(完整版)高一物理曲线运动练习题(含答案)

合集下载

(完整版)高一物理必修二《曲线运动》单元测试题

(完整版)高一物理必修二《曲线运动》单元测试题

(完整版)高一物理必修二《曲线运动》单元测试题《曲线运动》单元测试题一、选择题(每小题4分,共52分)1 .下列说法正确的是()A. 做曲线运动的物体受到的合力一定不为零B. 做曲线运动的物体的加速度一定是变化的C. 物体在恒力作用下,不可能做曲线运动D. 物体在变力作用下,可能做直线运动,也可能做曲线运动2. 关于运动的合成,下列说法正确的是()A. 合运动的速度一定比每一个分运动的速度大B. 两个匀速直线运动的合运动,一定是匀速直线运动C. 两个分运动是直线运动的合运动,一定是直线运动D. 两个分运动的时间,一定与它们的合运动的时间相等3. 要想在最短的时间内渡过一条河流,则小船的船头应该()A. 垂直指向对岸B .斜指向上游方向C.斜指向下游方向 D .不知水流速度无法判断4. 下列关于平抛运动的说法中正确的是()A. 平抛运动是匀变速运动B.平抛运动是变加速运动C. 任意两段时间内加速度相同D. 任意两段相等时间内速度变化相同5.在探究平抛运动规律的实验中,下列哪些因素对探究规律有影响()A.弧形轨道末端不水平.弧形轨道不光滑C.实验小球为轻质小球.坐标原点不在抛出点6. 下列物理量中既可以决定一个物体平抛运动飞行时间,又影响物体水平位移的是)A. 抛出的初速度B .抛出时的竖直高度C.抛体的质量 D .物体的质量和初速度7. 关于匀速圆周运动的说法中正确的是()A. 匀速圆周运动是匀速运动B. 匀速圆周运动是变速运动C. 匀速圆周运动的线速度不变D. 匀速圆周运动的角速度不变8. 下列说法中错误的是()A. 做匀速圆周运动的物体没有加速度B. 做匀速圆周运动的物体所受合力为零C. 匀速圆周运动的加速度保持不变D. 做匀速圆周运动的物体处于平衡状态9. 关于向心力的说法正确的是()A. 物体由于做圆周运动而产生了一个向心力B. 向心力不改变圆周运动物体速度的大小C. 做匀速圆周运动的物体所受的合力即为其向心力D. 做匀速圆周运动的物体所受的向心力是不变的10. 关于向心力和向心加速度的说法,正确的是()A. 向心力是指向圆心方向的合力B. 向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中一种力或某种力的分力C. 向心加速度描述速度大小变化的快慢D. 向心加速度描述速度方向变化的快慢11. 用长短不同,材料相同的同样粗细的绳子,各栓着一个质量相同的小球,在光滑水平面上做匀速圆周运动,那么()A. 小球以相同的线速度运动时,长绳易断B. 小球以相同的角速度运动时,长绳易断C. 小球以相同的角速度运动时,短绳易断D. 不管怎样都是短绳易断12. 有一种大型游戏器械,它是一个圆筒型大容器,筒壁竖直,游客进入容器后靠筒壁站立,当圆筒开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,是因为()A. 游客受到与筒壁垂直的压力作用B. 游客处于失重状态C. 游客受到的摩擦力等于重力D. 游客随着转速的增大有沿向上滑动的趋势13. 一轻质杆一端固定一质量为m的小球,以另一端。

(完整版)高一物理曲线运动专题练习

(完整版)高一物理曲线运动专题练习

单元测试题(曲线运动)一、选择题1.关于运动的性质,以下说法中正确的是 [ ]A.曲线运动一定是变速运动B.变速运动一定是曲线运动C.曲线运动一定是变加速运动D.物体加速度数值、速度数值都不变的运动一定是直线运动2.关于力和运动,下列说法中正确的是 [ ]A.物体在恒力作用下可能做曲线运动B.物体在变力作用下不可能做直线运动C.物体在恒力作用下不可能做曲线运动D.物体在变力作用下不可能保持速率不变3.物体受到几个力的作用而做匀速直线运动,如果只撤掉其中的一个力,其它力保持不变,它可能做 [ ]A.匀速直线运动B.匀加速直线运动C.匀减速直线运动D.曲线运动4.关于互成角度(不为零度和180°)的一个匀速直线运动和一个匀变速直线运动的合运动,下列说法正确的是 [ ]A.一定是直线运动B.一定是曲线运动C.可能是直线,也可能是曲线运动D.以上答案都不对5.某质点在恒力 F作用下从A点沿图1中曲线运动到 B点,到达B点后,质点受到的力大小仍为F,但方向相反,则它从B 点开始的运动轨迹可能是图中的 [ ]A.曲线aB.曲线bC.曲线CD.以上三条曲线都不可能6.关于曲线运动中,下列说法正确的是 [ ]A.加速度方向一定不变B.加速度方向和速度方向始终保持垂直C.加速度方向跟所受的合外力方向始终一致D.加速度方向总是指向圆形轨迹的圆心7.一个质点受到两个互成锐角的力F1和F2的作用,由静止开始运动,若运动中保持两个力的方向不变,但F1突然增大△F,则质点此后[ ]A.一定做匀变速曲线运动B.可能做匀速直线运动C.可能做变加速曲线运动D.一定做匀变速直线运动8.关于运动的合成和分解,下述说法中正确的是[ ]A.合运动的速度大小等于分运动的速度大小之和B.物体的两个分运动若是直线运动,则它的合运动一定是直线运动C.合运动和分运动具有同时性D.若合运动是曲线运动,则其分运动中至少有一个是曲线运动9.某人以一定速率垂直河岸向对岸游去,当水流运动是匀速时,他所游过的路程、过河所用的时间与水速的关系是[ ]A.水速大时,路程长,时间长B.水速大时,路程长,时间短C.水速大时,路程长,时间不变D.路程、时间与水速无关,水10.河边有M、N两个码头,一艘轮船的航行速度恒为v1,若轮船在静水中航行于MN的时间是t,则[ ] 流速度恒为v2A.轮船在M、N之间往返一次的时间大于tB.轮船在M、N之间往返一次的时间小于t越小,往返一次的时间越短C.若v2越小,往返一次的时间越长D.若v211.船在静水中的航速是1 m/s,河岸笔直,河宽恒定,河水靠近岸边的流速为2 m/s,河中间的流速为3 m/s.。

高一物理曲线运动测试题及答案

高一物理曲线运动测试题及答案

高一物理曲线运动测试题及答案曲线运动单元测试一、选择题(总分41分。

其中1-7题为单选题,每题3分;8-11题为多选题,每题5分,全部选对得5分,选不全得2分,有错选和不选的得分。

)1.关于运动的性质,以下哪个说法是正确的?()A。

曲线运动一定是变速运动。

B。

变速运动一定是曲线运动。

C。

曲线运动一定是变加速运动。

D。

物体加速度大小、速度大小都不变的运动一定是直线运动。

2.关于运动的合成和分解,以下哪个说法是正确的?()A。

合运动的时间等于两个分运动的时间之和。

B。

匀变速运动的轨迹可以是直线,也可以是曲线。

C。

曲线运动的加速度方向可能与速度在同一直线上。

D。

分运动是直线运动,则合运动必是直线运动。

3.关于从同一高度以不同初速度水平抛出的物体,比较它们落到水平地面上的时间(不计空气阻力),以下哪个说法是正确的?A。

速度大的时间长。

B。

速度小的时间长。

C。

一样长。

D。

质量大的时间长。

4.做平抛运动的物体,每秒的速度增量总是()A。

大小相等,方向相同。

B。

大小不等,方向不同。

C。

大小相等,方向不同。

D。

大小不等,方向相同。

5.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2,转动半径之比为1∶2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为()A。

1∶4.B。

2∶3.C。

4∶9.D。

9∶16.6.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A的受力情况是()A。

绳的拉力大于A的重力。

B。

绳的拉力等于A的重力。

C。

绳的拉力小于A的重力。

D。

绳的拉力先大于A的重力,后变为小于重力。

7.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在O点,有两个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。

两小环同时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为()A。

(2m+2M)g。

B。

Mg-2mv2/R。

C。

高考物理曲线运动题20套(带答案)

高考物理曲线运动题20套(带答案)

高考物理曲线运动题20 套( 带答案 )一、高中物理精讲专题测试曲线运动1.如下图,一箱子高为H.底边长为L,一小球从一壁上沿口 A 垂直于箱壁以某一初速度向对面水平抛出,空气阻力不计。

设小球与箱壁碰撞前后的速度大小不变,且速度方向与箱壁的夹角相等。

(1)若小球与箱壁一次碰撞后落到箱底处离 C 点距离为,求小球抛出时的初速度v0;(2)若小球正好落在箱子的 B 点,求初速度的可能值。

【答案】( 1)( 2)【分析】【剖析】(1)将整个过程等效为完好的平抛运动,联合水平位移和竖直位移求解初速度;(2)若小球正好落在箱子的 B 点,则水平位移应当是2L 的整数倍,经过平抛运动公式列式求解初速度可能值。

【详解】(1)本题能够当作是无反弹的完好平抛运动,则水平位移为: x==v0t竖直位移为: H= gt2解得: v0=;(2)若小球正好落在箱子的 B 点,则小球的水平位移为:x′=2nL( n= 1.2.3 )同理: x′=2nL=v′H=20t,gt ′解得:( n= 1.2.3 )2.如下图 ,固定的圆滑平台上固定有圆滑的半圆轨道,轨道半径R=0.6m, 平台上静止搁置着两个滑块 A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少许炸药 ,平台右边有一带挡板的小车,静止在圆滑的水平川面上.小车质量为M=0.3kg,车面与平台的台面等高 ,小车的上表面的右边固定一根轻弹簧 ,弹簧的自由端在Q 点,小车的上表面左端点 P 与 Q 点之间是粗拙的 ,PQ 间距离为 L 滑块 B 与 PQ 之间的动摩擦因数为μ=0.2,Q 点右边表面是圆滑的.点燃炸药后,A、B 分别瞬时 A 滑块获取向左的速度v A=6m/s, 而滑块 B 则冲向小车.两滑块都能够看作质点,炸药的质量忽视不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s2.求 :(1)滑块 A 在半圆轨道最高点对轨道的压力;(2)若 L=0.8m, 滑块 B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块 B 既能挤压弹簧 ,又最后没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】( 1) 1N,方向竖直向上( 2)E P0.22 J(3) 0. 675m< L<1. 35m【分析】【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:1m A v A21m A v2m A g 2R22在最高点由牛顿第二定律:v2m A g F N m A滑块在半圆轨道最高点遇到的压力为:F N=1NR由牛顿第三定律得:滑块对轨道的压力大小为1N,方向向上(2)爆炸过程由动量守恒定律:m A v A m B v B解得: v B=3m/s滑块 B 冲上小车后将弹簧压缩到最短时,弹簧拥有最大弹性势能,由动量守恒定律可知:m B v B( m B M )v共由能量关系:E P 1m B v B21(m B M )v共2 - m BgL22解得 E P=0.22J(3)滑块最后没有走开小车,滑块和小车拥有共同的末速度,设为u,滑块与小车构成的系统动量守恒,有:m B v B( m B M )v若小车 PQ 之间的距离 L 足够大,则滑块还没与弹簧接触就已经与小车相对静止,设滑块恰巧滑到 Q 点,由能量守恒定律得:m B gL11m B v B21(m B M )v2 22联立解得:L1=1.35m若小车 PQ 之间的距离L 不是很大,则滑块必定挤压弹簧,因为Q 点右边是圆滑的,滑块必定被弹回到PQ 之间,设滑块恰巧回到小车的左端P 点处,由能量守恒定律得:2 m B gL21m B v B21(m B M )v2 22联立解得:L2=0.675m综上所述,要使滑块既能挤压弹簧,又最后没有走开小车,PQ 之间的距离L 应知足的范围是 0.675m <L< 1.35m3.如下图,圆弧轨道AB 是在竖直平面内的1圆周,B点离地面的高度h=0.8m,该处切4线是水平的,一质量为m=200g 的小球(可视为质点)自 A 点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从 B 点水平飞出,最后落到水平川面上的D 点.已知小物块落地址 D 到 C点的距离为x=4m,重力加快度为g=10m/ s2.求:(1)圆弧轨道的半径(2)小球滑到 B 点时对轨道的压力.【答案】(1)圆弧轨道的半径是 5m.(2)小球滑到 B 点时对轨道的压力为 6N,方向竖直向下.【分析】(1)小球由 B 到 D 做平抛运动,有: h= 1gt22Bx=v t解得:v B xg104210m / s 2h0.8A 到B 过程,由动能定理得:1mgR= mv B2-02解得轨道半径R=5m2(2)在 B 点,由向心力公式得:N mg mv BR 解得: N=6N依据牛顿第三定律,小球对轨道的压力N =N=6N ,方向竖直向下点睛:解决本题的重点要剖析小球的运动过程,掌握每个过程和状态的物理规律,掌握圆周运动靠径向的协力供给向心力,运用运动的分解法进行研究平抛运动.4. 如下图,一半径r = 0.2 m 的 1/4 圆滑圆弧形槽底端 B 与水平传递带相接,传递带的运行速度为 v 0= 4 m/s ,长为 L =1.25 m ,滑块与传递带间的动摩擦因数μ= 0.2, DEF 为固定于竖直平面内的一段内壁圆滑的中空方形细管, EF 段被弯成以 O 为圆心、半径 R = 0.25 m的一小段圆弧,管的D 端弯成与水平传带 C 端光滑相接, O 点位于地面, OF 连线竖直.一质量为 M = 0.2 kg 的物块 a 从圆弧顶端 A 点无初速滑下,滑到传递带上后做匀加快运动,事后滑块被传递带送入管 DEF ,已知 a 物块可视为质点, a 横截面略小于管中空部分的横截面,重力加快度 g 取 10 m/s 2.求:(1)滑块 a 抵达底端 B 时的速度大小 v ;B(2)滑块 a 刚抵达管顶 F 点时对管壁的压力. 【答案】( 1) v B 2m / s (2) F N 1.2N【分析】试题剖析:( 1)设滑块抵达B 点的速度为 v B ,由机械能守恒定律,有 M gr1Mv B 22解得: v B =2m/s(2)滑块在传递带上做匀加快运动,遇到传递带对它的滑动摩擦力,由牛顿第二定律 μMg =Ma滑块对地位移为 L ,末速度为 v C ,设滑块在传递带上向来加快由速度位移关系式 2 22Al=v C -v B得 v C =3m/s<4m/s ,可知滑块与传递带未达共速,滑块从 C 至 F ,由机械能守恒定律,有1Mv C2MgR1Mv F 222得 v F =2m/s在 F 处由牛顿第二定律 M g F Nv F 2MR得 FN =1. 2N 由牛顿第三定律得管上壁受压力为 1. 2N, 压力方向竖直向上考点:机械能守恒定律;牛顿第二定律【名师点睛】物块下滑和上滑机遇械能守恒,物块在传递带上运动时,受摩擦力作用,依据运动学公式剖析滑块经过传递带时的速度,注意物块在传递带上的速度剖析.5.如下图,ABCD是一个地面和轨道均圆滑的过山车轨道模型,现对静止在 A 处的滑块施加一个水平向右的推力F,使它从 A 点开始做匀加快直线运动,当它水光滑行 2.5 m 时抵达 B 点,此时撤去推力F、滑块滑入半径为0.5 m 且内壁圆滑的竖直固定圆轨道,并恰好经过最高点C,当滑块滑过水平BD 部分后,又滑上静止在 D 处,且与ABD 等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平川面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s 2,求:(1)水平推力 F 的大小;(2)滑块抵达 D 点的速度大小;(3)木板起码为多长时,滑块才能不从木板上掉下来?在该状况下,木板在水平川面上最后滑行的总位移为多少?【答案】( 1) 1N( 2)(3)t= 1 s ;【分析】【剖析】【详解】(1)因为滑块恰巧过 C 点,则有:m1g= m1从 A 到 C 由动能定理得:Fx- m1g·2R= m1 v C2- 0代入数据联立解得:F=1 N(2)从 A 到 D 由动能定理得:2Fx= m1v D代入数据解得:v D= 5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g= 3 m/s 2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2= 2 m/s2滑块恰巧不从木板上滑下,此时滑块滑到木板的右端时恰巧与木板速度同样,有:v 共= v D- a1 tv 共= a2t,代入数据解得:t= 1 s此时滑块的位移为:x1= v D t-a1t2,木板的位移为:x2= a2t2, L=x1- x2,代入数据解得:L= 2.5 mv 共= 2 m/sx2= 1 m达到共同速度后木板又滑行x′,则有:v 共2= 2μ2gx′,代入数据解得:x′= 1.5 m木板在水平川面上最后滑行的总位移为:x 木= x2+ x′=2.5 m点睛:本题考察了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的重点理清滑块和木板在整个过程中的运动规律,选择适合的规律进行求解.6.如下图,轻绳绕过定滑轮,一端连结物块A,另一端连结在滑环 C 上,物块 A 的下端用弹簧与放在地面上的物块 B 连结, A、B 两物块的质量均为m,滑环 C的质量为M,开始时绳连结滑环 C 部分处于水平,绳恰巧拉直且无弹力,滑轮到杆的距离为L,控制滑块4C,使其沿杆迟缓下滑,当 C 下滑L 时,开释滑环C,结果滑环 C 恰巧处于静止,此时B3恰巧要走开地面,不计全部摩擦,重力加快度为g.(1)求弹簧的劲度系数;(2)若由静止开释滑环C,求当物块 B 恰巧要走开地面时,滑环 C 的速度大小.3mg(2)10(2 M m) gL【答案】( 1)48m75ML【分析】【详解】(1)设开始时弹簧的压缩量为x,则 kx=mg设 B 物块恰巧要走开地面,弹簧的伸长量为x′,则 kx′=mg所以 x′= x=mgk由几何关系得 2x=L216 L2 2 L- L=93求得 x=L3得 k=3mgL(2)弹簧的劲度系数为k,开始时弹簧的压缩量为x1=当 B 恰巧要走开地面时,弹簧的伸长量mg L x2=3k所以 A 上涨的距离为h =x1+x2=2L 3C 下滑的距离H(L h)2L2=4L3依据机械能守恒1m(vH)2 1 Mv2MgH - mgh =2H 2L22(2 M m)gL求得v10mg L k37.如下图, P 为弹射器, PA、 BC为圆滑水平面分别与传递带AB 水平相连, CD为圆滑半圆轨道,其半径R=2m,传递带AB 长为 L=6m,并沿逆时针方向匀速转动.现有一质量m=1kg 的物体(可视为质点)由弹射器P 弹出后滑向传递带经BC紧贴圆弧面抵达 D 点,已知弹射器的弹性势能所有转变为物体的动能,物体与传递带的动摩擦因数为=0.2.取g=10m/s2,现要使物体恰巧能经过 D 点,求:(1)物体抵达 D 点速度大小;(2)则弹射器初始时拥有的弹性势能起码为多少.【答案】( 1) 2 5 m/s;(2)62J【分析】【剖析】【详解】(1)由题知,物体恰巧能经过 D 点,则有:mg m v D2 R解得: v D gR 2 5 m/s(2)物体从弹射到 D 点,由动能定理得:W mgL2mgR1m v D202W E p解得: E p62J8.如下图,一质量为 m=1kg 的小球从 A 点沿圆滑斜面轨道由静止滑下,不计经过 B 点时的能量损失,而后挨次滑入两个同样的圆形轨道内侧,其轨道半径 R=10cm,小球恰能通过第二个圆形轨道的最高点,小球走开圆形轨道后可持续向 E 点运动, E 点右边有一壕沟, E、F 两点的竖直高度d=0.8m,水平距离 x=1.2m,水平轨道 CD 长为 L1=1m , DE长为L2=3m.轨道除 CD 和 DE 部分粗拙外,其他均圆滑,小球与 CD 和 DE 间的动摩擦因数2(1)小球经过第二个圆形轨道的最高点时的速度;(2)小球经过第一个圆轨道最高点时对轨道的压力的大小;(3)若小球既能经过圆形轨道的最高点,又不掉进壕沟,求小球从 A 点开释时的高度的范围是多少?【答案】 (1)1m/s ( 2) 40N (3) 0.45m h0.8m 或 h 1.25m【分析】⑴小球恰能经过第二个圆形轨道最高点,有:2 mgmv 2R求得: υ2=gR =1m/s ①⑵在小球从第一轨道最高点运动到第二圆轨道最高点过程中,应用动能定理有: - μmgL 1mv 2 2 12②1=- 2mv 12求得: υ22 gL 1 = 5 m/s21=2在最高点时,协力供给向心力,即F N +mg= m 1③R2求得: F N = m(1- g)= 40NR依据牛顿第三定律知,小球对轨道的压力为:F NN′ =F=40N ④⑵若小球恰巧经过第二轨道最高点,小球从斜面上开释的高度为 h1,在这一过程中应用动能定理有: mgh 111 22⑤- μ mgL - mg 2R =mv22求得: h 112=0.45m=2R+μL +2g若小球恰巧能运动到 E 点,小球从斜面上开释的高度为h 1,在这一过程中应用动能定理有: mgh - μ mg(L+L )=0- 0 ⑥21 2求得: h 21 2=μ (L+L )=0.8m使小球停在 BC 段,应有 h 12≤ h ≤h,即: 0.45m ≤ h ≤ 0.8m若小球能经过 E 点,并恰巧超出壕沟时,则有12d⑦d = gt 2→ t == 0.4s2gEtEx⑧ x=v →υ= t =3m/s设小球开释高度为h3,从开释到运动E 点过程中应用动能定理有:mgh 3 - μ mg(L 1+L 2)= 1mv E 2- 0⑨22求得: h 3 =μ1 2E=1.25m(L+L)+2g即小球要超出壕沟开释的高度应知足: h ≥1.25m综上可知,开释小球的高度应知足:0.45m ≤h ≤0.8m 或 h ≥1.25m ⑩9. 如下图,倾角 θ=30°的圆滑斜面上,一轻质弹簧一端固定在挡板上,另一端连结质量m B=0.5kg的物块B,B 经过轻质细绳越过圆滑定滑轮与质量m A=4kg的物块 A 连结,细绳平行于斜面, A 在外力作用下静止在圆心角为α=60°、半径R=lm的圆滑圆弧轨道的顶端a 处,此时绳索恰巧拉直且无张力;圆弧轨道最低端b 与粗拙水平轨道bc相切,bc与一个半径r=0.12m的圆滑圆轨道光滑连结,静止开释A,当 A 滑至b 时,弹簧的弹力与物块A 在顶端 d 处时相等,此时绳索断裂,已知bc长度为d=0.8m,求:(g取 l0m/s2)(1)轻质弹簧的劲度系数k;(2)物块 A 滑至 b 处,绳索断后瞬时,圆轨道对物块 A 的支持力大小;(3)为了让物块 A 能进入圆轨道且不脱轨,则物体与水平轨道bc间的动摩擦因数μ 应满足什么条件?【答案】(1)k5N / m()72N() 0.350.5或0.12523【分析】(1) A 位于 a 处时,绳无张力弹簧处于压缩状态,设压缩量为x对 B 由均衡条件能够获取:kx m B g sin当 A 滑至 b 时,弹簧处于拉伸状态,弹力与物块 A 在顶端 a 处时相等,则伸长量也为x,由几何关系可知:R 2x ,代入数据解得: k5N / m ;(2)物块 A 在 a 处和在 b 处时,弹簧的形变量同样,弹性势能同样由机械能守恒有:m A gR 1cos m B gR sin 1m A v A21m B v B2 22将 A 在 b 处,由速度分解关系有:v B v A sin代入数据解得:v A22m / s2在 b 处,对 A 由牛顿定律有:N b m A gm Av AR 代入数据解得支持力:N b72 N .(3)物块 A 不离开圆形轨道有两种状况:①不超出圆轨道上与圆心的等高点由动能定理,恰能进入圆轨道时需要知足:1m A gd01m A v A2 2恰能到圆心等高处时需要知足条件:m A gr2 m A gd01m A v A2 2代入数据解得:10.5,2 0.35②过圆轨道最高点,则恰巧过最高点时:v 2m A g m A r由动能定理有:2m A gr3m A gd1m A v21m A v A 222代入数据解得:3 0.125为使物块 A 能进入圆轨道且不脱轨,有:0.35 0.5 或0.125 .10. 某高中物理课程基地拟采买一种能帮助学生对电偏转和磁偏转理解的实验器械 .该器械的中心构造原理可简化为如下图 .一匀强电场方向竖直向下,以竖直线ab 、 cd 为界限,其宽度为 L ,电场强度的大小为 E3mv 02 . 在 cd 的左边有一与 cd 相切于 N 点的圆形有qL界匀强磁场,磁场的方向垂直纸面、水平向外.现有一质量为 m ,电荷量为 q 的带正电粒子自 O 点以水平初速度 v 0 正对 M 点进入该电场后,从 N 点飞离 cd 界限,再经磁场偏转后 又从 P 点垂直于 cd 界限回到电场地区,并恰能返回O 点 .粒子重力不计 .试求:1 粒子从 N 点飞离 cd 界限时的速度大小和方向;2 P 、 N 两点间的距离;3 圆形有界匀强磁场的半径以及磁感觉强度大小;4 该粒子从 O 点出发至再次回到O 点的总时间.【答案】1 2v 0 ,方向与界限 cd 成 30o角斜向下; 25 3L , ;( 3) 5L ,8 48 3mv 0 ; 4 3L 5 3 L5qL2v 0 18v 0【分析】【剖析】(1)利用运动的合成和分解,联合牛顿第二定律,联立刻可求出粒子从 N 点飞离 cd 界限时的速度大小,利用速度倾向角公式即可确立其方向;( 2)利用类平抛规律联合几何关系,即可求出P、 N 两点间的距离;(3)利用洛伦兹力供给向心力联合几何关系,联立刻可求出圆形有界匀强磁场的半径以及磁感觉强度大小;( 4)利用类平抛规律求解粒子在电场中运动的时间,利用周期公式,联合粒子在磁场中转过的圆心角求解粒子在磁场中运动的时间,联立刻可求出该粒子从O 点出发至再次回到O 点的总时间.【详解】(1)画出粒子轨迹过程图,如下图:L粒子从 O 到 N 点时间: t 1=v0粒子在电场中加快度: a= qE=3v 02 m L粒子在 N 点时竖直方向的速度:v y 10=at = 3 v粒子从 N 点飞离 cd 界限时的速度: v=2v0v y=,故=600,即速度与界限cd 成 300角斜向下.速度偏转角的正切: tanθ=3v0θL(2)粒子从 P 到 O 点时间: t2= 2v0粒子从 P 到 O 点过程的竖直方向位移:y2=1at22= 3 L28粒子从 O 到 N 点过程的竖直方向位移:y1=12=3at L 212故 P、 N 两点间的距离为: Y PN=y1+y2= 53 L8(3)设粒子做匀速圆周运动的半径为r,依据几何关系可得:r cos600 +r= 5 3L 8解得粒子做匀速圆周运动的半径:r= 53L 12依据洛伦兹力供给向心力可得:qvB=m v2 r解得圆形有界匀强磁场的磁感觉强度: B=mv8 3mv0=qr5qL依据几何关系能够确立磁场地区的半径:R=2r cos300即圆形有界匀强磁场的半径: R=5L4(4)粒子在磁场中运动的周期:2πr T=v粒子在匀强磁场中运动的时间:2 5 3πL t 3=T=318v0粒子从 O 点出发至再次回到3L 5 3πL O 点的总时间: t=t 1+t2+t 3=+2v 018v 0【点睛】本题考察带电粒子在复合场中运动,类平抛运动运用运动的合成和分解牛顿第二定律联合运动学公式求解,粒子在磁场中的运动运用洛伦兹力供给向心力联合几何关系求解,解题重点是要作出临界的轨迹图,正确运用数学几何关系,还要剖析好从电场射入磁场连接点的速度大小和方向;运用粒子在磁场中转过的圆心角,联合周期公式,求解粒子在磁场中运动的时间.。

高中物理曲线运动经典练习题全集(答案)

高中物理曲线运动经典练习题全集(答案)

《曲线运动》超经典试题1、关于曲线运动,下列说法中正确的是(AC )A. 曲线运动一定是变速运动B. 变速运动一定是曲线运动C. 曲线运动可能是匀变速运动D. 变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。

变速运动可能是速度的方向不变而大小变化,则可能是直线运动。

当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。

做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。

2、质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点(A )A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。

由题意可知,当突然撤去F1而保持F2、F3不变时,质点受到的合力大小为F1,方向与F1相反,故一定做匀变速运动。

在撤去F1之前,质点保持平衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。

3、关于运动的合成,下列说法中正确的是(C )A. 合运动的速度一定比分运动的速度大B. 两个匀速直线运动的合运动不一定是匀速直线运动C. 两个匀变速直线运动的合运动不一定是匀变速直线运动D. 合运动的两个分运动的时间不一定相等【解析】根据速度合成的平行四边形定则可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不一定比分速度大。

两个匀速直线运动的合运动一定是匀速直线运动。

两个匀变速直线运动的合运动是否是匀变速直线运动,决定于两初速度的合速度方向是否与合加速度方向在一直线上。

(物理)高考物理曲线运动试题(有答案和解析)

(物理)高考物理曲线运动试题(有答案和解析)

(物理)高考物理曲线运动试题( 有答案和解析 )一、高中物理精讲专题测试曲线运动1.以下列图,在风洞实验室中,从 A 点以水平速度 v0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F,经过一段时间小球运动到 A 点正下方的 B 点处,重力加速度为 g,在此过程中求(1)小球离线的最远距离;(2) A、 B 两点间的距离;(3)小球的最大速率 v max.【答案】(1)mv22m2 gv2( 3)v0F24m2g2 0(2)0F2F F 2【解析】【解析】(1)依照水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)依照水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A、 B 两点间的距离;(3)小球到达 B 点时水平方向的速度最大,竖直方向的速度最大,则 B 点的速度最大,依照运动学公式结合平行四边形定则求出最大速度的大小;【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解水平方向: F=ma x2v0= 2a x x m解得:x m=mv2 2F(2)水平方向速度减小为零所需时间t1=v 0a x总时间 t= 2t1竖直方向上:y= 1 gt2= 2m2 gv022 F 2(3)小球运动到 B 点速度最大v x=v0V y=gtv max= v x2v y2=vF 24m2g 2 F【点睛】解决此题的要点将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.以下列图,在竖直平面内有一倾角θ=37°的传达带BC.已知传达带沿顺时针方向运行的速度 v=4 m/s , B、 C两点的距离 L=6 m。

一质量 m=0.2kg 的滑块(可视为质点)从传达带上端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC方向滑人传达带,滑块与传达带间的动摩擦因数μ,取重力加速度g=10m/s 2, sin37 = °,cos37°。

(完整版)高中物理曲线运动经典练习题全集(含答案)(可编辑修改word版)

(完整版)高中物理曲线运动经典练习题全集(含答案)(可编辑修改word版)

由同一点出发的小球。AA′为 A 球在光滑水平面上以速度 v 运动的轨迹; B A
A′
BB′为 B 球以速度 v 被水平抛出后的运动轨迹;CC′为 C 球自由下落的 C
运动轨迹。通过分析上述三条轨迹可得出结论:

【解析】观察照片,B、C 两球在任一曝光瞬间的位置总在同一水平线上,
L T= 。时间 T 内,水平方向位移为 x=2L,所以
g
v0= x =2 Lg 2 0.0125 9.8 m/s=0.70m/s。 t
a b c
d
8、飞机在 2km 的高空以 360km/h 的速度沿水平航线匀速飞行,飞机在地面上观察者的正上方空 投一包裹。(g 取 10m/s2,不计空气阻力)
∵ tan y / x ∴ t 2v0 tan / g
t A tan 37 9 ∴ tB tan 53 16
11、如图在倾角为 θ 的斜面顶端 A 处以速度 V0 水平抛出一小球,落在斜面上的某一点 B 处,设 空气阻力不计,求(1)小球从 A 运动到 B 处所需的时间;(2)从抛出开始计时,经过多长时间 小球离斜面的距离达到最大? 【解析】(1)小球做平抛运动,同时受到斜面体的限制,设从小球从 A 运动到 B 处所需的时间为 t,
C
vB∶vC=1∶1∶2。 A、B 两轮边缘上各点的线速度大小相等,同样由 v=rω 可知,它们的角速度与半径成反比,
即 ωA∶ωB=rB∶rA=1∶2。因此 ωA∶ωB∶ωC=1∶2∶2
14、雨伞边缘半径为 r,且高出水平地面的距离为 h,如图所示,若雨伞以角速度 ω 匀速旋转,
使雨滴自雨伞边缘水平飞出后在地面上形成一个大圆圈,则此圆圈的半径 R 为多大?
球在平抛运动途中的几个位置如图中

(完整版)曲线运动测试题及答案

(完整版)曲线运动测试题及答案

曲线运动单元测试一、选择题(总分41分。

其中1-7题为单选题,每题3分;8-11题为多选题,每题5分,全部选对得5分,选不全得2分,有错选和不选的得0分。

)1.关于运动的性质,以下说法中正确的是( ) A .曲线运动一定是变速运动 B .变速运动一定是曲线运动 C .曲线运动一定是变加速运动D .物体加速度大小、速度大小都不变的运动一定是直线运动 2.关于运动的合成和分解,下列说法正确的是( ) A .合运动的时间等于两个分运动的时间之和 B .匀变速运动的轨迹可以是直线,也可以是曲线 C .曲线运动的加速度方向可能与速度在同一直线上 D .分运动是直线运动,则合运动必是直线运动3.关于从同一高度以不同初速度水平抛出的物体,比较它们落到水平地面上的时间(不计空气阻力),以下说法正确的是( )A .速度大的时间长B .速度小的时间长C .一样长D .质量大的时间长 4.做平抛运动的物体,每秒的速度增量总是( )A .大小相等,方向相同B .大小不等,方向不同C .大小相等,方向不同D .大小不等,方向相同5.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为( )A .1∶4B .2∶3C .4∶9D .9∶166.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A 的受力情况是( )A .绳的拉力大于A 的重力B .绳的拉力等于A 的重力C .绳的拉力小于A 的重力D .绳的拉力先大于A 的重力,后变为小于重力7.如图所示,有一质量为M 的大圆环,半径为R ,被一轻杆固定后悬挂在O 点,有两个质量为m 的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。

两小环同时滑到大环底部时,速度都为v ,则此时大环对轻杆的拉力大小为( )A .(2m +2M )gB .Mg -2mv 2/RC .2m (g +v 2/R )+MgD .2m (v 2/R -g )+MgAv(第10题)(第11题)8.下列各种运动中,属于匀变速运动的有( )A .匀速直线运动B .匀速圆周运动C .平抛运动D .竖直上抛运动 9.水滴自高处由静止开始下落,至落地前的过程中遇到水平方向吹来的风,则( ) A .风速越大,水滴下落的时间越长 B .风速越大,水滴落地时的瞬时速度越大C .水滴着地时的瞬时速度与风速无关D .水滴下落的时间与风速无关10.在宽度为d 的河中,水流速度为v 2 ,船在静水中速度为v 1(且v 1>v 2),方向可以选择,现让该船开始渡河,则该船( )A .可能的最短渡河时间为2dv B .可能的最短渡河位移为dC .只有当船头垂直河岸渡河时,渡河时间才和水速无关D .不管船头与河岸夹角是多少,渡河时间和水速均无关11.关于匀速圆周运动的向心力,下列说法正确的是( ) A .向心力是指向圆心方向的合力,是根据力的作用效果命名的 B .向心力可以是多个力的合力,也可以是其中一个力或一个力的分力 C .对稳定的圆周运动,向心力是一个恒力 D .向心力的效果是改变质点的线速度大小二、实验和填空题(每空2分,共28分。

高一物理必修2:曲线运动 单元测试题(含答案和详细解析) (1)

高一物理必修2:曲线运动 单元测试题(含答案和详细解析) (1)

曲线运动单元测试一、选择题(本大题共10个小题,每小题一个或者一个以上正确答案,请将正确答案的序号选出并填写在对应题号下的空格中,每小题4分,共40分)1、一质点在某段时间内做曲线运动,则在这段时间内()A.速度一定在不断地改变,加速度也一定不断地改变B.速度一定在不断地改变,加速度可以不变C.速度可以不变,加速度一定不断地改变D.速度可以不变,加速度也可以不变2、关于离心运动,下列说法中正确的是()A.物体突然受到向心力的作用,将做离心运动B.做匀速圆周运动的物体,当提供向心力的合力突然变大时将做离心运动C.做匀速圆周运动的物体,只要提供向心力的合力的数值发生变化,就做离心运动D.做匀速圆周运动的物体,当提供向心力的合力突然消失或变小时将做离心运动3、关于物体所受合力的方向,下列说法正确的是()A.物体做速率逐渐增大的运动时,其所受合力的方向一定与速度方向相同B.物体做变速曲线运动时,其所受合力的方向一定改变C.物体做变速圆周运动时,其所受合力的方向一定指向圆心D.物体做匀速曲线运动时,其所受合力的方向总是与速度方向垂直4、(多选)如图所示的皮带转动中小轮半径r a是大轮半径r b的一半,a、b分别是小轮和大轮边缘上的点,大轮上c点到轮心O的距离恰好等于r a,若皮带不打滑,则图中a、b、c三点()A.线速度之比为2∶1∶1B.角速度之比为2∶1∶2C.转动周期之比为1∶2∶2D.向心加速度大小之比为4∶2∶15、如图所示,吊车以速度v1沿水平直线匀速行驶,同时以恒定速度v2收拢绳索提升物体,下列表述正确的是()A.绳索保持竖直状态B.物体的实际运动速度为v1+v2C.物体相对地面做曲线运动D.绳索受到的拉力大于物体的重力6、近期,南京军区部队在邻近某小岛的东南沿海进行抢滩、海空联合作战演习。

如图所示,某登陆舰船头垂直河岸自A点出发,分别沿路径AB、AC在演练岛屿的B、C两点登陆,已知登陆舰在静水中的速度恒定且大于水速,则下列说法正确的是()A.沿AC航行所用时间较长B.沿AC航行时水速较大C.两次实际航速大小相等D.无论船头方向如何,登陆舰都无法在A点正对岸登陆7、刀削面是西北人喜欢的面食之一,全凭刀削得名。

物理曲线运动专题练习(及答案)含解析

物理曲线运动专题练习(及答案)含解析

物理曲线运动专题练习(及答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

高中物理曲线运动题20套(带答案)含解析

高中物理曲线运动题20套(带答案)含解析

高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。

高中物理曲线运动题20套(带答案)含解析

高中物理曲线运动题20套(带答案)含解析

高中物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。

铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。

高考物理一轮复习《曲线运动》练习题(含答案)

高考物理一轮复习《曲线运动》练习题(含答案)

高考物理一轮复习《曲线运动》练习题(含答案)一、单选题1.在弯道上高速行驶的汽车,后轮突然脱离赛车,关于脱离了的后轮的运动情况,以下说法正确的是()A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能2.“旋转纽扣”是一种传统游戏。

如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现。

拉动多次后,纽扣绕其中心的转速可达50r/s,此时纽扣上距离中心1cm处的点向心加速度大小约为()A.10m/s2B.100m/s2C.1000m/s2D.10000m/s23.如图所示,A、B两篮球从相同高度同时抛出后直接落入篮筐,落入篮筐时的速度方向相同,下列判断正确的是()A.A比B先落入篮筐B.A、B运动的最大高度相同C.A在最高点的速度比B在最高点的速度小D.A、B上升到某一相同高度时的速度方向相同4.无人配送小车某次性能测试路径如图所示,半径为3m的半圆弧BC与长8m的直线路径AB相切于B点,与半径为4m的半圆弧CD相切于C点。

小车以最大速度从A点驶入路径,到适当位置调整速率运动到B点,然后保持速率不变依次经过BC和CD。

为保证安全,小车速率最大为4m/s。

在ABC段的加速度最大为21m/s。

小车2m/s,CD段的加速度最大为2视为质点,小车从A 到D 所需最短时间t 及在AB 段做匀速直线运动的最长距离l 为( )A .7π2s,8m 4t l ⎛⎫=+= ⎪⎝⎭B .97πs,5m 42⎛⎫=+= ⎪⎝⎭t lC .576π26s, 5.5m 126⎛⎫=++= ⎪⎝⎭t lD .5(64)π26s, 5.5m 122⎡⎤+=++=⎢⎥⎣⎦t l 5.如图所示,某同学用一个小球在O 点对准前方的一块竖直放置的挡板,O 与A 在同一高度,小球的水平初速度分别是123v v v 、、,不计空气阻力。

(物理)物理曲线运动练习题20篇含解析

(物理)物理曲线运动练习题20篇含解析

(物理)物理曲线运动练习题20篇含解析一、高中物理精讲专题测试曲线运动1.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.2.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtGαπ 【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tanα===所以星球表面的重力加速度为:g=.(2)在星球表面上,根据万有引力等于重力,得:mg=G解得星球的质量为为:M=星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ=点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G和ρ=求星球的密度.3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-=从C 点到落地的时间:00.8t s == B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.5.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。

高中物理《曲线运动》练习题(附答案解析)

高中物理《曲线运动》练习题(附答案解析)

高中物理《曲线运动》练习题(附答案解析)学校:___________姓名:___________班级:___________ 一、单选题1.下列关系式中不是利用物理量之比定义新的物理量的是()A.FEq=B.pEqϕ=C.Fam=D.tθω=2.一船以恒定的速率渡河,水速恒定(小于船速)。

要使船垂直河岸到达对岸,则()A.船应垂直河岸航行B.船的航行方向应偏向上游一侧C.船不可能沿直线到达对岸D.河的宽度一定时,船垂直到对岸的时间是任意的3.如图所示,一杂技演员驾驶摩托车沿半径为R的圆周做线速度大小为v的匀速圆周运动。

若杂技演员和摩托车的总质量为m,其所受向心力大小为()A.mvRB.2mvRC.22mvRD.2mvR4.如图所示,细线一端固定在A点,另一端系着小球。

给小球一个初速度,使小球在水平面内做匀速圆周运动,关于该小球的受力情况,下列说法中正确的是()A.受重力、向心力作用B.受细线拉力、向心力作用C.受重力、细线拉力作用D.受重力、细线拉力和向心力作用5.下列现象或措施中,与离心运动有关的是()A.汽车行驶过程中,乘客要系好安全带B.厢式电梯张贴超载标识C.火车拐弯处设置限速标志D.喝酒莫开车,开车不喝酒6.把地球设想成一个半径为地球半径R=6 400km的拱形桥,如图所示,汽车在最高点时,若恰好对“桥面”压力为0,g=9.8m/s2,则汽车的速度为()A.7.9m/s B.7.9m/h C.7.9km/s D.7.9km/h7.光滑平面上一运动质点以速度v通过原点O,v与x轴正方向成α角(如图所示),与此同时对质点加上沿x轴正方向的恒力Fx和沿y轴正方向的恒力Fy,则()A.因为有Fx,质点一定做曲线运动B.如果Fy>Fx,质点向y轴一侧做曲线运动C.质点不可能做直线运动D.如果Fy<Fx tanα,质点向x轴一侧做曲线运动8.在2022年2月5日北京冬奥会上,我国选手运动员在短道速滑比赛中的最后冲刺阶段如图所示,设甲、乙两运动员在水平冰面上恰好同时到达虚线PQ,然后分别沿半径为r1和r2(r2>r1)的滑道做匀速圆周运动,运动半个圆周后匀加速冲向终点线。

高中物理曲线运动试题(有答案和解析)

高中物理曲线运动试题(有答案和解析)

高中物理曲线运动试题(有答案和解析)一、高中物理精讲专题测试曲线运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图所示,倾角为45α=︒的粗糙平直导轨与半径为r 的光滑圆环轨道相切,切点为b ,整个轨道处在竖直平面内. 一质量为m 的小滑块从导轨上离地面高为H =3r 的d 处无初速下滑进入圆环轨道,接着小滑块从最高点a 水平飞出,恰好击中导轨上与圆心O 等高的c 点. 已知圆环最低点为e 点,重力加速度为g ,不计空气阻力. 求: (1)小滑块在a 点飞出的动能; ()小滑块在e 点对圆环轨道压力的大小;(3)小滑块与斜轨之间的动摩擦因数. (计算结果可以保留根号)【答案】(1)12k E mgr =;(2)F ′=6mg ;(3)4214μ-= 【解析】 【分析】 【详解】(1)小滑块从a 点飞出后做平拋运动: 2a r v t = 竖直方向:212r gt = 解得:a v gr =小滑块在a 点飞出的动能21122k a E mv mgr == (2)设小滑块在e 点时速度为m v ,由机械能守恒定律得:2211222m a mv mv mg r =+⋅ 在最低点由牛顿第二定律:2m mv F mg r-=由牛顿第三定律得:F ′=F 解得:F ′=6mg(3)bd 之间长度为L ,由几何关系得:()221L r =+ 从d 到最低点e 过程中,由动能定理21cos 2m mgH mg L mv μα-⋅= 解得4214μ-=3.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+ 解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤4.如图是节水灌溉工程中使用喷水龙头的示意图。

(完整word版)曲线运动练习题及答案

(完整word版)曲线运动练习题及答案

曲线运动试题姓名:_______________班级:_______________考号:_______________一、选择题(每空分,共分)1、一质点做曲线运动,在运动过程中的某一位置,它的速度方向、加速度方向,以及所受合外力的方向的关系是()A.速度、加速度、合外力的方向有可能都相同B.加速度与速度方向一定相同C.加速度与合外力的方向一定相同D.速度方向与合外力方向可能相同,也可能不同2、做曲线运动的物体,在运动过程中,一定变化的物理量是()A.速率 B.速度 C.合外力 D.加速度3、物体受到几个力作用而做匀速直线运动,如果只撤掉其中的一个力,其它力保持不变则A:可能是匀速直线运动 B:一定是匀加速直线运动C:一定匀减速直线运动 D:可能是匀变速曲线运动4、关于运动的性质,以下说法中正确的是A:曲线运动一定是变速运动 B:变速运动一定是曲线运动C:曲线运动一定是变加速运动 D:物体加速度不变的运动一定是直线运动5、一质点在某段时间内做曲线运动,则在这段时间内()A.速度一定不断地改变,加速度也一定不断地改变B.速度一定不断地改变,加速度可以不变C.速度可以不变,加速度一定不断地改变D.速度可以不变,加速度也可以不变6、一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小,下图中A、B、C、D分别画出了汽车转弯时所受合力F的四种方向,正确的是()7、下列关于曲线运动的说法中,正确的是()A.对于匀速圆周运动的物体,它所受到的向心力是一个恒定不变的力B.平抛运动是变加速曲线运动C.曲线运动的加速度方向可能与速度在同一直线上D.两个直线运动合成后,其合运动可能是曲线运动8、做曲线运动的物体在运动过程中,下列说法正确的是( )A.速度大小一定改变 B.加速度大小一定改变C.速度方向一定改变 D.加速度方向一定改变9、下列说法不正确的是()A.曲线运动可能是匀变速运动B.曲线运动的速度方向一定是时刻变化的C.物体在恒力作用下,可能做曲线运动D.曲线运动的速度的大小一定是时刻变化的10、质点在平面内从P运动到Q,如果用v、a、F表示质点运动过程中的速度、加速度和受到的合外力,下列图示正确的是()11、关于运动的性质,以下说法中正确的是( )A.曲线运动一定是变速运动。

完整版)高一物理曲线运动练习题(含答案)

完整版)高一物理曲线运动练习题(含答案)

完整版)高一物理曲线运动练习题(含答案) 第五章第一节《曲线运动》练题一、选择题1.关于运动的合成的说法中,正确的是()。

A。

合运动的位移等于分运动位移的矢量和B。

合运动的时间等于分运动的时间之和C。

合运动的速度一定大于其中一个分运动的速度D。

合运动的速度方向与合运动的位移方向相同答案:A。

此题考查分运动与合运动的关系,D答案只在合运动为直线时才正确。

2.物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是()。

A。

静止B。

匀加速直线运动C。

匀速直线运动D。

匀速圆周运动答案:B。

其余各力的合力与撤去的力等大反向,仍为XXX。

3.某质点做曲线运动时(AD)。

A。

在某一点的速度方向是该点曲线的切线方向B。

在任意时间内,位移的大小总是大于路程C。

在某段时间里质点受到的合外力可能为零D。

速度的方向与合外力的方向必不在同一直线上4.精彩的F1赛事相信你不会陌生吧!XXX在2005年以8000万美元的年收入高居全世界所有运动员榜首。

在观众感觉精彩与刺激的同时,车手们却时刻处在紧张与危险之中。

这位车王在一个弯道上突然高速行驶的赛车后轮脱落,从而不得不遗憾地退出了比赛。

关于脱落的后轮的运动情况,以下说法正确的是(C)。

A。

仍然沿着汽车行驶的弯道运动B。

沿着与弯道垂直的方向飞出C。

沿着脱离时,轮子前进的方向做直线运动,离开弯道D。

上述情况都有可能5.一个质点在恒力F作用下,在xOy平面内从O点运动到A点的轨迹如图所示,且在A点的速度方向与x轴平行,y 则恒力F的方向不可能()。

A。

沿x轴正方向B。

沿x轴负方向C。

沿y轴正方向D。

沿y轴负方向答案:A。

质点到达A点时,Vy=0,故沿y轴负方向上一定有力。

6.在光滑水平面上有一质量为2kg的物体,受几个共点力作用做匀速直线运动。

现突然将与速度反方向的2N力水平旋转90º,则关于物体运动情况的叙述正确的是(BC)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 第一节 《曲线运动》练习题一 选择题1. 关于运动的合成的说法中,正确的是 ( )A .合运动的位移等于分运动位移的矢量和B .合运动的时间等于分运动的时间之和C .合运动的速度一定大于其中一个分运动的速度D .合运动的速度方向与合运动的位移方向相同A 此题考查分运动与合运动的关系,D 答案只在合运动为直线时才正确2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是 ( )A .静止B .匀加速直线运动C .匀速直线运动D .匀速圆周运动B 其余各力的合力与撤去的力等大反向,仍为恒力。

3.某质点做曲线运动时 (AD )A.在某一点的速度方向是该点曲线的切线方向B.在任意时间内,位移的大小总是大于路程C.在某段时间里质点受到的合外力可能为零D.速度的方向与合外力的方向必不在同一直线上4 精彩的F 1赛事相信你不会陌生吧!车王舒马赫在2005年以8000万美元的年收入高居全世界所有运动员榜首。

在观众感觉精彩与刺激的同时,车手们却时刻处在紧张与危险之中。

这位车王在一个弯道上突然高速行驶的赛车后轮脱落,从而不得不遗憾地退出了比赛。

关于脱落的后轮的运动情况,以下说法正确的是( C )A. 仍然沿着汽车行驶的弯道运动B. 沿着与弯道垂直的方向飞出C. 沿着脱离时,轮子前进的方向做直线运动,离开弯道D. 上述情况都有可能5.一个质点在恒力F 作用下,在xOy 平面内从O 点运动到A 点的轨迹如图所示,且在A 点的速度方向与x 轴平行,则恒力F 的方向不可能( )A.沿x 轴正方向B.沿x 轴负方向C.沿y 轴正方向D.沿y 轴负方向ABC 质点到达A 点时,Vy=0,故沿y 轴负方向上一定有力。

6在光滑水平面上有一质量为2kg 2N 力水平旋转90º,则关于物体运动情况的叙述正确的是(BC )A. 物体做速度大小不变的曲线运动B. 物体做加速度为在2m/s 2的匀变速曲线运动C. 物体做速度越来越大的曲线运动D. 物体做非匀变速曲线运动,其速度越来越大解析:物体原来所受外力为零,当将与速度反方向的2N 力水平旋转90º后其受力相当于如图所示,其中,是F x 、F y 的合力,即F=22N ,且大小、方向都不变,是恒力,那么物体的加速度为222==m F a m /s 2=2m /s 2恒定。

又因为F 与v 夹角<90º,所以物体做速度越来越大、加速度恒为2m /s 2的匀变速曲线运动,故正确答案是B 、C 两项。

7. 做曲线运动的物体,在运动过程中一定变化的物理量是( )A.速度B.加速度C.速率D.合外力O Ax yA 曲线运动的几个典型例子是匀变速曲线运动像平抛和匀速圆周运动,故B、C、D均可不变化,但速度一定变化。

8. 关于合力对物体速度的影响,下列说法正确的是(ABC)A. 如果合力方向总跟速度方向垂直,则物体速度大小不会改变,而物体速度方向会改变B. 如果合力方向跟速度方向之间的夹角为锐角,则物体的速度将增大,方向也发生改变C. 如果合力方向跟速度方向成钝角,则物体速度将减小,方向也发生改变D. 如果合力方向与速度方向在同一直线上,则物体的速度方向不改变,只是速率发生变化9 关于曲线运动,下面说法正确的是(BD)A. 物体运动状态改变着,它一定做曲线运动B. 物体做曲线运动,它的运动状态一定在改变C. 物体做曲线运动时,它的加速度的方向始终和速度的方向一致D. 物体做曲线运动时,它的加速度的方向始终和所受到的合外力方向一致10 物体受到几个力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做(BCD)A. 静止或匀速直线运动B. 匀变速直线运动C. 曲线运动D. 匀变速曲线运动11. 如图1所示,物体在恒力F作用下沿曲线从A运动到B,这时突然使它所受力反向而大小不变,则由F变为-F在此力作用下,物体以后的运动情况,下列说法正确的是(ABD)A. 物体不可能沿曲线Ba运动B. 物体不可能沿直线Bb运动C. 物体不可能沿曲线Bc运动D. 物体不可能沿原曲线由B返回A图112. 关于运动的合成,下列说法正确的是(D)A. 合运动的速度一定比每一分运动的速度大B. 两个匀速直线运动的台运动不可能是匀速直线运动C. 两个分运动互相干扰,共同决定合运动D. 两个分运动的时间一定与它们的合运动时间相等13下列关于物体做曲线运动的说法,正确的是(AD)A.曲线运动一定是变速运动B.有些曲线运动也可能是匀速运动C.变速运动一定是曲线运动D.做曲线运动的质点的速度方向就是质点在曲线上这点的切线方向14.关于物体的运动,下列说法中正确的是(AC)A. 物体做曲线运动时,它所受的合力一定不为零B. 做曲线运动的物体,有可能处于平衡状态C. 做曲线运动的物体,速度方向一定时刻改变D. 做曲线运动的物体,所受的合外力的方向有可能与速度方向在一条直线上15. 一条河宽400 m,船在静水中的速度是4 m/s,水流速度是5 m/s,则()A. 该船一定不能垂直渡到河岸B. 当船头垂直河岸横渡时过河所用时间最短C. 船横渡到对岸时,船对岸的最小位移为400 mD. 该船渡河的速度最小是4 m/sAB 由于V船<V水,故船不可能垂直到达对岸,但当V船垂直于河岸时,用的时间最少,为10s,当V船垂直于合A B C D RQ P速度时,过河的位移最小,这时,合速度与河岸的夹角为53oX min =d/sin53o =500m 。

16 你以相对于静水不变的速度垂直渡河,当你游到河中间时,水流速度突增,则你实际所用时间比预定时间(B )A. 增大B. 不变C. 减少D. 无法确定解析:你实际上参与了两种运动一种是垂直河岸的以恒定速度来渡河。

另一种是随水以水流速度向下漂移而渡河时间只由河宽与垂直河岸的速度共同来决定,水流速度不影响渡河时间,它只影响你登陆地点17.加速度不变的运动( )A .可能是直线运动B .可能是曲线运动C .可能是匀速圆周运动D .一定是匀变速运动ABD 加速度不变时,物体做的是匀变速运动,轨迹可以是直线也可以是曲线。

18.如图所示,蜡块可以在竖直玻璃管内的水中匀速上升,若在蜡块从A 点开始匀速上升的同时,玻璃管从AB 位置水平向右做匀加速直线运动,则蜡块的实际运动轨迹可能是图中的 ( ) A .直线P B .曲线Q C .曲线R D .三条轨迹都有可能B 注意玻璃管向右做的是匀加速运动。

19.在加速度为a 的火车上,某人从窗口上相对于火车无初速度释放物体A,在不计空气阻力的情况下,车上的人看到物体的运动轨迹为( )A.竖直的直线 B.倾斜的直线 C.不规则的曲线 D.抛物线B 车上的人看到的下落物体初速度为0,加速度斜向后下方,物体斜向后下方作匀加速直线运动。

20.运动员沿操场的弯道部分由M向N跑步时,速度越来越大,如图所示,他所受到的地面的水平力的方向正确的是( )C. D.B 21 一人骑自行车向东行驶,当车速为4m /s 时,他感到风从正南方向吹来,当车速增加到7m /s 时。

他感到风从东南方向(东偏南45º)吹来,则风对地的速度大小为(C ) A. 7m/s B. 6m /s C. 5m /s D. 4 m /s解析:如下图(a )所示,当车速为4m /s 时,由运动速度合成的三角形法可知:v 风对地=v 风对人+v 人对地当车速为7m /s 时,由于风对地速度不变。

故在原矢量三角形图中将入对地的速度改为7m /s 。

此时风对人的速度方向为东南方向(东偏南45º)。

据此作出下图(b )图中BC 表示原速4m /s ,BD 表示现速7m /s ,则由图可知CD 表示3m /s ,AC 也表示3m /s 解△ABC 可得AB 为5m /s ,即风对地的速度大小为5m/s ,方向东偏北37º。

22. 关于运动的合成与分解,以下说法正确的是(ABCD )A. 一个匀加速直线运动,可以分解为两个匀加速直线运动B. 一个匀减速运动。

可以分解为方向相反的匀速运动和初速度为零的匀加速直线运动C. 一个在三维空间中运动的物体,它的运动可以分解为在一个平面内的运动和在某一方向上的直线运动 N F FF F A. B. C. D. N M N v θ(M M M ND. 一个静止的物体,它的运动可以分解为两个方向相反的匀速直线运动二 填空题23. 如图所示,人在河岸上用轻绳拉船,若人以速度v 匀速行进,则船将做 ,在图示时船的速度为A.匀速运动B.匀加速运动C.变加速运动D.减速运动C 将船的实际运动分解为如图所示,V 船=V/cos θ Θ逐渐增大,cos θ逐渐减小,故V 船增大,做的是变加速运动。

24. 站在绕竖直轴转动的平台上的人。

距转轴2m ,他沿圆周切线的速度为10m /s ,他用玩具枪水平射击轴上的目标,子弹射出时的速度为20m /s 若要击中目标。

瞄准的方向应与该处沿切线速度方向成______夹角,子弹射出后经______s 击中目标(取两位有效数字)6. 120º;0.12解析:根据题意作图,由此可求sinα=vv 1,所以α=30º,即v 与v 1方向夹角为120º ,v 合=vcosα=103rn /s ,所以t=v r =s 3102=0.12s 。

三 计算题25. 小船匀速横渡一条河流,当船头垂直对岸方向航行时,在出发后l0min 到达对岸下游120m 处;若船头保持与河岸成θ角向上游航行,在出发后12.5min 到达正对岸,求:(1)水流速度大小v 1;(2)船在静水中的速度大小v 2;(3)河的宽度d ;(4)船头与河岸的夹角θ8. 解析:(1)如图所示,水流速度v 1为v 1=1t BC =6010120 m/s=0.2m/s 又有:v 2=d /t 1 ①(2)、(3)、(4):如图所示,据题意有t 2=d/v 2sinθ ②v 2cosθ=v 1 ③由①、②、③式联合求解得:d=200 m ,v 2=0.33m/s ,θ=53º26 河宽60m ,水流速度v 1=6m/s ,小船在静水中速度v 2=3m /s ,则:(1)它渡河的最短时间是多少?(2)最短航程是多少?9.解析:(1)以水流速度方向为x 轴正方向,以垂直河岸方向为y 轴正方向。

以船开出点为坐标原点建立坐标系,设船与岸成θ角开出(如图所示)将v 2沿x 、y 方向分解,则v 2x =v 2cosθ,v 2y =v 2sinθ,∴ 过河时间 t=θsin 2v d 当θ=90º时过河的时间最短,且t min =2v d =s 360=20s 。

相关文档
最新文档