2016-2017学年度第二学期期中考试七年级数学试卷(word版有答案)

合集下载

湖北省2016-2017学年度第二学期期中考试七年级数学试卷

湖北省2016-2017学年度第二学期期中考试七年级数学试卷

湖北省2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(3分×10=30分) 下面每个小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的字母代号填在答题卷中 1. 点()P 1,3- 在A . 第一象限B . 第二象限C . 第三象限D . 第四象限 2. 在同一平面内,不重合的两条直线的位置关系是A . 平行B . 相交C . 平行或相交D . 平行或垂直3. 在实数范围内有意义,则x 的取值范围是A . x 5>B . x 5≥C . x 5≠D .x 0≥4. 在实数:2,5π--中,无理数的个数有A .1 个B .2 个C .3 个D .4 个5. 如图,点E 在BC 的延长线上,则下列条件中,不能判定AB CD ∥ 的是A .3=4∠∠B .B=DCE ∠∠C .1=2∠∠D .D DAB=180∠+∠︒6. 点()M 4,2 关于x 轴对称的点的坐标是A .()42-,B .()4,2-C .()4,2--D .()2,47. 下列各式中正确的是A 4±BCD 348. 同一平面内的四条直线满足a b,b c,c d ⊥⊥⊥ ,则下列式子成立的是A .a b ∥B .b d ⊥C .a d ⊥D .b c ∥9. 下列四个命题:①两条直线被第三条直线所截,同位角相等;②0.1 的算术平方根是0.01 ;③计算=5;④如果点()P 32n,1- 到两坐标轴的距离相等,则n 1= ;其中是假命题的个数是A .1 个B .2 个C .3 个D .4 个10. 在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内部不包含边界上的点。

观察如图2所示的中心在原点、一边平行于x 轴的正方形:边长为1 的正方形内部有1 个整点,边长为2 的正方形内部有1 个整点,边长为3 的正方形内部有9 个整点,……,则边长为9 的正方形内的整点个数为A .64B .49C .36D .81二、填空题(3分×6=18分)11. 9 的平方根是____________; 12. 命题:两个角的和等于平角时,这两个角互为补角。

20162017年度七年级下期中测验数学试卷(含答案)

20162017年度七年级下期中测验数学试卷(含答案)

20162017 年度七年级下期中测试数学试卷 ( 含答案 )————————————————————————————————作者:————————————————————————————————日期:2016-2017 学年度七年级下期中考试数学试卷一、精心选一选.(本大题共 10 个小题,每题 3 分,共 30 分.1.以下运算正确的选项是().A . a5+ a5 =a 10B . a6×a4=a 24C . a0÷a -1 =aD. (a2)3=a 52.以下关系式中,正确的是()..A.(a -b) 2 =a 2-b 2B.(a+ b) (a-b)=a 2-b 2C.(a+b) 2 =a 2+b 2D.(a+b) 2=a 2+ ab +b 23.大象是世界上最大的陆栖动物,它的体重的百万分之一相当于()的体重A. 袋鼠B. 啄木鸟C. 蜜蜂D. 小鸡4.假如一个角的补角是 130 °,那么这个角的余角的度数是()A.20°B. 40°C.70° D .130 °5. 以下哪组数能构成三角形()A、4,5,9B、8,7,15C、5,5,11D、13 ,12,206.4 ㎝,另一边为5 ㎝,则它的周长为 ()假如一个等腰三角形的一边为A、 14B、 13C、14 或 13 D 、、没法计算7.以下说法中,正确的选项是()A.内错角相等.B.同旁内角互补.C.同角的补角相等.D. 相等的角是对顶角.8.以长为 3,5,7,10 的四条线段中的三条为边,能构成三角形的个数为()A. 1B.2C.3 D . 49.如图1,以下条件中,能判断DE∥AC的是()A. ∠EDC= ∠EFCB.∠AFE= ∠ACDC. ∠1= ∠2D. ∠3= ∠4图1 10. 已知 x a=3,x b =5, 则 x2a-b =()A. 3B.6C.9D. 1 555二、仔细填一填(每题 3 分,合计 24)11.有两根长 3 ㎝、4 ㎝的木棒,选择第三根木棒构成三角形,则第三根木棒第范围是。

2016-2017学年七年级下数学期中试卷及答案

2016-2017学年七年级下数学期中试卷及答案

2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(本题有 小题,每题 分,共 分) 、下面四个图形中 与 是对顶角的是( )✌. . . .、方程组的解为( ) ✌....、在♊ ⍓;♋⌧﹣ ⍓;♌⌧⍓;♍ ⍓四个式子中,不是二元一次方程的有( ) ✌. 个 . 个 . 个 . 个 、如图所示,图中 与 是同位角的是( )2(1)11212(3)12(4)✌、 个 、 个 、 个 、 个 .下列运动属于平移的是( )✌.冷水加热过程中小气泡上升成为大气泡 .急刹车时汽车在地面上的滑动 .投篮时的篮球运动 .随风飘动的树叶在空中的运动、如图 ,下列能判定✌的条件有☎ ✆个☎✆ ︒=∠+∠180BCD B ; ☎✆21∠=∠;☎✆ 43∠=∠; ☎✆ 5∠=∠B✌. . .  、下列语句是真命题的有☎ ✆♊点到直线的垂线段叫做点到直线的距离; ♋内错角相等;♌两点之间线段最短; ♍过一点有且只有一条直54D3E21C B A图线与已知直线平行;♎在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行.✌. 个 . 个 . 个. 个、如图 ,把一个长方形纸片沿☜☞折叠后,点 、 分别落在 、 的位置,若 ☜☞,则 ✌☜☎ ✆✌、  、  、  、 、如图 ,直线21//l l , ✌, ,则  ( )✌.  .  .  . 、如图 ,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点 到 的方向平移到 ☜☞的位置,✌, ,平移距离为 ,则阴影部分面积为( )✌∙∙∙∙ ∙∙∙∙ ∙∙∙∙ ∙∙二、填空题(本题有 小题, 题 分,其余每题 分,共 分) 、﹣ 的立方根是的平方根是 如果,那么♋ ,的绝对值是 , 2的小数部分是♉♉♉♉♉♉♉、命题❽对顶角相等❾的题设 ,结论、( )点 在第二象限内, 到⌧轴的距离是 ,到⍓轴的距离是 ,那么点 的坐标为♉♉♉♉♉♉♉ ( )若,则、如图 ,一艘船在✌处遇险后向相距  海里位于 处的救生船报警.用方向和距离描述遇险船相对于救生船的位置图图F EDCB音乐台湖心亭牡丹园望春亭游乐园(2,-2)孔桥、 ✌的两边与  的两边互相平行,且 ✌比 的 倍少 ,则 ✌的度数为♉♉♉♉♉♉♉、在平面直角坐标系⌧⍓中,对于点 (⌧,⍓),我们把点 ( ⍓,⌧)叫做点 的伴随点.已知点✌ 的伴随点为✌ ,点✌ 的伴随点为✌ ,点✌ 的伴随点为✌ ,⑤,这样依次得到点✌ ,✌ ,✌ ,⑤,✌⏹,⑤.若点✌ 的坐标为( , ),则点✌ 的坐标为 , 点✌  的坐标为♉♉♉♉♉♉♉♉♉ 三、解答题(本题有 小题,共 分)、(本题有 小题,每小题 分,共 分)(一)计算:( )322769----)( ( ))13(28323-++-☎✆ ☎- ✆+ ☎ +✆. (二)解方程:( ) ⌧ . ( )(⌧﹣ )  ( )、(本小题 分)把下列各数分别填入相应的集合里:38,3,- ,3π,722,32-,87-, ,- ••02, ,7-, ⑤☎每两个相邻的 中间依次多 个 ✆. ☎✆正有理数集合: ⑤❝; ☎✆负无理数集合:⑤❝;、(本小题 分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示 可是她忘记了在图中标出原点和⌧轴 ⍓轴 只知道游乐园 的坐标为( ,- ), 请你帮她画出坐标系,并写出其他各景点的坐标、(本小题 分)已知 是⌧的立方根,且(⍓) ,求的值.、(本小题 分)如图,直线✌、 、☜☞相交于点 .( )写出 ☜的邻补角;( )分别写出 ☜和 ☜的对顶角;( )如果 ,EFAB ,求 ☞和 ☞的度数.、(本小题 分)某公路规定行驶汽车速度不得超过 千米 时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中❖表示车速(单位:千米 时),♎表示刹车后车轮滑过的距离(单位:米),♐表示摩擦系数.在一次交通事故中,经测量♎米,♐.请你判断一下,肇事汽车当时是否超出了规定的速度?、(本小题 分)完成下列推理说明:( )如图,已知  ,  ,可推出✌.理由如下:因为  (已知),且  ( )所以  (等量代换) 所以 ☜☞( )所以 ( )又因为  (已知) 所以  (等量代换)所以✌( )( )如图,已知  ,  .求证: ☜ ☞☜.证明:  (已知),✌ ( )( )又  (已知), (等量代换)✌☜( )  ☜ ☞☜( )、(本小题 分)如图,长方形 ✌中, 为平面直角坐标系的原点,点✌、 的坐标分别为✌( , ), ( , ),点 在第一象限.( )写出点 的坐标 ;( )若过点 的直线交长方形的 ✌边于点 ,且把长方形 ✌的周长分成 : 的两部分,求点 的坐标;( )如果将( )中的线段 向下平移 个单位长度,得到对应线段 , 在平面直角坐标系中画出 ,并求出它的面积.、(本小题 分)如图,已知  ,  ,你能判断 与 ✌☜的大小关系吗?并说明理由(本小题 分)如图,在平面直角坐标系中,点✌, 的坐标分别为(﹣ , ),( , ),现同时将点✌, 分别向上平移 个单位,再向右平移 个单位,分别得到点✌, 的对应点 , ,连接✌, , .得平行四边形✌( )直接写出点 , 的坐标;( )若在⍓轴上存在点 ,连接 ✌, ,使 ✌ 平行四边形✌,求出点 的坐标.( )若点 在直线 上运动,连接 , .请画出图形,直接写出 、 、 的数量关系.  学年度第二学期期中联考数学科 评分标准一、选择题(本大题共 小题,每小题 分,共 分)二、填空题(本大题共 小题, 题 分,其余每小题 分,共 分).  、 ± 、  、 ﹣、 2 .题设 两个角是对顶角  结论 这两个角相等.( ) ( , ) ( )  . 南偏西 °, 海里. °或 °  ☎答出一种情况 分) . ( ) 、 ( )三、解答题(本大题共 小题,共 分)☎分)☎一✆( )322769----)( ( ))13(28323-++-解:原式= (- ) … 解:原式=232223-++-…… = …………………… =…233-……… ☎✆ ☎- ✆+ ☎ +✆. 解:原式=13222++-……=222+ ……………………(二)( ) ⌧ . ( )(⌧﹣ ) 题号答案✌✌✌解:⌧ ,…… ⌧﹣ 或⌧﹣ ﹣ ……⌧±,…… ⌧═ 或⌧…… (求出一根给 分)( ),(⌧ )  ,…… ⌧ ,…… ⌧.……(本小题 分)解:☎✆正有理数集合: 38,722, ,…❝ …… 分 ☎✆负无理数集合: 32-,7-,…❝.…… 分(本小题 分)解:( )正确画出直角坐标系;…… 分( )各点的坐标为✌☎✆( , ), (﹣ , ),☜( , ),☞( , );…… 分 (本小题 分)解:∵ 是⌧的立方根, ∴⌧,…… ∵(⍓﹣ ) ,∴, 解得:,……∴.……(本小题 分)解:( )∠ ☞和∠☜……( )∠ ☜和∠ ☜的对顶角分别为∠ ☞和∠✌☞.…… ( )∵✌⊥☜☞ ∴∠✌☞∠ ☞°∴∠ ☞∠ ☞∠ ° ° °…… 又∵∠✌∠ °∴∠☞∠✌☞∠✌° ° °.……(本小题 分)解:把♎,♐代入❖ ,❖  ( ❍♒)……∵ > , ……∴肇事汽车当时的速度超出了规定的速度.…….( 分)( )如图,已知∠ ∠ ,∠ ∠ ,可推出✌∥ .理由如下:因为∠ ∠ (已知),且∠ ∠ (对顶角相等)……所以∠ ∠ (等量代换)所以 ☜∥ ☞(同位角相等,两直线平行)……所以∠ ∠ (两直线平行,同位角相等)……又因为∠ ∠ (已知)所以∠ ∠ (等量代换)所以✌∥ (内错角相等,两直线平行)……( )在括号内填写理由.如图,已知∠ ∠ °,∠ ∠ .求证:∠☜∠ ☞☜.证明:∵∠ ∠ °(已知),∴✌∥  (同旁内角互补,两直线平行)……∴∠ ∠ ☜(两直线平行,同位角相等)……又∵∠ ∠ (已知),∴∠ ☜∠ (等量代换)……∴✌∥ ☜(内错角相等,两直线平行)……∴∠☜∠ ☞☜(两直线平行,内错角相等)…….( 分)解:( )点 的坐标( , );……( )长方形 ✌周长 ×( ) ,∵长方形 ✌的周长分成 : 的两部分,∴两个部分的周长分别为 , ,∵ ✌∴ ∵ ,∴ ,∴点 的坐标为( , );……( )如图所示,△ ′ ′即为所求作的三角形,……′ ,点 ′到 ′的距离为 ,所以,△ ′ ′的面积 × × .……( 分)解:∠ 与∠✌☜相等,……理由为:证明:∵∠ ∠ °,∠ ∠ ☞☜°,∴∠ ∠ ☞☜ ……∴✌∥☜☞∴∠ ∠✌☜ ……又∠ ∠∴∠ ∠✌☜∴ ☜∥ ……∴∠ ∠✌☜……、(本小题 分)解:( ) ( , ), ( , );……( )∵✌, ,∴ 平行四边形✌ ✌• × ,设 坐标为( ,❍),∴× × ❍,解得❍±∴ 点的坐标为( , )或( ,﹣ );…… (求出一点给 分)( )当点 在 上,如图 ,∠ ∠ ∠ ;……当点 在线段 的延长线上时,如图 ,,∠ ﹣∠ ∠ ;……同理可得当点 在线段 的延长线上时,∠ ﹣∠ ∠ .…… ☎每种情况正确画出图形给 分✆。

【一中】2016-2017学年第二学期初一数学期中试卷及答案

【一中】2016-2017学年第二学期初一数学期中试卷及答案

D . (a)6 a3 a3 .
故选 D .
D. (a)6 a3 a3
3.下列命题:①两直线平行,同旁内角互补;②如果 a ∥b , b∥c ,那么 a ∥c ;③直角都相等;④
相等的角是对应角.其中,真命题有( ).
A.1 个
B. 2 个
C. 3 个
D. 4 个
【答案】C
【解析】①两直线平行,同旁内角互补(正确).

二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解题过程,请把答案直接填写在答. 题.卷.相.应.位.置.上)
9.钓鱼岛列岛是我国固有领土,共由 8 个岛屿组成,其中最大的岛是钓鱼岛,面积约为 4.3 平方公里, 最小的岛是飞濑岛,面积约为 0.0008 平方公里,请用科学记数法表示飞濑岛的面积约为__________ 平方公里.
【答案】 3
【解析】

1 3
100

3101



1 3
100

3100

3
(1)100 3
3.
12.如图,将三角尺的顶点放在直尺的一边上,∠1 30 .∠3 20 ,则∠2 __________.
1 3
2
【答案】 50 【解析】∵∠1 30 ,∠3 20 , ∴∠4 50 , ∵ AB ∥CD , ∴∠2 ∠4 , ∴∠2 50 .
南京中小学辅导 1对1、3人班、8人班
∵∠BAC 70 , ∴∠AGD 110 .

22.( 8 分)如图,每个小正方形的边长为1,在方格纸内将 △ABC 经过一次平移后得到 △ABC ;,图 中标出了点 B 的对应点 B .

初级中学16—17学年下学期七年级期中考试数学试题(附答案)

初级中学16—17学年下学期七年级期中考试数学试题(附答案)

54D 3E21C B A2016-2017学年第二学期期中考试七年级数学试卷(问卷)(卷面分值:100分;考试时间:100分钟)同学们,半个学期的勤奋,今天将展现在试卷上,老师相信你一定会把诚信答满试卷,......................................也一定会让努力书写成功,答题时记住细心和耐心。

.......................注意事项:本卷由问卷和答卷两部分组成,其中问卷共4页,答卷共2页,在问卷上答题无效。

一.选择题(本大题共8小题,每小题3分,共24分)1. 4的平方根是( )A . ±2B .2C .±D .2.点P (-1,5)所在的象限是( )A .第一象限B .第二象限C.第三象限 D.第四象限3.下列各组图形,可由一个图形平移得到另一个图形的是( )A B C D4.如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( )A.130°B.140°C.150°D.160 (第4题图)5.已知是二元一次方程4x+ay=7的一组解,则a 的值为( )A .﹣5B .5C .D .﹣6.如右图,下列能判定AB ∥CD 的条件有( )个. (第6题图) (1) ︒=∠+∠180BCD B (2)21∠=∠(3) 43∠=∠ (4) 5∠=∠B A . 1 B .2 C .3D.4 7.下列各组数中,互为相反数的组是( )A .﹣2与B .﹣2和C .﹣与2D .|﹣2|和28.下列命题:①两直线平行,内错角相等;②如果m 是无理数,那么m 是无限小数;③64的立方根是8;④同旁内角相等,两直线平行;⑤如果a 是实数,那么a 是无理数.其中正确的有( )A .1个B .2个C .3个D .4个二.填空(本大题共6小题,每小题3分,共18分)9.若32123=---n m y x 是二元一次方程,则m=____,n=____.10.计算:|3﹣π|+的结果是 .11.已知点P(0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.12.已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为 . (第13题图) 13.如图,一张宽度相等的纸条,折叠后,若∠ABC=120°,则∠1的度数为 .14.在平面直角坐标系中,点A 的坐标为(﹣1,3),线段AB ∥x 轴,且AB =4,则点B 的坐标为 .三、计算解答题 (每小题5分,共20分)15.计算:364+2)3(--31- 16.1+2)451(- .17.解二元一次方程组:18.已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.四、解答题:(19题6分,20题8分,21题6分,22题8分,23题10分共38分)19. 某工程队承包了修建隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了50米.求甲、乙两个班组平均每天各掘进多少米?20.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.证明:∵∠1=∠2 (已知)∴∥()∴∠E=∠()又∵∠E=∠3 (已知)∴∠3=∠()∴AD∥BE.()21.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.22.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.A PB 1l 2l 3l 1 2 323如图,已知直线 1l ∥2l ,且 3l 和1l 、2l 分别交于A 、B 两点,点P 在直线AB 上.(1)试找出∠1、∠2、∠3之间的关系并说明理由;(2)当点P 在A 、B 两点间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(只写结论)(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3 之间的关系。

16—17学年下学期七年级期中考试数学试题(附答案)

16—17学年下学期七年级期中考试数学试题(附答案)

永春一中初一年级期中考数学科试卷(2017.4)命题:学校指定命题 考试时间:120分钟 试卷总分:150分说明: (1)试卷分为第Ⅰ卷、第Ⅱ卷,答案一律做在第Ⅱ卷上.(2)一律用黑色水笔作答;不能使用涂改液/带.(3)考生只交第Ⅱ卷,第Ⅰ卷由考生带回保管.第I 卷 班级: 姓名: 座号:一、选择题(共10小题,每题4分,满分40分) 1、方程m x =+13的解是2=x ,则m 的值是( )A .4 ;B .5;C . 6 ;D .7 . 2、若a 是任意有理数,则下列不等式中一定成立的是( )A .2)1(+a >0 ; B .12+a >0; C .a 2>a ; D .2a >0.3、下列图形是轴对称图形的是( )A .B .C .D .4、已知8元刚好买到1支百合和2朵玫瑰花,17元刚好买到4支百合和3朵玫瑰花, 则买1支百合和1朵玫瑰花需要( )A .4元;B .5元;C .6元;D .7元.5、把下列某不等式组的解集在数轴上表示,如图所示,则这个不等式组是( )A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥ C .41x x >⎧⎨>-⎩, D .41x x ⎧⎨>-⎩≤, 6、下列长度的各组线段能组成三角形的是( )A .3cm 、8cm 、5cm ;B .12cm 、5cm 、6cm ;C .5cm 、5cm 、10cm ;D .15cm 、10cm 、7cm . 7、小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+13,3y x y x 时得到了正确结果⎩⎨⎧=⊕=1y x ,后来发现“ ”“ ”处被墨水污损了,请你帮他找出 、 处的值分别是( ) A . = 1, = 1; B . = 2, = 1; C . = 1, = 2; D . = 2, = 2. 8、下列几种形状的瓷砖中,只用一种不能够铺满地面的是( ) A .正三角形; B .正四边形; C .正五边形; D .正六边形.9、若关于x的不等式⎩⎨⎧≤-≤-127xmx的整数解共有4个,则m的取值范围是()A.76<<m B.76<≤m C.76≤≤mD.76≤<m10、如图所示,O是锐角三角形ABC内一点,∠AOB=∠BOC=∠COA=120°,P是△ABC内不同于O的另一点,△A′BO′、△A′BP′分别由△AOB、△APB旋转而得,旋转角都为60°,则下列结论中正确的有( ).(提示:有一个角是60°的等腰三角形是等边三角形)A.1个B.2个C.3个D.4个①△O′BO为等边三角形,且A′、O′、O、C在一条直线上.②A′O′+O′O=AO+BO.③A′P′+P′P=PA+PB.④PA+PB+PC>AO+BO+CO.二、填空题(共6小题,每题4分,满分24分)11、七边形的外角和等于.12、已知一个等腰三角形有两边的长分别为2和5,则它的周长为.13、方程组⎪⎩⎪⎨⎧-=++=--=-2213cbacbca的解为.14、如图,△A′B′C′是由△ABC沿射线AC方向平移2cm得到,若AC=3cm,则A′C=cm.15、已知关于y的一元一次方程()byy-=+-25120171的解为3-=y,那么关于x的一元一次方程()bxx-+=+12520171的解为.(第14题) (第16题) 16、如上图有九个空格,要求每个格中填入一个数,使得每行、每列、每条对角线上的三个数之和都相等,①则图中a与b存在的数量关系是:;②若某三角形三边的长度刚好是图中的a 、b 与9,则字母a 的取值范围是: . 三、解答题(共9小题,满分86分) 17、(12分)解方程(组):(1) 1653=-x ; (2)⎩⎨⎧=-=4322y x yx18、(12分) 解下列不等式(组),并把它们的解集在数轴上表示出来: (1)12223+≥+-x x(2)⎩⎨⎧≥+<+4)1(231x x19、(7分)关于y x ,的方程组⎩⎨⎧=++=-my x m y x 523的解满足0>+y x ,求m 的取值范围;20、(7分)如图,在8×6正方形方格中,点A 、B 、C 在小正方形的顶点上. (1)在图中画出与△ABC 关于直线l 成轴对称的△AB′C′,并回答问题: 图中线段CC′被直线l ;(3分)(2)在直线l 上找一点D ,使线段DB+DC 最短.(不写作法,应保留作图痕迹)(2分) (3) 在直线l 确定一点P ,使得PB PA -的值最小.(不写作法,应保留作图痕迹)(2分)21、(7分)如图,在直角△ABC 中,∠C=90°,DE 垂直平分AB ,交BC 于点D 、交AB于点E .(1)若AD 平分∠CAB ,则∠B 的度数是 度;(3分) (2)若AB=10,△ACD 的周长为14,求△ACB 的周长.(4分)22、(7分)某地政府急灾民之所需,立即组织12辆汽车,将A 、B 、C 三种救灾物资共92吨一次性运往灾区,甲、乙、丙三种车型的汽车分别运载A 、B 、C 三种物资,每辆车按运载量满装物资。

2017年北师大版七年级下学期数学期中考试试题(含答案)(精)

2017年北师大版七年级下学期数学期中考试试题(含答案)(精)

WORD 版本2016-2017学年度第二学期 七年级数学期中考试试题一、精心选一选,请把唯一正确的答案填在下面表格。

(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案1、若∠1=30°,则∠1的余角等于( )A 、160°B 、150°C 、70°D 、60° 2、计算2x 2·(-3x 2)的结果是( )A 、-6x 5B 、6x 5C 、-2x 5D 、2x 6 3、下列各式计算正确的是( ) A. (xy 2)3=xy 6 B.(3ab)2=6a 2b 2 C.(-2x 2)2=-4x 4 D.(a 2b 3)m =a 2m b 3m4、当一个圆锥的底面半径变为原来的2倍,高变为原来的时,它的体积变为原来的( ) A .B .C .D .5、如图:不能推出a ‖b 的条件是( )A 、∠1=∠3B 、∠2=∠4C 、∠2=∠3D ∠2+∠3=180°姓名: 班别: 考号: 学校:1 a A D24 3 bB C E图1 图26、如图2,已知B、C、E在同一直线上,且CD‖AB,若∠A=105°,∠B=40°,则∠ACE=()A、145°B、105°C、40°D、35°7、下列说法错误的共有()个。

①错角相等,两直线平行。

②两直线平行,同旁角互补。

③相等的角是对顶角。

④两条直线被第三条直线所截,同位角相等。

⑤等角的补角相等。

A、0B、1C、2D、38、下列能用平方差公式计算的是()A、(a+1)(1+a)B、(a+b)(b-a)C、(-x+y)(x-y)D、(x2-y)(x+y2)9、小明家有一本200页的故事书,已知他每小时能看50页,星期天上午小明先看了故事书的一半后又做了一个小时的作业,然后他才继续看完这本书.下列能体现这本书剩下的页数y(页)与时间t(时)之间关系的是()WORD版本A.B.C.D.10、对于任意正整数n,按下列程序计算下去,得到的结果是()n 平方+n ÷n -n 答案A、随n的变化而变化B、不变,总是0C、不变,定值为1D、不变,定值为2二、细心填一填。

学16—17届七年级下学期期中考试数学试题(附答案)

学16—17届七年级下学期期中考试数学试题(附答案)

2016—2017学年度第二学期初一年级数学期中试卷一、选择题(每小题3分,共30分) 1.下列运算中,正确的是 ( )A.326a a a ⋅= B. 448b b b += C.824a a a ÷=D.2363(3)27p q p q -=-2.下列多项式相乘,能用平方差公式计算的是( )A .(2)(2)a b b a +-B .(23)(32)a b b a -+C .(3)(3)m n m n --+D 3. 如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( ) A .30° B .45° C . 60° D .75°第3题图 第5题图4.要使2(2)()x x b x a -+-中不含x 的一次项和二次项,则,a b 的值分别为( ) A .2,4a b =-=- B .2,4a b == C .2,4a b ==- D .2,4a b =-= 5.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D=∠B ;⑤∠1+∠3+∠B=180°.其中能说明AB ∥DC 的条件有 ( ) A .5个 B .4个 C . 3个 D .2个6. 海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.如下图所示,是某港口从0时到12时的水深情况,下列说法不正确的是 ( ) A .时间是自变量,水深是因变量;B .3时时水最深,9时时水最浅;C .0时到3时港口水深在增加,3时到12时港口水深在减少;D .图象上共有3个时刻水深恰好为5米.第6题图7. 已知3,2x y xy -=-=,则(2)(2)x y +-的值是( ) A .4 B .-8 C .12 D .08. 下列说法中,正确的个数是( ) (1)在同一平面内,不相交的两条线段一定平行; (2)相等的角是对顶角;(3)两条直线被第三条直线所截,同位角相等;(4)两条平行线被第三条直线所截,一对内错角的角平分线互相平行; (5)从直线外一点到这条直线的垂线段,叫做这个点到直线的距离; (6)两个角互补,则一个角一定是钝角,另一个角一定是锐角. A . 1个 B.2个 C .3个 D .4个9. 如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥OE 于O ,若∠AOD=70°,则∠AOF=( ).A .35°B .45°C .55°D .65°10. 已知2510a a --= ,则221a a +的值为( ) A .5 B .25 C . 23 D .27第9题图 二、填空题(每小题3分,共18分)11.(1)(1)p p -+= ,62()a a ÷-= ,201620170.25(4)⨯-= ;12. 在电子显微镜下测得一个球体细胞的直径是5510cm -⨯,3102⨯个这样的细胞排成的细AB CDEF1 胞链的长度是 ;13.一个角的余角与它的补角之比为1:4,则这个角的度数是 ; 14. 已知2249x mxy y -+是关于,x y 的完全平方式,则m = ;15. 如图,把矩形ABCD 沿EF 对折,若∠1 = 500,则∠AEF 等于 ;16. 已知 925,310,a b ==则23a b -= .第15题图三、解答题(共52分) 17.(共12分)计算题:(1)22313()2a b ab ⋅-(2)(23)()(2)(2)a b a b a b a b -+--+(3)43()()()x y y x y x -÷-⋅-(4)(23)(23)m n m n -++-18.(5,其中2,1x y =-=.19.(5分)尺规作图(保留作图痕迹,不写作法):已知αβ∠∠、,求作一个角,使它等于αβ∠-∠.20.(5分)如图所示,梯形上底的长是x,下底的长是15,高是8,梯形面积是y .(1)梯形面积y与上底长x之间的关系式是什么?(2)用表格表示当x从10变到15时(每次增加1),y的相应值;(3)当x每增加1时,y如何变化?(4)当x=0时,y等于什么?此时图形是什么?21.(4分)如图所示,一个窗户被装饰布挡住了一部分,其中窗户的长a与宽b之比是3:2,部分的面积.(结果用只含字母b的代数式表示,保留 .)22.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.23.(7分)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀将其均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于_____________; (2)请用两种不同的方法求图②中阴影部分的面积:方法1:___________________; 方法2:___________________. (3)根据(2)请写出代数式22(),(),m n m n mn +-之间的等量关系__________________________;(4)根据(3)题中的等量关系,解决如下问题:若7,5,a b ab +==求2()a b -的值.24.(8分)探究:如图①,已知直线12//l l ,直线3l 和12l l 、分别交于点C 和D ,直线3l 上有一点P.(1)若点P 在C 、D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间有怎样的关系?并说明理由.(2)若点P 在C 、D 两点的外侧运动时(点P 与点C 、D 不重合),请尝试自己画图,写出∠PAC ,∠APB ,∠PBD 之间的关系,并说明理由.(3)如图②,AB ∥EF ,∠C=90°,我们可以用类似的方法求出αβγ∠∠∠、、之间的关系,请直接写出αβγ∠∠∠、、之间的关系.图①图②西北大学附中初一年级数学期中试卷答案一、选择题 1. D 2. B 3. C 4. D 5. C 6. C 7. A 8. A 9. C 10. D 一、填空题11. 21p - 4a - -4 12. 1110-⨯cm 或0.1cm 13. 60° 14. 12± 15. 115° 16.120三、解答题17. (1)5738a b -(2)22a ab b -+ (3)222x xy y -+(4)224129m n n -+-18. 3126x x y --- 13319. 图略,注意写结论20.(1)1(15)84602y x x =+⨯=+ (2)(3)增加4(4)y=60 三角形 21.223216S b b π=- 22.141224//33//CE BF C B C B AB CD∠=∠∠=∠∴∠=∠∴∴∠=∠∠=∠∴∠=∠∴23. (1)m-n(2) 22(),()4m n m n mn -+- (3) 22()()4m n m n mn -=+- (4) 2924. (1)APB PAC PBD ∠=∠+∠ (2)上方:APB PBD PAC ∠=∠-∠ 下方:APB PAC PBD ∠=∠-∠(3)90αβγ∠+∠=∠+。

2016-2017学年数学七年级下学期期中试卷(含答案)

2016-2017学年数学七年级下学期期中试卷(含答案)

2016-2017学年数学七年级下学期期中试卷(考试时间120分钟满分150分)一.单项选择题(每小题3分,共36分)1.计算的结果是()A.﹣2 B.±2 C.2 D.42.在﹣1.732,,π,2+,3.212212221…(按照规律,两个1之间增加一个2)这些数中,无理数的个数为()A.5 B.2 C.3 D.43.在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.4.点P(1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.在下列式子中,正确的是()A.=﹣B.﹣=﹣0.6 C.=﹣13 D.=±6 6.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.75°B.15°C.105° D.165°7.如图,不能推出a∥b的条件是()A.∠1=∠3 B.∠2=∠4 C.∠2=∠3 D.∠2+∠3=180°8.下列语句中,错误的是()A.一条直线有且只有一条垂线B.不相等的两个角一定不是对顶角C.直角的补角必是直角D.两直线平行,同旁内角互补9.下列说法中正确的是()A.实数﹣a2是负数 B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.4911.下列说法正确的是()A.a,b,c是直线,且a∥b,b∥c,则a∥cB.a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是直线,且a∥b,b⊥c,则a∥cD.a,b,c是直线,且a∥b,b∥c,则a⊥c12.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|二.填空题(每小题4分,共24分)13.若x的立方根是﹣,则x=.14.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.15.的相反数是.16.点A在y轴左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度,则点A的坐标为.17.的算术平方根是.18.在数轴上表示a的点到原点的距离为3,则a﹣3=.三、计算(共90分)19.计算求值:(1)+﹣(2)﹣(3)|﹣|+2(4)3(x﹣1)3=﹣24.20.若a、b满足|a﹣2|+=0,求代数式的值.21.已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.22.已知:如图,a∥b,∠1=55°,∠2=40°,求∠3和∠4的度数.23.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.24.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2,且∠1=∠CGD,∴∠2=∠CG,∴CE∥BF,∴∠=∠C 两直线平行,同位角相等;又∵∠B=∠C(已知),∴∠BFD=∠B,∴AB∥CD.25.如图,(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标.(2)小影想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后的7个点的坐标.26.如图,AB∥CD,直L交AB、CD分别于点E、F,点M在线段EF上(点M 不与E、F重合),N是直线CD上的一个动点(点N不与F重合)(1)当点N在射线FC上运动时(F点除外),则∠FMN+∠FNM=∠AEF,说明理由?(2)当点N在射线FD上运动时(F点除外),∠FMN+∠FNM与∠AEF有什么关系?画出图形,猜想结论并证明.参考答案一.单项选择题1.C.2.D.3.C.4.D.5.A.6.C.7.C.8.A.9.B.10.B.11.A.12.A.二. 填空题13.答案为:﹣.14.答案为:.15.答案为:﹣2.16.答案为(﹣4,4).17.答案为:2.18.答案为:0或﹣6.三、计算题19.解:(1)+﹣=2+15﹣20=﹣3;(2)﹣=0.3﹣0.6=﹣0.3;(3)|﹣|+2=﹣+2=+;(4)3(x﹣1)3=﹣24,∴(x﹣1)3=﹣8,故x﹣1=﹣2,解得:x=﹣1.20.解:∵|a﹣2|+=0,∴a=2,b=﹣1.∴原式==﹣.21.解:∵∠ADE=∠B,∴DE∥BC,∴∠DEC+∠C=180°,又∵∠DEC=115°,∴∠C=65°.22.解:∵a∥b,∠1=55°,∠2=40°,∴∠5=∠1=55°,∠4=∠2+∠5=95°;∵∠2+∠3+∠5=180°,∴∠3=85°.∴∠3=85°,∠4=95°.23.证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.24.解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:(已知),(对顶角相等),(等量代换),(同位角相等,两直线平行),BFD,(内错角相等,两直线平行).25.解:(1)(2,3),(6,5),(10,3),(3,3),(9,3),(3,0),(9,0);(2)下平移3个单位长度,即所有点纵坐标减3,可得平移后坐标依次为(2,0),(6,2),(10,0),(3,0),(9,0),(3,﹣3),(9,﹣3).26.解:(1)∵AB∥CD,∴∠AEF+∠MFN=180°.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM=∠AEF.(2)∠FMN+∠FNM+∠AEF=180°.理由:如图所示,∵AB∥CD,∴∠AEF=∠MFN.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM+∠AEF=180°.。

2016-2017学年七年级下数学期中试卷及答案

2016-2017学年七年级下数学期中试卷及答案

2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(本题有10小题,每题4分,共40分) 1、下面四个图形中∠1与∠2是对顶角的是( )A. B. C. D.2、方程组的解为( ) A.B.C.D.3、在①+y=1;②3x ﹣2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有( ) A .1个B .2个C .3个D .4个4、如图所示,图中∠1与∠2是同位角的是( )2(1)1(2)1212(3)12(4)A 、1个B 、2个C 、3个D 、4个5.下列运动属于平移的是( )A .冷水加热过程中小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动 6、如图1,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B . A .1 B .2 C .3 D.47、下列语句是真命题的有( )①点到直线的垂线段叫做点到直线的距离; ②内错角相等;③两点之间线段最短; ④过一点有且只有一条直线与已知直线平行; ⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行. A .2个 B .3个 C .4个 D .5个8、如图2,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则54D3E21CB A图1∠AED′=( )A 、50°B 、55°C 、60°D 、65°9、如图3,直线21//l l ,∠A=125°,∠B=85°,则∠1+∠2=( )A .30°B .35°C .36°D .40°10、如图4,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.42B.96C.84D.48 二、填空题(本题有6小题,11题10分,其余每题4分,共30分) 11、﹣125的立方根是,的平方根是 ,如果=3,那么a=,的绝对值是 ,2的小数部分是_______12、命题“对顶角相等”的题设 ,结论13、(1)点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为_______; (2)若,则.14、如图5,一艘船在A 处遇险后向相距50 海里位于B 处的救生船 报警.用方向和距离描述遇险船相对于救生船的位置15、∠A 的两边与∠B 的两边互相平行,且∠A 比∠B 的2倍少15°,则∠A 的度数为_______16、在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(-y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 , 点A 2014的坐标为_________三、解答题(本题有10小题,共80分) 17、(本题有6小题,每小题3分,共18分)(一)计算:(1)322769----)( (2))13(28323-++-图4图5FEDCB A 音乐台湖心亭牡丹园望春亭游乐园(2,-2)孔桥(3)2(2-2)+3(3+13). (二)解方程:(1)9x 2=16. (2)(x ﹣4)2=4 (3)18、(本小题5分)把下列各数分别填入相应的集合里:38,3,-3.14159,3π,722,32-,87-,0,-0.∙∙02,1.414,7-,1.2112111211112…(每两个相邻的2中间依次多1个1).(1)正有理数集合:{ …}; (2)负无理数集合:{ …}; 19、(本小题6分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区 地图,如图所示.可是她忘记了在图中标出原点和x 轴. y 轴. 只知道游乐园D 的坐标为(2,-2), 请你帮她画出坐标系,并写出其他各景点的坐标.20、(本小题5分)已知2是x 的立方根,且(y-2z+5)2+=0,求的值.21、(本小题8分)如图,直线AB 、CD 、EF 相交于点O . (1)写出∠COE 的邻补角;(2)分别写出∠COE 和∠BOE 的对顶角;(3)如果∠BOD=60°,EF AB ⊥,求∠DOF 和∠FOC 的度数.22、(本小题4分)某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v 表示车速(单位:千米/时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度?23、(本小题11分)完成下列推理说明:(1)如图,已知∠1=∠2,∠B=∠C ,可推出AB ∥CD .理由如下:因为∠1=∠2(已知),且∠1=∠4()所以∠2=∠4(等量代换)所以CE∥BF()所以∠=∠3()又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD()(2)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD ()∴∠B= ()又∵∠B=∠D(已知),∴∠= ∠(等量代换)∴AD∥BE()∴∠E=∠DFE()24、(本小题6分)如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标;(2)若过点C的直线交长方形的OA边于点D,且把长方形OABC的周长分成2:3的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C′D′,在平面直角坐标系中画出△CD′C′,并求出它的面积.25、(本小题6分)如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.26(本小题11分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.得平行四边形ABDC(1)直接写出点C,D的坐标;(2)若在y轴上存在点M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.请画出图形,直接写出∠CPO、∠DCP、∠BOP的数量关系.2016-2017学年度第二学期期中联考数学科 评分标准一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,11题10分,其余每小题4分,共30分) 11. -5 、 ±3 、 9 、﹣2 、 2 -112.题设 两个角是对顶角 . 结论 这两个角相等 13.(1) (-3,4) .(2) 7.160 14. 南偏西15°,50海里15. 15°或115° . (答出一种情况2分) 16. (-3,1) 、 (0,4)三、解答题(本大题共11小题,共80分)17(18分)(一)(1)322769----)( (2))13(28323-++-解:原式=3-6-(-3) ...2 解:原式=232223-++-......2 =0 ........................3 =...233- (3)(3)2(2-2)+3(3+13).解:原式=13222++- (2)=222+ (3)(二)(1)9x 2=16. (2)(x ﹣4)2=4解:x 2=,......1 x ﹣4=2或x ﹣4=﹣2 (1)x=±,......3 x ═6或x=2 (3)题号 12345678910答案CDBCBCAAAD(求出一根给2分)(3),(x+3)3=27,......1 x+3=3,......2 x=0. (3)18(本小题5分)解:(1)正有理数集合:{38,722,1.414,…} ……3分 (2)负无理数集合:{32-,7-,…}.……5分 19(本小题6分)解:(1)正确画出直角坐标系;……1分(2)各点的坐标为A(0,4),B (-3,2),C (﹣2,-1),E (3,3),F (0,0);……6分 20(本小题5分)解:∵2是x 的立方根, ∴x=8,……1 ∵(y ﹣2z+5)2+=0,∴, 解得:, (3)∴==3. (5)21(本小题8分)解:(1)∠COF 和∠EOD (2)(2)∠COE 和∠BOE 的对顶角分别为∠DOF 和∠AOF .……4 (3)∵AB ⊥EF ∴∠AOF=∠BOF=90°∴∠DOF=∠BOF-∠BOD=90°-60°=30° (6)又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°. (8)22(本小题4分)解:把d=32,f=2代入v=16,v=16=128(km/h ) (2)∵128>80, (3)∴肇事汽车当时的速度超出了规定的速度. (4)23.(11分)(1)如图,已知∠1=∠2,∠B=∠C ,可推出AB ∥CD .理由如下:因为∠1=∠2(已知),且∠1=∠4(对顶角相等) (1)所以∠2=∠4(等量代换)所以CE∥BF(同位角相等,两直线平行) (2)所以∠ C =∠3(两直线平行,同位角相等) (4)又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD(内错角相等,两直线平行) (5)(2)在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行) (1)∴∠B=∠DCE(两直线平行,同位角相等) (3)又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换) (4)∴AD∥BE(内错角相等,两直线平行) (5)∴∠E=∠DFE(两直线平行,内错角相等) (6)24.(6分)解:(1)点B的坐标(3,2); (1)(2)长方形OABC周长=2×(2+3)=10,∵长方形OABC的周长分成2:3的两部分,∴两个部分的周长分别为4,6,∵OC+OA=5<6∴OC+OD=4∵OC=2,∴OD=2,∴点D的坐标为(2,0); (4)(3)如图所示,△CD′C′即为所求作的三角形, (5)CC′=3,点D′到CC′的距离为2,所以,△CD′C′的面积=×3×2=3. (6)25(6分)解:∠C与∠AED相等, (1)理由为:证明:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE (2)∴AB∥EF∴∠3=∠ADE (3)又∠B=∠3∴∠B=∠ADE∴DE∥BC (5)∴∠C=∠AED (6)26、(本小题11分)解:(1)C(0,2),D(4,2); (2)(2)∵AB=4,CO=2,∴S平行四边形ABOC=AB•CO=4×2=8,设M坐标为(0,m),∴×4×|m|=8,解得m=±4∴M点的坐标为(0,4)或(0,﹣4);……5(求出一点给2分)(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO; (7)当点P在线段BD的延长线上时,如图2,,∠BOP﹣∠DCP=∠CPO; (9)同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO. (11)(每种情况正确画出图形给1分)。

中学16—17学年下学期七年级期中考试数学试题(附答案)

中学16—17学年下学期七年级期中考试数学试题(附答案)

东莞市虎门捷胜学校2016-2017学年度第二学期七年级期中检测数学试卷一.选择题(3X10=30分)1. 下列各式中无意义的式子是()2. (2016湘西州)计算﹣的结果精确到0.01是(用科学计算器计算)( )A .0.30B .0.31C .0.32D .0.33 3. 在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( )A B C D 4. 点P (-3,5)所在的象限是( )A 第一象限B 、第二象限C 、第三象限D 、第四象限 5. 如图所示,∠1和∠2是对顶角的是( )21212112A BCD6.如图,点E 在BC 的延长线上,下列条件中不能判定AB CD ∥的是( ) A .∠3= ∠4B .∠1=∠2C . ∠B=∠DCED .∠D+∠DAB=1804321A BDCE第6题 第9题 7.下列说法正确的个数是( )abMPN12 3①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a b b c ,∥∥,则a c ∥; A .1个 B .2个 C .3个 D .4个8.点A 在x 轴的下方,y 轴的右侧,到x 轴的距离是3,到y 轴的距离是2,则点A 的坐标是( )A .(2,-3)B .(2,3)C .(3,-2)D .(-3,-2) 9.如图a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,则∠1+∠2+∠3= ( ) A .180B. 270C.360 D .54010.下列图形都是由边长为“1”的小正方形按一定规律组成,其中第1个图形有9个边长为1的小正方形,第2个图形有14个边长为1的小正方形……则第10个图形中边长为1的小正方形的个数为( )A .72B .64C .54D .50二、填空题:(本大题5个小题,每小题4分,共20分)请将每小题的正确答案填在相应的位置11.如图,想在河堤两岸搭建一座桥,搭建方式最短的是 ,理由 ; 12.一个正数的平方根是2a-7和a+4,求这个正数__________;13.在平面直角坐标系中,点P (3,﹣2)关于y 轴的对称点是 ,关于原点的对称点是 。

—17学年下学期七年级期中考试数学试题(附答案)(2)

—17学年下学期七年级期中考试数学试题(附答案)(2)

2016-2017学年度第二学期期中教学质量检测七年级数学卷一、选择题(每小题3分,共36分)1.方程组125x y x y -=⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=-⎩ C .12x y =⎧⎨=⎩ D .21x y =⎧⎨=⎩2.下列各式计算正确的是( )A .a 2+a 2=a 4B .(3x )2=6x 2C .(x 2)3=x 6D .(x+y )2=x 2+y 23.对于方程组⎩⎨⎧=--=+ 17y 5x 4 19y 7x 4,用加减法消去x ,得到的方程是( )A . 2y=-2B .2y=-36C .12y=-2D .12y=-36 4.若a +b =-1,则a 2+b 2+2ab 的值为 ( )A .1B .-1C .3D .-3 5.若多项式x 2+mx+4能用完全平方公式分解因式,则m 的值可以是( ) A .4 B .-4 C .±2 D .±4 6.下列各式是完全平方式的是()A .122-+x xB .21x +C .1++xy xD .412+-x x 7.计算:20172016)2()21(-⨯- 的结果是( ) A .20162- B .2- C .2 D .201728.因式分解x²y -4y 的正确结果是( )A .y (x+4)(x -4)B .y (x²-4 )C .y (x -2)²D .y (x+2)(x -2) 9.若y=kx+b 中,当x =-1时,y=1;当x =2时,y =-2,则k 与b 为( )A .⎩⎨⎧=-=11b kB .⎩⎨⎧=-=01b kC .⎩⎨⎧==21b kD .⎩⎨⎧-==41b k10.已知a+b=16,b+c=12,c+a=10,则a+b+c 等于( )A .19B .38C .14D . 2211.若(x-5)(2x-n)=2x 2+mx-15,则m 、n 的值分别是( )A .m=-7,n=3; B. m=7,n=-3; C .m=-7,n=-3; D .m=7,n=3; 12.甲、乙两地相距880千米,小轿车从甲地出发2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米.设大客车每小时行x 千米,小轿车每小时行y 千米,则可列方程组为( )A .B .C .D .请将选择题所选答案填入此表(每小题3分,共36分)二、填空题(每小题3分,共18分)13.把方程2x -y =7变形,用含x 的式子来表示y ,则y = ; 14.(-b )2·(-b )3·(-b )5= . 15.-2a (3a -4b )= . 16.若2x +y =3,则4x ·2y = . 17.因式分解 =+-3632a a18.若∣a -2∣+b 2-2b+1=0,则a 2-b =三、解答题(共66分) 19.解下列方程组(6分)(1) ⎩⎨⎧=--=523x y x y (2)⎩⎨⎧=-=+12354y x y x20.计算(6分)(1)101×99 (2)2)2()2)(2(b a b a b a --+-21.因式分解 (8分) (1 )3123x x - (2)1222-+-b ab a22.先化简,再求值(8分)22)()())((2b a b a b a b a -++--+ ,其中21,2==b a23.(8分)2辆大卡车和5辆小卡车工作2小时可运送垃圾36吨,3辆大卡车和2辆小卡车工作5小时可运输垃圾80吨,那么1辆大卡车和1辆小卡车1小时各运多少吨垃圾?24.(10分)已知:a+b=-3,ab=2,求下列各式的值:(1)a2b+ab2(2)a2+b2.25.(10分)已知方程组15,(1)4 2.(2)ax yx by+=⎧⎨-=-⎩甲由于看错了方程(1)中的a,得到方程组的解为31xy=-⎧⎨=-⎩,乙由于看错了方程(2)中的b,得到方程组的解为4,3.xy=⎧⎨=⎩,若按正确的计算,求x+6y的值。

2016—2017学年度下期期中七年级三校联考数学试卷

2016—2017学年度下期期中七年级三校联考数学试卷
AD//BC(同旁内角互补,两直线平行)
= (两直线平行,内错角相等)
, (已知)
(垂直的定义)
BD//EF(同位角相等,两直线平行)
= (两直线平行,同位角相等)
(等量代换)
23、(10分)(1)证明:BF与DE的位置关系是:BF//DE
理由:
…………3分

…………6分
(2) ,
…………10分
24、(10分)解:(1)设在政策出台前的一个月销售手动型和自动型汽车分别为x,y台,根据题意,得
(1)在图中画出平移后的△A1B1C1;
(2)直接写出△A1B1C1各顶点的坐标.
; ; ;
(3)求出△ABC的面积
21.(8分)已知a,b ,c满足 ,求a,b c的值。
22.(10分)完成下面推理过程。
如图:在四边形ABCD中, , 于点D, 于点F,求证:
证明: (已知)
AD//()
=()
, (已知)
, ,
答:政策出台前一个月销售手动型和自动型汽车分别为560台和400台.(6分)
(2)手动型汽车的补贴额为: (万元);
自动型汽车的补贴额为: (万元);
(万元).
客户购买实际花费:9(1+22%)-95%=10.98-0.45=10.53万元
答:政策出台后第一个月,政府对这1228台汽车用户共补贴516.2万元.客户实际需要花10.53万元才能够买一辆自动型的汽车.………10分
二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的正确答案填在相应的位置
13.如图,想在河堤两岸搭建一座桥,搭建方式最短的是,理由;
14.一个正数的平方根是2a-7和a+4,求这个正数__________;

中学2016-2017学年七年级(下)期中数学试卷(解析版)

中学2016-2017学年七年级(下)期中数学试卷(解析版)

七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.下列计算正确的是()A.a3•a2=a6 B.a5+a5=a10C.(﹣3a3)2=6a2D.(a3)2•a=a72.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°3.将0.00000573用科学记数法表示为()A.0.573×10﹣5 B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣64.(x﹣1)(2x+3)的计算结果是()A.2x2+x﹣3 B.2x2﹣x﹣3 C.2x2﹣x+3 D.x2﹣2x﹣35.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°6.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)7.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50°C.60°D.70°8.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DB,AC=DC9.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,下图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.下午5时体温最高C.这天中小明体温T(℃)的范围是36.5≤T≤37.5D.从5时到24时,小明的体温一直是升高的10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A .B .C .D .二、填空题(每小题3分,共24分)11.计算:(﹣2xy3z2)2=.12.如图,直线AB、CD、EF相交于一点,∠1=50°,∠2=64°,则∠COF=度.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=.14.如果多项式x2+8x+k是一个完全平方式,则k的值是.15.若5m=3,5n=2,则52m+n=.16.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.17.已知x+y=﹣5,xy=6,则x2+y2=.18.某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有个、个座位;第n排有个座位.排数1234….座位数50535659….三、作图题(每小题5分,共5分)19.(5分)如图,已知∠BAC及BA上一点P,求作直线MN,使MN经过点P,且MN ∥AC.(要求:使用尺规正确作图,保留作图痕迹)四、计算与求值(每小题25分,共25分)20.(25分)计算与求值(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3)(3)(﹣2x2y)2•3xy÷(﹣6x2y)(4)1122﹣113×111(用乘法公式计算)(5)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.五、解答题(共36分)21.(8分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:AB=CD.22.(9分)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?23.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()24.(12分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列计算正确的是()A.a3•a2=a6 B.a5+a5=a10C.(﹣3a3)2=6a2D.(a3)2•a=a7【分析】A、利用同底数幂的乘法法则计算得到结果,即可作出判断;B、合并同类项得到结果,即可作出判断;C、利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;D、利用幂的乘方及同底数幂的乘法运算得到结果,即可作出判断.【解答】解:A、a3•a2=a5,本选项错误;B、a5+a5=2a5,本选项错误;C、(﹣3a3)2=9a2,本选项错误;D、(a3)2•a=a6•a=a7,本选项正确.故选D.【点评】此题考查了幂的乘方与积的乘方,合并同类项,去括号与添括号,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.2.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°【分析】本题根据互余和互补的概念计算即可.【解答】解:180°﹣150°=30°,那么这个角的余角的度数是90°﹣30°=60°.故选B.【点评】本题考查互余和互补的概念,和为90度的两个角互为余角,和为180度的两个角互为补角.3.将0.00000573用科学记数法表示为()A.0.573×10﹣5 B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000573用科学记数法表示为5.73×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(x﹣1)(2x+3)的计算结果是()A.2x2+x﹣3 B.2x2﹣x﹣3 C.2x2﹣x+3 D.x2﹣2x﹣3【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:(x﹣1)(2x+3),=2x2﹣2x+3x﹣3,=2x2+x﹣3.故选:A.【点评】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,属于基础题.5.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC=180° 【分析】根据平行线的判定方法直接判定.【解答】解:选项B 中,∵∠3=∠4,∴AB ∥CD (内错角相等,两直线平行),所以正确;选项C 中,∵∠5=∠B ,∴AB ∥CD (内错角相等,两直线平行),所以正确;选项D 中,∵∠B +∠BDC=180°,∴AB ∥CD (同旁内角互补,两直线平行),所以正确; 而选项A 中,∠1与∠2是直线AC 、BD 被AD 所截形成的内错角,因为∠1=∠2,所以应是AC ∥BD ,故A 错误. 故选A .【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.下列各式中,能用平方差公式进行计算的是( ) A .(﹣x ﹣y )(x +y ) B .(2x ﹣y )(y ﹣2x ) C .(1﹣x )(﹣1﹣x ) D .(3x +y )(x ﹣3y )【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中,能用平方差公式进行计算的是(1﹣x )(﹣1﹣x ), 故选C .【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.如图,已知直线a ,b 被直线c 所截,若a ∥b ,∠1=110°,∠2=40°,则∠3=( )A .40°B .50°C .60°D .70°【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论. 【解答】解:∵a ∥b , ∴∠4=∠1=110°, ∵∠3=∠4﹣∠2, ∴∠3=110°﹣40°=70°, 故选D .【点评】本题考查的是平行线的性质,三角形的外角的性质,用到的知识点为:两直线平行,同位角相等.8.如图,下列条件不能证明△ABC ≌△DCB 的是( )A .AB=DC ,AC=DB B .∠A=∠D ,∠ABC=∠DCBC .BO=CO ,∠A=∠DD .AB=DB ,AC=DC【分析】利用全等三角形的判定方法:SSS 、SAS 、ASA 、AAS 、HL 分别进行分析即可.【解答】解:A、AB=DC,AC=DB再加公共边BC=BC可利用SSS判定△ABC≌△DCB,故此选项不合题意;B、∠A=∠D,∠ABC=∠DCB再加公共边BC=BC可利用AAS判定△ABC≌△DCB,故此选项不合题意;C、BO=CO,∠A=∠D再加对顶角∠AOB=∠DOC可利用AAS判定△AOB≌△DOC,可得AO=DO,AB=CD,进而可得AC=BD,再加公共边BC=BC可利用SSS判定△ABC≌△DCB,故此选项不合题意;D、AB=DB,AC=DC不能判定△ABC≌△DCB,故此选项不合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,下图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.下午5时体温最高C.这天中小明体温T(℃)的范围是36.5≤T≤37.5D.从5时到24时,小明的体温一直是升高的【分析】分析折线统计图,即可求出答案.【解答】解:由折线统计图可知:折线统计图中最底部的数据,则是温度最低的时刻,最高位置的数据则是温度最高的时刻;则清晨5时体温最低,下午5时体温最高;最高温度为37.5℃,最低温度为36.5℃,则小明这一天的体温范围是36.5≤T≤37.5;从5时到17时,小明的体温一直是升高的趋势,而17﹣24时的体温是下降的趋势.所以错误的是从5时到24时,小明的体温一直是升高的,故选D.【点评】读懂统计图,从图中得到必要的信息是解决本题的关键.10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A .B .C .D .【分析】依题意可得小李步行速度匀速前进,然后中途因为遇到一个红灯停下来耽误了几分钟,然后加快速度但还是保持匀速前进,可把图象分为3个阶段.【解答】解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.【点评】本题主要考查函数图象的知识点,要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二、填空题(每小题3分,共24分)11.计算:(﹣2xy3z2)2=4x2y6z4.【分析】根据积的乘方,即可解答.【解答】解:(﹣2xy3z2)2=4x2y6z4,故答案为:4x2y6z4.【点评】本题考查了积的乘方,解决本题的关键是熟记积的乘方的法则.12.如图,直线AB、CD、EF相交于一点,∠1=50°,∠2=64°,则∠COF=66度.【分析】根据平角意义求得∠EOD,再根据对顶角求得结论.【解答】解:∵∠1=50°,∠2=64°,∴∠EOD=180°﹣∠1﹣∠2=66°∴∠COF=∠EOD=66°,故答案为:66.【点评】本题主要考查了平角的定义,对顶角定理,熟记对顶角定理是解题的关键.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=90°.【分析】过点B作BN∥FG,根据矩形的性质可得BN∥EH∥FG,再根据两直线平行,内错角相等可得∠1=∠3,∠2=∠4,然后求出∠1+∠2=∠ABC,从而得证.【解答】证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.故答案为:90°.【点评】本题考查了两直线平行,内错角相等的性质,矩形的对边平行,每一个角都是直角的性质,熟记性质并作出辅助线是解题的关键.14.如果多项式x2+8x+k是一个完全平方式,则k的值是16.【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是4,平方即可.【解答】解:∵8x=2×4•x,∴k=42=16.【点评】本题考点是对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是求解的关键.15.若5m=3,5n=2,则52m+n =18.【分析】逆运用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:52m+n=52m•5n=(5m)2•5n=32•2=9×2=18.故答案为:18.【点评】本题考查了幂的乘方的性质,同底数幂的乘法,熟记运算性质并灵活运用是解题的关键.16.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系y=.【分析】本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.【解答】解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.【点评】此题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意x的取值范围.17.已知x+y=﹣5,xy=6,则x2+y2=13.【分析】把x+y=﹣5两边平方,根据完全平方公式和已知条件即可求出x2+y2的值.【解答】解:∵x+y=﹣5,∴(x+y)2=25,∴x2+2xy+y2=25,∵xy=6,∴x2+y2=25﹣2xy=25﹣12=13.故答案为:13.【点评】本题考查了完全平方公式,完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.18.某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有62个、65个座位;第n排有47+3n个座位.排数1234….座位数50535659….【分析】由座位数可以看出后一排的座位数总比前一排的座位数多3,由此得到第n(n >1)排有[50+3(n﹣1)]个座位,问题可以解答.【解答】解:第一排有50个座位,第二排有[50+(2﹣1)×3]=53个座位,第三排有[50+(3﹣1)×3]=56个座位,第四排有[50+(4﹣1)×3]=59个座位,第五排有[50+(5﹣1)×3]=62个座位,第六排有[50+(6﹣1)×3]=65个座位,第n排有[50+3(n﹣1)]=(47+3n)个座位.【点评】解决此类问题需要发现数字的一般规律,问题就容易解决.三、作图题(每小题5分,共5分)19.(5分)如图,已知∠BAC及BA上一点P,求作直线MN,使MN经过点P,且MN ∥AC.(要求:使用尺规正确作图,保留作图痕迹)【分析】过点P作PQ⊥AC,再过点P作MN⊥PQ,根据垂直于同一直线的两直线平行,即可得直线MN即为所求.【解答】解:如图,直线MN即为所求.【点评】本题主要考查作图﹣复杂作图,熟练掌握过一点作已知直线的垂线及平行线的判定是解题的关键.四、计算与求值(每小题25分,共25分)20.(25分)计算与求值(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3)(3)(﹣2x2y)2•3xy÷(﹣6x2y)(4)1122﹣113×111(用乘法公式计算)(5)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先算乘法,再合并同类项即可;(3)先算乘方,再算乘除即可;(4)先变形,再根据平方差公式进行计算即可;(5)先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0=﹣1+27﹣1=25;(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3)=9x2﹣12x+4+9﹣x2=8x2﹣12x+13;(3)(﹣2x2y)2•3xy÷(﹣6x2y)=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(4)原式=1122﹣(112+1)(112﹣1)=1122﹣1122+1=1;(5)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3,把x=﹣,y=3代入得:原式=2×(﹣)+3﹣3=﹣1.【点评】本题考查了整式的混合运算和求值、零指数幂、负整数指数幂等知识点,能正确根据整式的运算法则进行化简是解此题的关键.五、解答题(共36分)21.(8分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:AB=CD.【分析】(1)本题有三对三角形全等,分别是△ABE≌△CDF,△ABC≌△CDA,△BEC ≌△DFA(2)先根据AF=CE利用等式的性质得:AE=FC,由AB∥CD得内错角相等,则△ABE≌△CDF,得出结论.【解答】解:(1)△ABE≌△CDF,△ABC≌△CDA,(2)∵AF=CE,∴AF+EF=CE+EF,即AE=CF,∵AB∥CD,∴∠BAC=∠DCA,∵∠ABE=∠CDF,∴△ABE≌△CDF(AAS),∴AB=CD.【点评】本题考查了全等三角形的性质和判定,是常考题型,比较简单;熟练掌握全等三角形的性质和判定是做好本题的关键;从图形中看,要想得出结论,只需证明△ABE ≌△CDF,或是证明四边形ABCD为平行四边形,从已知上看,证明全等有一个条件,所以要再得出两个条件才行,从而得出结论.22.(9分)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?【分析】(1)根据离开家的最大距离就是体育场到张阳家的距离解答;(2)根据纵坐标的两个距离不变时的距离的差为体育场离文具店的距离计算即可得解,再求出距离不变时的时间差即可;(3)根据速度=路程÷时间,列式计算即可得解.【解答】解:(1)体育场离张阳家2.5 km.(2)因为2.5﹣1.5=1(km),所以体育场离文具店1 km.因为65﹣45=20(min),所以张阳在文具店逗留了20 min.(3)文具店到张阳家的距离为1.5 km,张阳从文具店到家用的时间为100﹣65=35(min),所以张阳从文具店到家的速度为1.5÷=(km/h).【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.23.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC ∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义)【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论.【解答】证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.24.(12分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是a2﹣b2(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是(a+b)(a﹣b)(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式(a+b)(a﹣b)=a2﹣b2.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.【分析】(1)根据图1确定出阴影部分面积即可;(2)根据图2确定出长方形面积即可;(3)根据两图形面积相等得到乘法公式;(4)利用得出的平方差公式计算即可得到结果.【解答】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.。

2016-2017学年度下学期期中考试七年级数学试题

2016-2017学年度下学期期中考试七年级数学试题

2016-2017学年度下学期期中考试七年级数学试题2016—2017学年度第二学期期中考试试卷七年级数学题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题(每题3分,共30分)1. 如图,直线AB 、CD 、EF 相交于O ,则∠1+∠2+∠3=( )。

A 、90°B 、120°C 、180°D 、140°2. 两条直线相交所构成的四个角中:①有三个角都相等;② 有一对对顶角互补;③有一个角是直角; ④有一对邻补角相等,其中能判定这两条直线垂直的有( )123第1题6.下列说法中错误的是()A.1的平方根是1B.-1的立方根是-1C. 2是2的平方根D.-3是()23-的平方根7 .大于52-且小于23的整数有()A.9个B.8个 C .7个D.5个8.已知点P(0,m)在x轴下方,则点Q(―m2―1,1―m)在()A第一象限 B 第二象限 C 第三象限D 第四象限9. 在下列说法中:①△ABC在平移过程中,对应线段一定相等;②△ABC在平移过程中,对应线段一定平行;③△ABC在平移过程中,周长保持不变;④△ABC在平移过程中,对应边中点的连线段的长等于平移的距离;⑤△ABC在平移过程中,面积不变,其中正确的有()A.①②③④B.①②③④⑤C.①②③⑤ D.①③④⑤10. 在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为( )A .64.B .49.C .36.D .25.二、填空题(每题3分,共30分) 11. 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是 .12. 在平面内有3条直线,如果最多有m 个交点,最少有n 个点,那么m+n= . 13. 若264x ,则x 的立方根为 .14. 16的平方根与―27的立方根的之和为 .15. 已知点P 在第二象限,点P 到x 轴的距离是2,到y 轴的距离是3,那么点P 的坐标12 第11题图第10题图是 。

2016-2017学年下学期期中七年级数学试卷(word附答案)

2016-2017学年下学期期中七年级数学试卷(word附答案)

2017~2018学年度七年级下学期期中模拟数学试卷()满分:120分时间120分钟一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.下列实数是无理数的是()A.3.14B.13C.D.2.下列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中看作由“基本图案”经过平移得到的是()D.C.B.A.3.实数9的算术平方根是()A.3±B.C. D.34.点A(-2,1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限5.)A.0和1之间B.1和2之间C.2和3之间D.3和4之间6.下列图形中,由∠1=∠2,能得到AB//CD的是()12GFEA BDCACDB21A. B. C. D.21DCBA7.如图,下列说法不正确的是()A.∠AFE与∠EGC是同位角B.∠AFE与∠FGC是内错角C.∠C与∠FGC是同旁内角D.∠A与∠FGC是同位角8.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,内错角相等;B.相等的角是对顶角;C.所有的直角都是相等的;D.若a=b,则a-1=b-1.9.点P关于x轴的对称点为(,1)a-,关于y轴的对称点为(2,)b-,那么点P的坐标是()A.(,)a b- B.(,)b a C.(1,2)-- D.(2,1)10.△ABC三个顶点坐标(4,3)A--,(0,3)B-,(2,0)C-,将点B向右平移2个长度单位后,再向上平移5个长度单位到D,若设△ABC面积为1S,△ADC的面积为2S,则1S与2S大小关系为()A.1S>2S B.1S=2S C.1S<2S D.不能确定二、仔细填一填,你一定很棒!(每小题3分,共18分)11.=_______.12.写出一个在x轴正半轴上的点坐标________________.13.如图,一把长方形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为_________________.E87654321第13题图FABCD14.在平面直角坐标系中依次描出下列点,(2,3)--,(1,1)--,(0,1),(1,3),⋅⋅⋅,依照此规律,则第7个坐标是_________________.15.已知四边形ABCD,其中AD//BC,AB⊥BC,将DC沿DE折叠,C落于C',DC'交CB于G,且ABGD为长方形(如图1);再将纸片展开,将AD沿DF折叠,使A点落在DC上一点A'(如图2),在两次折叠过程中,两条折痕DE、DF所成的角为____________度.16.在平面直角坐标系中,任意两点A(a,b),B(m,n),规定运算:A B⊗=(-若A(9,-1),且A B⊗=(-6,3).则点B的坐标是______________.三、精心答一答,你一定能超越!(本大题共8小题,共72分)17. (本题8分)如图,∠1=30°,∠B=60°,AB⊥AC.(1)∠DAB+∠B等于多少度?(2)AD与BC平行吗?AB与CD平行吗?18.(每小题4分,共8分)计算:(1(219. (每小题4分,共8分)求下列各式中的x值.(1)2164x-=(2)3(1)64x-=7题B/A/C/DBACF E第15题图2DBACEG第15题图117题1BDAC20. (共8分)完成下面的证明(1)如图,FG //CD ,∠1=∠3,∠B =50°,求∠BDE 的度数. 解:∵FG //CD (已知)∴∠2=_________( ) 又∵∠1=∠3, ∴∠3=∠2(等量代换)∴BC //__________( ) ∴∠B +________=180°( ) 又∵∠B =50°∴∠BDE =________________.21. (本题8分)△ABC 在平面直角坐标系中,且A (2,1)-、B (3,2)--A ,B 的对应点是1A ,1B ,C 的对应点1C 的坐标是(3,1)-. (1)在平面直角坐标系中画出△ABC ;(2)写出点1A 的坐标是_____________,1B 坐标是___________; (3)此次平移也可看作111A B C ∆向________平移了____________ 个单位长度,再向_______平移了______个单位长度得到△ABC .22. (本题10分)已知直线BC //ED .(1)如图1,若点A 在直线DE 上,且∠B =44°,∠EAC =57°,求∠BAC 的度数;(2)如图2,若点A 是直线DE 的上方一点,点G 在BC 的延长线上求证:∠ACG =∠BAC +∠ABC ; (3)如图3,FH 平分∠AFE ,CH 平分∠ACG ,且∠FHC 比∠A 的2倍少60°,直接写出∠A 的度数.AD BCE图1G图2ECBD AHF图3EBDA23. (本题10分)如图,在平面直角坐标系中,点A 、C 分别在x 轴上、y 轴上,CB //OA ,OA =8,若点B 的坐标为(a ,b ),且b 4.(1)直接写出点A 、B 、C 的坐标;(2)若动点P 从原点O 出发沿x 轴以每秒2个单位长度的速度向右运动,当直线PC 把四边形OABC分成面积相等的两部分停止运动,求P 点运动时间;(3)在(2)的条件下,在y 轴上是否存在一点Q ,连接PQ ,使三角形CPQ 的面积与四边形OABC 的面积相等?若存在,求点Q 的坐标;若不存在,请说明理由.24. (本题12分)在平面直角坐标系中,点A (t +1,t +2),点B (t +3,t +1),将点A 向右平移3个长度单位,再向下平移4个长度单位得到点C .(1)用t 表示点C 的坐标为_______;用t 表示点B 到y 轴的距离为___________;(2)若t =1时,平移线段AB ,使点A 、B 到坐标轴上的点1A 、1B 处,指出平移的方向和距离,并求出点1A 、1B 的坐标;(3)若t =0时,平移线段AB 至MN (点A 与点M 对应),使点M落在x轴的负半轴上,三角形MNB 的面积为4,试求点M 、N 的坐标.第20题图12016~2017学年度下学期七年级数学期中参考答案一、选一选,比比谁细心1. C2.B3.D4.B5. C6. B7. A8.C9.D 10.A 二、仔细填一填,你一定很棒! 11. 2- 12.答案不唯一,例如(3,0)13.55° 14.(4,9) 15. 45 16.(2,27-) 三、精心答一答,你一定能超越!17.解:(1)∵AB ⊥AC ,∴∠BAC =90°,∴∠B +∠BAD =60°+90°+30°=180°. (2)由(1)得AD //BC ,但是无法确定AB 与CD 的关系. 18.解:(1)原式=6-0.9=5.1 (2)原式=1324-+-1=-32+34 19.解:(1)2254x =,∴52x =±; (2)(1)x -=x -1=4, ∴x =5.20. (1)∠1(两直线平行,同位角相等);DE (内错角相等,两直线平行); ∠BDE (两直线平行,同旁内角互补);130°. (2)∠ADC =∠EFC ;EF ;∠2;∠CAD .21.(1)(2)1(0,4)A ,1B (1,1)-(3)下;3;左;2.22.解:(1)∵BC //ED ,∴∠BAE +∠B =180°,∴∠BAC =180°-∠B -∠EAC =79°;(2)F 2F 1方法②方法①G图2E C BDA如图,方法①,作AF //BC ,又∵BC //ED ,∴AF //ED //BC ,∴∠F AC =∠ACG ,且∠ABC =∠F AB ,∴∠ACG =∠F AC =∠BAC +∠F AB =∠BAC +∠ABC . (3)MNyx y xGHF图3E CBDA作AM //BC ,HN //BC , ∴可证AM //BC //ED ,HN //BC //ED ,又设∠ACH =GCH =x , ∠AFH =EFH =y , ∴∠A =2x -2y , ∠FHC =x -y ,∴∠A =2∠FHC ,又∵∠FHC =2∠A -60°,∴∠A =40°.23.(1)A (8,0),B (4,4),C (0.4);(2)设运动时间t 秒,∴OP =2t , ∴12⋅2t ⋅4=(8-2t )⋅4,∴t =83.(3)设Q (0,y ), ∵OABC CPQ S S ∆=四边形,∴12-4y 2t ⋅=12(4+8)⋅4, ∴1y =13,2y =-5,∴1Q (0,13),2Q (0,-5) 24.(1)C (t +4,t -2);3t +(2)当t =1时,A (2,3),B (4,2)将AB 左平移2个单位得1A (0,3);1B (2,2); 将AB 下平移2个单位得1A (2,1);1B (4,0)(3)若t=0,则A(1,2),B(3,1)设A下平移2个单位,再左平移a个单位到达x轴负半轴,∴M(1-a,0),N(3-a,-1),∴(3-1+a)⋅2-12(3-1+a)⋅1-12(3-a-1+a)⋅1-12(3-3+a)⋅2=4,∴a=4,∴M(-3,0),N(-1,-1).(范文素材和资料部分来自网络,供参考。

2016-2017学年度第二学期期中考试七年级数学试卷(word版有答案)

2016-2017学年度第二学期期中考试七年级数学试卷(word版有答案)

2017~2018学年度七年级下学期期中模拟数学试卷( )一.你一定能选对(每小题3分,共30分) 1.下列选项中能由左图平移得到的是()DCBA2.下列所给数中,是无理数的是 ( ) A. 2 B.27C.0.2•D.3.如图,小手覆盖的点的坐标可能是( ) A. (-1,1) B. (-1,-1) C.(1,1) D. (1,-1)4.如图,直线AB 、CD 相交于点O,OA 平分∠EOC,且∠EOC=70°,则∠BOD 等于( ) A. 40° B. 35° C. 30° D. 20°5.将点A(-3,-5)向右平移2个单位,再向下平移3个单位得到点B,则点B 的坐标为( ) A. (-5,-8) B. (-5,-2) C. (-1,-8) D. (-1,-2)6.下列各式正确的是( )= ±3B.±4C.D.7.下列结论中: ①若a=b,,②在同一平面内,若a ⊥b,b//c,则a ⊥c;③直线外一点到直线的垂线段叫点到直的距离;④正确的个数有( )A. 1个 B .2个 C.3个 D.4个8.如图,下列条件: ①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④AD//BC 且∠B=∠D, 其中,能推出AB//DC 的是( ) A. ①④ B. ②③ C. ①③ D. ①③④9.如下表:被开方数a,=180,且则被开方数a 的值为( ) A. 32.4 B. 324 C. 32400 D. -324010. 如图,把一张两边分别平行的纸条折成如图所示,EF 为折痕,ED 交BF 于点G,且∠EFB=45°,则下列结论: ①∠DEF=48°;②∠AED=84°;③∠BFC=84°; ④∠DGF=96°,其中正确的个数有( ) A. 4个 B.3个 C.2个 D.1个二.填空题(6小题,每题3分,共18分) 11.计算12.若点M(a-3,a+4)在x 轴上,则a=______;13.如图,DE//AB,若∠A=50°, 则∠ACD=________; 14.如图,以数轴的单位长度线段为边做一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A 和点B,则点A 表示的数是_________.15.已知线段AB//x 轴,且AB=3,若点A 的坐标为(-1,2),则点B 的坐标为_______;16.如图,小明从A 出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是右转__________°. 三.解下列各题(本题共8小题,共72分) 17.(8分)求下列各式的值: (1)x 2-25=0(2)x 3-3=3818.(8分)如图,在三角形ABC 中,D 是AB 上一点,E 是AC 上一点, ∠ADE=60°, ∠B=60°, ∠AED=40°; (1)求证: DE//BC; (2)求∠C 的度数;19.(8分)看图填空,并在括号内注明理由依据, 解: ∵∠1=30°, ∠2=30° ∴∠1=∠2∴_______//________(______________________________________________)又AC ⊥AE(已知)∴∠EAC=90°∴∠EAB=∠EAC+∠1=120°同理: ∠FBG=∠FBD+∠2=_________°.∴∠EAB=∠FBG(________________________________).∴______________//____________(同位角相等,两直线平行)x第4题图BA第8题图B第10题图B13题图D E14题图16题图B G20. (8分)如图,在边长为1的小正方形组成的网格中,A 、B 、C 、D 、E五点都是格点.(1) 请在网格中建立合适的平面直角坐标系,使点A 、B 两点坐标分别 是A(-3,0)、B(2,-1).(2)在(1)条件下,请直接写出C 、D 、E 三点的坐标;(3)则三角形BDE 的面积为_____________.21.(8分) 小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.22.(10分)如图,已知∠A=∠AGE, ∠D=∠DGC. (1)求证:AB//CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C 的度数;23.(10分)如图1,已知AB//CD, ∠B=30°,∠D=120°; (1)若∠E=60°,则∠E=______;(2)请探索∠E 与∠F 之间满足的数量关系?说明理由.(3)如图2,已知EP 平分∠BEF,FG 平分∠EFD,反向延长FG 交EP 于点P ,求∠P 的度数;24.(12分)已知,在平面直角坐标系中,AB ⊥x 轴于点B,点A(a,b)平移线段AB 使点A 与原点重合,点B 的对应点为点C.(1)则a=____,b=____;点C 坐标为________; (2)如图1,点D(m,n)在线段BC 上,求m 、n 满足的关系式;(3)如图2,E 是线段OB 上一动点,以OB 为边作∠G=∠AOB,,交BC 于点G ,连CE 交OG 于点F,的当点E 在线段OB 上运动过程中,OFC FCGOEC∠+∠∠的值是否会发生变化?若变化请说明理由,若不变,请求出其值.23题图1C23题图2C第22题图24题图1x2016~2017学年度七年级第二学期期中测试数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.)11.5312.-4 13.50 14.2-215.(-4,2)或(1,2)16.80三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.)17.解:①x2=25…………(2分)x=5…………(4分)②x2=278…………(6分)∴x=327 8∴x=32…………(8分)18.解:(1)∵∠ADE=∠B=60°…………(2分)∴DE∥BC…………(4分)(2)∵DE∥BC∴∠C=∠AED…………(6分)又∵∠C=40°∴∠AED =40°…………(8分).19.解:∵∠1=30°,∠2=30°(已知),∴∠1=∠2.∴AC∥BD(同位角相等,两直线平行).又∵AC⊥AE(已知),∴∠EAC=90°.(垂直定义)∴∠EAB=∠EAC+∠1=120°.同理:∠FBG=∠FBD+∠2= 120°.∴∠EAB=∠FBG(等式性质).∴AE∥BF(同位角相等,两直线平行).注:(本题每空1分,共8分).20.(1)建立如图所示的平面直角坐标系…………(3分)注:两坐标轴与坐标原点正确各1分,共3分;(2)点C、D、E的坐标分别是C(-2,2)、D(0,-2)、E(2,3)…………(6分)注:每个点的坐标各1分,共3分;(3)则三角形BDE的面积= 4 .…………(8分)21.(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400…………(1分)又∵a>0∴a=20…………(2分)又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)…………(3分)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形…………(4分)注:本题其它解法只要符合题意即可.(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm…………(5分)∴6x 2=300∴x 2=50…………(6分)又∵x>0∴x=52∴长方形纸片的长为152又∵2152=450>202即:152>20…………(7分)∴小丽不能用这块纸片裁出符合要求的纸片…………(8分)注:本题其它解法参照评分22.证明:(1)∵∠A =∠AGE,∠D =∠DGC又∵∠AGE =∠DGC…………(1分)∴∠A=∠D…………(2分)∴AB∥CD…………(4分)(2) ∵∠1+∠2 =180°又∵∠CGD +∠2=180°∴∠CGD=∠1∴CE∥FB…………(5分)∴∠C=∠BFD,∠CEB +∠B=180°…………(6分)又∵∠BEC =2∠B+30°∴2∠B +30°+∠B=180°题号 1 2 3 4 5 6 7 8 9 10答案C D D B C C B D C A 第18题图EDCBA第19题图yxOEDCBA第22题图21FHGEDCBA∴∠B =50°…………(7分) 又∵AB ∥CD ∴∠B =∠BFD∴∠C =∠BFD =∠B =50°…………(8分) 注:本题其它解法参照评分23.证:(1)若∠E =60°,则∠F = 90°;…………(2分) (2)如图1,分别过点E ,F 作EM ∥AB ,FN ∥AB ∴EM ∥AB ∥FN …………(3分)∴∠B =∠BEM =30°,∠MEF =∠EFN …………(4分) 又∵AB ∥CD ,AB ∥FN ∴CD ∥FN∴∠D +∠DFN =180° 又∵∠D =120°∴∠DFN =60°…………(5分)∴∠BEF =∠MEF +30°,∠EFD =∠EFN +60° ∴∠EFD =∠MEF +60°∴∠EFD =∠BEF +30°…………(6分)(3)如图2,过点F 作FH ∥EP 由(2)知,∠EFD =∠BEF +30°设∠BEF =2x °,则∠EFD =(2x +30)° ∵EP 平分∠BEF ,GF 平分∠EFD ∴∠PEF =21∠BEF =x °,∠EFG =21∠EFD =(x +15)°…………(7分) ∵FH ∥EP∴∠PEF =∠EFH =x °,∠P =∠HFG …………(8分) ∵∠HFG =∠EFG -∠EFH =15°…………(9分) ∴∠P =15°…………(10分)注:本题其它解法参照评分.24.(1)a = 4 ;b = 2 ;点C 的坐标为(0,-2).…………(3分)(2)如图1,过点D 分别作DM ⊥x 轴于点M , DN ⊥y 轴于点N ,连接OD . ∵AB ⊥ x 轴于点B ,且点A ,D ,C 三点的坐标分别为:(4,2),(m ,n ),(0,-2)∴OB =4,OC=2,MD =-n ,ND =m …………(4分)∴ S △BOC =12错误!未找到引用源。

2016-2017学年七年级(下)期中数学试卷

2016-2017学年七年级(下)期中数学试卷

2016-2017学年七年级下学期期中数学试卷(考试时间90分钟满分120分)一、填空题(每小题3分,共18分)1.剧院里5排2号可以用(5,2)表示,则(7,4)表示.2.49的平方根是,算术平方根是,﹣8的立方根是.3.把点P(1,1)向右平移3个单位长度,再向上平移2个单位长度后的坐标为.4.把命题“对顶角相等”改写成“如果…那么…”的形式:.5.将y﹣2x=1变形为用含x的代数式表示y的形式是.6.若一个二元一次方程的一个解为,则这个方程可能是.二、单项选择题(每小题4分,共32分)7.下列哪个图形是由右图平移得到的()A.B.C.D.8.在实数,,0.121221221…,3.1415926,,﹣中,无理数有()A.2个 B.3个 C.4个 D.5个9.的平方根是()A.﹣4 B.±2 C.±4 D.410.已知点P位于第二象限,且距离x轴4个单位长度,距离y轴3个单位长度,则点P的坐标是()A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)11.下列命题中,是真命题的是()A.同位角相等B.有且只有一条直线与已知直线垂直C.相等的角是对顶角D.邻补角一定互补12.下列各式正确的是()A.=±4 B.±=4 C.=﹣4 D.=﹣313.若方程2x a﹣1+y=1是关于x、y的二元一次方程,则a的值是()A.﹣1 B.0 C.1 D.214.如图,在下列给出的条件下,不能判定AB∥DF的是()A.∠A+∠2=180°B.∠A=∠3 C.∠1=∠4 D.∠1=∠A三、解答题(有11个小题,共70分)15.计算:(1)+﹣()2(2)+﹣2+3.16.求下列条件中的未知数的值:(1)125x3=8(2)4y2﹣36=0.17.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点在格点上.且A(1,﹣4),B(5,﹣4),C(4,﹣1)(1)画出△ABC;(2)求出△ABC的面积;(3)若把△ABC向上平移2个单位长度,再向左平移4个单位长度得到△A′B′C′,在图中画出△A′B′C′,并写出B′的坐标.18.填一填:如图,已知EF∥AD,∠1=∠2,∠BAC=68°.求∠AGD的度数.解:因为EF∥AD,所以∠1=.又因为∠1=∠2,所以∠2=.所以AB∥.所以∠BAC+ =180°.因为∠BAC=68°,所以∠AGD=.19.在以下证明中的括号内注明理由:已知:如图,EF⊥CD于F,GH⊥CD于H.求证:∠1=∠3.证明:∵EF⊥CD,GH⊥CD(已知),∴EF∥GH().∴∠1=∠2().∵∠2=∠3(),∴∠1=∠3().20.如图,已知直线AB,CD相交于点O,EO⊥CD,垂足为O,OA平分∠EOD,求∠BOD的度数.21.已知x的立方根是3,求2x+10的算术平方根.22.解方程组:.23.如图,CD是∠ACB的平分线,∠EDC=25°,∠DCE=25°,∠B=70°.(1)证明:DE∥BC;(2)求∠BDC的度数.24.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.25.如图,直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上.(1)探讨图中∠1、∠2、∠3之间的关系,并说明理由;(2)如果点P在A、B两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系,不需要说明理由(点P和A、B不重合).参考答案一、填空题1.答案为:7排4号2.答案是:±7,7,﹣2.3.答案为:(4,3).4.答案为:如果两个角是对顶角,那么它们相等.5.答案为:6.答案是:x+y=1,答案不唯一.二、选择题7.C.8.A.9.B.10.A.11.D.12.D.13.D.14.D.三、解答题15.解:(1)原式=﹣2﹣=1﹣2=﹣1;(2)原式=4﹣.16.解:(1)125x3=8x=,(2)4y2﹣36=0.y=±3.17.解:(1)如图,△ABC为所求;=AB•CD=×4×3=6;(2)过C作CD⊥AB于D,则S△ABC(3)如图,△A’B’C’为所求,B′(1,﹣2).18.解:∵EF∥AD,∴∠1=∠3.又∵∠1=∠2,∴∠2=∠3.∴AB∥DG,∴∠BAC+∠AGD=180°.∵∠BAC=68°,∴∠AGD=112°.故答案是∠3,∠3,DG,∠AGD,112°.19.证明:∵EF⊥CD,GH⊥CD(已知),∴EF∥GH(垂直于同一条直线的两直线平行).∴∠1=∠2(两直线平行,同位角相等).∵∠2=∠3(对顶角相等),∴∠1=∠3(等量代换).20.解:∵EO⊥CD,∴∠DOE=90°,∵OA平分∠EOD,∴∠AOD=45°,∴∠BOD=180°﹣45°=135°.21.解:因为x的立方根是3,所以x=27,把x=27代入2x+10=64,所以2x+10的算术平方根是8.22.解:①×2﹣②得,4x﹣7x=10﹣20,解得x=;把x=代入①得,2×﹣y=5,解得y=,故此方程组的解为.23.(1)证明:∵CD是∠ACB的平分线,∠DCE=25°,∴∠DCB=∠DCE=25°.∵∠EDC=25°,∴∠DCB=∠EDC=25°,∴DE∥BC;(2)解:∵DE∥BC.∵∠BDE+∠B=180°,∴∠BDE=180°﹣70°=110°.∵∠BDC+∠EDC=110°,∴∠BDC=110°﹣∠EDC=85°.24.解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.25.解:(1)∠1+∠2=∠3,理由如下:如图,过P作PQ∥l1,∵l1∥l2,∴PQ∥l2,∴∠1=∠CPQ,∠2=∠DPQ,∴∠1+∠2=∠3;(2)如果点P在A点外侧运动时,∠2=∠1+∠3;如果点P在B点外侧运动时,∠1=∠2+∠3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017~2018学年度七年级下学期期中模拟数学试卷( )一.你一定能选对(每小题3分,共30分) 1.下列选项中能由左图平移得到的是()DCBA2.下列所给数中,是无理数的是 ( ) A. 2 B.27C.0.2•D.3.如图,小手覆盖的点的坐标可能是( ) A. (-1,1) B. (-1,-1) C.(1,1) D. (1,-1)4.如图,直线AB 、CD 相交于点O,OA 平分∠EOC,且∠EOC=70°,则∠BOD 等于( ) A. 40° B. 35° C. 30° D. 20°5.将点A(-3,-5)向右平移2个单位,再向下平移3个单位得到点B,则点B 的坐标为( ) A. (-5,-8) B. (-5,-2) C. (-1,-8) D. (-1,-2)6.下列各式正确的是( )= ±3B.±4C.D.7.下列结论中: ①若a=b,,②在同一平面内,若a ⊥b,b//c,则a ⊥c;③直线外一点到直线的垂线段叫点到直的距离;④正确的个数有( )A. 1个 B .2个 C.3个 D.4个8.如图,下列条件: ①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④AD//BC 且∠B=∠D, 其中,能推出AB//DC 的是( ) A. ①④ B. ②③ C. ①③ D. ①③④9.如下表:被开方数a,=180,且则被开方数a 的值为( ) A. 32.4 B. 324 C. 32400 D. -324010. 如图,把一张两边分别平行的纸条折成如图所示,EF 为折痕,ED 交BF 于点G,且∠EFB=45°,则下列结论: ①∠DEF=48°;②∠AED=84°;③∠BFC=84°; ④∠DGF=96°,其中正确的个数有( ) A. 4个 B.3个 C.2个 D.1个二.填空题(6小题,每题3分,共18分) 11.计算12.若点M(a-3,a+4)在x 轴上,则a=______;13.如图,DE//AB,若∠A=50°, 则∠ACD=________; 14.如图,以数轴的单位长度线段为边做一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A 和点B,则点A 表示的数是_________.15.已知线段AB//x 轴,且AB=3,若点A 的坐标为(-1,2),则点B 的坐标为_______;16.如图,小明从A 出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是右转__________°. 三.解下列各题(本题共8小题,共72分) 17.(8分)求下列各式的值: (1)x 2-25=0(2)x 3-3=3818.(8分)如图,在三角形ABC 中,D 是AB 上一点,E 是AC 上一点, ∠ADE=60°, ∠B=60°, ∠AED=40°; (1)求证: DE//BC; (2)求∠C 的度数;19.(8分)看图填空,并在括号内注明理由依据, 解: ∵∠1=30°, ∠2=30° ∴∠1=∠2∴_______//________(______________________________________________)又AC ⊥AE(已知)∴∠EAC=90°∴∠EAB=∠EAC+∠1=120°同理: ∠FBG=∠FBD+∠2=_________°.∴∠EAB=∠FBG(________________________________).∴______________//____________(同位角相等,两直线平行)x第4题图BA第8题图B第10题图B13题图D E14题图16题图B G20. (8分)如图,在边长为1的小正方形组成的网格中,A 、B 、C 、D 、E五点都是格点.(1) 请在网格中建立合适的平面直角坐标系,使点A 、B 两点坐标分别 是A(-3,0)、B(2,-1).(2)在(1)条件下,请直接写出C 、D 、E 三点的坐标;(3)则三角形BDE 的面积为_____________.21.(8分) 小丽想用一块面积为400cm 2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.22.(10分)如图,已知∠A=∠AGE, ∠D=∠DGC. (1)求证:AB//CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C 的度数;23.(10分)如图1,已知AB//CD, ∠B=30°,∠D=120°; (1)若∠E=60°,则∠E=______;(2)请探索∠E 与∠F 之间满足的数量关系?说明理由.(3)如图2,已知EP 平分∠BEF,FG 平分∠EFD,反向延长FG 交EP 于点P ,求∠P 的度数;24.(12分)已知,在平面直角坐标系中,AB ⊥x 轴于点B,点A(a,b)平移线段AB 使点A 与原点重合,点B 的对应点为点C.(1)则a=____,b=____;点C 坐标为________; (2)如图1,点D(m,n)在线段BC 上,求m 、n 满足的关系式;(3)如图2,E 是线段OB 上一动点,以OB 为边作∠G=∠AOB,,交BC 于点G ,连CE 交OG 于点F,的当点E 在线段OB 上运动过程中,OFC FCGOEC∠+∠∠的值是否会发生变化?若变化请说明理由,若不变,请求出其值.23题图1C23题图2C第22题图24题图1x2016~2017学年度七年级第二学期期中测试数学参考答案一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确答案的标号填在下面的表格中.)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中横线上.)11.5312.-4 13.50 14.2-215.(-4,2)或(1,2)16.80三、解答题:(本大题共8个小题.共72分.解答应写出文字说明、证明过程或演算步骤.)17.解:①x2=25…………(2分)x=5…………(4分)②x2=278…………(6分)∴x=327 8∴x=32…………(8分)18.解:(1)∵∠ADE=∠B=60°…………(2分)∴DE∥BC…………(4分)(2)∵DE∥BC∴∠C=∠AED…………(6分)又∵∠C=40°∴∠AED =40°…………(8分).19.解:∵∠1=30°,∠2=30°(已知),∴∠1=∠2.∴AC∥BD(同位角相等,两直线平行).又∵AC⊥AE(已知),∴∠EAC=90°.(垂直定义)∴∠EAB=∠EAC+∠1=120°.同理:∠FBG=∠FBD+∠2= 120°.∴∠EAB=∠FBG(等式性质).∴AE∥BF(同位角相等,两直线平行).注:(本题每空1分,共8分).20.(1)建立如图所示的平面直角坐标系…………(3分)注:两坐标轴与坐标原点正确各1分,共3分;(2)点C、D、E的坐标分别是C(-2,2)、D(0,-2)、E(2,3)…………(6分)注:每个点的坐标各1分,共3分;(3)则三角形BDE的面积= 4 .…………(8分)21.(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400…………(1分)又∵a>0∴a=20…………(2分)又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)…………(3分)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形…………(4分)注:本题其它解法只要符合题意即可.(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm…………(5分)∴6x 2=300∴x 2=50…………(6分)又∵x>0∴x=52∴长方形纸片的长为152又∵2152=450>202即:152>20…………(7分)∴小丽不能用这块纸片裁出符合要求的纸片…………(8分)注:本题其它解法参照评分22.证明:(1)∵∠A =∠AGE,∠D =∠DGC又∵∠AGE =∠DGC…………(1分)∴∠A=∠D…………(2分)∴AB∥CD…………(4分)(2) ∵∠1+∠2 =180°又∵∠CGD +∠2=180°∴∠CGD=∠1∴CE∥FB…………(5分)∴∠C=∠BFD,∠CEB +∠B=180°…………(6分)又∵∠BEC =2∠B+30°∴2∠B +30°+∠B=180°题号 1 2 3 4 5 6 7 8 9 10答案C D D B C C B D C A 第18题图EDCBA第19题图yxOEDCBA第22题图21FHGEDCBA∴∠B =50°…………(7分) 又∵AB ∥CD ∴∠B =∠BFD∴∠C =∠BFD =∠B =50°…………(8分) 注:本题其它解法参照评分23.证:(1)若∠E =60°,则∠F = 90°;…………(2分) (2)如图1,分别过点E ,F 作EM ∥AB ,FN ∥AB ∴EM ∥AB ∥FN …………(3分)∴∠B =∠BEM =30°,∠MEF =∠EFN …………(4分) 又∵AB ∥CD ,AB ∥FN ∴CD ∥FN∴∠D +∠DFN =180° 又∵∠D =120°∴∠DFN =60°…………(5分)∴∠BEF =∠MEF +30°,∠EFD =∠EFN +60° ∴∠EFD =∠MEF +60°∴∠EFD =∠BEF +30°…………(6分)(3)如图2,过点F 作FH ∥EP 由(2)知,∠EFD =∠BEF +30°设∠BEF =2x °,则∠EFD =(2x +30)° ∵EP 平分∠BEF ,GF 平分∠EFD ∴∠PEF =21∠BEF =x °,∠EFG =21∠EFD =(x +15)°…………(7分) ∵FH ∥EP∴∠PEF =∠EFH =x °,∠P =∠HFG …………(8分) ∵∠HFG =∠EFG -∠EFH =15°…………(9分) ∴∠P =15°…………(10分)注:本题其它解法参照评分.24.(1)a = 4 ;b = 2 ;点C 的坐标为(0,-2).…………(3分)(2)如图1,过点D 分别作DM ⊥x 轴于点M , DN ⊥y 轴于点N ,连接OD . ∵AB ⊥ x 轴于点B ,且点A ,D ,C 三点的坐标分别为:(4,2),(m ,n ),(0,-2)∴OB =4,OC=2,MD =-n ,ND =m …………(4分)∴ S △BOC =12错误!未找到引用源。

相关文档
最新文档