52解方程(2)(3)
解方程的常用方法与技巧
解方程的常用方法与技巧解方程是数学中常见的问题,也是数学学习的基础。
在解方程的过程中,我们可以运用一些常用的方法和技巧来简化问题,提高解题效率。
本文将介绍解方程的常用方法与技巧,帮助读者更好地掌握解方程的技巧。
一、一元一次方程的解法一元一次方程是最简单的方程形式,通常可以通过逆向运算来求解。
例如,对于方程2x + 3 = 7,我们可以通过逆向运算将3移到等号右边,得到2x = 7 - 3,进而得到x = 4/2 = 2的解。
当方程中存在括号时,我们可以运用分配律来简化方程。
例如,对于方程2(x+ 3) = 10,我们可以先将括号内的表达式展开,得到2x + 6 = 10,再通过逆向运算求解。
二、一元二次方程的解法一元二次方程是一种常见的二次方程形式,通常可以通过配方法或公式法来求解。
配方法是指通过变形将方程转化为完全平方的形式,再进行求解。
例如,对于方程x^2 + 6x + 9 = 25,我们可以将其变形为(x + 3)^2 = 25,再通过开方运算得到x + 3 = ±5,进而得到x = 2或x = -8的解。
公式法是指利用一元二次方程的求根公式来求解方程。
一元二次方程的求根公式为x = (-b ± √(b^2 - 4ac))/(2a),其中a、b、c分别为方程ax^2 + bx + c = 0的系数。
通过代入系数的值,我们可以得到方程的解。
三、分式方程的解法分式方程是含有分式的方程,通常可以通过通分、约分等方法来求解。
例如,对于方程(3x + 2)/(x - 1) = 2,我们可以通过通分将方程转化为3x + 2 = 2(x - 1),再通过逆向运算求解。
在解分式方程时,我们需要注意分母不能为零的情况。
如果方程中存在使分母为零的解,则该解需被排除。
四、绝对值方程的解法绝对值方程是含有绝对值符号的方程,通常可以通过分情况讨论来求解。
例如,对于方程|2x - 3| = 5,我们可以将其分为两种情况讨论:当2x - 3 ≥ 0时,方程变为2x - 3 = 5,解得x = 4;当2x - 3 < 0时,方程变为-(2x - 3) = 5,解得x = -1。
解方程的方法
解方程的方法解方程是数学中常见的问题,在应用数学、物理学等领域中都有广泛的应用。
本文将介绍几种常见的解方程的方法,帮助读者更好地理解和掌握解方程的技巧。
方法一:因式分解法因式分解法适用于一元二次方程(形如ax^2+bx+c=0)的解法。
首先将方程进行因式分解,然后令各个因式等于零,得到方程的解。
例如,对于方程x^2+5x+6=0,我们可以将其因式分解为(x+2)(x+3)=0。
因此,方程的解为x=-2和x=-3。
方法二:配方法配方法适用于一元二次方程的解法。
通过配方,可以将一元二次方程转化为完全平方的形式,从而求得其解。
例如,对于方程x^2+4x+4=0,我们可以通过配方方式将其转化为(x+2)^2=0。
因此,方程的解为x=-2。
方法三:求根公式求根公式适用于一元二次方程的解法。
根据一元二次方程的一般形式ax^2+bx+c=0,可以使用求根公式得到方程的解。
一元二次方程的求根公式为x = (-b±√(b^2-4ac))/(2a)。
例如,对于方程x^2+2x+1=0,根据求根公式,我们可以计算出方程的解为x=-1。
方法四:代数法代数法适用于一些特殊的方程解法。
通过引入新的变量或代换,可以将复杂的方程转化为简单的形式,从而求得方程的解。
例如,对于方程x^2-4x+3=0,我们可以通过引入新的变量y=x-2,将方程转化为y^2-1=0,然后得到y=±1,再代回原方程,解得x=1和x=3。
方法五:试误法试误法适用于一些特殊的方程解法。
通过猜测方程的解,并代入方程进行验证,可以逐步逼近方程的解。
例如,对于方程x^2-5x+6=0,我们可以猜测方程的解为x=2,将其代入方程得到2^2-5*2+6=0,验证结果正确。
因此,方程的解为x=2。
综上所述,解方程的方法有很多种,常见的包括因式分解法、配方法、求根公式、代数法和试误法。
在解方程时,我们可以根据具体的方程形式选择合适的解法,通过逐步计算和验证,得到方程的解。
部编版五年级上册数学 第5单元 简易方程:3 解方程(2课时)
3解方程第1课时解方程(一)课时目标导航解方程(一)。
(教材第67~68页例1、例2、例3)1.根据等式的性质,使学生初步掌握解方程及检验方程的方法,理解解方程和方程的解的概念。
2.培养学生的分析能力及应用所学知识解决实际问题的能力。
3.帮助学生养成自觉检验的良好习惯。
重点:理解并掌握解方程的方法。
难点:理解形如a±x=b的方程原理,掌握正确的解方程格式及检验方法。
一、情景引入同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球。
(学生思考后会说,可以是任意数。
)教师继续通过多媒体补充条件,并出示教材第67页例1情境图。
问:从图上你知道了哪些信息?引导学生看图回答:盒子里的球和外面的3个球,一共是9个。
并用等式表示:x+3=9(教师板书)二、学习新课1.方程的解和解方程及形如x±a=b的方程。
(1)出示教材第67页第一个天平图,让学生观察并说一说。
长方体盒子代表未知的x个球,每个小正方体代表一个球,则天平左边是(x+3)个球,右边是9个球,天平平衡,列式:x+3=9。
观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?(右边也要拿掉3个球。
)追问:怎样用算式表示?学生交流,汇报:x+3-3=9-3x=6质疑:为什么两边都要减3呢?你是根据什么来求的?(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。
)(2)方程的解和解方程。
教师总结:刚才我们计算出的x=6,这就是使方程左右两边相等的未知数的值,叫做方程的解。
也就是说,x=6是方程x+3=9的解。
求方程解的过程叫做解方程。
提问:方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x的值是方程的解;求解的过程就是解方程。
引导学生小结:“方程的解”中“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中“解”的意思,是指求4的解的过程,是一个计算过程。
小升初数学《解方程》完整知识点讲解与专项练习题及答案
小升初《解方程》专题知识点整理+列方程解应用题专项训练《解方程》知识点列方程解应用题题型汇总练习1、0.3乘以14的积比这个数的3倍少0.6,求这个数是多少?2、甲数比乙数多34,甲数是乙数的3倍,甲乙各是多少?3、今年10月份,李明家用电131度,王强家用电120度,王强家少缴电费5.5元。
平均每度电多少元?4、长方形养鸡场的栅栏长400米,长是宽的3倍,求养鸡场的面积是多少?5、鸡兔同笼,头共有20个,腿共有56条,鸡兔各有多少只?6、鸡兔数量相同,鸡腿比兔腿少30条,鸡兔各有多少只?7、爷爷比小明大52岁,今天爷爷的年龄是小明的5倍,爷爷和小明今年各是多少岁?8、甲乙两地相距360km,张三由甲地开往乙地,李四以45km/时的速度由乙地开往甲地,3个小时后,两人相距15km,张三的速度是多少千米?9、沈阳与北京相距约700km,土豆与地瓜分别从沈阳和北京出发,相向而行,土豆每小时行驶80km,地瓜每小时行驶70km。
土豆出发5个小时后,地瓜才出发,在经过多少小时才能相遇?10、长方形养鸡场的一个长面靠墙,栅栏长400米,长是宽的2倍,养鸡场的面积是多少?11、甲乙两人骑自行车,同时从相距65km的两地相向而行,甲车每小时行驶17.5km,1小时候,两人相距32.5km,乙车每小时行驶多少千米?12、一个三层书架共有书159本,第一层比第二层的4倍少2本,第三层比第二层的3倍多1本。
第三层书架有多少本书?13、土豆和地瓜同时分别从两地相向而行,8小时相遇。
如果他们每小时多行2.5km,那么就6小时相遇。
问两地相距多少千米?14、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本?15、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时。
求甲乙两地的距离?16、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?17、三个连续的一位小数的和是1.5,这三个小数分别是多少?18、甲乙两个书架,若从甲书架取出8本放入乙书架,两个书架的本数就一样多;如果从乙书架取出13本放入甲书架,甲书架的书就是乙书架的2倍。
数学解方程题100道3篇
数学解方程题100道解方程题100道(一)1. 解方程$2x+5=13$。
解:移项得$2x=8$,再除以2,得到$x=4$。
2. 解方程$3(x-2)=4x-5$。
解:先将方程式两边扩展:$3x-6=4x-5$移项得$-x=1$所以$x=-1$3. 解方程$4(x+3)-2x=7(2x-1)-4$。
解:先将方程式两边扩展:$4x+12-2x=14x-7-4$移项得$2x=15$所以$x=\frac{15}{2}$4. 解方程$\frac{5}{2}x+\frac{1}{4}=x-\frac{3}{8}$。
解:将两边同乘8得到:20x+2=32x-3移项得$12x=5$所以$x=\frac{5}{12}$5. 解方程$2(x-3)+5(x+1)=7+3x$。
解:先将方程式两边扩展:2x-6+5x+5=7+3x移项得$4x=4$所以$x=1$6. 解方程$\frac{x}{3}+2=\frac{5x}{6}-1$。
解:将两边同乘6得到:2x+12=5x-6移项得$3x=-18$所以$x=-6$7. 解方程$7x-8=5x+14$。
解:移项得$2x=22$,再除以2,得到$x=11$。
8. 解方程$\frac{1}{3}(3x+2)=\frac{2}{5}(5x-1)$。
解:将两边同乘15得到:5(3x+2)=6(5x-1)移项得$x=\frac{8}{3}$9. 解方程$\frac{1}{2}x-\frac{3}{4}=\frac{1}{4}x+\frac{3}{8}$。
解:将$\frac{1}{4}x$移到左边,将$\frac{3}{4}$移到右边得到:\frac{1}{4}x=\frac{3}{8}+\frac{3}{4}化简得到\frac{1}{4}x=\frac{9}{8}所以$x=\frac{9}{2}$10. 解方程$4x+\frac{5}{8}=3x+\frac{7}{4}$。
解:将式子两边得到:x+\frac{5}{8}=\frac{7}{4}移项得$x=\frac{21}{8}$11. 解方程$10x-4=2x+26$。
六年级数学解方程计算题100道
六年级数学解方程计算题100道1. 解方程:3x 7 = 112. 解方程:5 2x = 33. 解方程:4x + 8 = 244. 解方程:9 x = 55. 解方程:6x 15 = 36. 解方程:7x + 14 = 497. 解方程:8 3x = 18. 解方程:5x + 10 = 359. 解方程:4x 12 = 810. 解方程:3x + 6 = 2111. 解方程:2(x 3) = 812. 解方程:3(2x + 1) = 1813. 解方程:4(3x 2) = 2014. 解方程:5(4x + 3) = 3515. 解方程:6(5x 4) = 2416. 解方程:7(6x + 5) = 4917. 解方程:8(7x 6) = 5618. 解方程:9(8x + 7) = 7219. 解方程:10(9x 8) = 8020. 解方程:11(10x + 9) = 9921. 解方程:x/2 + 3 = 722. 解方程:x/3 2 = 124. 解方程:x/5 6 = 225. 解方程:x/6 + 7 = 1326. 解方程:x/7 8 = 327. 解方程:x/8 + 9 = 1728. 解方程:x/9 10 = 429. 解方程:x/10 + 11 = 2130. 解方程:x/11 12 = 531. 解方程:2x/3 + 4 = 1032. 解方程:3x/4 5 = 233. 解方程:4x/5 + 6 = 1234. 解方程:5x/6 7 = 335. 解方程:6x/7 + 8 = 1636. 解方程:7x/8 9 = 437. 解方程:8x/9 + 10 = 2038. 解方程:9x/10 11 = 539. 解方程:10x/11 + 12 = 2440. 解方程:11x/12 13 = 641. 解方程:2(x + 3) = 1642. 解方程:3(x 4) = 943. 解方程:4(x + 5) = 2844. 解方程:5(x 6) = 1545. 解方程:6(x + 7) = 4846. 解方程:7(x 8) = 2148. 解方程:9(x 10) = 2749. 解方程:10(x + 11) = 11050. 解方程:11(x 12) = 3351. 解方程:x^2 5x + 6 = 052. 解方程:x^2 + 6x 7 = 053. 解方程:x^2 7x + 12 = 054. 解方程:x^2 + 8x 9 = 055. 解方程:x^2 9x + 14 = 056. 解方程:x^2 + 10x 11 = 057. 解方程:x^2 11x + 18 = 058. 解方程:x^2 + 12x 13 = 059. 解方程:x^2 13x + 20 = 060. 解方程:x^2 + 14x 15 = 061. 解方程:2x^2 5x 3 = 062. 解方程:3x^2 + 6x 4 = 063. 解方程:4x^2 7x 5 =61. 解方程:2x^2 5x 3 = 062. 解方程:3x^2 + 6x 4 = 063. 解方程:4x^2 7x 5 = 064. 解方程:5x^2 + 8x 6 = 065. 解方程:6x^2 9x 7 = 066. 解方程:7x^2 + 10x 8 = 067. 解方程:8x^2 11x 9 = 068. 解方程:9x^2 + 12x 10 = 069. 解方程:10x^2 13x 11 = 070. 解方程:11x^2 + 14x 12 = 071. 解方程:x^3 3x^2 + 2x = 072. 解方程:x^3 + 4x^2 5x = 073. 解方程:x^3 6x^2 + 9x = 074. 解方程:x^3 + 7x^2 12x = 075. 解方程:x^3 9x^2 + 16x = 076. 解方程:x^3 + 10x^2 19x = 077. 解方程:x^3 12x^2 + 23x = 078. 解方程:x^3 + 13x^2 28x = 079. 解方程:x^3 15x^2 + 33x = 080. 解方程:x^3 + 16x^2 40x = 081. 解方程:2(x 4)^2 = 3682. 解方程:3(x 5)^2 = 2783. 解方程:4(x 6)^2 = 4884. 解方程:5(x 7)^2 = 4585. 解方程:6(x 8)^2 = 72. 解方程:7(x 9)^2 = 6387. 解方程:8(x 10)^2 = 8088. 解方程:9(x 11)^2 = 8189. 解方程:10(x 12)^2 = 10090. 解方程:11(x 13)^2 = 12191. 解方程:2(x + 3)^2 = 5292. 解方程:3(x + 4)^2 = 7593. 解方程:4(x + 5)^2 = 9694. 解方程:5(x + 6)^2 = 12095. 解方程:6(x + 7)^2 = 14496. 解方程:7(x + 8)^2 = 16997. 解方程:8(x + 9)^2 = 20898. 解方程:9(x + 10)^2 = 24399. 解方程:10(x + 11)^2 = 280100. 解方程:11(x + 12)^2 = 363这些方程题旨在帮助六年级学生巩固和提高他们在数学中的解方程能力。
120道解方程练习题
120道解方程练习题解方程是数学学科中的基础内容之一,通过解方程可以找到变量的值,从而帮助我们解决各种实际问题。
本文将为您提供120道解方程的练习题,帮助您熟悉解方程的方法和技巧。
1. 解方程:2x + 5 = 152. 解方程:3y - 7 = 4y + 53. 解方程:2(x + 3) = 4x - 104. 解方程:5(x - 2) = 3(x + 4)5. 解方程:8 - 3z = 2z + 76. 解方程:4a + 2b = 12,a = 27. 解方程:5x - 3 = x + 98. 解方程:2(x + 5) - 3 = 7 - (x + 1)9. 解方程:3(2x - 4) = 5(x + 3)10. 解方程:4(3x + 2) - 7(2x - 1) = 2(x - 5) + 311. 解方程:2x^2 - 3x + 1 = 012. 解方程:3x^2 + 5x = 213. 解方程:4x^2 + 9 = 13x14. 解方程:x^2 - 7x + 10 = 015. 解方程:2x^2 + 5x - 3 = 016. 解方程:x^2 - 6x + 8 = 017. 解方程:x^2 - 7x + 12 = 018. 解方程:3x^2 + 2x - 5 = 019. 解方程:2x^2 + 3x = 520. 解方程:x^2 - 9 = 021. 解方程:2sin(x) + 1 = 022. 解方程:3cos(x) + 2 = cos(2x)23. 解方程:tan(x) + cot(x) = 224. 解方程:sin(x) + cos(x) = 125. 解方程:2sin^2(x) - 3sin(x) + 1 = 026. 解方程:cos^2(x) + 3cos(x) + 2 = 027. 解方程:2tan^2(x) + 5tan(x) + 2 = 028. 解方程:sin^2(x) - 2sin(x) + 1 = 029. 解方程:2sin(x)cos(x) + sin^2(x) - cos^2(x) = 130. 解方程:2sin(x) - cos^2(x) = 031. 解方程:log(x) + 2log(x + 1) = 332. 解方程:log(2x) + log(3x - 1) = log(6)33. 解方程:log(x) - log(x - 5) = 134. 解方程:2log(3x) - log(2x) = log(15)35. 解方程:log(x + 2) + log(x + 3) = log(72)36. 解方程:log(2x + 1) + log(3x - 2) = 237. 解方程:log(x) + log(x + 1) = log(20)38. 解方程:log(x) - log(2x - 3) = log(3)39. 解方程:2log(x) + log(2x - 1) = log(50)40. 解方程:log(x - 2) - log(x + 2) = 141. 解方程:e^x + 2e^(-x) = 042. 解方程:3e^x - e^(2x) = 443. 解方程:2e^x - 5e^(-x) - 3 = 044. 解方程:e^(2x) - 2e^x + 1 = 045. 解方程:2e^x - e^(-x) = 346. 解方程:e^(2x) - 5e^x + 6 = 047. 解方程:3e^(2x) + 5e^x - 2 = 048. 解方程:2e^x + 3e^(-x) = 049. 解方程:e^x - 4e^(-x) = 150. 解方程:5e^(2x) + 2e^x - 7 = 051. 解方程:x^3 - 6x^2 + 11x - 6 = 052. 解方程:2x^3 + 3x^2 - 2x + 1 = 053. 解方程:3x^3 + 4x^2 + 5x + 6 = 054. 解方程:x^3 - 5x^2 + 7x - 3 = 055. 解方程:2x^3 - 9x^2 + 12x - 4 = 056. 解方程:x^3 + 2x^2 + x + 2 = 057. 解方程:3x^3 + 5x^2 - 2x + 1 = 058. 解方程:x^3 - 4x^2 + 6x - 3 = 059. 解方程:2x^3 - x^2 + 4x - 2 = 060. 解方程:3x^3 + 2x^2 - x + 1 = 061. 解方程:x^4 - 5x^2 + 4 = 062. 解方程:2x^4 + 3x^3 - 4x^2 + 1 = 063. 解方程:3x^4 + 5x^3 + 7x^2 + 9x + 2 = 064. 解方程:x^4 - 3x^3 + 2x^2 - x + 1 = 065. 解方程:2x^4 - 4x^3 + 6x^2 - 8x + 10 = 066. 解方程:x^4 + x^3 + x^2 + x + 1 = 067. 解方程:3x^4 + 2x^3 - x^2 + 4x - 2 = 068. 解方程:x^4 - 2x^3 + 3x^2 - 4x + 5 = 069. 解方程:2x^4 - x^3 + 4x^2 - 3x + 2 = 070. 解方程:3x^4 + 4x^3 + 5x^2 + 6x + 7 = 071. 解方程:|x + 2| = 572. 解方程:|3x - 1| = 773. 解方程:|2x + 3| = |x - 4|74. 解方程:|5x + 2| = |3x + 9|75. 解方程:|x - 1| + |x + 2| = 776. 解方程:|2x + 1| - |x - 6| = 477. 解方程:|x + 1| + 3 = 2|x - 3|78. 解方程:|x - 2| + 2 = |x + 3|79. 解方程:|3 - 2x| = |5 - x|80. 解方程:|2x - 3| - |x + 2| = 181. 解方程:√x + 2 = 582. 解方程:√3x - 1 = 483. 解方程:2√x + 3 = √x + 484. 解方程:√2x - √3 = 185. 解方程:√x + √(x + 3) = 586. 解方程:2√x - √(x - 1) = 387. 解方程:√(2x) + √(3x - 1) = √688. 解方程:3√x + 2 = √(x + 2)89. 解方程:√(x + 1) - √x = 290. 解方程:√(2x) + √(3 - x) = √791. 解方程:a + b = 10,a - b = 492. 解方程:2a + 3b = 14,3a - 2b = 593. 解方程:4a - b = 5,2a + 3b = 1794. 解方程:2a + 5b = 25,3a - 4b = 495. 解方程:3a - 2b = 7,4a + 5b = 3896. 解方程:5a - 3b = 11,2a + 7b = 4197. 解方程:3a + 2b = 16,4a - 3b = 1098. 解方程:a + 2b = 13,3a - 4b = 899. 解方程:4a - 3b = 2,2a + 5b = 13100. 解方程:2a + 7b = 29,5a - 2b = 16 101. 解方程:(x + 1)(x - 2) = 0102. 解方程:(2x + 3)(3x - 4) = 0 103. 解方程:(3x - 2)(4x + 5) = 0 104. 解方程:(x - 3)(2x + 5) = 0105. 解方程:(3x + 4)(5x - 2) = 0 106. 解方程:(x - 5)(x + 2) = 0107. 解方程:(2x + 1)(3x - 4) = 0 108. 解方程:(x + 2)(4x - 3) = 0109. 解方程:(3x - 4)(5x + 2) = 0 110. 解方程:(x - 2)(2x + 3) = 0111. 解方程:5x(2 - 3x) = 0112. 解方程:3x^2(x + 4) = 0113. 解方程:(4 - x)^2 = 0114. 解方程:2x(3 - 2x)(x + 1) = 0 115. 解方程:x^2(x - 3)^2 = 0116. 解方程:(2 - x)(x - 4)^2 = 0117. 解方程:4x^3(x + 2) = 0118. 解方程:(5 - x)(x - 2)(2x + 3) = 0119. 解方程:x^2(2x + 3)(3 - x) = 0120. 解方程:(x - 2)(x + 3)(4 - 2x) = 0这120道解方程练习题涵盖了线性方程、二次方程、三次方程、四次方程、绝对值方程、指数方程等不同类型的方程。
解二元一次方程组50题配完整解析
解方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6③,由②得2x+y=3④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48③,②×2,得:10m﹣12n=66④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。
小学五年级数学解方程口诀及知识点汇总(附习题)
小学五年级数学解方程口诀及知识点汇总(附习题)
解方程口诀、知识点
解方程一直是小学数学的重难点,类型多且容易混淆,如何快速有效的让学生掌解方程,通过总结分析,我汇总了各类方程的解决的技巧,编纂了一首口诀帮助记忆:
一般方程很简单,
具体数字帮你办,
加减乘除要相反。
特殊方程别犯难,
减去除以未知数,
加上乘上变一般。
若遇稍微复杂点,
舍远取近便了然。
具体分析如下:
我们可以把课本中出现的方程分为三大类:一般方程,特殊方程,稍复杂的方程。
形如:x+a=b , x-a=b , ax=b , x÷a=b 这几种方程,我们可以称为一般方程。
形如:a- x =b,a÷x =b这两种方程,我们可以称为特殊方程。
形如:ax+b=c , a(x-b)=c这两种方程,我们可以称为稍复杂的方程。
我们知道,对于一般方程,如果方程是加上a,在利用等式的性质求解时,会在方程的两边减去a,同样,如果方程是减去a,在利用等式的性质求解时,会在方程的两边加上a,乘和除以也是一样的,换句话说,加减乘除是相反的,并且加减乘除的都是一个具体的数字。
总结一句话就是:一般方程很简单,具体数字帮你办,加减乘除要相反。
小学数学《解方程(2)》教研活动记录
二、建议
学生由于有了关于加减的等式的性质的了解,再通过例题中两组方程的观察,适当提醒学生联系前面学习的等式的性质,很自然的就能得出有关乘除的等式的性质。当然乘除的时候要把0除外,这个要让学生注意到。
三、郭老师针对评课老师们提出的意
见总结反思并完善自己的教学设计。
本课时感觉没什么明显的精彩地方,学生由于有了关于加减的等式的性质的了解,再通过例题中两组方程的观察,适当提醒学生联系前面学习的等式的性质,很自然的就能得出有关乘除的等式的性质。当然乘除的时候要把0除外,这个要让学生注意到,另外在计算中学生存在较多问题,特别是很多学生对于小数的乘除法计算还是有错误,需要加强巩固训练。
师:你是如何解这个方程的呢?和同桌讨论讨论。
师:看看你们的结果是否算对了,自己检验一下。
小结:这道方程其实要应用等式的性质1来解,方程的两边同时加上相同的式子,左右两边仍然相等。
(三)寓教于乐,兴趣体验
学生先独立完成教材P68的做一做,做完后和同桌相互检查,相互指正,最后老师给出正确答案。
(四)课堂总结
小学数学《解方程(2)》教研活动记录
教研组别
数学组
时间
2022.11.10
教研主题
解方程(2)集体备课
中心发言人
郭老师
主备人
郭老师
参加人员
五六年级全体数学老师
活
动
过
程
一、主备教师阐述备课思路。
(一)x=22 x-20=30 x+10=52 x-120=200
2.揭示课题
师:这节课我们来继续利用等式的性质来解简易方程。
(二)自主探索,兴趣维持
师(出示例2):你们会解这道方程吗?试着自己做一做。
专题21.4一元二次方程的解法(精选精练100题)(专项练习)1「含答案」
专题21.4 一元二次方程的解法(精选精练100题)(专项练习)【题型目录】1、直接开平方法解一元二次方程(1-20题);2、配方法解一元二次方程(21-40题);3、公式法解一元二次方程(41-60题);4、因式分解法解一元二次方程(61-80题);5、换元法解一元二次方程(81-90题);6、解可化以一元二次方程的分式方程(91-100题).四、因式分解法解一元二次方程1.用因式分解法解方程:(1)2411x x =;(2)()2224x x -=-2.用因式分解法解下列方程:(1)()()()262x x x --=-;(2)()()22167920x x --+=.3.用因式分解法解下列方程:(1)()()120x x +-=;(2)()()3521127x x x --=-+.4.用因式分解法解下列方程:(1)269x x -=-;(2)224(3)25(2)0x x ---=.5.用因式分解法解下列方程:(1)250x x +=;(2)(5)(6)5x x x --=-.6.用因式分解法的方法解下列方程:(1)22150x x --= ;(2)2326x x (+)=+7.因式分解法解方程:(1)()()23525x x -=-;(2)()()22200abx a b x ab ab -++=¹;8.用因式分解法解下列方程:(1)()2236x x +=+;(2)231212x x +=;(3)()223240x x +-=;(4)()()()521123x x x -=-+.9.用因式分解法解下列一元二次方程:(1)21502x x -=;(2)()()23727x x -=-;(3)()22210x x +-=.10.用因式分解法解下列方程:(1))23x x =;(2)()()221210x x x ---=.11.用因式分解法解下列方程.(1)2560x x --=(2)3(2)2(2)x x x -=-12.用因式分解法解下列方程:(1)()2218x x -=-;(2)()()2222x x x -=-;(3)23x -=-.13.用因式分解法解下列方程:(1)2350y y -=;(2)2412x x =;(3)296x x +=-;(4)229(1)x x =-.14.用因式分解法解下列方程.(1)()()222320x x ---=;(2)()2211t t -+=.15.用因式分解法解下列方程:(1)()2212x x -=;(2)()()222310y y +--=.16.用因式分解法解下列方程:(1)(2)(4)0x x +-=; (2)4(21)3(21)x x x +=+.17.用因式分解法解下列方程:(1)(2)(23)6x x --=;(2)()44x x -=-.18.用因式分解法解方程:(1)3x (2x +1)=2(2x +1);(2)22(3)(52)x x -=-.19.用因式分解法解方程.(1)22437365x x x x +-=--(2)()233x x x -=-20.用因式分解法解一元二次方程(1)()()41570x x +-=;(2)2(23)4(23)x x +=+.五、换元法解一元二次方程21.()()233320y y -+-+=.22.解方程:2231712x x x x -+=-.23.若实数x ,y 满足2222()(2)3x y x y ++-=,求22x y +的值.24.解方程:226212x x x x--=-.25.解方程()225160x --=.26.如果2222()(2)3x y x y ++-=,请你求出22xy +的值.27.阅读下面的例题,回答问题:例:解方程:220x x --=令y x =,原方程化成220y y --=解得122,1y y ==-(不合题意,舍去) 2,2x x \=\=±\ 原方程的解是122,2x x ==-.请模仿上面的方法解方程:()21160x x ----=28.阅读下列材料:为解方程4260x x --=可将方程变形为()22260x x --=然后设2x y =,则()222x y =.例:4260x x --=,解:令2x y =,原方程化为260y y --=,解得12y =-,23y =,当12y =-时,22x =-(无意义,舍去)当23y =时,23x =,解得x =\原方程的解为1x =2x =.上面这种方法称为“换元法”,把其中某些部分看成一个整体,并用新字母代替(即:换元),则能使复杂的问题转化成简单的问题.利用以上学习到的方法解下列方程:(1)()()22225260x x x x ----=;(2)()23511x x ++-=.29.阅读材料:在学习解一元二次方程以后,对于某些不是一元二次方程的方程,我们可通过变形将其转化为一元二次方程来解.例如: 解方程:2–320x x +=.解:设x t =,则原方程可化为:2–320t t +=.解得:1212t t ==,.当1t =时,1x =,∴1x =±;当2t =时,2x =,∴2x =±.∴原方程的解是:12341122x x x x ==-==-,,,.上述解方程的方法叫做“换元法”.请用“换元法”解决下列问题:(1)解方程:220x x -=;(2)解方程:42–1090x x +=.(3)解方程:221211x x x x +-=+.30.换元法是数学中的一种解题方法.若我们把其中某些部分看成一个整体,用一个新字母代替(即换元),则能使复杂的问题简单化.如:解二元一次方程组2()3()22()3x y x y x y x y ++-=-ìí+--=î,按常规思路解方程组计算量较大.可设x y a +=,x y b -=,那么方程组可化为23223a b a b +=-ìí-=î,从而将方程组简单化,解出a 和b 的值后,再利用x y a +=,x y b -=解出x 和y 的值即可.用上面的思想方法解方程:(1)222432x x x x ++=+;(2)2250x x ++-=六、解可化以一元二次方程的分式方程31.解分式方程:2216111x x x +-=--.32.解分式方程:221226x x x x+++=.33.解分式方程:11133x x +=+-34.解分式方程:()2218111x x x --=+-35.解分式方程:241142x x +=--.36.解分式方程:224124x x x -=-+-37.解分式方程21211x x x -=++38.解分式方程:252112x x x+-=3.39.解分式方程:2164122x x x x +=--40.解分式方程:2212111x x x -+=--1.(1)10x =,2114x =(2)12x =,24x =【分析】本题考查了因式分解法解一元二次方程,掌握因式分解的方法是解题的关键;(1)先移项然后提公因式,根据因式分解法解一元二次方程;(2)先移项然后提公因式,根据因式分解法解一元二次方程,即可求解.【详解】(1)解:移项,得:24110x x -=,因式分解,得:(411)0x x -=于是,得:0x =或4110x -=,∴10x =,2114x =.(2)移项,得()22240x x --+=,即()()22220x x ---=,因式分解,得:(2)(22)0x x ---=,整理,得:(2)(4)0x x --=,于是,得20x -=或40x -=,∴12x =,24x =.2.(1)12x =,27x =(2)1227x =,234x =【详解】(1)方程左右两边都有因式()2x -,先移项,然后利用提公因式法将等式的左边因式分解;(2)直接利用平方差公式将方程的左边因式分解.(1)移项,得()()()2620x x x ----=,∴()()2610x x ---=,即()()270x x --=,∴20x -=或70x -=,∴12x =,27x =.(2)因式分解,得()()42836428360x x x x -++---=.化简,得()()072234x x --=,∴7220x -=或340x -=,∴1227x =,234x =.3.(1)11x =-,22x =(2)112x =-,223x =【详解】解:(1)()()120x x +-=Q ,10x \+=或20x -=,11x \=-,22x =.(2)原方程可化为2620x x --=,()()21320x x \+-=,210x \+=或320x -=,112x \=-,223x =.4.(1)123x x ==(2)12164,73x x ==【分析】(1)先移项,然后利用完全平方公式因式分解求解;(2)先移项,然后直接开平方即可解答此方程.【详解】(1)解:269x x -=-2690x x -+=()230x -=解得:123x x ==;(2)解:224(3)25(2)0x x ---=[][]220()5232()x x --=-,[][]2(3)5(2)2(3)5(2)0x x x x -+----=,()5()0232x x --+=或()5()0232x x ---=,解得12164,73x x ==.【点睛】本题考查解一元二次方程,解题的关键是明确方程的特点,选择合适的方法解方程.5.(1)10x =,25x =-(2)15=x ,27x =【分析】(1)直接用因式分解法求解即可;(2)先移项,再用因式分解法求解即可.【详解】(1)∵250x x +=∴()50x x +=∴0x =或50x +=∴10x =,25x =-(2)∵(5)(6)5x x x --=-∴()(5)(6)50x x x ----=∴(5)(61)0x x ---=∴50x -=或610x --=∴15=x ,27x =【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解答本题的关键.6.(1)15x =,23x -=;(2)13x -=,21x -=【分析】(1)直接利用因式分解法求解即可;(2)先移项,再利用因式分解法求解即可.【详解】(1)解:22150x x --= ,(x ﹣5)(x +3)=0,则x ﹣5=0或x +3=0,∴15x =,23x -=;(2)解:2326x x ++()=,2323x x ++()=(),移项,得23230x x ++()﹣()=,则(x +3)(x +1)=0,∴x +3=0或x +1=0,∴1231x x --=,=.【点睛】本题考查了因式分解法求解一元二次方程,熟练进行因式分解是解题的关键.7.(1)121353x x ==,(2)12b a x x a b==【分析】(1)分解因式,即可得出两个两个一元一次方程,求出方程的解即可;(2)分解因式,即可得出两个两个一元一次方程,求出方程的解即可;【详解】(1)解:()()23525x x -=-方程变形为:()()23525x x -+-=0,∴()()50532x x éù+ë-=û-,∴()()53130x x --=,∴12135,3x x ==;(2)解:()()22200abx a b x ab ab -++=¹()()0ax b bx a --=,∵0ab ¹,∴0,0a b ¹¹,∴12,ba x x a b==【点睛】本题考查的知识点是解一元二次方程,掌握用因式分解法解一元二次方程是解此题的关键.12(2)122x x ==(3)12x =-,225x =-(4)112x =,28x =-【分析】利用因式分解法解一元二次方程即可.【详解】(1)原方程可变形为()()2230x x ++-=,即()()210x x +-=,所以20x +=或10x -=,即12x =-,21x =.(2)原方程可变形为2440x x -+=,即()220x -=,所以122x x ==.(3)原方程可变形为()()3223220x x x x +-++=,即()()2520x x ++=,所以20x +=或520x +=,即12x =-,225x =-.(4)原方程可变形为()()21530x x -++=,即()()2180x x -+=,210x -=或80+=x ,∴112x =,28x =-.【点睛】本题主要考查了利用因式分解法解一元二次方程,熟练掌握适合因式分解法解一元二次方程——把方程的右边化为0,左边能通过因式分解化为两个一次因式的积的形式的方程是解题的关键.12(2)17x =,2193x =(3)113x =-,21x =-【分析】(1)利用提公因式法进行因式分解,求解即可;(2)通过移项,提公因式法进行因式分解,求解即可;(3)利用平方差公式,进行因式分解,求解即可.【详解】(1)解:21502x x -=因式分解,得1502x x æö-=ç÷èø.于是0x =,1502x -=,解得10x =,210x =;(2)()()23727x x -=-移项,得()()237270x x ---=,因式分解,得()()73720x x --+=éùëû,于是70x -=,3190x -=,解得17x =,2193x =;(3)()22210x x +-=因式分解,得()()21210x x x x éùéù+++-=ëûëû,于是310x +=,10x +=,解得113x =-,21x =-.【点睛】此题考查了因式分解法求解一元二次方程,解题的关键是掌握因式分解的有关方法.10.(1)120x x =,(2)12112x x ==,【分析】利用因式分解法解方程即可.【详解】(1)解:∵)23x x =,∴)230x x -=,∴)310x x éù-=ëû,∴)310x -=或0x =,解得120x x ==,;(2)解:∵()()221210x x x ---=,∴()()21210x x x ---=,即()()1210x x --=,∴10x -=或210x -=,解得12112x x ==,.【点睛】本题主要考查了解一元二次方程,熟知因式分解法解一元二次方程的步骤是解题的关键.11.(1)18x =,27x =-(2)12x =,223x =【分析】(1)首先把方程变形可得(8)(7)0x x -+=,进而得到两个一元一次方程,然后分别求出x 的值即可;(2)首先对方程进行整理,得出3(2)2(2)0x x x ---=,再因式分解可得(2)(32)0x x --=,然后得出两个一元一次方程,求解即可得出答案.【详解】(1)2560x x --=,(8)(7)0x x \-+=,80x \-=或70x +=,18x \=;27x =-;(2)3(2)2(2)x x x -=-,移项,得3(2)2(2)0x x x ---=,(2)(32)0x x \--=,20x \-=或320x -=,12x \=;223x =.【点睛】本题考查用因式分解法解一元二次方程,熟练掌握用因式分解法解一元二次方程的方法和步骤是解题关键.12.(1)1212x x ==-(2)12x =,22x =-(3)12x x ==【分析】(1)先移项,再把括号展开进行因式分解,即可求解;(2)先移项,再提取公因式()2x -进行因式分解,即可求解;(3)先移项,再用完全平方公式进行因式分解,即可求解.【详解】(1)解:()22180x x +-=,241840x x x -+=+,24410x x ++=,()2210x +=,210x +=,21x =-,1212x x ==-.(2)解:()()22220x x x ---=,()()2220x x x ---=,()()220x x ---=,20x -=或20x --=,12x =,22x =-.(3)解:230x -+=,(20x =,0x =,12x x ==【点睛】本题主要考查了用因式分解法求解二元一次方程,解题的关键是熟练掌握因式分解的方法.13.(1)1250,3y y ==(2)120,3x x ==(3)123x x ==-(4)1211,42x x ==-【分析】(1)根据题意,利用因式分解法解一元二次方程;(2)根据题意,利用因式分解法解一元二次方程;(3)根据题意,利用因式分解法解一元二次方程;(4)根据题意,利用因式分解法解一元二次方程即可求解.【详解】(1)解:2350y y -=,()350y y -=,解得:1250,3y y ==;(2)解:2412x x =,24120x x -=,()430x x -=,解得:120,3x x ==;(3)解:296x x+=-2690x x ++=即()230x +=,解得:123x x ==-;(4)解:229(1)x x =-,()22910x x --=,即()()22310x x --=,∴()()31310x x x x +--+=,即()()41210x x -+=,解得:1211,42x x ==-.【点睛】本题考查了因式分解法解一元二次方程,掌握因式分解法解一元二次方程是解题的关键.14.(1)125,13x x ==(2)1211,2t t ==【分析】(1)利用因式分解法解答,即可求解;(2)利用因式分解法解答,即可求解.【详解】(1)解:()()222320x x ---=,∴()()()()2322320x x x x -+--éùé-ùëûëû-=,∴()()3510x x --=,∴350x -=或10x -=,∴125,13x x ==.(2)解:()2211t t -+=∴()22110t t -+-=,∴()()1210t t --=,∴1211,2t t ==.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.123(2)1213,42y y =-=【分析】(1)根据因式分解法解一元二次方程;(2)根据因式分解法解一元二次方程即可求解.【详解】(1)解:移项,得()22120x x --=,因式分解,得()()12120x x x x -+--=,得10,130x x -=-=或,解得:1211,3x x ==;(2)解:因式分解,得()()2312310y y x y ++-+-+=,合并同类项,得()()41230y y +-+=,得410230y y +=-+=或,解得:1213,42y y =-=.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.16.(1)12=2,=4x x -;(2)1213,24x x =-=.【分析】运用因式分解法解一元二次方程即可.【详解】解:(1)∵(2)(4)0x x +-=;∴20x +=,40x -=,∴12x =-,24x =;(2)4(21)3(21)x x x +=+,4(21)3(21)0x x x +-+=,(21)(43)0x x +-=,∴210x +=或430x -=,∴112x =-,234x =.【点睛】本题考查了因式分解法解一元二次方程,熟练掌握因式分解的方法是解本题的关键.122(2)122x x ==【分析】(1)先化为一般形式,再利用因式分解法解一元二次方程;(2)先化为一般形式,再利用因式分解法解一元二次方程即可求解.【详解】(1)解:(2)(23)6x x --=,223466x x x --+=,即2270x x -=,∴()270x x -=,解得:12720,x x ==;(2)解:()44x x -=-,即2440x x -+=,()220x -=,解得:122x x ==.【点睛】本题考查了因式分解法解一元二次方程,掌握因式分解法解一元二次方程是解题的关键.18.(1)1x =-12,2x =23;(2)1x =2,2x =83.【分析】(1)先把等号右边变形为0,再将左边分解因式,即可解出未知数的值;(2)先把等号右边变形为0,再将左边分解因式,即可解出未知数的值.【详解】(1)解:∵3x (2x +1)-2(2x +1)=0,∴(2x +1)(3x -2)=0,∴2x +1=0或3x -2=0,解得1x =-12,2x =23;(2)解:∵22(3)(52)x x -=-,∴22(3)(5)02x x --=-,∴(352)(3520)x x x x +---+=-,即(2)(308)x x --=,∴2-x =0或3x -8=0,解得1x =2,2x =83.【点睛】本题考查解一元二次方程-因式分解法,解题的关键是掌握因式分解法解一元二次方程的一般步骤.19.(1)113x =-,213x =(2)112x =,23x =【分析】(1)先将原方程化成一般式,然后再因式分解法求解即可;(2)先将原方程化成一般式,然后再因式分解法求解即可.【详解】(1)解:22437365x x x x +-=--2910x -=(3x +1)(3x -1)=03x +1=0,3x -1=0113x =-,213x =.(2)解:()233x x x -=-2263x x x -=-22730x x -+=(2x -1)(x -3)=02x -1=0,x -3=0112x =,23x =.【点睛】本题主要考查了解一元二次方程,掌握运用因式分解法解一元二次方程是解答本题的关键.20.(1)114x =-,275x =(2)132x =-,212x =【分析】(1)将一元二次方程化为两个一元一次方程即可;(2)将一元二次方程化为两个一元一次方程即可.【详解】(1)解:()()41570x x +-=;410x +=,570x -=,解得:114x =-,275x =(2)解:()()223423x x +=+,()()2234230x x +-+=,()()232340x x ++-=;()230x +=,()2340x +-=解得:132x =-,212x =.【点睛】本题考查因式分解法解一元二次方程,解题关键是将它化为两个一元一次方程.21.2y =或1y =【分析】本题考查了解一元二次方程的方法,将()3y -看作一个整体,设3y t -=,利用因式分解法求得t 的值,进而即可求得y .【详解】解:设3y t -=,则原方程即2320t t ++=,∴()()120t t ++=,∴10t +=或20t +=,解得1t =-或2t =-,∴31y -=-或32y -=-,解得,2y =或1y =.22.1234111,22x x x x =+==-=【分析】本题考查了换元法解可以化为一元二次方程的分式方程等知识.设21x y x =-,原方程变为1732y y +=,解得12y =或23y =.再分别代入21x y x =-,求出1x =或12x =-或2x =,代入最简公分母进行检验即可求解.【详解】解:设21x y x =-,则211x x y-=,原方程变为1732y y +=,去分母得:26720y y -+=,解得12y =或23y =.当2112x x =-时,去分母得:2210x x --=,解得:1x =当2213x x =-时,去分母得:22320x x --=,解得:12x =-或2x =,检验:当1x =()()2110x x x +-¹,当12x =-或2x =时,()()2110x x x +-¹,∴分式方程的解为1234111,22x x x x ===-=.23.223x y +=.【分析】本题主要考查用换元法解一元二次方程,解答本题的关键在于,掌握整体代换思想方法的应用,将22x y +看成一个整体t ,转换成一个关于t 的一元二次方程求解即可.【详解】解:令22x y t +=,则,原方程变为,()23t t -=,即,2230t t --=,()()310t t -+=解得:13t =,21t =-;又220x y +³Q ,∴223x y +=.24.123,1x x ==-【分析】本题考查用换元法解分式方程的能力,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.可根据方程特点设22y x x =-,则原方程可化为260y y --=,解一元二次方程求y ,再求x .【详解】设22y x x =-,则原方程化为61y y-=\260y y --=,即()()320y y -+=,解得12y =-,23y =.当12y =-时,222x x -=-,该方程无解,当23y =时,223x x -=.解得13x =,21x =-,检验:当13x =时,原方程左边69632196=--=-==-右边,当21x =-时,原方程左边61232112=+-=-==+右边,∴13x =,21x =-都是原方程的根,∴原方程的根是13x =,21x =-.25.13x =,23x =-,31x =,41x =-【分析】设25y x =-,求出y 后,可得关于x 的方程,再解方程即可.【详解】设25y x =-,原方程化为2160y -=,解得14y =,24y =-,当14y =时,254x -=,29x =,则13x =,23x =-;当24y =-时,254x -=-,21x =,则31x =,41x =-,所以原方程的解为13x =,23x =-,31x =,41x =-.【点睛】本题考查了换元法和直接开平方法解方程,掌握求解的方法是关键.26.22x y +的值为3【分析】设22x z y +=,然后用因式分解法求解即可,求解时注意220x y +>.【详解】设22x z y +=,∴(2)3z z -=.整理得:2230z z --=,∴(3)(1)0z z -+=.∴121,3z z ==-.∵220z x y =+>,∴1z =- (不合题意,舍去)∴3z =.即22x y +的值为3.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.27.1224x x =-=,【分析】本题主要考查了换元法解一元二次方程,令1m x =-,则原方程化为260m m --=,解方程得到3m =,则1=3x -,据此求解即可.【详解】解:令1m x =-,则原方程化为260m m --=,∴()()320m m -+=,解得3m =或2m =-(不合题意,舍去),∴1=3x -,∴13x -=±,解得1224x x =-=,.28.(1)11x =,21x =,341x x ==(2)10x =、25x =-【分析】本题考查了换元法解一元二次方程;(1)令22x x y -=,原方程化为2560y y --=,进而得出226x x -=,221x x -=-,解方程,即可求解;(2y =,原方程化为2321y y -=,解得113y =-,21y =,进而分别解一元二次方程,即可求解.【详解】(1)解:令22x x y -=,原方程化为2560y y --=,解得16y =,21y =-.当16y =时,226x x -=,解得1x =.当21y =-时,221x x -=-,解得1x =.\原方程的解为:11x =,21x =,341x x ==(2y =,原方程化为2321y y -=,解得113y =-,21y =当113y =-13=-(无意义舍去)当21y =1=,解得10x =、25x =-.\原方程的解为10x =、25x =-.29.(1)1234022x x x x ====-,,;(2)12341133x x x x ==-==-,,,;(3)1x =和12x =-.【分析】本题考查了整体换元法,整体换元法是我们常用的一种解题方法,在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.(1)设x t =,则原方程可化为220t t -=,解方程求得t 的值,再求x 的值即可;(2)设2x a =,则原方程可化为2–1090a a +=,解方程求得a 的值,再求x 的值即可;(3)设21x m x +=,则原方程可化为2–1m m=,整理得2––20m m =,解方程求得m 的值,再求x 的值,检验后即可求得分式方程的解.【详解】(1)解:设x t =,则原方程可化为:220t t -=.解得:1202t t ==,.当0=t 时,0x =,∴0x =;当2t =时,2x =,∴2x =±.∴原方程的解是:1234022x x x x ====-,,;(2)解:设2x a =,则原方程可化为2–1090a a +=,即()()190a a --=,解得:1a =或9a =,当1a =时,21x =,∴1x =±;当9a =时,29x =,∴3x =±;∴原方程的解是:12341133x x x x ==-==-,,,;(3)解:设21x m x +=,则原方程可化为2–1m m=,整理得2––20m m =,∴()()120m m +-=,解得:1m =-或2m =,当1m =-时,211x x+=-,即210x x ++=,由141130D =-´´=-<知此时方程无解;当2m =时,212x x+=,即2210x x --=,解得:1x =或12x =-,经检验1x =和12x =-都是原分式方程的解.30.(1)1=1x -;2=2x ;31x =41x =(2)11x =-,21x =【分析】该题主要考查了换元思想解方程,一元二次方程的解答,分式方程的解答,解题的关键是运用换元法进行整体代换;(1)设2(0)2x t t x =¹+,将原方程化为2320t t -+=,解得2t =或1t =,再分别代入22x t x =+求解分式方程的解即可;(2()0t t =³,则有222x x t +=,将原方程化为:2450t t +-=,解得5t =-(舍)或1t =t =求解即可;【详解】(1)设2(0)2x t t x =¹+,\原方程化为23t t+=,\2320t t -+=,解得2t =或1t =,当1t =时,212x x =+,解得2x =或=1x -,经检验,=1x -或2x =是方程的解;当2t =时,222x x =+,解得1x =1x =-,经检验,1x =或1x =∴原方程的解为:1=1x -;2=2x ;31x =;41x =(2()0t t =³,则有222x x t +=,\原方程可化为:2450t t +-=,解得5t =-(舍)或1t =,1=,\2210x x +-=,解得11x =-或21x =-;经检验:11x =,21x =是原方程的解.31.4x =-【分析】本题主要考查了解分式方程,根据解分式方程的步骤求解即可,注意解分式方程最后要验根,熟练掌握分式方程的解法是解题的关键.【详解】解:2216111x x x +-=--方程左右同乘以21x -、去分母得:()()()221116x x x ++--=,去括号得:2222116x x x x +++-+=,移项、合并同类项得:2340x x +-=,因式分解得:()()410x x +-=,∴40x +=或10x -=,解得:14x =-,21x =,检验:14x =-,则211150x -=¹,故是原分式方程的根,21x =,则2210x -=,故是原分式方程的增根,∴原分式方程的解为4x =-.32.12x =-,22x =-,31x =【分析】本题考查了解分式方程和解一元二次方程,能把解分式方程转化成解一元二次方程是解此题的关键,注意:解分式方程一定要进行检验.原方程化为211226x x x x æöæö+-++=ç÷ç÷èøèø,设1x a x +=,则原方程变形为2226a a +-=,求出a 的值,当4a =-时,方程为14x x+=-,求出方程的解,当2a =时,方程为12x x +=,求出方程的解,最后进行检验即可.【详解】解:原方程化为:211226x x x x æöæö+-++=ç÷ç÷èøèø,设1x a x+=,则原方程化为:2226a a +-=,即2280a a +-=,解得:4a =-或2a =,当4a =-时,14x x+=-,整理得:2410x x ++=,Q 24411120D =-´´=>,x \=解得:12x =-,22x =-;当2a =时,12x x +=,整理得:2210x x -+=,()210x -=,解得:1x =,经检验12x =-,22x =-,31x =都是原方程的解,所以原方程的解是12x =-22x =-,31x =.33.12x x ==【分析】方程两边同乘以()()33x x +-可得一个关于x 的一元二次方程,再利用直接开平方法解一元二次方程即可得.【详解】解:11133x x +=+-,方程两边同乘以()()33x x +-,得()()3333x x x x +--+=+,去括号,得2933x x x --+=+,移项、合并同类项,得215x =,直接开平方,得12x x ==经检验,12x x ==【点睛】本题考查了解分式方程、解一元二次方程,熟练掌握解分式方程的方法是解题关键,需注意的是,分式方程的解要进行检验.34.5x =【分析】根据分式方程的解法步骤求解即可.【详解】解:去分母,得()222181x x --=-,去括号,得2224281x x x -+-=-移项、合并同类项,得2450x x --=,解得11x =-,25x =,经检验,5x =是方程的解.【点睛】本题考查解分式方程、解一元二次方程,熟练掌握分式方程的解法步骤是解答的关键.35.=1x -【分析】方程两边同时乘以()24x -,化为整式方程,解方程即可求解,最后要检验.【详解】解:241142x x +=--,方程两边同时乘以()24x -,得()2442x x +-=+,即220x x --=,()()210x x -+=,解得122,1x x ==-,检验:当2x =时,()24x -0=,当=1x -时,()240x -¹.∴=1x -是原方程的解.【点睛】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键,注意要检验.36.x =4【分析】两边都乘以x 2-4化为整式方程求解,然后验根即可.【详解】解:224124x x x -=-+-,两边都乘以x 2-4,得2(x -2)-4x =-(x 2-4),x 2-2x -8=0,(x +2)(x -4)=0,x 1=-2,x 2=4,检验:当x =-2时,x 2-4=0,当x =4时,x 2-4≠0,∴x =4是原分式方程的根.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出未知数的值后不要忘记检验.37.x =3【分析】将分式方程去分母化为整式方程,解整式方程求出解并检验即可.【详解】解:21211x x x -=++化为整式方程得()2211x x -+=,整理得2230x x --=,解得123,1x x ==-,检验:当x =3时,x +1¹0;当x =-1时,x +1=0,∴原分式方程的解是x =3.【点睛】此题考查了解分式方程,正确掌握解分式方程的法则及步骤是解题的关键.38.x 1=56,x 2=18【分析】观察可得最简公分母是12x (2x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】解:方程的两边同乘12x (2x ﹣1),得24x 2+5(2x ﹣1)=36x (2x ﹣1),整理,得48x 2﹣46x +5=0,即()()65810x x --=解得x 1=56,x 2=18,检验:当x =56或18时,x (2x ﹣1)≠0.即原方程的解为:x 1=56,x 2=18.【点睛】本题考查了解分式方程,解一元二次方程,正确的计算是解题的关键.39.83x =-【分析】将分式方程转化为整式方程,然后解整式方程,注意分式方程的结果要进行检验.【详解】解:整理,得:1641(2)2xx x x +=--,去分母,得:216(2)4x x x +-=,221624x x x +-=,232160x x +-=,(2)(38)0x x -+=,解得:12x =,283x =-,检验:当2x =时,(2)0x x -=,2x \=不是原分式方程的解,当83x =-时,(2)0x x -¹,83x \=-是原分式方程的解,\分式方程的解为83x =-.【点睛】本题考查解分式方程,解一元二次方程,掌握解分式方程和因式分解法解一元二次方程的步骤是解题关键,注意分式方程的结果要进行检验.40.2x =-【分析】先去分母化为整式方程求解,最后记得检验即可.【详解】解:原方程可化为()()2121111x x x x --=-+-去分母得()()()()211211x x x x -+-=+-,解得11x =,22x =-经检验11x =是增根,2x =-是原方程的解,\原方程的解为2x =-.故答案为2x =-.【点睛】本题考查了解分式方程,熟练掌握一般步骤是解题的关键,需要注意的是最后要记得检验是否为方程的根.。
一元二次方程组计算100道(含答案)
一元二次方程组计算练习一.解答题(共60小题)1..2.解方程组:(1);(2).3.解下列方程组:(1)(2)(3)(4).5.解下列方程组:(1);(2).6.解方程组(1);(2)..7.解下列方程组(1)(2)9.解方程组(1).(2)10.解下列方程组:(1)(2).11.解方程组:(1)(2).12.解下列方程组:(1);(2);(3);(4).13.用适当的方法解下列方程组:(1);(2).14.解方程组:(1);(2).15.解方程组:(1);(2).16.解方程组:(1);(2).17.解方程组:(1);(2).18.解下列二元一次方程组:(1).(2).19.解方程(组):(1);(2).20.解二元一次方程组:(1);(2).21.解方程组:(1).(2).22.解下列方程组:(1);(2).23.解方程组:(1);(2).24.解下列方程组:(1);(2).25.解方程组.(1);(2);(3);(4).26.解方程组:(1);(2).27.解下列方程和解方程组:(1).(2).(3).28.解方程组:(1);(2).29.解下列方程组:(1);(2).30.解方程组:(1);(2).31.解方程组:(1);(2).32.解方程组:(1);(2).33.解方程组:(1);(2).34.解方程组:(1);(2);(3).35.解方程组:(1);(2).36.解二元一次方程组:(1);(2).37.解下列方程组:(1);(2).38.解方程组:(1);(2).40.解二元一次方程组.(1);(2).41.解方程组:(1);(2).42.解方程组:(1);(2).44.解二元一次方程组.(1);(2).45.解方程组:.46.解方程组:(1);(2).48.解方程组:(1)(2)49.解方程组.50.解方程组51.解方程组:(1);(2).52.解二元一次方程组.(1).(2).53.解方程组.(1).(2).54.解方程组:(1);(2).55.解方程组:(1);(2).56.解方程组:(Ⅰ);(Ⅱ).57.解方程组:.58.解方程组:(1).(2).59.解方程组:(1);(2).60.解下列方程组:(1);(2).一元二次方程组计算练习参考答案与试题解析一.解答题(共60小题)1.解方程组:.【解】原方程组的解为.2.解方程组:(1);(2).【解】(1)解为.(2)解为.3.解下列方程组:(1)(2)(3)(4).【解】(1)解为;(2)解为;(3)解为;(4)解为.4.解方程组:(1);(2).【解】(1)解为;(2)解为.5.解下列方程组:(1);(2).【解】(1)解为;(2)解为.6.解方程组(1);(2).【解】(1)解为;(2)解为.7.解下列方程组(1)(2).【解】(1)解是;(2)解是.8.解方程组:(1).(2).【解】(1)解为;(2)解为.9.解方程组(1)(2).【解】(1)解为:;(2)解为:.10.解下列方程组:(1)(2).【解】(1)解为;(2)解为.11.解方程组:(1)(2).【解】(1)解为;(2)解为.12.解下列方程组:(1);(2);(3);(4).【解】(1)解为;(2)解为;(3)解为;(4)解为.13.用适当的方法解下列方程组:(1);(2).【解】(1)解为(2)解为.14.解方程组:(1);(2).【解】(1)解是;(2)解是.15.解方程组:(1);(2).【解】(1)解是.(2)解是.16.解方程组:(1);(2).【解】(1)解是;(2)解是.17.解方程组:(1);(2).【解】(1)解为;(2)解为.18.解下列二元一次方程组:(1).(2).【解】(1)解为;(2)解为.19.解方程(组):(1);(2).20.解二元一次方程组:(1);(2).【解】(1)解为;(2)解为.21.解方程组:(1).(2).【解】解为;(2)解为:.22.解下列方程组:(1);(2).【解】(1)解为;(2)解为.23.解方程组:(1);(2).【解】(1)解为;(2)解为.24.解下列方程组:(1);(2).【解】(1)解为;(2)解为.25.解方程组.(1);(2);(3);(4).【解】(1)解为;(2)解为;(3)解为;(4)解为.26.解方程组:(1);(2).【解】(1)解;(2)解为.27.解下列方程和解方程组:(1).(2).(3).【解】(1)x=﹣9;(2)解为;(3)解为.28.解方程组:(1);(2).29.解下列方程组:(1);(2).【解】(1)解为;(2)解为.30.解方程组:(1);(2).【解答】(1)解为;(2)解为.31.解方程组:(1);(2).【解】(1)解为;(2)解为.32.解方程组:(1);(2).【解】(1)解为;(2)解为.33.解方程组:(1);(2).【解】(1)解为;(2)解为.34.解方程组:(1);(2);(3).【解】(1)解是.(2)解是.(3)解是.35.解方程组:(1);(2).【解】(1)解是.(2)解是.36.解二元一次方程组:(1);(2).【解】(1)解为.(2)解为.37.解下列方程组:(1);(2).【解】(1)解是.(2)解是.38.解方程组:(1);(2).【解】(1)解为;(2)解为.39.解下列方程组(1);(2).【解】(1)解为;(2)解为.40.解二元一次方程组.(1);(2).【解】(1)解为;(2)解为.41.解方程组:(1);(2).【解】(1)解为;(2)解为.42.解方程组:(1);(2).【解】(1)解为;(2)解为.43.解二元一次方程组:(1);(2).【解】(1)解为;(2)解为.44.解二元一次方程组.(1);(2).【解】(1)解为;(2)解为.45.解方程组:.【解】解为.46.解方程组:(1);(2).【解】(1)解为;(2)解为.47.解方程组(1);(2).【解】(1)解为;(2)解为.48.解方程组:(1);(2)【解】(1)解为;(2)解为.49.解方程组.【解】解为:.50.解方程组【解】解为:.51.解方程组:(1);(2).【解】(1解为;(2)解为.52.解二元一次方程组.(1).(2).【解】(1)解为:;(2)解为.53.解方程组.(1).(2).【解】(1)解为;(2)解为.54.解方程组:(1);(2).【解】(1)解为;(2)解为.55.解方程组:(1);(2).【解】(1)解为;(2)解为.56.解方程组:(Ⅰ);(Ⅱ).【解】(Ⅰ)解为;(Ⅱ)解为.57.解方程组:.【解】解为:.58.解方程组:(1).(2).【解】(1)解为;(2)解为.59.(1)解方程组;(2)解方程组.【解】(1)解为.(2)解为.60.解下列方程组:(1);(2).【解】(1)解为;(2)解为.。
解方程5年级三篇
解方程5年级三篇1、知识点:1、用字母表示数(1)用字母则表示数量关系(2)用字母表示计算公式(3)用字母则表示运算定律和排序法则(4)求代数式的值:把给定字母的数值代入式子,求出式子的值。
2、特别注意:(1)数字和字母、字母和字母相乘时,乘号可以记作“·”,或者省略不写,数字要写在字母的前面。
(2)当1与任何字母相加时,1省略不写下。
(3)在一个问题中,不同的量用不同的字母来表示,而不能用同一个字母表示。
(4)字母可以则表示任一数,所以在一些式子中,对字母的则表示必须展开表明。
例如:(a≠0)3、简易方程:(1)方程:所含未知数的等式叫做方程。
方程都是等式,等式不一定是方程,只有当等式中含有未知数时,才是方程。
(2)方程的求解:并使方程左右两边成正比的未知数的值叫做方程的求解。
(3)解方程:求方程的解的过程叫作解方程。
(4)方程的解法一个值,一般来说,没解方程这个排序过程,方程的解法难以算出的,解方程厚边方程的求解的过程,就是一个编程语言过程。
一、基础类方程。
x-7.7=2.855x-3x=684x+10=18321=45+6xx-0.6x=8x+8.6=9.452-2x=1513÷x=1.3x+8.3=19.715x=303x+9=367(x-2)=73x+9=1218(x-2)=2712x=320+4x5.37+x=7.4715÷3x=530÷x=751.8+2x=6420-3x=1803(x+5)=180.5x+9=406x+3x=361.5x+6=3x5×3-x=840-8x=5x÷5=2148-20+5x=31x+2x+8=80200-x÷5=30 70÷x=445.6-3x=0.69.8-2x=3.85(x+5)=100x+3x=702.5(x+3)=50二、提升类方程。
3(4x-1)=3(22-x)7(2x-6)=84 5(x-8)=3x7x-7=6x+4(22-x)+2=87x8x-6x+30=12x+157(x+2)=5x+60240÷(x-7)=30(31-8x)÷3=2x+1(6x-28)÷8=5x-812÷8x=3(21+4x)×2=10x+148x-15×6=3x-20(2x+7)×2=3x+18一般方程很直观,具体数字帮你办,加减乘除必须恰好相反。
【人教版】五年级数学上册:5-3-2《解方程(二)》_教学PPT
把什么看作一个整体?
尝试乘法、减法各部分的关系分步解方程。
探究新知
解方程2(x-16)=8。 也可以这样解: 2(x-16)=8 解:2x-32=8 2x-32+32=8+32 2x=40 2x÷2=40÷2 x=20
运用了什么运算定律?
做一做 1.看图列方程,并求出方程的解。
x元/本
7.5元 5x+1.5=7.5 解:5x+1.5-1.5=7.5-1.5
解方程
方法一 方法二
解: 3x+4=40 3x+4-4=40-4 3x=36 3x÷3=36÷3 x=12
解: 3x=40-4
3x=36
x=12
先把3x看作一个整体。
3x看作一个整体,一个加数等于 和减另一个加数 3x看作一个整体 一个因数等于积除以另一个因数
议一议
解方程时,应该把谁看作一个整体,一般从方程的哪
5x=6 5x÷5=6÷5
x=1.2
1.5元
做一做 2.解下列方程。
6x-35=13 解:6x-35+35=13+35
6x=48 6x÷6=48÷6
x=8
3x-12×6=6 解:3x-72=6 3x-72+72=6+72
3x=78 3x÷3=78÷3
x=26
做一做
2.解下列方程。 (5x-12)×8=24
复习旧知
解方程。
4 x =52
x ÷1.2=
5
x +3.7=
10
x -56=44
探究新知 看图列方程,并求出方程的解。
x支
x支
x支
40支
1.图中每盒里有多少支笔,可以用什么表示?盒外有几只笔? 一共有多少支笔?
自学提纲 2.找到等量关系,并列出方程。 3.求方程的解,把谁看成一个整体?说说你是怎么解方程的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业
P138 习 题 5.3 ; P140 习 题 5.4----1、2;
移项实际上是我们早已熟悉的利用等式的性质1 “对方程两边进行同加同减”,只不过在格式上更为简捷 移项是把项从方程的一边移到另一边。 项移动时一定要变号。
去括号、合并同类项也是我们早已熟悉的。 去括号、合并同类项都是分别在方程的同一边进行的。
去括号时务必看清括号前有无非1 的系数、有无负号 并注重去括号的法则的准确使用。
《数学》(北师大.七年级 上册)
2
回顾与思考
回顾 & 思考☞
上节课我们学习了较简形式的一元一次方程的 解1. 、明白了解方程的基本思想 是
经过对方程一系列的变形,最终把方程转化为“x=d”的形 即式:.①等号左、右分别都只有一项,且左边是未知数项
右边是常数项;
②未知数项的系数为1。
2、目前为止,我们用到的对方程的变形有: 等号两边同加减(同一代数式)、 等号两边同乘除(同一非零数)
试一试:解方程: 10x – 3=9。
注意:移项要变号哟。
例题解析
在前面的解方程中,移项后的“化简”只用到了 对常数项的合并。
试看看下述的解方程。
例1 解下列方程:
(1) 3x+3=2x+7
(2) 1 x 1 x 3
移项后的化简包括哪些内容?
例题解析 例4 解方程: -2(x—1)=4.
解法一:去括号,得: -2x+2=4 移项,得: -2x=4-2 化简,得: -2x=2
方程两边同除以-2,得: x=-1
解法二:方程两边同除以-2,得: X-1=-2 移项,得: X=-2+1 即: X=-1
议 一 议 观察上述两种解法,
说出它们的区别.
含未知数的项宜向左移、常数项往右移。 左边对含未知数的项合并、右边对常数项合并。
含未知数的项宜向左移、 左边对含未知数的项合并
例常数题项解往析右移。
右边对常数项合并。
例1 解下列方程: (1) 3x+3=2x+7
(2) 1 x 1 x 3
4
2
解: (1) 3x+3=2x+7
(2)
1 x 1 x3
有什么规律可循?
ڿ
ڿ解题后的思考
能否写成:
5x – 2 + 2 = 8 + 2
5x
=8+2
为什么?
移
解移方程:5 x项-2 = 8
解: 方程 5x – 2 = 8 两边同时 加上 2 ,得 5x – 2 + 2 = 8 + 2
项
5x – 2 = 8 5x = 8 + 2
由方程 ① 到方程 ② , 这个变形相当于 把 ①中的 “– 2”这一项从左边移到了右边.
随堂练习
随堂练习
1、解下列方程: (1) 5(x—1)=1; (3) 11x +1 =5(2x + 1);
2、解下列方程: (3) −3(x +3) =24;
(2) 2(3—x)=9; (4) −2(x −2) =12.
本节课你的收获是什么?
这节课我们学习了解一元一次方程的 移项、去括号、合并同类项。
观察思考 “– 2”这项从左边移到了右边的过程中, 有些什么变化? 改变了符号.
把原方程中的– 2 改变符号后,从方程的一边移到 一边,这种变形 叫 移项 。
试试 用新方法 解一元一次方程
哈哈,太简单了. 我会了.
解方程: 5x-2=8 解: 移项,得: 5x=8+2
化简,得: 5x=10
两边同时除以5,得: x=2.
等号两边同加减的目的是: 使项的个数减少; 等号两边同乘除的目的是: 使未知项的系数化为1.
看谁解得快
解方程: 5x – 2 = 8 .
把原求解的书写格式改
解:方程 两边同时加上 2 , 得
5x – 2 = 8 5x – 2 + 2 = 8 + 2
即 5x
= 10
两边同除以5 得: x = 2.
简缩格式: 5x – 2 = 8 5x = 8 + 2
随堂练习
随堂练习
1、解下列方程: (1) 10x—3=9;
(3) x 3 x 16 ; 2
(2) 5x —2 =7x + 16;
(4) 1 3 x 3x 5 .
2
2
想一想 方程中有括号怎么办? 方程中—有—括先号去怎么括办号?
例 3 解方程:4(x+0.5)+x=17。 试一试!
解:去括号,得: 4x + 2 + x =17 移项,得: 4x + x =17—2 合并同类项,得:5x = 15 系数化为1,得: x=3.
4
2
移项,得 3x – 2x=7 – 3 合并同类项 ,得 x =4;
1 4
x
1 2
x
3
3x3 4
系数化为 1 ,得 x =4.
解题后的反思
解议题一 议后 的 反 思
(1) 移项实际上是对方程两边进行同加减 ,
使用的是等式的性质1
;
(2) 系数 化为 1 实际上是对方程两边进行 同乘除 , 使用的是等式的性质 2 .