次方程根的鉴别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根 .当时,方程没有实数根 .8. 如图,点是正方形的边上一点,把绕点顺时针旋转到的地点,若四边形的面积为25,,则的长为()A.5B.C.7D.【答案】 D【分析】【剖析】利用旋转的性质得出正方形边长,再利用勾股定理得出答案.【解答】∵把△ADE顺时针旋转△ ABF的地点,∴四边形 AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴R t △ADE中 ,应选 D.【评论】考察旋转的性质,正方形的性质,勾股定理等,娴熟掌握旋转的性质是解题的重点.9.如图,过点,,,点是轴下方上的一点,连结,,则的度数是()A. B. C. D.【答案】 B【分析】【剖析】连结CD,依据圆周角定理可知∠OBD=∠OCD,依据锐角三角形函数即可求出∠ OCD的度数.【解答】连结CD,∵∠ OBD与∠ OCD是同弧所对的圆周角,∴∠ OBD=∠OCD.∵∴应选 B.【评论】考察圆周角定理,解直角三角形,娴熟掌握在同圆或等圆中,同弧所对的圆周角相等是解题的重点.10.如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是. 对于以下说法:①;②;③;④(为实数);⑤当时,,此中正确的选项是()A. ①②④B.①②⑤C.②③④D.③④⑤【答案】 A【分析】【剖析】由张口方向和对称轴的地点可判断①;由对称轴为直线x=1可判断②;由x=3时可判断③;依据函数在时获得最大值,能够判断④,由-1< x<3 时,函数图象位于 x 轴上方可判断⑤.【解答】∵抛物线的张口向下,∴a<0,抛物线的对称轴可知:∵抛物线的对称轴∴b=- 2a,即2a+b=0,故②正确;由图象知当 x=3时,把 =-2a 代入得:故③错误;b故④正确;由图象可知,当 - 1< <3 时,函数图象有些部分位于x 轴上方,故⑤错误 .x应选 A.【评论】考察二次函数的图象与系数的关系,二次函数图象上点的坐标特点,不等式等知识点,难度适中,属于高频考点.二、填空题:本大题共8 小题,每题 3 分,共24 分.11.计算:__________ .【答案】 0【分析】【剖析】依据实数的运算次序进行运算即可.【解答】原式故答案为: 0.【评论】本题考察实数的运算,主要考察负整数指数幂,特别角的三角函数值以及二次根式,娴熟掌握各个知识点是解题的重点.12.使得代数式存心义的的取值范围是__________.【答案】【分析】【剖析】依据二次根式存心义和分式存心义的条件列出不等式进行计算即可.【解答】代数式存心义的条件是:解得:故答案为:【评论】考察二次根式和分式存心义的条件,二次根式存心义的条件是被开方数大于等于零,分式存心义的条件是分母不为零.13.若正多边形的内角和是,则该正多边形的边数是__________.【分析】【剖析】依据多边形内角和公式进行计算即可.【解答】设正多边形的边数是依据题意得:解得:故答案为: 8.14.已知某几何体的三视图以下图,此中俯视图为正六边形,则该几何体的侧面积为__________.【答案】 108【分析】试题剖析:三视图就是主视图(正视图)、俯视图、左视图的总称。

2018年甘肃省白银市中考数学试题含答案解析(word版)

2018年甘肃省白银市中考数学试题含答案解析(word版)

2018年甘肃省白银市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.06.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<48.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=.12.(4分)使得代数式有意义的x的取值范围是.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A 地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。

2018年全国中考数学真题试题甘肃白银中考数学(解析版-精品文档)

2018年全国中考数学真题试题甘肃白银中考数学(解析版-精品文档)

2018年甘肃省白银市初中毕业、升学考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018甘肃白银,1,3) -2018的相反数是( )A.-2018B.2018C. 12018-D. 12018 【答案】B.【解析】:-2018的相反数为2018. 即求一个实数的相反数就在它前面添一个“—”号。

故选B【知识点】相反数2.(2018甘肃白银,2,3)下列计算结果为3x 的是( )A.62x x ÷B. 4x x -C. 2x x +D.2x x【答案】D【解析】:选项A 考查的是同底数幂相除,底数不变,指数相减应为4x ,B 与C 都是整式加减即合并同类项,但B 与C 中都不是同类项,不能合并。

D 选项考查的是同底数的幂相乘,底数不变,指数相乘。

因此D 选项正确。

故选D【知识点】整式的运算(加减乘除),幂的运算法则如同底数的幂相乘除及幂的乘方和积的乘方等。

3.(2018甘肃白银,3,3) 若一个角为65°,则它的补角的度数为( )A.25°B.35°C.115°D.125°【答案】C【解析】因为一个角为65°,则它的补角=180°-65°=115°。

故选C【知识点】补角的概念.4.(2018甘肃白银,4,3)已知23a b =(00,a b ≠≠),下列变形错误的是( ) A. 23a b = B.23a b = C. 32b a = D.32a b =【答案】B.【解析】:由已知比例式23a b =进行变形,然后对照选项逐一检查可知B 选项错误。

故选B【知识点】比例式的变形。

比例式的变形一定要满足比例的基本性质,比例内项之积等于比例外项之积。

5.(2018甘肃白银,5,3) 若分式24x x -的值为0,则x 的值是( ) A.2或-2 B.2 C.-2 D. 0【答案】A【解析】由分式的值为0,可得:2400x x ⎧-=⎨≠⎩,解得x=2或x=-2,0x ≠.所以x=2或x=-2。

(真题)2018年甘肃省定西市中考数学试卷(有答案)

(真题)2018年甘肃省定西市中考数学试卷(有答案)

2018年甘肃省定西市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确1.(3分)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2D.x2•x【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115°D.125°【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.4.(3分)已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.【点评】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.5.(3分)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.(3分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:(环)A.甲B.乙C.丙D.丁【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.(3分)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.(3分)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF 的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9.(3分)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.10.(3分)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c >0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).二、填空题:本大题共8小题,每小题4分,共32分11.(4分)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.12.(4分)使得代数式有意义的x的取值范围是x>3.【分析】二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值范围是x>3,故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.(4分)若正多边形的内角和是1080°,则该正多边形的边数是8.【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.14.(4分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.15.(4分)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=7.【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值范围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方,解题的关键是明确题意,明确配方法和三角形三边的关系.16.(4分)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值范围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.17.(4分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长==,那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.18.(4分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1【点评】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.三、解答题(一);本大题共5小题,共38分,解答应写出必要的文字说明,证明过程或演算步骤19.(6分)计算:÷(﹣1)【分析】先计算括号内分式的减法,再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.21.(8分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(8分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出CD及AD的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,不吃20,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.(10分)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:10种,故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二):本大题共5小题,共50分。

2018年甘肃省定西市中考数学试卷(附答案解析)

2018年甘肃省定西市中考数学试卷(附答案解析)

2018年省市中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)(2018•)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3分)(2018•)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x3.(3分)(2018•)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°4.(3分)(2018•)已知=(a≠0,b≠0),下列变形错误的是()A.= B.2a=3b C.= D.3a=2b5.(3分)(2018•)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.06.(3分)(2018•)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁7.(3分)(2018•)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<48.(3分)(2018•)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A 顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.9.(3分)(2018•)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°10.(3分)(2018•)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)11.(3分)(2018•)计算:2sin30°+(﹣1)2018﹣()﹣1=.12.(3分)(2018•)使得代数式有意义的x的取值围是.13.(3分)(2018•)若正多边形的角和是1080°,则该正多边形的边数是.14.(3分)(2018•)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.15.(3分)(2018•)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=.16.(3分)(2018•)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.17.(3分)(2018•)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.18.(3分)(2018•)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为.三、解答题(一)解(本大题共5小题,满分26分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)19.(4分)(2018•)计算:÷(﹣1)20.(4分)(2018•)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(6分)(2018•)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.(6分)(2018•)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B 两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)23.(6分)(2018•)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二)解(本大题共5小题,满分40分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)24.(7分)(2018•)“足球运球”是中考体育必考项目之一市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位教会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?25.(7分)(2018•)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =S△BOC,求点P的坐标.26.(8分)(2018•)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H 分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.27.(8分)(2018•)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.28.(10分)(2018•)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C 为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.2018年省市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)(2018•)﹣2018的相反数是()A.﹣2018 B.2018 C.﹣D.【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2018的相反数是:2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)(2018•)下列计算结果等于x3的是()A.x6÷x2B.x4﹣x C.x+x2 D.x2•x【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法.【专题】11 :计算题;512:整式.【分析】根据同底数幂的除法、乘法及同类项的定义逐一计算即可得.【解答】解:A、x6÷x2=x4,不符合题意;B、x4﹣x不能再计算,不符合题意;C、x+x2不能再计算,不符合题意;D、x2•x=x3,符合题意;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的除法、乘法及同类项的定义.3.(3分)(2018•)若一个角为65°,则它的补角的度数为()A.25°B.35°C.115° D.125°【考点】IL:余角和补角.【专题】551:线段、角、相交线与平行线.【分析】根据互为补角的两个角的和等于180°列式进行计算即可得解.【解答】解:180°﹣65°=115°.故它的补角的度数为115°.故选:C.【点评】本题考查了余角和补角,解决本题的关键是熟记互为补角的和等于180°.4.(3分)(2018•)已知=(a≠0,b≠0),下列变形错误的是()A.= B.2a=3b C.= D.3a=2b【考点】S1:比例的性质.【专题】11 :计算题.【分析】根据两项之积等于两外项之积对各选项分析判断即可得解.【解答】解:由=得,3a=2b,A、由原式可得:3a=2b,正确;B、由原式可得2a=3b,错误;C、由原式可得:3a=2b,正确;D、由原式可得:3a=2b,正确;故选:B.【点评】本题考查了比例的性质,主要利用了两项之积等于两外项之积.5.(3分)(2018•)若分式的值为0,则x的值是()A.2或﹣2 B.2 C.﹣2 D.0【考点】63:分式的值为零的条件.【专题】1 :常规题型.【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.(3分)(2018•)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:甲乙丙丁平均数(环)11.111.110.910.9方差s2 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W1:算术平均数.【专题】1 :常规题型;542:统计的应用.【分析】根据平均数和方差的意义解答.【解答】解:从平均数看,成绩好的同学有甲、乙,从方差看甲、乙两人中,甲方差小,即甲发挥稳定,故选:A.【点评】本题考查了平均数和方差,熟悉它们的意义是解题的关键.7.(3分)(2018•)关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<4【考点】AA:根的判别式.【分析】根据判别式的意义得△=42﹣4k≥0,然后解不等式即可.【解答】解:根据题意得△=42﹣4k≥0,解得k≤4.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8.(3分)(2018•)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A 顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B. C.7 D.【考点】R2:旋转的性质;LE:正方形的性质.【专题】1 :常规题型.【分析】利用旋转的性质得出四边形AECF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【解答】解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.【点评】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键.9.(3分)(2018•)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°【考点】M5:圆周角定理;D5:坐标与图形性质.【专题】55:几何图形.【分析】连接DC,利用三角函数得出∠DCO=30°,进而利用圆周角定理得出∠DBO=30°即可.【解答】解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.【点评】此题考查圆周角定理,关键是利用三角函数得出∠DCO=30°.10.(3分)(2018•)如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】31 :数形结合.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b 同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).二、细心填一填(本大题共8小题,每小题3分,满分24分,请把答案填在答題卷相应题号的横线上)11.(3分)(2018•)计算:2sin30°+(﹣1)2018﹣()﹣1=0.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据特殊角的三角函数值、幂的乘方和负整数指数幂可以解答本题.【解答】解:2sin30°+(﹣1)2018﹣()﹣1=2×+1﹣2=1+1﹣2=0,故答案为:0.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.12.(3分)(2018•)使得代数式有意义的x的取值围是x>3.【考点】72:二次根式有意义的条件;62:分式有意义的条件.【专题】514:二次根式.【分析】二次根式中被开方数的取值围:二次根式中的被开方数是非负数.【解答】解:∵代数式有意义,∴x﹣3>0,∴x>3,∴x的取值围是x>3,故答案为:x>3.【点评】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.13.(3分)(2018•)若正多边形的角和是1080°,则该正多边形的边数是8.【考点】L3:多边形角与外角.【分析】n边形的角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:8.【点评】本题考查了多边形的角与外角,熟记角和公式和外角和定理并列出方程是解题的关键.根据多边形的角和定理,求边数的问题就可以转化为解方程的问题来解决.14.(3分)(2018•)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【考点】U3:由三视图判断几何体;I4:几何体的表面积;MM:正多边形和圆;U1:简单几何体的三视图.【专题】55:几何图形.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.15.(3分)(2018•)已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=7.【考点】K6:三角形三边关系;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【专题】42 :配方法.【分析】根据非负数的性质列式求出a、b的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c的取值围,再根据c是奇数求出c的值.【解答】解:∵a,b满足|a﹣7|+(b﹣1)2=0,∴a﹣7=0,b﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴6<c<8,又∵c为奇数,∴c=7,故答案是:7.【点评】本题考查配方法的应用、非负数的性质:偶次方,解题的关键是明确题意,明确配方法和三角形三边的关系.16.(3分)(2018•)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为﹣2<x<2.【考点】FD:一次函数与一元一次不等式.【专题】53:函数及其图象.【分析】先将点P(n,﹣4)代入y=﹣x﹣2,求出n的值,再找出直线y=2x+m 落在y=﹣x﹣2的下方且都在x轴下方的部分对应的自变量的取值围即可.【解答】解:∵一次函数y=﹣x﹣2的图象过点P(n,﹣4),∴﹣4=﹣n﹣2,解得n=2,∴P(2,﹣4),又∵y=﹣x﹣2与x轴的交点是(﹣2,0),∴关于x的不等式2x+m<﹣x﹣2<0的解集为﹣2<x<2.故答案为﹣2<x<2.【点评】本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确确定出n的值,是解答本题的关键.17.(3分)(2018•)如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.【考点】MN:弧长的计算;KK:等边三角形的性质.【专题】1 :常规题型.【分析】首先根据等边三角形的性质得出∠A=∠B=∠C=60°,AB=BC=CA=a,再利用弧长公式求出的长=的长=的长==,那么勒洛三角形的周长为×3=πa.【解答】解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.【点评】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),也考查了等边三角形的性质.18.(3分)(2018•)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2018次输出的结果为1.【考点】33:代数式求值.【专题】11 :计算题.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…(2018﹣3)÷2=1007.5,即输出的结果是1,故答案为:1【点评】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.三、解答题(一)解(本大题共5小题,满分26分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)19.(4分)(2018•)计算:÷(﹣1)【考点】6C:分式的混合运算.【专题】11 :计算题;513:分式.【分析】先计算括号分式的减法,再计算除法即可得.【解答】解:原式=÷(﹣)=÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.20.(4分)(2018•)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【考点】N3:作图—复杂作图;MB:直线与圆的位置关系.【专题】13 :作图题.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,【点评】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,正确利用角平分线的性质求出是解题关键.21.(6分)(2018•)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.【考点】9A:二元一次方程组的应用.【专题】34 :方程思想;521:一次方程(组)及应用.【分析】设合伙买鸡者有x人,鸡的价格为y文钱,根据“如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设合伙买鸡者有x人,鸡的价格为y文钱,根据题意得:,解得:.答:合伙买鸡者有9人,鸡的价格为70文钱.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(6分)(2018•)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B 两地的直达高铁可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:≈1.7,≈1.4)【考点】T8:解直角三角形的应用;KU:勾股定理的应用.【专题】55:几何图形.【分析】过点C作CD⊥AB于点D,利用锐角三角函数的定义求出CD及AD的长,进而可得出结论.【解答】解:过点C作CD⊥AB于点D,在Rt△ADC和Rt△BCD中,∵∠CAB=30°,∠CBA=45°,AC=640,∴CD=320,AD=320,∴BD=CD=320,BC=320,∴AC+BC=640+320≈1088,∴AB=AD+BD=320+320≈864,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【点评】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.23.(6分)(2018•)如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案.(1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格空白的小正方形(A,B,C,D,E,F)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.【考点】P8:利用轴对称设计图案;X5:几何概率;X6:列表法与树状图法.【专题】1 :常规题型;543:概率及其应用.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到新图案是轴对称图形的结果数,利用概率公式计算可得.【解答】解:(1)∵正方形网格被等分成9等份,其中阴影部分面积占其中的3份,∴米粒落在阴影部分的概率是=;(2)列表如下:A B C D E FA(B,A)(C,A)(D,A)(E,A)(F,A)B(A,B)(C,B)(D,B)(E,B)(F,B)C(A,C)(B,C)(D,C)(E,C)(F,C)D(A,D)(B,D)(C,D)(E,D)(F,D)E(A,E)(B,E)(C,E)(D,E)(F,E)F(A,F)(B,F)(C,F)(D,F)(E,F)由表可知,共有30种等可能结果,其中是轴对称图形的有10种,故新图案是轴对称图形的概率为=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.四、解答题(二)解(本大题共5小题,满分40分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)24.(7分)(2018•)“足球运球”是中考体育必考项目之一市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.根据所给信息,解答以下问题(1)在扇形统计图中,C对应的扇形的圆心角是117度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位教会落在B等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(7分)(2018•)如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP =S△BOC,求点P的坐标.【考点】G8:反比例函数与一次函数的交点问题.【专题】533:一次函数及其应用;534:反比例函数及其应用.【分析】(1)利用点A在y=﹣x+4上求a,进而代入反比例函数y=求k.(2)联立方程求出交点,设出点P坐标表示三角形面积,求出P点坐标.【解答】解:(1)把点A(﹣1,a)代入y=x+4,得a=3,∴A(﹣1,3)把A(﹣1,3)代入反比例函数y=∴k=﹣3,∴反比例函数的表达式为y=﹣(2)联立两个的数表达式得解得或∴点B的坐标为B(﹣3,1)当y=x+4=0时,得x=﹣4∴点C(﹣4,0)设点P的坐标为(x,0)∵S△ACP =S△BOC∴解得x1=﹣6,x2=﹣2∴点P(﹣6,0)或(﹣2,0)【点评】本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过联立方程求交点坐标以及在数形结合基础上的面积表达.26.(8分)(2018•)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H 分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;LB:矩形的性质.【专题】55:几何图形.【分析】(1)根据三角形中位线定理和全等三角形的判定证明即可;(2)利用正方形的性质和矩形的面积公式解答即可.【解答】解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.【点评】此题考查正方形的性质,关键是根据全等三角形的判定和正方形的性质解答.27.(8分)(2018•)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.【考点】MC:切线的性质;T7:解直角三角形.【专题】15 :综合题.【分析】(1)连接OE,BE,因为DE=EF,所以,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=【点评】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.28.(10分)(2018•)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C 为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.【考点】HF:二次函数综合题.【专题】537:函数的综合应用.【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【解答】解:(1)将点B和点C的坐标代入函数解析式,得,。

2018届中考数学复习 专题21 平面几何初步(点、线、面、角、相交线与平行线等)试题(B卷,含解析)

2018届中考数学复习 专题21 平面几何初步(点、线、面、角、相交线与平行线等)试题(B卷,含解析)

平面几何初步一、选择题1. ( 福建福州,3,3分)如图,直线a ,b 被直线c 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角【答案】B【逐步提示】本题考查了同位角、内错角、同位角和对顶角的识别,解题的关键是认识三线八角,根据内错角的定义可得答案.【详细解答】解:直线a ,b 被直线c 所截,∠1与∠2是内错角,故选择B .【解后反思】三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线. 【关键词】内错角;同位角;同旁内角;对顶角2. ( 甘肃省武威市、白银市、定西市、平凉市、酒泉市、临夏州、张掖市等9市,6,3分)如图,AB ∥CD ,DE ⊥CE ,∠1=34º,则∠DCE 的度数为( )A . 34º B.54º C. 66º D . 56º1BE第6题图【答案】D 【逐步提示】本题考查了平行线的性质,解题的关键是将线的位置关系转化为角的数量关系,应用平行线的性质:两直线平行线内错角相等得出∠EDC 的度数,再利用直角三角形两锐角互余得出∠DCE 的度数. 【详细解答】解:∵AB ∥CD ,∴ ∠EDC =∠1=34°.∵DE ⊥CE ∴ ∠DEC =90°,∴∠EDC +∠DCE =90°.∴∠DCE =90°-34°=56º,故选择D .【解后反思】本题考查了平行线的性质即两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.【关键词】平行线的性质;垂直的定义;直角三角形的性质; 3. ( 甘肃省天水市,5,4分)如图,直线AB ∥CD ,OG 是∠EOB 的平分线,∠EFD =70°,则∠BOG 的度数是( ) A .70° B .20° C .35° D .40°【答案】C【逐步提示】本题考查了平行线的性质和角平分线的定义,解题关键是注意两直线平行,相关的同位角相等、内错角相等及同旁内角互补.要求∠BOG 的度数,关键是先求∠EOB 的度数,这可根据∠EFD =70°,联想到两直线CO A B D E FG平行,同位角相等解决.【详细解答】解:∵AB∥CD,∴∠EOB=∠EFD=70°.又∵OG平分∠EOB,∴∠BOG=12∠EOB=12×70°=35°.故选择C.【解后反思】平行线间的角离不开同位角、同旁内角,及内错角等知识,另外还要和三角形的内角和定理,及外角等于与它不相邻的两内角和知识相联系,只要从这些方面思考,就不难得到解决.【关键词】平行线的性质;角的平分线.4.(广东茂名,5,3分)如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为()A.120°B.90°C.60°D.30°【答案】C【逐步提示】本题考查了平行线的性质,解题的关键是识别出图中的∠1、∠2是两条平行直线a、b被第三条直线c截出的一组相等的同位角.直接利用“两直线平行,同位角相等”解题即可.【详细解答】解:∵a∥b,∴∠1=∠2. ∵∠1=60°,∴∠2=60°.故选择C .【解后反思】“两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补”这是由直线的位置关系得出角的数量关系,“同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;”这是由角的数量关系得出直线的位置关系,这里体现了数形结合的思想.【关键词】同位角;平行线的性质5.(贵州省毕节市,8,3分)如图,直线a//b,∠1=85°,∠2=35°,则∠3=()(第8题图)A. 85°B. 60°C. 50°D. 35°【答案】C【逐步提示】本题考查平行线的性质,三角形外角和定理,解题的关键是能从图中发现∠3与∠1、∠2的联系.【详细解答】解:如图,∵a//b,∴∠4=∠3.又∵∠1=∠2+∠4,∴∠4=∠1-∠2=85°-35°=50°,∴∠3=50°,故选择C.【解后反思】此类问题容易出错的地方是找不到图形中角与角之间的数量关系.【关键词】平行线的性质;三角形外角和定理6.(河北省,13,2分)如图,将□ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【答案】C【逐步提示】根据平行线的性质和折叠的性质得到∠BAC=12∠B’AB=12∠1=22°,再在△ABC中根据三角形内角和定理求得∠B的度数.【详细解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B’AB=∠1=44°.根据折叠的性质可知∠BAC=12∠B’AB=12×44°=22°.又∵∠2=44°,∴∠B=180°-22°-44°=114°,故答案为选项C.【解后反思】折叠问题是属于轴对称变换,折叠后图形的形状和大小不变,三角形折叠后得到的三角形与原三角形全等,对应边和对应角相等.【关键词】平行四边形的性质;平行线的性质;折叠;三角形内角和定理7.(湖北省黄冈市,3,3分)如图,直线a∥b,∠1=550,则∠2= ()A.350B.450C. 550D.650【答案】C【逐步提示】本题考查了平行线的性质“两直线平行,同位角相等”及对顶角的性质“对顶角相等”,解题的关键是能观察出∠1与∠2之间的联系而不走弯路.由图易发现,∠1的对顶角与∠2是同位角,a∥b是沟通∠1与∠2的桥梁.【详细解答】解:如图,∵a∥b,∴∠3=∠2.∵∠3=∠1,∴∠2=∠1=55°,故选择C.【解后反思】此类题主要考查形式为选择或填空,解决此类题型常用的方法是根据平行线的性质:两直线平行同位角相等、两直线平行内错角相等,两直线平行同旁内角互补,结合对顶角相等或邻补角和为180°,直接求出正确答案后做出选择.【关键词】平行线的性质;对顶角。

年甘肃省中考数学试卷(含答案解析)

年甘肃省中考数学试卷(含答案解析)

2018年甘肃省(全省统考)中考数学试卷一、选择题:本大题共10小题,每小题2018年甘肃省定西市,共30分,每小题只有一个正确1. -2018的相反数是( )A.-2018 B.2018 C.12018- D.120182.下列计算结果等于3x 的是( )A.62x x ÷B.4x x -C.2x x + D .2x x ⋅ 3.若一个角为65°,则它的补角的度数为( ) A.25°ﻩB.35° C.115°ﻩD .125° 4.已知(0,0)23a ba b =≠≠,下列变形错误的是( ) A.23a b = B .23a b = C.32b a = D.32a b = 5. 若分式24x x-的值为0,则的值是( )A. 2或-2 B. 2 C . -2 D . 06.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s 2如下表:甲 乙 丙 丁 平均数(环) 11.1 11.1 10.9 10.9 方差s21.11.21.31.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( ) A.甲ﻩB .乙 C .丙 D.丁7.关于x 的一元二次方程x 2+4x+k=0有两个实数根,则k 的取值范围是( ) A.k≤﹣4B .k<﹣4ﻩC .k≤4ﻩD.k<48.如图,点E 是正方形A BCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形A EC F的面积为25,DE=2,则AE 的长为( )A. 5B. C. 7 D.9.如图,⊙A 过点O(0,0),C(,0),D (0,1),点B 是x轴下方⊙A 上的一点,连接BO ,BD,则∠OBD 的度数是( )A.15°ﻩB .30° C.45° D .60°10.如图是二次函数y=ax 2+bx+c (a ,b,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am +b )(m 为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )A.①②④ B .①②⑤ C .②③④ﻩD .③④⑤二、填空题:本大题共8小题,每小题2018年甘肃省定西市,共32分11.计算:2018112sin 30(1)()2-+--= .12.3x -有意义的x 的取值范围是 . 13.若正多边形的内角和是1080°,则该正多边形的边数是 .14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .15.已知a ,b ,c 是ABC ∆的三边长,a ,b 满足27(1)0a b -+-=,c 为奇数,则c = .16.如图,一次函数2y x =--与2y x m =+的图象相交于点(,4)P n -,则关于x 的不等式组2220x m x x +<--⎧⎨--<⎩的解集为 .17.如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a ,则勒洛三角形的周长为 .18.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2018次输出的结果为 .三、解答题(一);本大题共5小题,共32018年甘肃省定西市,解答应写出必要的文字说明,证明过程或演算步骤 19.计算:22(1)b aa b a b÷---.20.如图,在△A BC 中,∠ABC=90°. (1)作∠ACB 的平分线交A B边于点O ,再以点O 为圆心,OB 的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O 的位置关系,直接写出结果.21.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.22.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B两地被大山阻隔,由A 地到B 地需要绕行C地,若打通穿山隧道,建成A ,B 两地的直达高铁可以缩短从A地到B 地的路程.已知:∠CAB=30°,∠CBA =45°,AC=640公里,求隧道打通后与打通前相比,从A地到B 地的路程将约缩短多少公里?(参考数据:3 1.7≈,2 1.4≈)23.如图,在正方形方格中,阴影部分是涂黑3个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少?(2)现将方格内空白的小正方形(A,B ,C,D,E,F )中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是轴对称图形的概率.四、解答题(二):本大题共5小题,共50分。

2018年甘肃省白银市、定西市、平凉市、酒泉市、临夏州中考数学试卷含答案

2018年甘肃省白银市、定西市、平凉市、酒泉市、临夏州中考数学试卷含答案

2018年甘肃省白银市中考数学试卷参考答案与试卷解读一、选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填涂在答题卡上.b5E2RGbCAP分)<2018﹣国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数的,它的主视图是< )C.•=+=C÷=2=2、•=、+、÷==2、=2,计算正确.尺平行,那么,在形成的这个图中与∠α互余的角共有< )DXDiTa9E3dC.,则直线与圆相6平方M.若设它的一条边长为xM,则根据题意可列出关于x的方程为< )b+c=0上,连接ED交AB于点F,AF=x<0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之闻函数关系的是< )jLBHrnAILgC.=,从而得到则=,即=,<0.2横线上.考点:提公因式法与公式法的综合运用.专题:计算题.分析:先提公因式2,再利用完全平方公式分解因式即可.解答:解:2a2﹣4a+2,=2<a2﹣2a+1),=2<a﹣1)2.点评:本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.<4分)<2018•白银)化简:= x+2 .考点:分式的加减法.专题:计算题.分析:先转化为同分母<x﹣2)的分式相加减,然后约分即可得解.解答:解:+=﹣==x+2.故答案为:x+2.点评:本题考查了分式的加减法,把互为相反数的分母化为同分母是解题的关键.考点:勾股定理;等腰三角形的性质.分析:利用等腰三角形的“三线合一”的性质得到BD=BC=6cm,然后在直角△ABD中,利用勾股定理求得高线AD的长度.解答:解:如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===<8cm).故答案是:8.0,则根据一元二次方程的定义和一元二次方程的解的定义得到15.<4分)<2018•白银)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,cosB=,﹣y=根据一对相反数同时为二次根式的被开方数,那么被开方数为答:解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.点评:考查二次根式有意义的相关计算;得到x可能的值是解决本题的关键;用到的知识点为:一对相反数同时为二次根式的被开方数,那么被开方数为0.ABCDO点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为12 .dvzfvkwMI1考点:中心对称;菱形的性质.分析:根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.解答:解:∵菱形的两条对角线的长分别为6和8,∴菱形的面积=×6×8=24,∵O是菱形两条对角线的交点,∴阴影部分的面积=×24=12.故答案为:12.点评:本题考查了中心对称,菱形的性质,熟记性质并判断出阴影部分的面积等于菱形的面积的一半是解题的关键.13=1213+23=3213+23+33=6213+23+33+43=102…考点:规律型:数字的变化类.专题:压轴题;规律型.分析:13=1213+23=<1+2)2=3213+23+33=<1+2+3)2=6213+23+33+43=<1+2+3+4)2=10213+23+33+…+103=<1+2+3…+10)2=552.解答:解:根据数据可分析出规律为从1开始,连续n个数的立方和=<1+2+…+n)2所以13+23+33+…+103=<1+2+3…+10)2=552.点评:本题的规律为:从1开始,连续n个数的立方和=<1+2+…+n)2.明、证明过程或演算步骤.19.<6分)<2018•白银)计算:<﹣2)3+×<2018+π)0﹣|﹣|+tan260°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=﹣8+﹣+3=﹣5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.我们把称作二阶行列式,规定他的运算法则为=ad﹣bc.如=2×5﹣3×4=﹣2.如果有>0,求x的解集.考点:解一元一次不等式.专题:阅读型.分析:首先看懂题目所给的运算法则,再根据法则得到2x﹣<3﹣x)>0,然后去括号、移项、合并同类项,再把x的系数化为1即可.解答:解:由题意得2x﹣<3﹣x)>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1.点评:此题主要考查了一元一次不等式的解法,关键是看懂题目所给的运算法则,根据题意列出不等式.<1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.<保留作图痕迹,不要求写作法和证明);rqyn14ZNXI<2)连接BD,求证:BD平分∠CBA.为圆心,以大于ABABD=60具、图<1)所示的是一辆自行车的实物图.图<2)是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条只显示,且∠CAB=75°.<参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)EmxvxOtOco<1)求车架档AD的长;=75<cm23.<10分)<2018•白银)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A<﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.SixE2yXPq5<1)求m、n的值;<2)求直线AC的解读式.y=相交于将A<﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2;∴明、证明过程或演算步骤.24.<8分)<2018•白银)在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标<x,y).6ewMyirQFL<1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;P=的喜欢程度,抽取部分学生进行调查,被调查的每个学生按A<非常喜欢)、B<比较喜欢)、C<一般)、D<不喜欢)四个等级对活动评价,图1和图2是该小组采集数据后绘制的两幅统计图,经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息.解答下列问题:kavU42VRUs<1)此次调查的学生人数为200 ;<2)条形统计图中存在错误的是 C <填A、B、C、D中的一个),并在图中加以改正;<3)在图2中补画条形统计图中不完整的部分;<4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映部分占总体的百分比大小.AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.y6v3ALoS89<1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;<2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?<直接写出答案,不需要说明理由.)。

甘肃省白银市、凉州市、张掖市2018年中考数学试卷(解析版)

甘肃省白银市、凉州市、张掖市2018年中考数学试卷(解析版)

甘肃省武威市(凉州区)2018年中考数学真题试题一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1. -2018的相反数是()A. -2018B. 2018C.D.【答案】B【解析】分析:直接利用倒数的定义进而分析得出答案.详解:-2018的倒数是:-.故选B.点睛:此题主要考查了倒数,正确把握倒数的定义是解题关键.2. 下列计算结果等于的是()A. B. C. D.【答案】D【解析】【分析】A、根据同底数幂的乘法法则计算.B、不是同类项,不能合并.C、不是同类项,不能合并.D、根据同底数幂的乘法法则计算;【点评】考查同底数幂的除法,合并同类项,同底数幂的乘法,熟记它们的运算法则是解题的关键.3. 若一个角为,则它的补角的度数为()A. B. C. D.【答案】C【解析】【分析】两个角的和等于则这两个角互为补角.【解答】一个角为,则它的补角的度数为:故选C.【点评】考查补角的定义,熟练掌握补角的定义是解题的关键.4. 已知,下列变形错误的是()A. B. C. D.【答案】B【解析】【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【解答】由得,3a=2b,A. 由得,所以变形正确,故本选项错误;B. 由得3a=2b,所以变形错误,故本选项正确;C. 由可得,所以变形正确,故本选项错误;D.3a=2b变形正确,故本选项错误.故选B.【点评】考查比例的性质,熟练掌握比例的性质是解题的关键.5. 若分式的值为0,则的值是()A. 2或-2B. 2C. -2D. 0【答案】A【解析】【分析】分式值为零的条件是:分子为零,分母不为零.【解答】根据分式有意义的条件得:解得:故选A.【点评】考查分式值为零的条件,分式值为零的条件是:分子为零,分母不为零.6. 甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差如下表:甲乙丙丁平均数(米)11.1 11.1 10.9 10.9 方差 1.1 1.2 1.3 1.4若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A. 甲B. 乙C. 丙D. 丁【答案】A【解析】【分析】根据平均数和方差的意义解答.【解答】从平均数看,成绩好的同学有甲、乙,从方差看,甲、乙中,甲方差小,甲发挥稳定.故选A.【点评】考查平均数和方差的意义,方差越小,乘积越稳定.7. 关于的一元二次方程有两个实数根,则的取值范围是()A. B. C. D.【答案】C【解析】【分析】关于的一元二次方程有两个实数根,得解不等式即可.【解答】关于的一元二次方程有两个实数根,得解得:故选C.【点评】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.8. 如图,点是正方形的边上一点,把绕点顺时针旋转到的位置,若四边形的面积为25,,则的长为()A. 5B.C. 7D.【答案】D【解析】【分析】利用旋转的性质得出正方形边长,再利用勾股定理得出答案.【解答】∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,故选D.【点评】考查旋转的性质,正方形的性质,勾股定理等,熟练掌握旋转的性质是解题的关键.9. 如图,过点,,,点是轴下方上的一点,连接,,则的度数是()A. B. C. D.【答案】B【解析】【分析】连接CD,根据圆周角定理可知∠OBD=∠OCD,根据锐角三角形函数即可求出∠OCD的度数.【解答】连接CD,∵∠OBD与∠OCD是同弧所对的圆周角,∴∠OBD=∠OCD.∵∴故选B.【点评】考查圆周角定理,解直角三角形,熟练掌握在同圆或等圆中,同弧所对的圆周角相等是解题的关键.10. 如图是二次函数(,,是常数,)图象的一部分,与轴的交点在点和之间,对称轴是.对于下列说法:①;②;③;④(为实数);⑤当时,,其中正确的是()A. ①②④B. ①②⑤C. ②③④D. ③④⑤【答案】A【解析】【分析】由开口方向和对称轴的位置可判断①;由对称轴为直线x=1可判断②;由x=3时可判断③;根据函数在时取得最大值,可以判断④,由-1<x<3时,函数图象位于x轴上方可判断⑤.【解答】∵抛物线的开口向下,∴a<0,抛物线的对称轴可知:∵抛物线的对称轴∴b=−2a,即2a+b=0,故②正确;由图象知当x=3时,把b=−2a代入得:故③错误;故④正确;由图象可知,当−1<x<3时,函数图象有些部分位于x轴上方,故⑤错误.故选A.【点评】考查二次函数的图象与系数的关系,二次函数图象上点的坐标特征,不等式等知识点,难度适中,属于高频考点.二、填空题:本大题共8小题,每小题3分,共24分.11. 计算:__________.【答案】0【解析】【分析】按照实数的运算顺序进行运算即可.【解答】原式故答案为:0.【点评】本题考查实数的运算,主要考查负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.12. 使得代数式有意义的的取值范围是__________.【答案】【解析】【分析】根据二次根式有意义和分式有意义的条件列出不等式进行计算即可. 【解答】代数式有意义的条件是:解得:故答案为:【点评】考查二次根式和分式有意义的条件,二次根式有意义的条件是被开方数大于等于零,分式有意义的条件是分母不为零.13. 若正多边形的内角和是,则该正多边形的边数是__________.【解析】【分析】根据多边形内角和公式进行计算即可.【解答】设正多边形的边数是根据题意得:解得:故答案为:8.14. 已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为__________.【答案】108【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称。

2018甘肃白银中考数学解析

2018甘肃白银中考数学解析

2018年甘肃省白银市初中毕业、升学考试数学学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018甘肃白银,1,3) -2018的相反数是( )A.-2018B.2018C. 12018-D. 12018【答案】B.【解析】:-2018的相反数为2018. 即求一个实数的相反数就在它前面添一个“—”号。

故选B【知识点】相反数2.(2018甘肃白银,2,3)下列计算结果为3x 的是( )A.62x x ÷B. 4x x -C. 2x x +D.2x x g【答案】D【解析】:选项A 考查的是同底数幂相除,底数不变,指数相减应为4x ,B 与C 都是整式加减即合并同类项,但B 与C 中都不是同类项,不能合并。

D 选项考查的是同底数的幂相乘,底数不变,指数相乘。

因此D 选项正确。

故选D【知识点】整式的运算(加减乘除),幂的运算法则如同底数的幂相乘除及幂的乘方和积的乘方等。

3.(2018甘肃白银,3,3) 若一个角为65°,则它的补角的度数为( )A.25°B.35°C.115°D.125°【答案】C【解析】因为一个角为65°,则它的补角=180°-65°=115°。

故选C【知识点】补角的概念.4.(2018甘肃白银,4,3)已知23a b =(00,a b ≠≠),下列变形错误的是( ) A. 23a b = B.23a b = C. 32b a = D.32a b = 【答案】B. 【解析】:由已知比例式23a b =进行变形,然后对照选项逐一检查可知B 选项错误。

故选B【知识点】比例式的变形。

比例式的变形一定要满足比例的基本性质,比例内项之积等于比例外项之积。

5.(2018甘肃白银,5,3) 若分式24x x-的值为0,则x 的值是( ) A.2或-2 B.2 C.-2 D. 0【答案】A【解析】由分式的值为0,可得:2400x x ⎧-=⎨≠⎩,解得x=2或x=-2,0x ≠.所以x=2或x=-2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解答】解:(1)∵总人数为 18÷45%=40 人, ∴C 等级人数为 40﹣(4+18+5)=13 人, 则 C 对应的扇形的圆心角是 360°× =117°,
∴Rt△ADE 中,AE=
=.
故选:D.
9.(3 分)如图,⊙A 过点 O(0,0),C( ,0),D(0,1),点 B 是 x 轴下方 ⊙A 上的一点,连接 BO,BD,则∠OBD 的度数是( )
A.15° B.30° C.45° D.60° 【解答】解:连接 DC,
第 3页(共 18页)
∵C( ,0),D(0,1), ∴∠DOC=90°,OD=1,OC= , ∴∠DCO=30°, ∴∠OBD=30°, 故选:B.
四、解答题(二):本大题共 5 小题,满分 40 分.解答应写出必要的文宇说明、 证明过程或演算步骤. 24.(7 分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年 级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为 一个样本,按 A,B,C,D 四个等级进行统计,制成了如下不完整的统计图.(说 明:A 级:8 分﹣10 分,B 级:7 分﹣7.9 分,C 级:6 分﹣6.9 分,D 级:1 分﹣ 5.9 分) 根据所给信息,解答以下问题: (1)在扇形统计图中,C 对应的扇形的圆心角是 117 度; (2)补全条形统计图; (3)所抽取学生的足球运球测试成绩的中位数会落在 B 等级; (4)该校九年级有 300 名学生,请估计足球运球测试成绩达到 A 级的学生有多 少人?
t ∴ 体的长=体t的长=t 的长= t = , ∴勒洛三角形的周长为 ×3=πa. 故答案为πa.
18.(3 分)如图,是一个运算程序的示意图,若开始输入 x 的值为 625,则第 2018 次输出的结果为 1 .
【解答】解:当 x=625 时, x=125, 当 x=125 时, x=25, 当 x=25 时, x=5, 当 x=5 时, x=1, 当 x=1 时,x+4=5, 当 x=5 时, x=1, 当 x=1 时,x+4=5,
17.(3 分)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另 两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三 角形的边长为 a,则勒洛三角形的周长为 πa .
第 7页(共 18页)
【解答】解:如图.∵△ABC 是等边三角形, ∴∠A=∠B=∠C=60°,AB=BC=CA=a,
④根据图示知,当 m=1 时,有最大值; 当 m≠1 时,有 am2+bm+c≤a+b+c, 所以 a+b≥m(am+b)(m 为实数). 故正确.
⑤如图,当﹣1<x<3 时,y 不只是大于 0. 故错误. 故选:A.
二、填空题:本大题共 8 小题,每小题 3 分,共 24 分. 11.(3 分)计算:2sin30°+(﹣1)2018﹣( )﹣1= 0 . 【解答】解:2sin30°+(﹣1)2018﹣( )﹣1 =2× +1﹣2 =1+1﹣2 =0, 故答案为:0.
22.(6 分)随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅 速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B 两地 被大山阻隔,由 A 地到 B 地需要绕行 C 地,若打通穿山隧道,建成 A,B 两地的 直达高铁,可以缩短从 A 地到 B 地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640 公里,求隧道打通后与打通前相比,从 A 地到 B 地的路程将约缩短多少公里? (参考数据: ≈1.7, ≈1.4)

=.
20.(4 分)如图,在△ABC 中,∠ABC=90°. (1)作∠ACB 的平分线交 AB 边于点 O,再以点 O 为圆心,OB 的长为半径作⊙ O;(要求:不写做法,保留作图痕迹) (2)判断(1)中 AC 与⊙O 的位置关系,直接写出结果.
【解答】解:(1)如图所示:
; (2)相切;过 O 点作 OD⊥AC 于 D 点,
A.①②④ B.①②⑤ C.②③④ D.③④⑤ 【解答】解:①∵对称轴在 y 轴右侧, ∴a、b 异号, ∴ab<0,故正确;
②∵对称轴 x=﹣ =1, ∴2a+b=0;故正确;
第 4页(共 18页)
③∵2a+b=0, ∴b=﹣2a, ∵当 x=﹣1 时,y=a﹣b+c<0, ∴a﹣(﹣2a)+c=3a+c<0,故错误;
D (A,D) (B,D) (C,D)
(E,D) (F,D)
E (A,E) (B,E) (C,E) (D,E)
(F,E)
F (A,F) (B,F) (C,F) (D,F) (E,F)
第 11页(共 18页)
由表可知,共有 30 种等可能结果,其中是轴对称图形的有 10 种, t
故新图案是轴对称图形的概率为 t= .
鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出 9 文钱,就会多
11 文钱;如果每人出 6 文钱,又会缺 16 文钱.问买鸡的人数、鸡的价格各是多
少?请解答上述问题.
【解答】解:设合伙买鸡者有 x 人,鸡的价格为 y 文钱,
根据题意得:
ൌ ൌ

解得: ൌൌht.
答:合伙买鸡者有 9 人,鸡的价格为 70 文钱.
t 5.(3 分)若分式 的值为 0,则 x 的值是( ) A.2 或﹣2 B.2 C.﹣2 D.0
t 【解答】解:∵分式 的值为 0, ∴x2﹣4=0, 解得:x=2 或﹣2. 故选:A.
6.(3 分)甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各 投掷 10 次,他们成绩的平均数 与方差 s2 如下表:
第 9页(共 18页)
∵CO 平分∠ACB, ∴OB=OD,即 d=r, ∴⊙O 与直线 AC 相切,
21.(6 分)《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅
最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的
问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、
第 2页(共 18页)
【解答】解:根据题意得△=42﹣4k≥0, 解得 k≤4. 故选:C.
8.(3 分)如图,点 E 是正方形 ABCD 的边 DC 上一点,把△ADE 绕点 A 顺时针 旋转 90°到△ABF 的位置,若四边形 AECF 的面积为 25,DБайду номын сангаас=2,则 AE 的长为( )
A.5 B. C.7 D. 【解答】解:∵把△ADE 顺时针旋转△ABF 的位置, ∴四边形 AECF 的面积等于正方形 ABCD 的面积等于 25, ∴AD=DC=5, ∵DE=2,
2.(3 分)下列计算结果等于 x3 的是( ) A.x6÷x2 B.x4﹣x C.x+x2 D.x2•x 【解答】解:A、x6÷x2=x4,不符合题意; B、x4﹣x 不能再计算,不符合题意; C、x+x2 不能再计算,不符合题意; D、x2•x=x3,符合题意; 故选:D.
3.(3 分)若一个角为 65°,则它的补角的度数为( ) A.25° B.35° C.115° D.125° 【解答】解:180°﹣65°=115°. 故它的补角的度数为 115°. 故选:C.




平均数 (米) 11.1
11.1
10.9
10.9
方差 s2
1.1
1.2
1.3
1.4
若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择( )
A.甲 B.乙 C.丙 D.丁
【解答】解:从平均数看,成绩好的同学有甲、乙,
从方差看甲、乙两人中,甲方差小,即甲发挥稳定,
故选:A.
7.(3 分)关于 x 的一元二次方程 x2+4x+k=0 有两个实数根,则 k 的取值范围是 () A.k≤﹣4 B.k<﹣4 C.k≤4D.k<4
【解答】解:(1)∵正方形网格被等分成 9 等份,其中阴影部分面积占其中的 3 份, ∴米粒落在阴影部分的概率是 = ;
(2)列表如下:
A
B
C
D
E
F
A
(B,A) (C,A) (D,A) (E,A) (F,A)
B (A,B)
(C,B) (D,B) (E,B) (F,B)
C (A,C) (B,C)
(D,C) (E,C) (F,C)
14.(3 分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几 何体的侧面积为 108 .
【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为 3, 高为 6, 所以其侧面积为 3×6×6=108, 故答案为:108.
第 6页(共 18页)
15.(3 分)已知 a,b,c 是△ABC 的三边长,a,b 满足|a﹣7|+(b﹣1)2=0,c 为奇数,则 c= 7 . 【解答】解:∵a,b 满足|a﹣7|+(b﹣1)2=0, ∴a﹣7=0,b﹣1=0, 解得 a=7,b=1, ∵7﹣1=6,7+1=8, ∴6<c<8, 又∵c 为奇数, ∴c=7, 故答案是:7.
16.(3 分)如图,一次函数 y=﹣x﹣2 与 y=2x+m 的图象相交于点 P(n,﹣4),
则关于 x 的不等式组
< 的解集为 ﹣2<x<2 .
<t
【解答】解:∵一次函数 y=﹣x﹣2 的图象过点 P(n,﹣4), ∴﹣4=﹣n﹣2,解得 n=2, ∴P(2,﹣4), 又∵y=﹣x﹣2 与 x 轴的交点是(﹣2,0), ∴关于 x 的不等式 2x+m<﹣x﹣2<0 的解集为﹣2<x<2. 故答案为﹣2<x<2.
4.(3 分)已知 = (a≠0,b≠0),下列变形错误的是( ) A. = B.2a=3b C. = D.3a=2b
相关文档
最新文档