年高考全国卷3文科数学
2020年全国卷(3)文科数学
2020年全国卷(3)文科数学2020年普通高等学校招生全国统一考试全国卷(Ⅲ)文科数学适用地区:云南、贵州、四川、广西、西藏等一、选择题:1.已知集合 $A=\{1,2,3,5,7,11\}$,$B=\{x|3<x<15\}$,则$A \cap B$ 中元素的个数为 A。
2 B。
3 C。
4 D。
52.复数 $z\cdot(1+i)=1-i$,则 $z=$ A。
$1-i$ B。
$1+i$ C。
$-i$ D。
$i$3.设一组样本数据 $x_1,x_2,\dots,x_n$ 的方差为 0.01,则数据 $10x_1,10x_2,\dots,10x_n$ 的方差为 A。
0.01 B。
1 C。
100 D。
4.Logistic 模型是常用数学模型之一,可应用于流行病学领域。
有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数 $I(t)$($t$ 的单位:天)的 Logistic 模型$I(t)=\frac{K}{1+e^{-0.23(t-53)}}$,其中 $K$ 为最大确诊病例数。
当 $I(t^*)=0.95K$ 时,标志着已初步遏制疫情,则$t^*$ 约为($\ln 19 \approx 3$) A。
60 B。
63 C。
66 D。
695.若 $\sin\theta+\sin(\theta+\frac{\pi}{3})=1$,则$\sin(\theta+\frac{\pi}{3})=$ A。
$\frac{3}{4}$ B。
$\frac{1}{4}$ C。
$-\frac{1}{4}$ D。
$-\frac{3}{4}$6.在平面内,$A,B$ 是两个定点,$C$ 是动点,$AC\cdot BC=1$,则点 $C$ 的轨迹是 A。
圆 B。
椭圆 C。
抛物线 D。
直线7.设 $O$ 为坐标原点,直线 $x=2$ 与抛物线$C:y^2=2px(p>0)$ 交于 $D,E$ 两点,若 $OD\perp OE$,则$C$ 的焦点坐标为 A。
2020年全国3卷 文科数学附答案
2020年高考真题文科数学(全国III卷)1. 已知集合,,则中元素的个数为A2B3C4D52. 若,则ABCD3.设一组样本数据的方差为0.01,则数据的方差为A0.01B0.1C1D104. Logistic模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:,其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为(In193)A60B63C66D695.已知,则ABCD6.在平面内,是两个定点,是动点,若,则点的轨迹为A圆B椭圆C抛物线D直线7.设为坐标原点,直线与抛物线交于两点,若,则的焦点坐标为ABD8.点到直线距离的最大值为A1BCD29.右图为某几何体的三视图,则该几何体的表面积是ABD10.设,,,则ABCD11. 在中,,,则AB2C4D812. 已知函数,则A的最小值为2B的图像关于轴对称C的图像关于直线对称D的图像关于直线对称13. 若x,y满足约束条件,则z=3x+2y的最大值为_____.14.设双曲线的一条渐近线为,则的离心率为______.15. 设函数,若,则a=____.16. 已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的切球表体积三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:供60分。
(1)求的通项公式;18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);19.(12分)如图,在长方体中,在,分别在棱,上,且,,证明:20.(12分)已知函数.21.(12分)已知椭圆的离心率为分别为的左、右顶点.(二)选考题:共10分,请考生在第22、23题中任选一题作答。
2020年全国卷3文科数学试题及参考答案
绝密★启用前试题类型:新课标in 2018年普通高等学校招生全国统一考试文科数学参考答案注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦下净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A = {xlx-l>0}, B = {0, 1, 2},则AC|B = ( )A. {0}B. {1}C. {1, 2}D. {0, 1, 2}【答案】c【解析】A:x>l , W{1, 2}【考点】交集2- (1 + /)(2-/)=()A. -3-iB. -3 + /C. 3-iD. 3 + j【答案】D【解析】(l + 0(2-f) = 2+r-i2=3 + <【考点】复数的运算3•中国古建筑借助樺卯将木构件连接起来,构件的凸出部分叫做樺头,凹进部分叫做卯眼,图中的木构件右边的小长方体是樺头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )俯视方向【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B答案能看见小长方体的上面和左面,C答案至少能看见小长方体的左面和前面,D答案本身就不对”外围轮廊不可能有缺失【考点】三视图4.若sina = |»则cosZz = ( )A. |B. 1C. -1D.9 9 9 9【答案】B7【解析】cos 2a = 1 -2sin‘ a =-【考点】余弦的二倍角公式5•某群体中的成员只用现金支付的概率为0.45,既用现金也用非现金支付的槪率为0.15,则不用现金支付的概率为( )A. 0・3 B・ 04 C・ 06 D. 0・7【答案】B【解析】1一0・45-0・15 = 0・4【考点】互斥事件的概率6•函数f (x)= tan\的最小正周期为()l + tan~x【答案】C【考点】切化弦、二倍角、三角函数周期7.下列函数中,其图像与函数v = lnx的图像关于直线x = l对称的是A. y = ln(l-A-)B. y = ln(2-x)C. y = ln(l+ x)D. y = ln(2 + x)【答案】B【解析】采用特殊值法,在取一点A(3, ln3),则A点关于直线x = l的对称点为川(7 ln3)应该在所求函数上,排除A , C , D【考点】函数关于直线对称8.直线x + y + 2 = 0分别与x轴、V轴交于点A, B两点,点在圆(A-2)2+/=2±,则WP而积的取值范围是( )A. [2, 6]B. [4, 8]C. [x/2, 3血]D.3血]【答案】A【解析】人(一2, 0), B(0, -2) , :.\AB\ = 2y/2 ,可设P(2 +血cos*. >/2sin^),贝!JB.壬C. ”D. 2龙T = ^- = 7T(走义域并没有影响到周期)S'lBP = 2 1^1' dP-AB =匝dp_AR e[2, 6]【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数)9・y = F + 2的图像大致为()【答案】D【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势.单调性(导数)的顺序来考虑)2 210.已知双曲线的c :二一・ = l (d>0, b>0)的离心率为返,则点(4, 0)到C 的渐近线的距离为A ・B ・2C ・上返D ・2>/22【答案】D【解析】e = ~ = + —r = >/2=> a = h••渐近线为— y = 0【解析】 /(1) = 2 ■排除 A 、B; y = Mx 3+2x = 2x(l-2x 2),故函数在 0,【考点】双曲线的离心率、渐近线之间的互相转化11A4BC 的内角4 S C 的对边分别为亿/人c.若AABC 的而积为川+[_广,则4 C =() A.【答案】C【解析】S MBC =穆 d"sin C ="一 十[一—,而 cosC= “_;:力一"一【考点】三角形面积公式、余弦定理12.设A, B 、C, D 是同一个半径为4的球的球而上四点,AA3C 为等边三角形且英而积为 9x/3,则三棱锥D-ABC 的体积最大值为( ) A. 12>/3 B. 18^3 C. 24书D. 54炉【答案】B【解析】如图,0为球心,F 为等边A43C 的重心, 易知OF 丄底面ABC ,当。
高考文科数学全国3卷试题及答案(Word版)(20200618130547)
( C)三月和十一月的平均最高气温基本相同
( D)平均最高气温高于 20℃的月份有 5 个
( 5)小敏打开计算机时 , 忘记了开机密码的前两位 , 只记得第一位是 M, I,N 中的一个字
母 , 第二位是 1,2,3,4,5 中的一个数字 , 则小敏输入一次密码能够成功开机的概率是
8
1
1
1
( A) 15 ( B) 8 ( C) 15 ( D) 30
.
所以预测 2016 年我国生活垃圾无害化处理量将约 1.82 亿吨 . .........12 分
19 、(Ⅰ) 由已知得
, 学 .科网取 的中点 , 连接
,由 为
中点知
,
. ......3 分
又
, 故 平行且等于
, 四边形
为平行四边形 , 于是
.
因为
平面
,
平面
, 所以
平面
. ........6 分
(II )证明当 x (1, ) 时 , 1 x 1 x ; ln x
(III )设 c
1 , 证明当 x
(0,1)时 , 1 (c 1)x
x
c.
请考生在 22、23、 24 题中任选一题作答 ,如果多做 ,则按所做的第一题计分 , (22)(本小题满分 10 分)选修 4— 1:几何证明选讲
如图 , ⊙ O 中 的中点为 P, 弦 PC, PD 分别交 AB 于 E, F 两点。 (Ⅰ)若∠ PFB =2∠ PCD, 求∠ PCD 的大小; (Ⅱ)若 EC 的垂直平分线与 FD 的垂直平分线交于点 G, 证明 OG ⊥ CD 。 (23)(本小题满分 10 分)选修 4— 4:坐标系与参数方程 在直线坐标系 xoy 中 , 曲线 C1的参数方程为 错误 ! 未找到引用源。 ( 错误 ! 未找到引用源。 为参数) 。以坐标原点为极点 , x 轴正半轴为极轴 , 建立极 坐标系 , 曲线 C2 的极坐标方程为 ρsin (错误 ! 未找到引用源。 ) =错误 !未找到引用源。 . (I )写出 C1 的普通方程和 C2 的直角坐标方程; (II )设点 P 在 C1 上, 点 Q 在 C2 上 , 求∣ PQ ∣的最小值及此时 P 的直角坐标 . (24)(本小题满分 10 分) , 选修 4—5:不等式选讲 已知函数 f(x)=∣ 2x-a∣ +a. (I )当 a= 2 时 , 求不等式 f(x)≤6 的解集; (II )设函数 g(x)=∣ 2x-1∣ .当 x∈ R 时 , f( x)+g(x)≥ 3, 求 a 的取值范围。
2020年全国3卷 文科数学真题(pdf版含解析)
2020年全国3卷文科数学真题(解析版)一、选择题:(每小题5分,共60分)1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为()A.2B.3C.4D.5【答案】B 【详解】由题得,{5,7,11}A B ⋂=,所以A ∩B 中元素的个数为3.故选:B考点:集合的运算2.若()11+=-z i i ,则z =()A.1–iB.1+iC.–iD.i【答案】D 【详解】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i =.故选:D 考点:复数的运算3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为()A.0.01B.0.1C.1D.10【答案】C【详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍,所以所求数据方差为2100.01=1⨯故选:C考点:方差的性质4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60B.63C.66D.69【答案】C 【详解】()()0.23531t KI t e--=+ ,所以()()0.23530.951t KI t K e**--==+,则()0.235319t e *-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈.故选:C.考点:对数的运算5.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A.12B.33C.23D.22【答案】B【详解】由题意可得:13sin sin cos 122θθθ++=,则:3sin 122θθ+=,1sin cos 223θθ+=,从而有:sin coscos sin 663ππθθ+=,即3sin 63πθ⎛⎫+= ⎪⎝⎭.故选:B.6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆 B.椭圆C.抛物线D.直线【答案】A【详解】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-,从而:()()2AC BC x a x a y →→⋅=+-+,结合题意可得:()()21x a x a y +-+=,整理可得:2221x y a +=+,即点C 的轨迹是以AB 为半径的圆.故选:A.考点:轨迹方程7.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B【详解】因为直线2x =与抛物线22(0)y px p =>交于,C D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx COx π∠=∠=,所以(2,2)C ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.考点:抛物线8.点(0,﹣1)到直线()1y k x =+距离的最大值为()A.1B.C.D.2【答案】B【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.考点:直线的定点与点线距9.下图为某几何体的三视图,则该几何体的表面积是()A.6+4B.C.D.4+2【答案】C【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△由勾股定理得:AB AD DB ===∴ADB △是等边三角形∴211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴表面积:632=⨯++.故选:C.考点:三棱锥表面积计算10.设a =log 32,b =log 53,c =23,则()A.a <c <bB.a <b <cC.b <c <aD.c <a <b【答案】A 【详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<.故选:A考点:对数大小比较11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()A.B.C.D.【答案】C【详解】设,,AB c BC a CA b===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 299a cb B B B ac +-==∴==∴=故选:C考点:余弦定理与解三角形12.已知函数f (x )=sin x +1sin x,则()A.f (x )的最小值为2B.f (x )的图像关于y 轴对称C.f (x )的图像关于直线x π=对称D.f (x )的图像关于直线2x π=对称【答案】D【详解】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称;11(2)sin (),()sin (),sin sin f x x f x f x x f x x x ππ-=--≠-=+=Q 故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对故选:D考点:函数的对称性二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________.【答案】7【详解】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A ,所以max 31227z =⨯+⨯=.故答案为:7.考点:线性规划14.设双曲线C :22221x y a b-=(a >0,b >0)的一条渐近线为y 2x ,则C 的离心率为_________.【答案】3【详解】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为2y =,所以2b a =,2213c b e a a==+=.3考点:双曲线的渐近线与离心率15.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.【答案】1【详解】由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aee a =+,整理可得:2210a a -+=,解得:1a =.故答案为:1.考点:导数的运算16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O,由于AM ==122S =⨯⨯=△ABC ,设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:2r =,其体积:3433V r π==.故答案为:3.考点:圆锥的内切球三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等比数列{a n }满足124a a +=,318a a -=.(1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m .【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=,整理得2560m m --=,因为0m >,所以6m =,18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bc K a b c d a c b d -=++++,P (K 2≥k )0.0500.0100.001k3.8416.63510.828【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好3337空气质量好228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥因为11,BB BD B BB BD =⊂I 、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴因此1C 在平面AEF 内20.已知函数32()f x x kx k =-+.(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.【详解】(1)由题,'2()3f x x k =-,当0k ≤时,'()0f x ≥恒成立,所以()f x 在(,)-∞+∞上单调递增;当0k >时,令'()0f x =,得x ='()0f x <,得x <<令'()0f x >,得x <x >()f x在(上单调递减,在(,-∞,)+∞上单调递增.(2)由(1)知,()f x 有三个零点,则0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩即22203203k k ⎧+>⎪⎪⎨⎪-<⎪⎩,解得4027k <<,当4027k <<>,且20f k =>,所以()f x在上有唯一一个零点,同理1k --<32(1)(1)0f k k k --=--+<,所以()f x在(1,k --上有唯一一个零点,又()f x在(上有唯一一个零点,所以()f x 有三个零点,综上可知k 的取值范围为4(0,27.21.已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【详解】(1) 222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====,解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2) 点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y+=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+,根据两点间距离公式可得:()()2265205AQ =++-=,∴APQ 面积为:1555252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+=+,根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1518522185=,综上所述,APQ 面积为:52.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2222x t t y t t ⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点.(1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==;(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.[选修4-5:不等式选讲]23.设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c.【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++= ,()22212ab bc ca a b c ∴++=-++.,,a b c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .2020年全国3卷文科数学真题(原卷版)一、选择题:(每小题5分,共60分)1已知集合A ={1,2,3,5,7,11},B ={x|3<x<15},则A ∩B 中元素的个数为()A.2B.3C.4D.52.若(1)1z i i +=-,则z =()A.1-iB.1+iC.-iD.i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为()A.0.01B.0.lC.1D.104.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:()0.23(53)1t K I t e--=+,其中K 为最大确诊病例数。
2020年普通高等学校招生全国统一考试全国卷3文科数学试题解析(word版)
C.
D.
,
,
即
,
时,标志着已初步遏 ,
得
,
即
,
得
.
故选:B.
6.在平面内, , 是两个定点, 是动点,若
A. 圆
B. 椭圆
C. 抛物线
【答案】A
【解析】在平面内, , 是两个定点, 是动点,
不妨设
,
,设
,
因为
,
,则点 的轨迹为( ) D. 直线
所以
,
解得
,
所以点 的轨迹为圆.
故选:A.
7.设 为坐标原点,直线 与抛物线 :
则
.
故选:C.
12.已知函数
,则( )
A.
的最小值为
B.
的图象关于 轴对称
C.
的图象关于直线 对称
D.
的图象关于直线
对称
【答案】D 【解析】由
可得函数的定义域为
,故定义域关于原点对称;
设
,则
,
,由双勾函数的图象和性质得,
或
,故 A 错误;
又有
,故
义域关于原点对称,故图象关于原点中心对称;故 B 错误;
所以
平面
,
而
平面
,
. 是长方体,
所以
,
因为
是长方体,且
,
所以
是正方形,
所以
,
又
.
所以 平面
,
又因为点 , 分别在棱 , 上,
所以
平面
,
所以
.
(2)点 在平面 内.
【答案】见解析
【解析】取 上靠近 的三等分点 ,连接 , , .
2020年高考数学全国卷3-文科(附详解)
三!解答题"共6&分$解答应写出文字说明!证明过程或演算步
骤 第$ "6##"题为必考题#每个试题考生都必须作答$第
##!#*题为选考题#考生根据要求作答$
&一'必考题"共%&分$
分 "6$&"# '
设等比数列 满足 $+.% +"0+#(+#+*)+"(;$
&"'求$+.%的通项公式+
记 为数列 的前 项和 若 &#' 9.
% &故选 # !
""
"
,!
7!,问!题'"命考题查立等意价(转本化题思重想点的考运查用点"到属直于线中的档题距"离难转度化中"等点!点距离
由 可知直线过定点 设 解题思路 '
( .-1%#0#&
当直线 与 垂直时 点 到直线 .#&"
.-1%#0#& $)
)%.#""&" $%""
"$
.-1%#0
其中A 为最大确诊病例数 当$ @&7< '(&>:$A 时#标志着已
初步遏制疫情 则 约为 # 7< &45"::*'&!!'$
,'%&
-'%*
.'%%
/'%:
已知 & ' 则 & ' $$ 915#0915#0*" ("# 915#0%" (&!!'$
2020年全国卷Ⅲ高考文科数学试题及答案
2020年全国卷Ⅲ高考文科数学试题及答案注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则A ∩B 中元素的个数为 {}1235711A =,,,,,{}315|B x x =<<A .2 B .3 C .4 D .52.若,则z = )(1i 1i z +=-A .1–iB .1+iC .–iD .i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .104.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:,其中K 为最大确诊病0.23(53)()=1e t I K t --+例数.当I ()=0.95K 时,标志着已初步遏制疫情,则约为(ln19≈3) *t *t A .60B .63C .66D .695.已知,则 πsin sin=3θθ++()1πsin =6θ+()A .B .C .D .123323226.在平面内,A ,B 是两个定点,C 是动点,若,则点C 的轨迹为 =1AC BC ⋅A .圆B .椭圆C .抛物线D .直线7.设O 为坐标原点,直线x =2与抛物线C :交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标()220y px p =>为 A .(,0) B .(,0) C .(1,0) D .(2,0)14128.点到直线距离的最大值为 (0)1-,()1y k x =+C.6+2D.4+23,则C.b<c<a D.,BC=3,则tan B=C.4D.517.(12分)设等比数列{a n }满足,. 124a a +=138a a -=(1)求{a n }的通项公式;(2)记为数列{log 3a n }的前n 项和.若,求m . n S 13m m m S S S +++=18.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优) 2 16 25 2(良) 5 10 12 3(轻度污染) 6 7 8 4(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表); (3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好 空气质量不好附:,22()()()()()n ad bc K a b c d a c b d -=++++P (K 2≥k )0.050 0.010 0.001 k3.841 6.635 10.82819.(12分)如图,在长方体中,点,分别在棱,上,且,1111ABCD A B C D -E F 1DD 1BB 12DE ED =12BF FB =.证明:的取值范围.参考答案选择题答案 一、选择题 1.B 2.D 3.C 4.C 5.B 6.A 7.B 8.B 9.C10.A11.C12.D非选择题答案 二、填空题 13.7 14.15.116.323π三、解答题17.解:(1)设的公比为,则.由已知得{}n a q 11n n a a q -=, 1121148a a q a q a +=⎧⎪⎨-=⎪⎩解得.11,3a q ==所以的通项公式为. {}n a 1=3n n a -(2)由(1)知故 3log 1.n a n =-(1).2n n n S -=由得,即. 13m m m S S S +++=(1)(1)(3)(2)m m m m m m -++=++2560m m --=解得(舍去),.1m =-6m =18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:空气质量等级 1 2 3 4 概率的估计值0.430.270.210.09(2)一天中到该公园锻炼的平均人次的估计值为. 1(100203003550045)350100⨯+⨯+⨯=(3)根据所给数据,可得列联表:22⨯人次≤400人次>400 空气质量好3337。
2020年全国3卷 文科数学真题(pdf版含解析)
2020年全国3卷文科数学真题(解析版)一、选择题:(每小题5分,共60分)1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为()A.2B.3C.4D.5【答案】B 【详解】由题得,{5,7,11}A B ⋂=,所以A ∩B 中元素的个数为3.故选:B考点:集合的运算2.若()11+=-z i i ,则z =()A.1–iB.1+iC.–iD.i【答案】D 【详解】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i =.故选:D 考点:复数的运算3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为()A.0.01B.0.1C.1D.10【答案】C【详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍,所以所求数据方差为2100.01=1⨯故选:C考点:方差的性质4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为()(ln19≈3)A.60B.63C.66D.69【答案】C 【详解】()()0.23531t KI t e--=+ ,所以()()0.23530.951t KI t K e**--==+,则()0.235319t e *-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈.故选:C.考点:对数的运算5.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A.12B.33C.23D.22【答案】B【详解】由题意可得:13sin sin cos 122θθθ++=,则:3sin 122θθ+=,1sin cos 223θθ+=,从而有:sin coscos sin 663ππθθ+=,即3sin 63πθ⎛⎫+= ⎪⎝⎭.故选:B.6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆 B.椭圆C.抛物线D.直线【答案】A【详解】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-,从而:()()2AC BC x a x a y →→⋅=+-+,结合题意可得:()()21x a x a y +-+=,整理可得:2221x y a +=+,即点C 的轨迹是以AB 为半径的圆.故选:A.考点:轨迹方程7.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A.(14,0) B.(12,0) C.(1,0) D.(2,0)【答案】B【详解】因为直线2x =与抛物线22(0)y px p =>交于,C D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx COx π∠=∠=,所以(2,2)C ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.考点:抛物线8.点(0,﹣1)到直线()1y k x =+距离的最大值为()A.1B.C.D.2【答案】B【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.考点:直线的定点与点线距9.下图为某几何体的三视图,则该几何体的表面积是()A.6+4B.C.D.4+2【答案】C【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△由勾股定理得:AB AD DB ===∴ADB △是等边三角形∴211sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴表面积:632=⨯++.故选:C.考点:三棱锥表面积计算10.设a =log 32,b =log 53,c =23,则()A.a <c <bB.a <b <cC.b <c <aD.c <a <b【答案】A 【详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<.故选:A考点:对数大小比较11.在△ABC 中,cos C =23,AC =4,BC =3,则tan B =()A.B.C.D.【答案】C【详解】设,,AB c BC a CA b===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 299a cb B B B ac +-==∴==∴=故选:C考点:余弦定理与解三角形12.已知函数f (x )=sin x +1sin x,则()A.f (x )的最小值为2B.f (x )的图像关于y 轴对称C.f (x )的图像关于直线x π=对称D.f (x )的图像关于直线2x π=对称【答案】D【详解】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x xπ≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称;11(2)sin (),()sin (),sin sin f x x f x f x x f x x x ππ-=--≠-=+=Q 故B 错;()f x ∴关于直线2x π=对称,故C 错,D 对故选:D考点:函数的对称性二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________.【答案】7【详解】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A ,所以max 31227z =⨯+⨯=.故答案为:7.考点:线性规划14.设双曲线C :22221x y a b-=(a >0,b >0)的一条渐近线为y 2x ,则C 的离心率为_________.【答案】3【详解】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为2y =,所以2b a =,2213c b e a a==+=.3考点:双曲线的渐近线与离心率15.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.【答案】1【详解】由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aee a =+,整理可得:2210a a -+=,解得:1a =.故答案为:1.考点:导数的运算16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O,由于AM ==122S =⨯⨯=△ABC ,设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:2r =,其体积:3433V r π==.故答案为:3.考点:圆锥的内切球三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等比数列{a n }满足124a a +=,318a a -=.(1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m .【详解】(1)设等比数列{}n a 的公比为q ,根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩,所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=,整理得2560m m --=,因为0m >,所以6m =,18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级[0,200](200,400](400,600]1(优)216252(良)510123(轻度污染)6784(中度污染)72(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次≤400人次>400空气质量好空气质量不好附:22()()()()()n ad bc K a b c d a c b d -=++++,P (K 2≥k )0.0500.0100.001k3.8416.63510.828【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好3337空气质量好228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥因为11,BB BD B BB BD =⊂I 、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC =所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴因此1C 在平面AEF 内20.已知函数32()f x x kx k =-+.(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.【详解】(1)由题,'2()3f x x k =-,当0k ≤时,'()0f x ≥恒成立,所以()f x 在(,)-∞+∞上单调递增;当0k >时,令'()0f x =,得x ='()0f x <,得x <<令'()0f x >,得x <x >()f x在(上单调递减,在(,-∞,)+∞上单调递增.(2)由(1)知,()f x 有三个零点,则0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩即22203203k k ⎧+>⎪⎪⎨⎪-<⎪⎩,解得4027k <<,当4027k <<>,且20f k =>,所以()f x在上有唯一一个零点,同理1k --<32(1)(1)0f k k k --=--+<,所以()f x在(1,k --上有唯一一个零点,又()f x在(上有唯一一个零点,所以()f x 有三个零点,综上可知k 的取值范围为4(0,27.21.已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【详解】(1) 222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====,解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2) 点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又 90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y+=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:222311110555125211d ⨯-⨯+===+,根据两点间距离公式可得:()()2265205AQ =++-=,∴APQ 面积为:1555252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+=+,根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1518522185=,综上所述,APQ 面积为:52.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2222x t t y t t ⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点.(1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==;(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.[选修4-5:不等式选讲]23.设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c.【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++= ,()22212ab bc ca a b c ∴++=-++.,,a b c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .2020年全国3卷文科数学真题(原卷版)一、选择题:(每小题5分,共60分)1已知集合A ={1,2,3,5,7,11},B ={x|3<x<15},则A ∩B 中元素的个数为()A.2B.3C.4D.52.若(1)1z i i +=-,则z =()A.1-iB.1+iC.-iD.i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为()A.0.01B.0.lC.1D.104.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:()0.23(53)1t K I t e--=+,其中K 为最大确诊病例数。
2020年高考全国卷三文科数学及答案解析
炼的人次,整理数据得到下表(单位:天):
(1)分别估计该市一天的空气质量等级为 1,2,3,4 的概率; (2)求一天中到该公园锻炼的平均人次的估计值(同组中的数据用该组区间的中点值
3
为代表); (3)若某天的空气质量等级为 1 或 2,则称这天“空气质量好”:若某天的空气质量等 级为 3 或 4,则称这天“空气质量不好”。根据所给数据,完成下面的列联 2 2 表,并 根据列联表,判断是否有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空 气质量有关?
x + y 0,
13.(5 分)若 x , y 满足约束条件 2x − y 0,则 z = 3x + 2 y 的最大值为
.
x 1,
2
14.(5
分)设双曲线 C
:
x2 a2
−
y2 b2
= 1(a
0,b
0) 的一条渐近线为
y
=
2x ,则C 的离心
率为
.
15.(5 分)设函数 f ( x) = ex .若f '(1) = e,则a = ______.
(2)一天中到该公园锻炼的平均人次的估计值为 350 人次。
(3)
人次≤400
人次>400
合计
空气质量好
33
37
70
气质量不好
22
8
30
2020.07
11 12 CD
6
合计
55
45
100
有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关。
19.(1)证明:当 AB = BC 时, EF ⊥ AC
a , b , c 三数中必有正数,则可设 c>0
全国高考文科全国卷数学试题及答案
年普通高等学校招生全国统一考试文科数学卷3注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上;写在本试卷上无效;3.考试结束后,将本试卷和答题卡一并交回;一、选择题:本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的;1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数(2)=-+的点位于z i iA.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量单位:万人的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos 3αα-=,则sin 2α=A .79- B .29- C . 29D .795.设,x y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z x y =-的取值范围是A .-3,0B .-3,2C .0,2D .0,36.函数1()sin()cos()536f x x x ππ=++-的最大值为A .65B .1C .35D .157.函数2sin 1xy x x=++的部分图像大致为 A . B .C .D .8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A .5 B .4 C .3 D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .π B .34π C .2πD .4π10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .1312.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a =A .12-B .13C .12D .1二、填空题:本题共4小题,每小题5分,共20分; 13.已知向量(2,3),(3,)a b m =-=,且a b ⊥,则m = .14.双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a = .15.ABC ∆的内角,,A B C 的对边分别为,,a b c ;已知60,3C b c ===,则A =_________;16.设函数1,0,()2,0,x x x f x x +≤⎧=⎨>⎩ 则满足1()()12f x f x +->的x 的取值范围是__________;三、解答题:共70分;解答应写出文字说明、证明过程或演算步骤;第17~21题为必考题,每个试题考生都必须作答;第22、23题为选考题,考生根据要求作答; 一必考题:共60分; 17.12分设数列{}n a 满足123(21)2n a a n a n +++-=.1求{}n a 的通项公式; 2求数列{}21na n +的前n 项和. 18.12分某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温单位:℃有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:10,1515,2020,2525,3030,3535,40最高气温天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率;1求六月份这种酸奶一天的需求量不超过300瓶的概率;2设六月份一天销售这种酸奶的利润为Y单位:元,当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.12分如图,四面体ABCD中,△ABC是正三角形,AD=CD.1证明:AC⊥BD;2已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.12分在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为0,1.当m 变化时,解答下列问题:1能否出现AC ⊥BC 的情况说明理由;2证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 21.12分已知函数()2(1)ln 2x ax a x f x =+++. 1讨论()f x 的单调性; 2当0a <时,证明3()24f x a≤--. 二选考题:共10分;请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分;22.选修4―4:坐标系与参数方程10分在直角坐标系xOy 中,直线1l 的参数方程为2,x t y kt =+⎧⎨=⎩t 为参数,直线2l 的参数方程为2,x m my k =-+⎧⎪⎨=⎪⎩m 为参数,设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .1写出C 的普通方程:2以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l:(cos sin )0ρθθ+-=,M 为3l 与C 的交点,求M 的极径.23.选修4—5:不等式选讲10分已知函数()||||f x x x =+1--2.1求不等式()f x ≥1的解集;2若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.年普通高等学校招生全国统一考试文科数学参考答案一、选择题1.B 2.C 3.A 4.A 5.B 6.A 7.D 8.D 9.B 10.C 11.A 12.C 二、填空题13.2 14.5 15.75° 16.1(,)4-+∞三、解答题 17.解: 1因为123(21)2n a a n a n +++-=,故当2n ≥时, 1213(23)2(1)n a a n a n -+++-=-两式相减得(21)2n n a -= 所以2(2)21n a n n =≥- 又由题设可得12a = 从而{}n a 的通项公式为221n a n =- 2记{}21na n +的前n 项和为n S 由1知21121(21)(21)2121n a n n n n n ==-++--+ 则1111112 (1335212121)n nS n n n =-+-++-=-++ 18.解:1这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为216360.690++=,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为2当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则64504450900Y =⨯-⨯=;若最高气温位于区间20,25,则63002(450300)4450300Y =⨯+--⨯=;若最高气温低于20,则62002(450200)4450100Y =⨯+--⨯=-所以,Y 的所有可能值为900,300,-100Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为3625740.890+++=,因此Y 大于零的概率的估计值为 19.解:1取AC 的中点O ,连结,DO BO ,因为AD CD =,所以AC DO ⊥又由于ABC ∆是正三角形,故BO AC ⊥从而AC ⊥平面DOB ,故AC BD ⊥2连结EO由1及题设知90ADC ∠=,所以DO AO = 在Rt AOB ∆中,222BO AO AB += 又AB BD =,所以ODABCE222222BO DO BO AO AB BD +=+==,故90DOB ∠=由题设知AEC ∆为直角三角形,所以12EO AC =又ABC ∆是正三角形,且AB BD =,所以12EO BD =故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:120.解:1不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为0,1,故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 2BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由1可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径2r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值; 21.解:1fx 的定义域为(0,)+∞,1(1)(21)()221x ax f x ax a xx++'=+++=若0a ≥,则当(0,)x ∈+∞时,()0f x '>,故()f x 在(0,)+∞单调递增若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1(,)2x a∈-+∞时,()0f x '< 故()f x 在1(0,)2a -单调递增,在1(,)2a-+∞单调递减; 2由1知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=--- 所以3()24f x a ≤--等价于113ln()12244a a a---≤--,即11ln()1022a a-++≤ 设()ln 1g x x x =-+,则1()1g x x '=- 当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞,()0g x '<; 所以()g x 在0,1单调递增,在(1,)+∞单调递减; 故当1x =时,()g x 取得最大值,最大值为(1)0g = 所以当0x >时,()0g x ≤从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤-- 22.解: 1消去参数t 得1l 的普通方程1:(2)l y k x =-;消去参数m t 得2l 的普通方程21:(2)l y x k=+ 设(,)P x y ,由题设得(2),1(2).y k x y x k =-⎧⎪⎨=+⎪⎩消去k 得224(0)x y y -=≠ 所以C 的普通方程为224(0)x y y -=≠2C 的极坐标方程为222(cos sin )4(22,)ρθθθπθπ-=<<≠联立222(cos sin )4,(cos sin )0ρθθρθθ⎧-=⎪⎨+=⎪⎩得cos sin 2(cos sin )θθθθ-=+ 故1tan 3θ=-,从而2291cos ,sin 1010θθ== 代入222(cos sin )4ρθθ-=得25ρ=,所以交点M23.解:13,1,()21,12,3,2x f x x x x -<-⎧⎪=--≤≤⎨⎪>⎩当1x <-时,()1f x ≥无解;当12x -≤≤时,由()1f x ≥得,211x -≥,解得12x ≤≤; 当2x >时,由()1f x ≥解得2x >所以()1f x ≥的解集为{|1}x x ≥2由2()f x x x m ≥-+得2|1||2|m x x x x ≤+---+,而 22|1||2|||1||2||x x x x x x x x +---+≤++--+235(||)24x =--+5 4≤且当32x=时,25|1||2|4x x x x+---+=故m的取值范围为5 (,]4 -∞。
2020年全国卷三文科数学高考试题(word版+详细解析版)
绝密★启用前2020年普通高等学校招生全国统一考试全国卷三文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1235711,,,,,A =,{}315|B x x =<<,则A ∩B 中元素的个数为 A .2 B .3C .4D .5答案:B解析:由交集的定义可知A ∩B ={5711},,,故选B 2.若)(1i 1i z +=-,则z =A .1–iB .1+iC .–iD .i答案:C解析:因为)(1i 1i z +=-,所以21i (1i)2i i 1i (1i)(1i)2z ---====-++-,故选C 3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为A .0.01B .0.1C .1D .10答案:C解析:数据10x 1,10x 2,…,10x n 的方差等于数据x 1,x 2,…,x n 的方差210,即0.011001⨯=,故选C4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()=1e t KI t --+,其中K 为最大确诊病例数.当*()0.95I t K =时,标志着已初步遏制疫情,则t *约为(ln193)≈A .60B .63C .66D .69答案:C解析:由0.23(53)()=1e t KI t --+可得ln 1()530.23K I t t ⎛⎫- ⎪⎝⎭=+-,所以若*()0.95I t K =时,*ln 1ln190.955353660.230.23K K t ⎛⎫- ⎪⎝⎭=+=+≈-,故选C. 5.已知πsin sin=3θθ++()1,则πsin =6θ+() A .12 BC .23 D答案:B解析:因为πsin sin =3θθ++()1,所以13sin sin sin 1226πθθθθθθ⎛⎫+=+=+= ⎪⎝⎭,所以πsin 6(+θ,故选B 6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为A .圆B .椭圆C .抛物线D .直线答案:A解析:取线段AB 的中点O ,则AC OC OA =-,BC OC OB OC OA =-=+,因为=1AC BC ⋅,所以221OC OA -=,所以22||||1OC OA =+,即|||OC OA =C的轨迹为以线段AB 中点为A。
(版)高考全国3卷文科数学与答案
绝密★启用前2021年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
考前须知:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:此题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项是符合题目要求的。
1.集合 A { 1,0,1,2},B {xx21},那么ABA. 1,0,1 B. 0,1 C. 1,1 D. 0,1,22.假设z(1 i) 2i,那么z=A.1 i B.1+i C.1 i D. 1+i3.两位男同学和两位女同学随机排成一列,那么两位女同学相邻的概率是1 1 1 1A. B. C.D.6 4 3 24.?西游记??三国演义??水浒传?和?红楼梦?是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过?西游记?或?红楼梦?的学生共有90位,阅读过?红楼梦?的学生共有80位,阅读过?西游记?且阅读过?红楼梦?的学生共有60位,那么该校阅读过?西游记?的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.85.函数 f(x) 2sinxsin2x 在[0,2π]的零点个数为A.2B.3C.4D.56.各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,那么a3=A.16B.8C.4D.27x1aey=2x+b.曲线y ae xlnx在点〔,〕处的切线方程为,那么-1,b=1D.a=e-1,A.a=e,b=-1B.a=e,b=1C.a=e b1文科数学试题第1页〔共9页〕8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,那么A.BM=EN,且直线BM、EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM、EN是异面直线D.BM≠EN,且直线BM,EN是异面直线为,那么输出s的值等于9.执行下边的程序框图,如果输入的1A.2241B.2251C.2261D.22710.F是双曲线C:x2y21的一个焦点,点P在C上,O为坐标原点,假设OP=OF,45那么△OPF的面积为3579A.B.C.D .222211.记不等式组xy?6,表示的平面区域为D.命题p:(x,y)D,2xy?9;命题2x y0q:(x,y)D,2x y,12.下面给出了四个命题①pq②pq③pq④p q这四个命题中,所有真命题的编号是A.①③B.①②C.②③D.③④12.设fx是定义域为R的偶函数,且在0, 单调递减,那么132A.f〔log32〕>f〔23〕B.f〔log3〕>f〔2423〕>f〔23〕>f〔22〕3C.f〔22223〕>f〔23〕>f〔log31〕D.f〔23〕>f〔22〕>f〔log31〕44文科数学试题第2页〔共9页〕二、填空题:此题共4小题,每题5分,共20分。
高考文科数学全国卷3试题及详细解析答案Word版
- 1 - 2018年一般高等学校招生全国一致考试全国卷III 文科数学注意事项1答题前先将自己的姓名、准考据号填写在试题卷和答题卡上并将准考据号条形码粘贴在答题卡上的指定地点。
2选择题的作答每题选出答案后用2B铅笔把答题卡上对应题目的答案标号涂黑写在试题卷、底稿纸和答题卡上的非答题地区均无效。
3非选择题的作答用署名笔挺接答在答题卡上对应的答题地区内。
写在试题卷、底稿纸和答题卡上的非答题地区均无效。
4考试结束后请将本试题卷和答题卡一并上交。
一、选择题此题共12小题每题5分共60分在每题给的四个选项中只有一项切合1已知会合|10Axx≥012B则ABA0 B1 C12 D012分析∵{|10}{|1}Axxxx{0,1,2}B∴{1,2}AB.故答案为C.212iiA3iB3i C3i D3i分析2(1)(2)23iiiii故答案为D.3中国古建筑借助榫卯将木构件连结起来构件的凸出部分叫棒头凹进部分叫卯眼图中木构件右侧的小长方体是棒头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体则咬合时带卯眼的木构件的俯视图能够是- 2 - 分析由几何体及选项可知答案为A.4若1sin3则cos2A89 B79 C79D89分析227cos212sin199.故答案为B.5既用现金支付也用非现金支付的概率为则不用现金支付的概率为A0.3 B0.4 C0.6 D0.7分析由题意.故答案为B.6函数2tan1tanxfxx的最小正周期为A4 B2 C D2分析 22222sintansincos1cos()sincossin2sin1tansincos21cosxxxxxfxxxxxxxxx∴()fx的周期22T.故答案为C.7以下函数中其图像与函数lnyx的图像对于直线1x对称的是Aln1yx B ln2yx C ln1yx D ln2yx 分析()fx对于1x对称则()(2)ln(2)fxfxx.故答案为B.8直线20xy分别与x轴y轴交于A B两点点P在圆 2222xy上则ABP面积的取值范围是A26 B48 C232D2232分析由直线20xy得(2,0),(0,2)AB∴22||2222AB圆22(2)2xy的圆心为(2,0)∴圆心到直线20xy的距离为222211∴点P- 3 - 到直线20xy的距离的取值范围为222222d即232d∴1||[2,6]2ABPSABd.故答案为A .9函数422yxx的图像大概为分析清除法。
高考全国卷3文科数学及答案(word精校版)之欧阳数创编
2019年普通高等学校招生全国统一考试全国卷3文科数学考试时间:2019年6月7日15:00——17:00使用省份:云南、广西、贵州、四川、西藏本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x=-=≤,,则A B=()A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,22.若(1i)2iz+=,则z=()A.1i--B.1+i-C.1i-D.1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.16B.14C.13D.124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6C.0.7D.0.85.函数()2sin sin2f x x x=-在[0,2π]的零点个数为()A.2B.3C.4D.56.已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A. 16B. 8C.4 D. 27.已知曲线e lnxy a x x=+在点(1,a e)处的切线方程为y=2x+b,则()A .a=e ,b =-1B .a=e ,b =1C .a=e -1,b =1D .a=e -1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于( ) A.4122- B.5122- C.6122- D.7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为( ) A .32B .52C .72D .9211.记不等式组6,20x y x y +⎧⎨-≥⎩表示的平面区域为D .命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.下面给出了四个命题①p q ∨②p q ⌝∨③p q ∧⌝④p q ⌝∧⌝这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则( )A .f (log 314)>f (322-)>f (232-) B .f (log 314)>f (232-)>f (322-) C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 第Ⅱ卷(非选择题,共90分) 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启封并使用完毕前
试题类型:
2016年普通高等学校招生全国统一考试
文科数学
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.
ﻩ3.全部答案在答题卡上完成,答在本试题上无效.
ﻩ4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目
要求的.
(1)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =
(A){48},ﻩ (B){026},
, (C ){02610},,,ﻩ (D){0246810},,,,, (2)若43i z =+,则
||z z = (A)1ﻩﻩﻩ(B )1-ﻩ
(C)43+i 55ﻩﻩ(D)43i 55-
(3)已知向量BA →=(12,2
),BC →=(2,12),则∠AB C= (A )30°(B)45°
(C )60°(D )120°
(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是
(A)各月的平均最低气温都在0℃以上
(B)七月的平均温差比一月的平均温差大
(C)三月和十一月的平均最高气温基本相同
(D)平均最高气温高于20℃的月份有5个
(5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是
(A)
8
15(B)
1
8(C)
1
15
(D)
1
30
(6)若tanθ=
1
3,则cos2θ=
(A)
4
5
-
(B)
1
5
-
(C)
1
5(D)
4
5
(7)已知
421
333
2,3,25
a b c
===
,则
(A)b<a<cﻩ(B) a<b<cﻩﻩ (C)b<c<a (D)c<a<b (8)执行右面的程序框图,如果输入的a=4,b=6,那么输出的n=
(A)3(B)4(C)5(D)6
(9)在ABC中,B=
1
,,sin 4
3
BC BC A
π
=
边上的高等于则
(A)
3
10(B)
10
(C)
5
(D)
310
(10)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表
面积为
(A)18365
+
(B)54185
+
(C)90
(D)81
(11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是
(A)4π(B)
9π
2
(C)6π(D)
32π
3
(12)已知O为坐标原点,F是椭圆C:
22
22
1(0)
x y
a b
a b
+=>>的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为
(A)13(B)12(C )23(D)34
第I I卷
本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.
二、填空题:本大题共3小题,每小题5分
(13)设x,y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩
则z =2x+3y –5的最小值为______.
(14)函数y=sin x –cosx 的图像可由函数y =2sin x 的图像至少向右平移______个单位长度得到.
(15)已知直线
l:60x -+=与圆x2+y 2=12交于A 、B 两点,过A 、B 分别作l 的垂线与x轴交于C 、
D 两点,则|CD|= .
(16)已知f (x)为偶函数,当0x ≤时,1()x f x e
x --=-,则曲线y = f (x )在点(1,2)处的切线方程式_______
______________________.
三.解答题:解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.
(I)求23,a a ;
(II )求{}n a 的通项公式.
(18)(本小题满分12分)
下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
注:年份代码1–7分别对应年份2008–2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t的关系,请用相关系数加以说明;
(Ⅱ)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注:
参考数据:719.32i i y
==∑,7140.17i i i t y ==∑,721()0.55i
i y y =-=∑,≈2.646.
参考公式:12
2
11()()()(y y)n
i i
i n n i
i i i t t y y r t t ===--=--∑∑∑, 回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:
12
1()()()n
i i
i n i
i t t y y b t t ==--=-∑∑,=.a y bt - (19)(本小题满分12分)
如图,四棱锥P-ABC D中,P A⊥地面ABCD,AD ∥BC ,AB=AD=AC=3,P A=B C=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.
(I)证明M N∥平面PA B;
(I I)求四面体N-B CM 的体积.
(20)(本小题满分12分)
已知抛物线C :y2
=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B两点,交C 的准线于P ,Q两点.
(Ⅰ)若F在线段AB 上,R是PQ 的中点,证明AR ∥FQ;
(Ⅱ)若△PQ F的面积是△ABF 的面积的两倍,求A B中点的轨迹方程.
(21)(本小题满分12分)
设函数()ln 1f x x x =-+.
(I)讨论()f x 的单调性;
(II)证明当(1,)x ∈+∞时,11ln x x x
-<<; (II I)设1c >,证明当(0,1)x ∈时,1(1)x c x c +->.
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号
(22)(本小题满分10分)选修4—1:几何证明选讲
如图,⊙O中的中点为P ,弦P C,PD分别交AB 于E ,F 两点。
(Ⅰ)若∠PFB =2∠PCD ,求∠P CD 的大小;
(Ⅱ)若E C的垂直平分线与FD 的垂直平分线交于点G ,证明OG ⊥CD 。
(23)(本小题满分10分)选修4—4:坐标系与参数方程
在直线坐标系xoy 中,曲线C1的参数方程为(为参数)。
以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ()=.
(I)写出C1的普通方程和C2的直角坐标方程;
(II)设点P在C1上,点Q在C2上,求∣PQ∣的最小值及此时P的直角坐标.(24)(本小题满分10分),选修4—5:不等式选讲
已知函数f(x)=∣2x-a∣+a.
(I)当a=2时,求不等式f(x)≤6的解集;
(II)设函数g(x)=∣2x-1∣.当x∈R时,f(x)+g(x)≥3,求a的取值范围。
参考答案。