大学物理C课后答案1

合集下载

大学物理C

大学物理C

大学物理C 复习参考一、力学选择题1一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ] 2 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]3某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 (A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ ] 4质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) td d v . (B) . (C) R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ] 5水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ.(C) tg θ =μ. (D) ctg θ =μ. [ ] 6 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是 (A)k mg . (B) kg 2 . (C) gk . (D) gk . [ ] 7一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ]8质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为 (A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122(- [ ]9 一个作直线运动的物体,其速度v 与时间t 的关系曲线如图所示.设时刻t 1至t 2间外力作功为W 1 ;时刻t 2至t 3间外力作功为W 2 ;时刻t 3至t 4间外力作功为W 3 ,则(A) W 1>0,W 2<0,W 3<0.(B) W 1>0,W 2<0,W 3>0.(C) W 1=0,W 2<0,W 3>0. (D) W 1=0,W 2<0,W 3<0 [ ]10 质量为m =0.5 kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI ),从t =2 s 到t =4 s 这段时间内,外力对质点作的功为(A) 1.5 J . (B) 3 J .(C) 4.5 J .(D) -1.5 J . [ ]11 质量为m 的质点在外力作用下,其运动方程为 j t B i t A r ωωsin cos +=式中A 、B 、ω都是正的常量.由此可知外力在t =0到t =π/(2ω)这段时间内所作的功为(A) )(21222B A m +ω (B) )(222B A m +ω (C) )(21222B A m -ω(D) )(21222A B m -ω [ ] 12 已知两个物体A 和B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ ]13 A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ ]14 一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为(A) 50 m ·s -1. . (B) 25 m ·s -1.(C) 0.(D) -50 m ·s -1. [ ]15 一质量为60 kg 的人起初站在一条质量为300 kg ,且正以2 m/s 的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应为(A) 2 m/s . (B) 3 m/s .(C) 5 m/s . (D) 6 m/s . [ ]16 在由两个物体组成的系统不受外力作用而发生非弹性碰撞的过程中,系统的(A) 动能和动量都守恒. (B) 动能和动量都不守恒. t(C) 动能不守恒,动量守恒. (D) 动能守恒,动量不守恒. [ ]17 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ ]18 假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒.(B) 角动量守恒,动能不守恒.(C) 角动量不守恒,动能守恒.(D) 角动量不守恒,动量也不守恒.(E) 角动量守恒,动量也守恒. [ ]19 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]20一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ] 21 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A) 不变. (B) 变小.(C) 变大. (D) 如何变化无法判断. [ ]22 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ] 23 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]24 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为19 20(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ] 25 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]一.答案:1-5 DDCDC6-10 AABCB11-15 CDBCD16-20 CBAAC21-25 CDCAC二.波1.机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播.2.一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s .3. 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a .4. 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻 (A) A 点振动速度大于零. (B) B 点静止不动.(C) C 点向下运动. (D) D 点振动速度小于零.5. 若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B .6. 在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定 (A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.7. 一横波沿绳子传播时, 波的表达式为 )104cos(05.0t x y π-π= (SI),则(A) 其波长为0.5 m . (B) 波速为5 m/s .(C) 波速为25 m/s . (D) 频率为2 Hz .8.频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m .(C) 0.5 m . (D) 0.25 m .9. 如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为(A) }]/)([cos{0φω+--=u l x t A y . (B) })]/([cos{0φω+-=u x t A y . (C) )/(cos u x t A y -=ω. (D) }]/)([cos{0φω+-+=u l x t A y .10. 图示一简谐波在t = 0时刻的波形图,波速 u = 200m/s ,则P 处质点的振动速度表达式为 (A) )2cos(2.0π-ππ-=t v (SI).(B) )cos(2.0π-ππ-=t v (SI). (C) )2/2cos(2.0π-ππ=t v (SI). (D) )2/3cos(2.0π-ππ=t v (SI).11. 一平面简谐波的表达式为 )/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2= λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 312.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零.13. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零.14. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能.(B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.15. 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小.(D) 各点的波的能量密度都不随时间变化.16. 如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.17. 在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4.二.答案1B 2C 3D 4D 5C 6A 7A 8C 9A 10A11A 12C 13B 14D 15B 16D 17C三、电场和磁场1. 在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为:(A) 2012a Q επ. (B) 206a Q επ. (C) 203a Q επ. (D) 20aQ επ.2. 一电场强度为E 的均匀电场,E 的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2.(C) 2πR 2E .(D) 0.3. 有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A) 03εq . (B)4επq(C) 03επq . (D) 06εq4. 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:5. 静电场中某点电势的数值等于(A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能.(C)单位正电荷置于该点时具有的电势能.(B) 把单位正电荷从该点移到电势零点外力所作的功6. 在点电荷+q 的电场中,若取图中P 点处为电势零点 ,则M 点的电势为(A) a q 04επ. (B) aq 08επ. (C) a q 04επ-. (D) a q 08επ-.7. 如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷. (B) 顶点a 、b 处是正电荷,c 、d 处是负电荷. (C) 顶点a 、c 处是正电荷,b 、d 处是负电荷. (D) 顶点a 、b 、c 、d 处都是负电荷.8. 如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,rQ U 04επ=. (B) E =0,R Q U 04επ=. q E O r (D) E ∝1/r 2b a(C) 204r Q E επ=,rQ U 04επ= . (D) 204r Q E επ=,R Q U 04επ=.9. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C .(C) E A >E B >E C ,U A <U B <U C .(D) E A <E B <E C ,U A >U B >U C .10. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地.(B) N 上有正电荷入地.(C ) N 上的电荷不动.(D) N 上所有电荷都入地.11. 图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为:(A) 204r Q E επ=,rQ U 04επ=. (B) 0=E , 104r Q U επ= (C) 0=E ,rQ U 04επ=. (D) 0=E ,204r Q U επ=.12. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定.13. 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化:(A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大.(C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变.14. 真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能.15. 如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1= B 2 /4.16. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A)l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对.17. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q >B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .18. 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A) R 140πμ. (B) R120πμ.(C) 0. (D) R 140μ.19. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) I l H L 2d 1=⎰⋅ . (B)I l H L =⎰⋅2d (C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d .20. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v . C q421. 四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I a B π=0μ.22. 无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A) R Iπ20μ. (B) RI 40μ. (C) 0. (D) )11(20π-R I μ. (E) )11(40π+R I μ.23. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r .三.答案1. C2. D3. D4. B5. C6. D7. C8. B9. D 10. B11. D 12. C 13. C 14. B 15. C 16. A 17. D 18. D 19. D 20. B 21 C 22. D 23. B四、电磁感应I1. 如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)2. 两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.3. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将(A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向.4. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动,轴与磁场方向平行.(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移.5. 半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B 的夹角 =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关.(B) 与线圈面积成正比,与时间成正比.(C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关.6. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等.B I O(D)IO(C)O (B)II7. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ]8. 在两个永久磁极中间放置一圆形线圈,线圈的大小和磁极大小约相等,线圈平面和磁场方向垂直.今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流i (如图),可选择下列哪一个方法?(A) 把线圈在自身平面内绕圆心旋转一个小角度. (B) 把线圈绕通过其直径的OO ′轴转一个小角度. (C) 把线圈向上平移.(D) 把线圈向右平移.9. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移.(C) 线环向左平移. (D) 磁场强度减弱.10. 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大. (D) 载流螺线管中插入铁芯.11. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21. (D) ω abB | cos ω t |. (E) ω abB | sin ω t |.12. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.b c d b c d bc d v v v ⅠⅢⅡ I O ′S N O iBi I O B a b ωO O ′ B B A C13. 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. 14. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势E 和a 、c 两点间的电势差U a – U c 为 (A) E =0,U a – U c =221l B ω. (B) E =0,U a – U c =221l B ω-. (C) E =2l B ω,U a – U c =221l B ω. (D) E =2l B ω,U a – U c =221l B ω-. 15.圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动.(B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动.(C) 铜盘上产生涡流.(D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.(E) 铜盘上有感应电动势产生,铜盘中心处电势最高.16. 一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是: (A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(F) B L 221ω.17. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线.(B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(C) 两线圈中电流方向相反.18. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线.l b a v α B a bc l ω BOB ω L O θ b(B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(D) 两线圈中电流方向相反.19. 用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m = (A) 只适用于无限长密绕螺线管.(B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(E) 适用于自感系数L一定的任意线圈.20. 两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为(A)221LI . (B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.(D) 221LI 020ln 2r d I π+μ21. 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21aI πμμ (B) 200)2(21a I πμμ (C) 20)2(21Ia μπ (D) 200)2(21a I μμ四.答案1C 2B 3B4B5A 6D7B8C9C10B11D12 A13D14 B15 D16 E17C 18C19D 20A21B五、波动光学1. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ.2. 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为e ,且n 1<n 2>n 3,λ1为入射光在n 1中的波长,则两束反射光的光程差为 (A) 2n 2e . (B) 2n 2 e - λ1 / (2n 1). (C) 2n 2 e - n 1 λ1 / 2. (D) 2n 2 e - n 2 λ1 / 2.n 1n 23入射光反射光1反射光2eI I d 2r 03. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.4. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.5. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.6. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时 (A) P 点处仍为明条纹. (B) P 点处为暗条纹.(C) 不能确定P 点处是明条纹还是暗条纹.(D) 无干涉条纹.7. 在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm .8. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.9. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为 (A) 全明. (B) 全暗. (C) 右半部明,左半部暗. (D) 右半部暗,左半部明.10. 一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ).图中数字为各处的折射11. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变.12. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分(A) 凸起,且高度为λ / 4.(B) 凸起,且高度为λ / 2. (C) 凹陷,且深度为λ / 2. (D) 凹陷,且深度为λ / 4.13. 如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩.(C) 向外扩张. (D) 静止不动. (E) 向左平移.14. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(F) ( n -1 ) d .15. 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个.16. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .17. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加.18. 波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.。

大学物理课后习题1第一章答案

大学物理课后习题1第一章答案

习题11.1选择题(1)一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为()(A)dtdr (B)dtr d (C)dtr d || (D)22)()(dtdy dt dx +答案:(D)。

(2)一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度()(A)等于零(B)等于-2m/s (C)等于2m/s (D)不能确定。

答案:(D)。

(3)一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为()(A)t R t R ππ2,2(B)tRπ2,0(C)0,0(D)0,2tRπ答案:(B)。

(4)质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,τa 表示切向加速度,下列表达式中,()①a t = d /d v ,②v =t r d /d ,③v =t S d /d ,④τa t =d /d v.(A)只有①、④是对的.(B)只有②、④是对的.(C)只有②是对的.(D)只有③是对的.答案:(D)。

(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为υ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有:()(A)vv v,v == (B)v v v,v =≠ (C)vv v,v ≠≠ (D)vv v,v ≠= 答案:(D)。

1.2填空题(1)一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程是。

答案:10m;5πm。

(2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m ·s -1,则当t 为3s 时,质点的速度v=。

答案:23m·s -1.(3)一质点从静止出发沿半径R=1m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度ω=__________________;切向加速度τa =_________________.答案:4t 3-3t 2(rad/s),12t 2-6t (m/s 2)(4)一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___秒瞬时速度为零;在第秒至第秒间速度与加速度同方向.题1.2(4)图答案:3,36;(5)一质点其速率表示式为v s =+12,则在任一位置处其切向加速度a τ为。

《大学物理学(第二版)》(李乃伯主编)第一至第五单元课后习题指导

《大学物理学(第二版)》(李乃伯主编)第一至第五单元课后习题指导

《物理学(第二版)》(李迺伯主编)第一章:过关测试第一关1.判断下列哪一种说法是正确的A.你用手关一扇门,此门可以看成质点;B.开枪后子弹在空中飞行,子弹可看成质点;C.讨论地球自转,地球可看成质点;D.一列火车在半径为800m的圆轨道上行驶,火车可看成质点。

答案:B2.下列哪一种说法是正确的A.加速度恒定不变时,物体的运动方向必定不变;B.平均速率等于平均速度的大小;C.不论加速度如何,平均速率的表达式总可以写成。

上式中为初始速率,为末了速率;D.运动物体的速率不变时,速度可以变化。

答案:D3.某质点的运动学方程为,以为单位,以为单位。

则该质点作A.匀加速直线运动,加速度为正值;B.匀加速直线运动,加速度为负值;C.变加速直线运动,加速度为正值;D.变加速直线运动,加速度为负值。

答案:D (解:速度加速度)4.质点作匀加速圆周运动,它的A.切向加速度的大小和方向都在变化;B.法向加速度的大小和方向都在变化;C.法向加速度的方向变化,大小不变;D.切向加速度的方向不变,大小变化。

答案:B5.气球正在上升,气球下系有一重物,当气球上升到离地面100 m高处,系绳突然断裂,最后重物下落到地面。

与另一物体从100 m高处自由下落到地面的运动相比,下列结论正确的是A.运动的时间相同;B.运动的路程相同;C.运动的位移相同;D.落地时的速度相同。

答案:C(解:由于重物在100 m高处有向上的初速度,先上升,到达最高点后再下落。

与物体从100 m高处自由落体到地面的运动相比,运动的时间、路程,落地时的速度均不相同,仅位移相同。

)6.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时A.小球受到重力、绳的拉力和向心力的作用;B.小球受到重力、绳的拉力和离心力的作用;C.绳子的拉力可能为零;D.小球可能处于受力平衡状态。

答案:C(解:小球所受合力的法向分量有时称作向心力,它是“合力的分量”,不是其它物体施加的,故A不正确。

大学物理C-练习三静电场答案

大学物理C-练习三静电场答案

练 习 三 静电场一、填空题1.点电荷q 1、q 2、q 3 和q 4 在真空中的分布如图所示.图中S 为闭合曲面,则通过该闭合曲面的电场强度通量sE dS ⎰r r g Ñ=____120()q q ε+________,式中的E r是点电荷___q 1、q 2、 q 3、q 4____在闭合曲面上任一点产生的场强的矢量和.2.在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为_______203Q a πε______3.一半径为R 的均匀带电圆环,电荷线密度为λ. 设无穷远处为电势零点,则圆环中心O 点的电势U =_______2λε________. 4.一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =_______04Q Rπε_______.5.在点电荷q 的电场中,把一个-×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功×10-5 J ,则该点电荷q =_____ -2×10-7C___________.(真空介电常量0=×10-12 C2·N -1·m -2 )6.一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能We =_____04Qq rπε____________.7. 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q的点电荷.线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,3q •SA q • 1q •2q •1q • 1q •则电场力所作的_______06q Rπε______________。

大学物理课堂练习答案(1)

大学物理课堂练习答案(1)

1.28m 的楼顶, 花费了 3 s 的时间.在此过程中, 重力的冲 1.29 水平路面上两个点 A 、 B 的距离为 2 m , 某物体重 500 N , 与地面的摩擦系数为 0.2 , 物体由 A 运动至 B. 若物体沿着直线以 3 m/s 的速度运动, 摩擦力做功 Wf = −200 J 运动, 摩擦力做功 Wf = −200 J ; 若物体沿着长度为 4 m 的曲线运动, 摩擦力做功 Wf = −400 J ; 若鱼沿着直线以 5 m/s 的速度运动, 流体阻力
课堂练习答案 February 16, 2014
第一章 质点力学
1.1 找出下列表达式中的错误, 写出正确表达: (1) r=x+y 解答:r = xi + y j (2) v = vx i + vy j 解答:v = vx i + vy j (3) v = vx i + vy j 解答:v = vx i + vy j (4) v = vx i + vy j 解答:v = vx i + vy j

; 在环绕地球
1.25 质 量 为 m 的 物 体 以 初 速 度 v0 ,仰 角 30 斜 上 抛,到 达 最 高 点.在 此 过 程 中,动 量 的 增 量 为 | Δp| = mv0 sin 30◦, 重力的冲量为 |I| = mv0 /2 1.26 光滑的冰面上由两个物体 A, B ,mA = 3 g ,vA = (i + 2j) m/s ,mB = 5 g ,vB = (9i + 2j) m/s , 两 物体碰撞后粘为一体, 其共同速度 v = (6i + 2j) m/s 1.27 直接用手按钉子, 很难将其钉入木头内; 若首先用 5 N 的力挥动锤子 2 s , 则锤子获得的动量大小 为 10 N · s ; 若该运动的锤子敲击钉子, 与钉子之间的相互作用持续 2 ms , 则锤子与钉子之间的作用 . , 重力做功 W = −1000 J , 此物体的重力势能增加量 ΔEp = 1000 J ; 若物体沿着直线以 5 m/s 的速度 力大小为 5 kN 量 |I| = 300 N · s

大学物理习题答案第一章

大学物理习题答案第一章

大学物理习题答案第一章-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN[习题解答]1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C地,最后向东北行驶50km到达D地。

求汽车行驶的总路程和总位移。

解汽车行驶的总路程为;汽车的总位移的大小为∆r =位移的方向沿东北方向,与方向一致。

1-4 现有一矢量R是时间t的函数,问与在一般情况下是否相等为什么解与在一般情况下是不相等的。

因为前者是对矢量R的绝对值(大小或长度)求导,表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。

如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。

1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 -2t 3 ,r和t的单位分别是m和s。

求:(1)第二秒内的平均速度;(2)第三秒末和第四秒末的速度;(3)第三秒末和第四秒末的加速度。

解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。

(1)第二秒内的平均速度m⋅s-1;(2)第三秒末的速度因为,将t = 3 s 代入,就求得第三秒末的速度,为v3 = - 18 m⋅s-1;用同样的方法可以求得第四秒末的速度,为v4 = - 48 m⋅s-1;(3)第三秒末的加速度因为,将t = 3 s 代入,就求得第三秒末的加速度,为a3 = - 24 m⋅s-2;用同样的方法可以求得第四秒末的加速度,为v4 = - 36 m⋅s-2 .1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明:(1) v d v = a d s;(2)当a为常量时,式v 2 = v02 + 2a (s-s0 )成立。

解(1);(2)对上式积分,等号左边为,等号右边为,于是得,即.1-7 质点沿直线运动,在经过时间t后它离该直线上某定点O的距离s满足关系式:s = (t-1)2 (t-2),s和t的单位分别是m和s。

《大学物理C1(上、下)》练习册及答案

《大学物理C1(上、下)》练习册及答案

大学物理C(上、下)练习册✧质点动力学✧刚体定轴转动✧静电场电场强度✧电势静电场中的导体✧稳恒磁场✧电磁感应✧波动、振动✧光的干涉✧光的衍射注:本习题详细答案,结课后由老师发放一、质点动力学一、选择题1. 以下几种运动形式中,加速度a保持不变的运动是:(A )单摆的运动; (B )匀速率圆周运动;(C )行星的椭圆轨道运动; (D )抛体运动 。

[ ] 2. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2 R /T , 2 R/T . (B) 0 , 2 R /T(C) 0 , 0. (D) 2 R /T , 0. [ ]3. 质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中, (1) a t = d /d v , (2) v =t r d /d ,(3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. [ ]4. 一运动质点在某瞬时位于矢径r的端点处,其速度大小的表达式为(A )t d dr ; (B )dt r d ; (C )dt r d || ; (D )222dt dz dt dy dt dx ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛[ ] 5. 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) t d d v . (B)2V R.(C) R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ]6. 质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道运动.质点越过A角时,轨道作用于质点的冲量的大小为(A) mv. (B).(C) . (D) 2mv.[]7. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒.[]8. 一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定.[]9. 如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子,今用同样的水平恒力F拉箱子,使它由小车的左端达到右端,一次小车被固定在水平地面上,另一次小车没有固定.试以水平地面为参照系,判断下列结论中正确的是(A)在两种情况下,F做的功相等.(B)在两种情况下,摩擦力对箱子做的功相等.(C)在两种情况下,箱子获得的动能相等.(D)在两种情况下,由于摩擦而产生的热相等.[]10. 质量为m的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M,万有引力恒量为G,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm(B)22R GMm(C) 2121R R R R GMm - (D) 2121R R R GMm - (E) 222121R R R R GMm -[ ]二 填空11. 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = .12. 质量分别为m 1、m 2、m 3的三个物体A 、B 、C ,用一根细绳和两根轻弹簧连接并悬于固定点O ,如图.取向下为x 轴正向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物体B 的加速度B a=_______;物体A 的加速度A a=______.13. 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=__________________; (2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.三、计算题14. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2)第2秒末的瞬时速度;(3) 第2秒内的路程.15. 质量为m的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.16. 一人从10 m深的井中提水.起始时桶中装有10 kg的水,桶的质量为1 kg,由于水桶漏水,每升高1 m要漏去0.2 kg的水.求水桶匀速地从井中提到井口,人所作的功.二、刚体定轴转动一、选择题1. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的 (A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ] 2. 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ] 3. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为 A 和 B ,不计滑轮轴的摩擦,则有(A) A = B . (B) A > B .(C) A < B . (D) 开始时 A = B ,以后 A < B .[ ] 4. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度(A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为 0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 310. (B) ()3/1 0.(C) 3 0. (D) 3 0. [ ] 6. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题7. 在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s 1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体对O点的角动量的大小L B =____________,物体速 度的大小v =__________________.8. 如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.三、计算题9. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.10. 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度.11. 如图所示,A和B两飞轮的轴杆在同一中心线kg·m2.开始时,A轮转速为600 rev/min,B轮静止.C为摩擦啮合器,其转动惯量可忽略不计.A、B分别与C的左、右两个组件相连,当C的左右组件啮合时,B轮得到加速而A轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n;(2) 两轮各自所受的冲量矩.三、静电场 电场强度一、选择题1. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. []2.如图所示,一个电荷为q 的点电荷位于立方体的A角上,则通过侧面abcd 的电场强度通量等于:(A) 06εq . (B) 012εq .(C) 024εq . (D) 048εq . [ ]3. 电荷面密度均为+ 的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]02εx4. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ] 5. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1和 2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. []6. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后:(A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]7. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.P+q 0(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ] 二、填空题7. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+ ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________,E C =_________,E D =___________ (设方向向右为正).8. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.9. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量=______________;若以 0r表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题10. 带电细线弯成半径为R 的半圆形,电荷线密度为 = 0sin ,式中 0为一常数, 为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.11.图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx , E y+σ+σ+σABCD=0,E z=0.求立方体六个面的电场强度通量。

大学物理实验c思考题部分答案2

大学物理实验c思考题部分答案2

⼤学物理实验c思考题部分答案2物体密度测量1、⽤天平称得物体在空⽓中的质量为M ,若⼿提物体全部浸没在⽔中(⽔的密度 0ρ)时的质量为m ,则此时电⼦天平显⽰的数值是多少?如果⼿不提着物体,让物体沉⼊⽔中,此时电⼦天平显⽰的数值⼜是多少?(假设烧杯及⽔的质量为M 0) 10%答:若⼿提物体时:M 0+(M-m) (5分)⼿不提着物体时:M 0+M (5分)2、⽤数字显⽰仪表(如电⼦天平)测量物理量时,连续记下⼀定时间间隔的各个显⽰值。

如各个显⽰值不同是否为偶然误差?如各个显⽰值相同是否认为没有误差。

10%答:如各个显⽰值不同是为偶然误差。

(5分)如各个显⽰值相同不能认为没有误差。

(5分)扭摆法测物体转动惯量1、物体的转动惯量与哪些因素有关? 10%答:转动惯量与物体质量、转轴的位置和质量分布(即形状、⼤⼩和密度分布)有关。

(10分)2、实验过程中要进⾏多次重复测量对每⼀次摆⾓应做如何处理? 10%答:为了降低实验时由于摆动⾓度变化过⼤带来的系统误差,在测定各种物体的摆动周期时,摆⾓不宜过⼩、也不宜变化过⼤,整个测量过程宜使摆⾓在900左右。

(10分)静电场描绘1、⽤电流场模拟静电场的条件是什么? 10%答:⼏何形态完全⼀样,物理表达式⼀样,边界条件⼀样。

(10分)2、如果电源电压Ua 减⼩⼀倍,等位线和电⼒线的形状是否发⽣变化?电场强度和电位分布是否发⽣变化?为什么? 10%答:如果电源电压Ua 减⼩⼀倍,等位线和电⼒线的形状没有发⽣变化。

(3分)电场强度和电位分布发⽣变化。

(3分)因为根据物理表达式rr r uE a ba r 1ln ?=,可以得出同⼀位置电场强度也减⼩⼀倍,等电位分布也变得更稀疏。

(4分)惠斯登电桥研究1、电桥灵敏度是否越⾼越好?哪些量关系到电桥灵敏度?答:不是。

与电桥灵敏度S 相关的物理量有:电源电压⼤⼩、桥臂电阻⼤⼩、桥臂电阻⼤⼩分配⽐例、监测仪表的灵敏度和内阻。

大学大学物理习题解答参考答案-导体与电介质的静电场(一)

大学大学物理习题解答参考答案-导体与电介质的静电场(一)

20XX年复习资料大学复习资料专业:班级:科目老师:日期:导体与电介质的静电场(一)20XXXX-1-1. 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则(A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小.(C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ] 20XXXX-1-2. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A)N 上有负电荷入地.(B) N 上有正电荷入地.(C ) N 上的电荷不动.(D) N 上所有电荷都入地. [ ]20XXXX-1-3. 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+ ,则在导体板B 的两个表面1和2上的感生电荷面密度为:(A) 1 = -, 2 = +.(B) 1 =σ21-, 2 =σ21+. (C) 1 =σ21-, 1 =σ21-. (D) 1 = -, 2 = 0. [ ]20XXXX-1-4. 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ ] 20XXXX-1-5. 一长直导线横截面半径为a ,导线外同轴地套一半径为b 的薄圆筒,两者互相绝缘,并且外筒接地,如图所示.设导线单位长度的电荷为+,并设地的电势为零,则两导体之间的P 点( OP = r )的场强大小和电势分别为:q 0PM N A B +σ12(A) 204r E ελπ=,a b U ln 20ελπ=. (B) 204r E ελπ=,r b U ln 20ελπ=. (C) r E 02ελπ=,ra U ln 20ελπ=. (D) r E 02ελπ=,rb U ln 20ελπ=. [ ] 20XXXX-1-6. 如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为: (A) 0. (B) 02εσ. (C) 0εσh . (D) 02εσh . [ ] 20XXXX-1-7. 一带电大导体平板,平板二个表面的电荷面密度的代数和为 ,置于电场强度为0E 的均匀外电场中,且使板面垂直于0E 的方向.设外电场分布不因带电平板的引入而改变,则板的附近左、右两侧的合场强为:(A) 002εσ-E ,002εσ+E . (B) 002εσ+E ,002εσ+E . (C) 002εσ+E ,002εσ-E . (D) 002εσ-E ,002εσ-E . [ ] 20XXXX-1-8. A 、B 为两导体大平板,面积均为S ,平行放置,如图所示.A 板带电荷+Q 1,B 板带电荷+Q 2,如果使B板接地,则AB 间电场强度的大小E 为 (A) S Q 012ε . (B) SQ Q 0212ε-. (C) S Q 01ε. (D) SQ Q 0212ε+. [ ] 20XXXX-1-9. 一空心导体球壳,其内、外半径分别为R 1和R 2,带电荷q ,如图所示.当球壳中心处再放一电荷为q 的点电荷时,则导体球壳的电势(设无穷远处为电势零点)为 (A) 104R q επ . (B) 204R q επ . O P r a b d b a hh σ 0E +Q 1 +Q 2 A B q q R 1 R 2(C) 102R q επ . (D) 20R qε2π . [ ] 20XXXX-1-20XXXX. 两个同心薄金属球壳,半径分别为R 1和R 2 (R 2 > R 1 ),若分别带上电荷q 1和q 2,则两者的电势分别为U 1和U 2 (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为(A) U 1. (B) U 2.(C) U 1 + U 2. (D) )(2121U U +. [ ]20XXXX-1-20XXXX. 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为(A) 0 . (B) dq 04επ. (C)R q 04επ-. (D) )11(40R d q -πε. [ ]20XXXX-1-20XXXX. 三块互相平行的导体板,相互之间的距离d 1和d 2比板面积线度小得多,外面二板用导线连接.中间板上带电,设左右两面上电荷面密度分别为1和2,如图所示.则比值1 / 2为(A) d 1 / d 2. (B) d 2 / d 1.(C) 1. (D) 2122/d d . [ ]20XXXX-1-20XXXX. 如图所示,一带负电荷的金属球,外面同心地罩一不带电的金属球壳,则在球壳中一点P 处的场强大小与电势(设无穷远处为电势零点)分别为:(A) E = 0,U > 0. (B) E = 0,U < 0. (C) E = 0,U = 0. (D) E > 0,U < 0.[ ]20XXXX-1-20XXXX. 一半径为R 的薄金属球壳,带电荷-Q .设无穷远处电势为零,则球壳内各点的电势U 可表示为: (041επ=K ) (A) R Q K U -<. (B) RQ K U -=. R O d +q d 1 d 2 σ2 σ1P(C) R Q K U ->. (D) 0<<-U RQ K . [ ] 20XXXX-1-20XXXX. 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现:(A) 球壳内、外场强分布均无变化.(B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ ] 20XXXX-1-20XXXX. 在带有电荷+Q 的金属球产生的电场中,为测量某点场强E ,在该点引入一电荷为+Q/3的点电荷,测得其受力为F .则该点场强E 的大小(A) Q F E 3=. (B) QF E 3>. (C) QF E 3<. (D) 无法判断. [ ] 20XXXX-1-20XXXX. 在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀.(B) 内表面不均匀,外表面均匀.(C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ ]20XXXX-1-20XXXX. 关于高斯定理,下列说法中哪一个是正确的?(A) 高斯面内不包围自由电荷,则面上各点电位移矢量D 为零. (B) 高斯面上处处D 为零,则面内必不存在自由电荷.(C) 高斯面的D 通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]20XXXX-1-20XXXX. 关于静电场中的电位移线,下列说法中,哪一个是正确的?(A) 起自正电荷,止于负电荷,不形成闭合线,不中断.(B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交.(D) 电位移线只出现在有电介质的空间. [ ]20XXXX-1-20XX. 一导体球外充满相对介电常量为r 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为(A) 0 E . (B) 0 r E .(C) r E . (D) (0 r -0)E . [ ]导体与电介质的静电场(二)20XXXX-2-1. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示.当电容器充电后,若忽略边缘效应,则电介质中的场强E 与空气中的场强0E 相比较,应有(A) E > E 0,两者方向相同. (B) E = E 0,两者方向相同.(C) E < E 0,两者方向相同. (D) E < E 0,两者方向相反. [ ]20XXXX-2-2. 设有一个带正电的导体球壳.当球壳内充满电介质、球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;而球壳内、外均为真空时,壳外一点的场强大小和电势用E 2,U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为(A) E 1 = E 2,U 1 = U 2. (B) E 1 = E 2,U 1 > U 2.(C) E 1 > E 2,U 1 > U 2. (D) E 1 < E 2,U 1 < U 2. [ ]20XXXX-2-3. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ ]20XXXX-2-4. 一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点(A) 保持不动. (B) 向上运动.(C) 向下运动. (D) 是否运动不能确定. [ ]20XXXX-2-5. 两只电容器,C 1 = 8 F ,C 2 = 2 F ,分别把它们充电到 20XXXX00 V ,然后将它们反接(如图所示),此时两极板间的电势差为:(A) 0 V . (B) 20XX0 V .(C) 600 V . (D) 20XXXX00V . [ ]20XXXX-2-6. 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 20XXXX 、电场强度的大小E 、电场能量W 将发生如下变化:(A)U 20XXXX 减小,E 减小,W 减小.(B) U 20XXXX 增大,E 增大,W 增大.(C) U 20XXXX 增大,E 不变,W 增大.(D) U 20XXXX 减小,E 不变,W 不变. [ ] E E 0+q mC 1 C 220XXXX-2-7. C 1和C 2两空气电容器串联以后接电源充电.在电源保持联接的情况下,在C 2中插入一电介质板,则 (A) C 1极板上电荷增加,C 2极板上电荷增加.(B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷减少. [ ]20XXXX-2-8. C 1和C 2两空气电容器串联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示. 则 (A) C 1上电势差减小,C 2上电势差增大.(B) C 1上电势差减小,C 2上电势差不变.(C) C 1上电势差增大,C 2上电势差减小.(D) C 1上电势差增大,C 2上电势差不变. [ ]20XXXX-2-9. C 1和C 2两空气电容器并联以后接电源充电.在电源保持联接的情况下,在C 1中插入一电介质板,如图所示, 则(A) C 1极板上电荷增加,C 2极板上电荷减少. (B) C 1极板上电荷减少,C 2极板上电荷增加.(C) C 1极板上电荷增加,C 2极板上电荷不变.(D) C 1极板上电荷减少,C 2极板上电荷不变. [ ]20XXXX-2-10. C 1和C 2两空气电容器,把它们串联成一电容器组.若在C 1中插入一电介质板,则(A) C 1的电容增大,电容器组总电容减小.(B) C 1的电容增大,电容器组总电容增大. (C) C 1的电容减小,电容器组总电容减小. (D) C 1的电容减小,电容器组总电容增大. [ ]20XXXX-2-11. C 1和C 2两空气电容器并联起来接上电源充电.然后将电源断开,再把一电介质板插入C 1中,如图所示, 则 (A) C 1和C 2极板上电荷都不变.(B) C 1极板上电荷增大,C 2极板上电荷不变.(C) C 1极板上电荷增大,C 2极板上电荷减少.(D) C 1极板上电荷减少,C 2极板上电荷增大. [ ]20XXXX-2-12. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的各向同性均匀电介质板,由于该电介质板的插入和它在两极板间的位置不同,对电容器电容的影响为:(A) 使电容减小,但与介质板相对极板的位置无关.(B) 使电容减小,且与介质板相对极板的位置有关.(C) 使电容增大,但与介质板相对极板的位置无关.(D) 使电容增大,且与介质板相对极板的位置有关. [ ]C 1 C 2C 1 C 2C 1 C 212C 1 C 220XXXX-2-13. 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为:(A) 使电容减小,但与金属板相对极板的位置无关.(B) 使电容减小,且与金属板相对极板的位置有关.(C) 使电容增大,但与金属板相对极板的位置无关.(D) 使电容增大,且与金属板相对极板的位置有关. [ ]20XXXX-2-14. 如果某带电体其电荷分布的体密度增大为原来的2倍,则其电场的能量变为原来的(A) 2倍. (B) 1/2倍.(C) 4倍. (D) 1/4倍. [ ]20XXXX-2-15. 如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将(A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定.[ ]20XXXX-2-16. 用力F 把电容器中的电介质板拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将(A) 都增加.(B) 都减少.(C) (a)增加,(b)减少.(D) (a)减少,(b)增加. [ ]20XXXX-2-17. 一空气平行板电容器充电后与电源断开,然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压U 、电场能量W 四个量各自与充入介质前相比较,增大(↑)或减小(↓)的情形为(A) E ↑,C ↑,U ↑,W ↑.(B) E ↓,C ↑,U ↓,W ↓.(C) E ↓,C ↑,U ↑,W ↓.(D) E ↑,C ↓,U ↓,W ↑. [ ]20XXXX-2-18. 两个完全相同的电容器C 1和C 2,串联后与电源连接.现将一各向同性均匀电介质板插入C 1中,如图所示,则(A) 电容器组总电容减小.(B) C 1上的电荷大于C 2上的电荷.(C) C 1上的电压高于C 2上的电压 .(D) 电容器组贮存的总能量增大. [ ]20XXXX-2-19. 一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两qF F 充电后仍与电源连接 充电后与电源断开C 1C 2极板间距离拉大,则极板上的电荷Q、电场强度的大小E和电场能量W将发生如下变化(A) Q增大,E增大,W增大.(B) Q减小,E减小,W减小.(C) Q增大,E减小,W增大.(D) Q增大,E增大,W减小.[]20XXXX-2-20. 真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能.[]。

大学物理C练习三静电场答案

大学物理C练习三静电场答案

练 习 三 静电场一、填空题1.点电荷q 1、q 2、q 3 和q 4 在真空中的分布如图所示.图中S为闭合曲面,则通过该闭合曲面的电场强度通量s E dS ⎰=____120()q q ε+________,式中的E 是点电荷___q 1、q 2、 q 3、q 4____在闭合曲面上任一点产生的场强的矢量和.2.在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为_______203Qa πε______3.一半径为R 的均匀带电圆环,电荷线密度为λ. 设无穷远处为电势零点,则圆环中心O 点的电势U =_______02λε________. 4.一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =_______04QR πε_______.5.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =_____ -2×10-7 C___________.(真空介电常量0=8.85×10-12 C2·N -1·m -2 )6.一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能We =_____04Qqr πε____________.7. 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q的点电荷.线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所作的_______06qR πε______________。

二、选择题1. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( D ) (A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变;(C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。

大学物理教材课后习题参考答案

大学物理教材课后习题参考答案

1.7 一质点的运动学方程为22(1,)x t y t ==-,x 和y 均以为m 单位,t 以s 为单位,试求:(1)质点的轨迹方程;(2)在t=2s 时,质点的速度v 和加速度a 。

解:(1)由运动学方程消去时间t 可得质点的轨迹方程,将t =21)y = 或1=(2)对运动学方程微分求速度及加速度,即 2x dx v t dt == 2(1)y dyv t dt==- 22(1)v ti t j =+- 22y x x y dv dva a dtdt==== 22a i j =+当t=2s 时,速度和加速度分别是42v i j =+ /m s 22a i j =+ 2/m s1.8 已知一质点的运动学方程为22(2)r ti t j =+- ,其中, r ,t 分别以 m 和s 为单位,试求:(1) 从t=1s 到t=2s 质点的位移;(2) t=2s 时质点的速度和加速度;(3) 质点的轨迹方程;(4)在Oxy 平面内画出质点运动轨迹,并在轨迹图上标出t=2s 时,质点的位矢r,速度v 和加速度a 。

解: 依题意有 x = 2t (1) y = 22t - (2)(1) 将t=1s,t=2s 代入,有(1)r = 2i j + , (2)42r i j =-故质点的位移为 (2)(1)23r r r i j ∆=-=-(2) 通过对运动学方程求导可得22dx dy v i j i t j dt dt =+=- 22222d x d y a i j j dt dt=+=-当t=2s 时,速度,加速度为 24v i j =- /m s 2a j =- 2/m s(3) 由(1)(2)两式消去时间t 可得质点的轨迹方程 22/4y x =- (4)图略。

1.11 一质点沿半径R=1m 的圆周运动。

t=0时,质点位于A 点,如图。

然后沿顺时针方向运动,运动学方程2s t t ππ=+,其中s 的单位为m ,t 的单位为s ,试求:(1)质点绕行一周所经历的路程,位移,平均速度和平均速率;(2)质点在第1秒末的速度和加速度的大小。

长春工业大学物理答案光静电场c 1-4

长春工业大学物理答案光静电场c 1-4

练习一 静电场(一)1.如图1-1所示,细绳悬挂一质量为m 的点电荷-q ,无外电场时,-q 静止于A 点,加一水平外电场时,-q 静止于B 点,则外电场的方向为水平向左,外电场在B 点的场强大小为qmg tan2.如图1-2所示,在相距为a 的两点电荷-q 和+4q产生的电场中,场强大小为零的坐标x= 2a 。

3.如图1-3所示,A 、B 为真空中两块平行无限大带电平面,已知两平面间的电场强度大小为0E ,两平面外侧电场强度大小都是0E /3,则A 、B 两平面上的电荷面密度分别为 和 。

4.(3)一点电荷q 在电场中某点受到的电场力,f很大,则该点场强E 的大小:(1)一定很大; (2)一定很小;(3)其大小决定于比值q f /。

5.(2)有一带正电金属球。

在附近某点的场强为E ,若在该点处放一带正电的点电荷q 测得所受电场力为f ,则:(1)E=f/q (2)E>f/q (3)E<f/q6.两个电量都是+q 的点电荷,相距2a 连线中点为o ,求连线中垂线上和。

相距为r 的P 点的场强为E ,r 为多少时P 点的场强最大?解:经过分析,E x =0a r dr E d drdE r a qr a q E r r y 220|,0|)(21sin 412222/3220220±=<=+=+=得:由πεθπε7.长L =15cm 直线AB 上,均匀分布电荷线密度λ=5.0⨯10-9c/m 的正电荷,求导线的延长线上与导线B 端相距d=5.0cm 的P 点的场强。

)/(67544120.005.02020C N x dx E x dxdE ===⎰πελλπε 练习二 静电场(二)1.场强为E 的均匀电场与半径为R 的半球面的轴线平行,则通过半球面的电通量Φe=E R 02επ2.边长为L 的正方形盒的表面分别平行于坐标面XY 、YZ 、ZX ,设均匀电场j i E ρρρ65+=,则通过各面电场强度通量的绝对值 ,6,5,022L L X Z Z Y Y X =Φ=Φ=Φ3.如用高斯定理计算:(1)无限长均匀带电直线外一点P的场强(图2-3(a));(2)两均匀带电同心球面之间任一点P的场强(图2-3(b)),就必须选择高斯面。

大学物理C课后答案

大学物理C课后答案

习题5题5-2图题5-2图5-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题5--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题5-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =5-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷.试求:(1)在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强. 解: 如题5-4图所示题5-4图(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如题5-4图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向5-7 半径为1R 和2R (21R R >)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E5-9 如题5-9图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力做的功. 解: 如题5-9图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=题5-9图 题5-10图5-10 如题5-10图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两段直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题5-10图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 86)35251(5021=+=+=U U U AB V 习题66-5 在真空中,有两根互相平行的无限长直导线L 1和L 2,相距0.10 m ,通有方向相反的电流,120A I =,210A I =,如题6-5图所示.A ,B 两点与导线在同一平面内.这两点与导线L 2的距离均为5.0 cm.试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题6-5图解:如题6-5图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m6-7 设题6-7图中两导线中的电流均为8 A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:(1)在各条闭合曲线上,各点的磁感应强度B 的大小是否相等? (2)在闭合曲线c 上各点的B 是否为零?为什么?题6-7图解: ⎰μ=⋅al B 08d⎰μ=⋅bal B 08d⎰=⋅cl B 0d(1)在各条闭合曲线上,各点B的大小不相等.(2)在闭合曲线C 上各点B 不为零.只是B 的环路积分为零而非每点0=B.题6-10图6-10 如题6-10图所示,在长直导线AB 内通以电流120A I =,在矩形线圈CDEF 中通有电流210A I =,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0 cm ,b =20.0 cm ,d =1.0 cm ,求:(1)导线AB 的磁场对矩形线圈每边所作用的力; (2)矩形线圈所受合力和合力矩.解:(1)CD F方向垂直CD 向左,大小4102100.82-⨯==dI bI F CD πμ N 同理FE F方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为4102.7-⨯=F N合力矩B P M m⨯=∵ 线圈与导线共面∴ B P m//0=M.题6-12图6-12 一长直导线通有电流120A I =,旁边放一导线ab ,其中通有电流210A I =,且两者共面,如题6-12图所示.求导线ab 所受作用力对O 点的力矩. 解:在ab 上取r d ,它受力ab F ⊥d 向上,大小为rI rI F πμ2d d 102= F d 对O 点力矩F r M ⨯=d Md 方向垂直纸面向外,大小为r I I F r M d 2d d 210πμ== ⎰⎰-⨯===ba bar I I M M 6210106.3d 2d πμ m N ⋅题6-13图6-13 电子在47010T B -=⨯的匀强磁场中作圆周运动,圆周半径r =3.0 cm.已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如题6-13图所示.(1)试画出这电子运动的轨道;(2)求这电子速度v 的大小; (3)求这电子的动能k E . 解:(1)轨迹如图题6-13图(2)∵ rv m evB 2=∴ 7107.3⨯==m eBrv 1s m -⋅ (3) 162K 102.621-⨯==mv E J05.1===H H B o r μμμ T习题77-1 一半径r =10 cm 的圆形回路放在B =0.8 T 的均匀磁场中,回路平面与B 垂直.当回路半径以恒定速率=80drdtcm/s 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V题7-37-3 如题7-3图所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以d Id t 的变化率增大,求:(1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε习题88-1 质量为10×10-3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3x t ππ=+(SI)的规律做谐振动,求:(1)振动的周期、振幅、初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t 2=5 s 与t 1=1 s 两个时刻的位相差. 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t8-2 一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表出.如果t =0时质点的状态分别是:(1)x 0=-A ;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过x =处向正向运动.试求出相应的初位相,并写出振动方程. 解:因为 ⎩⎨⎧-==0000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x8-3 一质量为10×10-3 kg 的物体做谐振动,振幅为24 cm ,周期为4.0 s ,当t =0时位移为+24 cm.求:(1)t =0.5 s 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x =12 cm 处所需的最短时间; (3)在x =12 cm 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=-T A∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J10 1.7) 24 .0()2(10102121214223222--⨯=⨯⨯⨯===πωAmkAE8-5 题8-5图为两个谐振动的x-t曲线,试分别写出其谐振动方程.题8-5图解:由题8-5图(a),∵0=t时,s2,cm10,,23,0,0===∴>=TAvx又πφ即1srad2-⋅==ππωT故m)23cos(1.0ππ+=txa由题8-5图(b)∵0=t时,35,0,20πφ=∴>=vAx1=t时,22,0,0111ππφ+=∴<=vx又ππωφ253511=+⨯=∴πω65=故mtxb)3565cos(1.0ππ+=习题9 机械波9-4 已知波源在原点的一列平面简谐波,波动方程为y=A cos (Bt-Cx),其中A,B,C为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为l处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d的两点的位相差.解: (1)已知平面简谐波的波动方程)cos(CxBtAy-=(0≥x)将上式与波动方程的标准形式)22cos(λππυxt A y -=比较,可知: 波振幅为A ,频率πυ2B =, 波长C πλ2=,波速CB u ==λυ, 波动周期BT πυ21==.(2)将l x =代入波动方程即可得到该点的振动方程)cos(Cl Bt A y -=(3)因任一时刻t 同一波线上两点之间的位相差为 )(212x x -=∆λπφ将d x x =-12,及Cπλ2=代入上式,即得 Cd =∆φ.9-5 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10πt -4πx ),式中x ,y 以m 计,t 以s 计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度;(3)求x =0.2 m 处质点在t =1 s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25 s 时刻到达哪一点? 解: (1)将题给方程与标准式)22cos(x t A y λππυ-=相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅. (2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅ 222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ. 设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m9-7 如题9-7图所示,S 1和S 2为两相干波源,振幅均为A 1,相距λ4,S 1较S 2位相超前π2,求:题9-7图(1)S 1外侧各点的合振幅和强度;(2)S 2外侧各点的合振幅和强度.解:(1)在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r 0,0211===-=A I A A A(2)在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差.0)4(2222=-+-=∆r r λλππφ2121114,2A A I A A A A ===+=9-9 一驻波方程为y =0.02cos 20x cos 750t (SI),求:(1)形成此驻波的两列行波的振幅和波速; (2)相邻两波节间距离. 解: (1)取驻波方程为t uxA y πυπυ2cos 2cos 2= 故知 01.0202.0==A m 7502=πυ,则πυ2750=, 202=uπυ∴ 5.37202/7502202=⨯==πππυu 1s m -⋅(2)∵314.01.020/2====πυπυυλu m 所以相邻两波节间距离157.02==∆λx m习题10 波动光学10-4 在杨氏双缝实验中,双缝间距d =0.20 mm ,缝屏间距D =1.0 m .试求:(1)若第2级明条纹离屏中心的距离为6.0 mm ,计算此单色光的波长; (2)求相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm10-5 在双缝装置中,用一很薄的云母片(n =1.58)覆盖其中的一条缝,结果使屏幕上的第7级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为550 nm ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ10-7 在折射率n 1=1.52的镜头表面涂有一层折射率n 2=1.38的MgF 2增透膜,如果此膜适用于波长λ=550 nm 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.。

大学物理智慧树知到课后章节答案2023年下三峡大学

大学物理智慧树知到课后章节答案2023年下三峡大学

大学物理智慧树知到课后章节答案2023年下三峡大学第一章测试1.某质点的运动方程为x=3t-5t3+6(SI),则该质点作( )。

A:变加速直线运动,加速度沿x轴正方向。

B:匀加速直线运动,加速度沿x轴负方向。

C:匀加速直线运动,加速度沿x轴正方向。

D:变加速直线运动,加速度沿x轴负方向。

答案:变加速直线运动,加速度沿x轴负方向。

2.一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则一秒钟后质点的速度()。

A:等于-2m/s B:不能确定 C:等于零 D:等于2m/s 答案:不能确定3.某物体的运动规律为,式中的k为大于零的常数.当t=0时,初速为v0,则速度v与时间t的函数关系是( )。

A: B:C: D:答案:4.某质点沿半径为1米的圆周运动,运动方程为,2秒末质点的切向加速的大小为()。

A:6 B:24 C:12 D:48 答案:245.曲线运动一定有加速度() A:错 B:对答案:对6.讨论地球公转时可视为质点,而讨论地球自转时不能视为质点。

()A:对 B:错答案:对7.位移的大小等于路程。

()A:对 B:错答案:错第二章测试1.某质点在力(SI)的作用下沿x轴作直线运动。

在从x=0移动到x=5m的过程中,力做功为()。

A:125J B:75J C:50J D:25J 答案:75J2.质点系的内力可以改变()。

A:系统的总动量 B:系统的总质量 C:系统的总动能 D:系统的总角动量答案:系统的总质量3.力作用在质量为1kg的物体上,使物体由静止开始做直线运动,则它在2s末的动量大小为()。

A:54 B:28 C:24 D:56 答案:244.一质量为M的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将()A:保持静止 B:向右加速运动 C:向左加速运动 D:向右匀速运动答案:保持静止5.对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?( )A:外力和保守内力都不作功 B:外力和非保守内力都不作功 C:合外力为0 D:合外力不作功答案:外力和非保守内力都不作功6.质点做匀速圆周运动时,它的动量变化,而相对于圆心的角动量不变。

大学物理c下试题及答案

大学物理c下试题及答案

大学物理c下试题及答案一、选择题(每题2分,共20分)1. 下列关于光的偏振现象描述正确的是:A. 光的偏振只发生在自然光中B. 光的偏振只发生在偏振光中C. 光的偏振是光的电磁波性质的表现D. 光的偏振与光的传播方向无关答案:C2. 根据麦克斯韦方程组,下列说法错误的是:A. 变化的磁场会产生电场B. 恒定的电流不会产生磁场C. 变化的电场会产生磁场D. 恒定的电荷分布不会产生电场答案:D3. 在理想气体状态方程中,下列哪个物理量是温度的函数?A. 体积B. 压力C. 气体常数D. 摩尔质量答案:B4. 根据热力学第一定律,下列说法正确的是:A. 系统对外做功,内能一定增加B. 系统吸收热量,内能一定增加C. 系统对外做功且吸收热量,内能可能不变D. 系统对外做功且吸收热量,内能一定减少答案:C5. 根据量子力学的波粒二象性,下列说法正确的是:A. 光子具有波动性,电子不具有波动性B. 电子具有波动性,光子不具有波动性C. 光子和电子都具有波动性D. 光子和电子都不具有波动性答案:C6. 在电磁波谱中,波长最长的是:A. 无线电波B. 微波C. 红外线D. 可见光答案:A7. 根据狭义相对论,下列说法错误的是:A. 运动的物体长度会变短B. 运动的物体质量会增加C. 运动的物体时间会变慢D. 光速在所有惯性参考系中都是相同的答案:D8. 在电磁感应现象中,下列说法正确的是:A. 只有变化的磁场才能产生感应电动势B. 恒定的磁场也能产生感应电动势C. 变化的电场不能产生感应电动势D. 恒定的电场也能产生感应电动势答案:A9. 根据热力学第二定律,下列说法正确的是:A. 热量可以从低温物体自发地传递到高温物体B. 热量不能自发地从低温物体传递到高温物体C. 所有自然过程都是可逆的D. 所有自然过程都是不可逆的答案:B10. 在量子力学中,下列说法错误的是:A. 电子在原子中的运动是确定的B. 电子在原子中的运动是概率性的C. 电子的波动性与粒子性是不可分割的D. 电子的波动性与粒子性是相互独立的答案:A二、填空题(每题2分,共20分)1. 光的波长、频率和速度之间的关系是:波长= __________ × 频率。

大学物理C-01力学基本定律1参考答案

大学物理C-01力学基本定律1参考答案

a B
C C
B a A
C
B a
(C)
B
C
A (A)
A
a
(B)
A
(D)
2
专业班级:
学号:
姓名:
成绩:
3.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人 以匀速率 0 收绳,绳不伸长、湖水静止,则小船的运动是[ C] (A) 匀加速运动. (B) 匀减速运动. (C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 4.一子弹以水平速度v0 射入一静止于光滑水平面上的木块后,随木块一运动.对于这一过程正确的分 析是[ B ] (A) 子弹、木块组成的系统机械能守恒. (B) 子弹、木块组成的系统水平方向的动量守恒. (C) 子弹所受的冲量等于木块所受的冲量. (D) 子弹动能的减少等于木块动能的增加. 5. 对功的概念有以下几种说法: (1) 保守力作正功时,系统内相应的势能增加. (2) 质点运动经一闭合路径,保守力对质点作的功为零. (3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零. 在上述说法中:[C ] (A) (1)、(2)是正确的. (B) (2)、(3)是正确的. (C) 只有(2)是正确的. (D) 只有(3)是正确的. 6.如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子,今用同样的水平恒力F拉箱子,使 它由小车的左端达到右端,一次小车被固定在水平地面上,另一次小车没有固 定.试以水平地面为参照系,判断下列结论中正确的是[D] (A) 在两种情况下,F做的功相等. (B) 在两种情况下,摩擦力对箱子做的功相等. (C) 在两种情况下,箱子获得的动能相等. (D) 在两种情况下,由于摩擦而产生的热相等. 7.质量为20 g 的子弹,以400 m/s 的速率沿图示方向射入一原来静止的质量为980 g 的摆球中,摆线 长度不可伸缩.子弹射入后开始与摆球一起运动的速率为[B ] (A)2m/s. (B)4m/s. (C)7m/s . (D)8 m/s. 8.如图所示.一斜面固定在卡车上,一物块置于该斜面上.在卡车沿水平方向加速起动的过程中,物 块在斜面上无相对滑动. 此时斜面上摩擦力对物块的冲量的方向[D ] (A)是水平向前的. (B) 只可能沿斜面向上. (C) 只可能沿斜面向下. (D) 沿斜面向上或向下均有可能.

大学物理C-02力学基本定律2参考答案 (1)

大学物理C-02力学基本定律2参考答案 (1)



3.长 l 0.40m 、质量 M 1.00kg 的匀质木棒,可绕水平轴 O 在竖直平面内转动,开始时棒自然竖 直悬垂,现有质量 m 8 g 的子弹以 v 200m / s 的速率从 A 点射入棒中,A 点与 O 点 的距离为 解: (1)应用角动量守恒定律
3 l ,如图所示。求: (1)棒开始运动时的角速度; (2)棒的最大偏转角。 4
(2)应用机械能守恒定律
A
l l 1 1 3 3l 3l [ Ml 2 m ( l )] 2 Mg mg Mg cos mg cos 2 3 4 2 4 2 4 2 9 M m 8 l 0.079 得 cos 1 3 2 M 3m g
4.一根放在水平光滑桌面上的匀质棒,可绕通过其一端的竖直固定光滑轴O 转动.棒的质量为m = 1.5kg,长度为l = 1.0 m,对轴的转动惯量为J =ml2/3 .初始时棒静止.今有一 水平运动的子弹垂直地射入棒的另一端,并留在棒中,如图所示.子弹的质量 为m′= 0.020kg,速率为v =400 m·s-1.试问: (1)棒开始和子弹一起转动时角速度ω有多大?
8. 粒子在加速器中被加速,当加速到其质量为静止质量的 5 倍时,其动能为静止能量的__4__倍。 二、选择题 1.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m1 和m2 的物体(m1 <m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的 张力[ C ] (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 2.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m的重物,飞轮的角加速度
2
O 60

新编大学物理课后习题答案

新编大学物理课后习题答案

第1章 质点运动学一、选择题 题1.1 : 答案:[B]提示:明确∆r 与r ∆的区别 题1.2: 答案:[A] 题1.3: 答案:[D]提示:A 与规定的正方向相反的加速运动, B 切向加速度, C 明确标、矢量的关系,加速度是d dtv题1.4: 答案:[C] 提示: 21r r r ∆=-,12,R R rj r i==-,21v v v ∆=-,12,v v vi v j=-=-题1.5: 答案:[D]提示:t=0时,x=5;t=3时,x=2得位移为-3m ;仅从式x=t 2-4t+5=(t-2)2+1,抛物线的对称轴为2,质点有往返 题1.6: 答案:[D] 提示:a=2t=d dtv ,2224tv tdt t==-⎰,02tx xvdt -=⎰,即可得D 项题1.7: 答案:[D]北v 风v 车1v 车2提示: 21=2v v 车车,理清=+vv v 绝相对牵的关系二、填空题 题1.8:答案: 匀速(直线),匀速率 题1.9:答案:2915t t -,0.6提示: 2915dx v t tdt==-,t=0.6时,v=0题1.10:答案:(1)21192y x =-(2)24t -i j 4-j(3)411+i j 26-i j 3S提示: (1) 联立22192x t y t=⎧⎨=-⎩,消去t 得:21192y x =-,dx dy dtdt=+v i j(2) t=1s 时,24t =-v i j ,4d dt==-v a j(3) t=2s 时,代入22(192)x y t t =+=+-r i j i j 中得411+i jt=1s 到t=2s ,同样代入()t =r r 可求得26r ∆=-i j ,r 和v 垂直,即0∙=r v ,得t=3s题1.11: 答案:212/m s提示:2(2)2412(/)dv d x a v x m s dtdt=====题1.12: 答案:1/m s 22π提示:200tdvv v dt tdt=+=⎰,11/t vm s==,201332tvdt t R θπ===⎰,222r R π∆==题1.13: 答案:215()2t v t gt-+-i j提示: 先对2(/2)vt g t =-r j求导得,0()yv gt =-vj与5=v i 合成得05()v g t =-+-v i j 合 201=5()2t v t gt -+-∴⎰r v i j t合0合dt=题1.14: 答案:8, 264t提示:8dQv R R t dt τ==,88a R τ==,2264n dQ a R tdt ⎛⎫== ⎪⎝⎭三、计算题 题1.15: 解:(1)3tdv atdt == 003v tdv tdt =∴⎰⎰ 232v t∴=又232ds v tdt==232stds tdt=∴⎰⎰ 312S t =∴(2)又S R θ= 316S tRθ==∴(3)当a 与半径成45角时,n a a τ=2434nva tR==4334tt=∴ 34t S=∴题1.16: 解:(1)dv a kvdt ==- 0vtdv kdt v=-∴⎰⎰, 0lnv ktv =-(*)当012v v =时,1ln 2kt=-,ln 2t k=∴(2)由(*)式:0kt v v e -=0kt dx v e dt -=∴,000x tkt dx v e dt -=⎰⎰(1)kt v x e k-=-∴ 第2章 质点动力学一、选择题 题2.1: 答案:[C]提示:A .错误,如:圆周运动B .错误,m =p v ,力与速度方向不一定相同 D .后半句错误,如:匀速圆周运动题2.2: 答案:[B]提示:y 方向上做匀速运动:2yy Sv t t==x 方向上做匀加速运动(初速度为0),F a m=22tx v a d t t ==⎰,223txxt S vdt ==⎰2223t t =+∴S i j题2.3: 答案:[B]提示:受力如图MgF杆'F 猫mg设猫给杆子的力为F ,由于相对于地面猫的高度不变'F mg ='F F = 杆受力1()F M g F M m g=+=+1()F M m ga MM+==题2.4 : 答案:[D] 提示:Ba BTTa A Tmg22AB A B m g T m a T m a a a ⎧⎪-=⎪=⎨⎪⎪=⎩ 得45Aag=(2A Ba a=,通过分析滑轮,由于A 向下走过S ,B 走过2S )2A Ba a=∴题2.5: 答案:[C]提示: 由题意,水平方向上动量守恒, 故0(cos 60)()1010m m v m v =+共0=22v v 共题2.6: 答案:[C] 提示:RθθRh-R由图可知cos h R Rθ-=分析条件得,只有在h 高度时,向心力与重力分量相等 所以有22cos ()mv mg v g h R Rθ=⇒=-由机械能守恒得(以地面为零势能面)2200112()22m v m v m gh v gh g h R =+⇒=+-题2.7: 答案:[B]提示: 运用动量守恒与能量转化 题2.8: 答案:[D] 提示:θv 0v x vy由机械能守恒得20122m gh m vv gh=⇒=0sin y v v θ=sin 2Gy Pmgv mg ghθ==∴题2.9: 答案: [C] 题2.10: 答案: [B] 提示: 受力如图fT Fx由功能关系可知,设位移为x (以原长时为原点)2()xF m g Fx m gx kxdx x kμμ--=⇒=⎰弹性势能 2212()2p F mg E kx kμ-==二、填空题 题2.11: 答案:2mb 提示: '2v x bt =='2a v b== 2Fm a m b==∴题2.12:答案:2kg 4m/s 2 提示:4N8Nxy 0由题意,22/xam s= 4x F N=8y F N=2F m k ga==24/y y F a m sm==题2.13: 答案:75,1110提示: 由题意,32()105F a t m ==+27/5v adt m s⇒==⎰当t=2时,1110a =题2.14: 答案:180kg 提示:由动量守恒,=m S -S m人人人船相对S ()=180kgm ⇒船题2.15: 答案:11544+i j提示:各方向动量守恒题2.16: 答案:()mv +i j ,0,-mgR提示:由冲量定义得 ==()(m v m v m v --=+I P P i j ij末初-由动能定律得 0k k E W E ∆=⇒∆=,所以=0W 合=W m gR-外题2.17: 答案:-12 提示:3112w F dx J -==⎰题2.18:答案: mgh ,212kx ,M m G r- h=0,x=0,r =∞ 相对值题2.19: 答案: 02m g k ,2mg ,0m gk题2.20: 答案: +=0A ∑∑外力非保守力三、计算题 题2.21: 解:(1)=m Fxg L 重()m f L x gLμ=-(2)1()(1)g a F f x gmLμμ=-=+-重(3)dv a v dx=,03(1)vLL g vdv x g dx Lμμ⎡⎤=+-⎢⎥⎣⎦⎰⎰,2(2)3v L g μ=-题2.22:解:(1)以摆车为系统,水平方向不受力,动量守恒。

2020年智慧树知道网课《大学物理》课后章节测试满分答案1

2020年智慧树知道网课《大学物理》课后章节测试满分答案1

第一章测试1【单选题】(10分)A.B.C.D.2【单选题】(10分)A.8,8;B.10,10;C.8,10;D.10,8;3【单选题】(10分)一支长为100米的队伍直线前进,通信兵从队尾跑到队首又返回队尾,队伍前进了200米,则通信兵的位移大小为()。

A.200米;B.100米;C.300米;D.400米。

4【单选题】(10分)质点在二维直角坐标系里做平面曲线运动,则质点速率的正确表达式为()。

A.B.C.D.5【单选题】(10分)一辆轿车以72km/h的速度在水平路面上直线行驶,突然发现前方100米有一辆自行车以10m/s的速度沿同方向匀速行驶,如轿车刹车作匀减速行驶,加速度至少为多大时才不会撞上自行车()。

A.0.2m/s2;B.2.0m/s2;C.5.0m/s2;D.0.5m/s2;6【单选题】(10分)质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的最小速度是v,则当小球以2v的速度经过最高点时,对轨道压力的大小是()。

A.0;B.2mg;C.3mg;D.mg;7【单选题】(10分)如图所示,质量为m的木块放置在粗糙水平面上,二者之间摩擦系数为μ,重力加速度为g,现对木块施加斜向上的拉力F,与水平面的夹角为θ,物体可以在地面上运动的最小拉力为()。

A.B.C.D.8【单选题】(10分)A.B.C.D.9【单选题】(10分)火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。

若在某转弯处规定行驶的速度为v,则下列说法中正确的是()。

①当火车以v的速度通过此弯路时,火车所受重力与轨道面支持力的合力提供向心力。

②当火车以v的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力。

③当火车速度大于v时,轮缘挤压外轨。

④当火车速度小于v时,轮缘挤压外轨。

A.①②;B.①③;C.②④;D.②③;10【单选题】(10分)质点作半径为R的变速率圆周运动,v为任一时刻质点的速率,则该质点的加速度大小是()。

大学物理c试题及答案

大学物理c试题及答案

大学物理c试题及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。

A. 2.998×10^8 m/sB. 3.0×10^8 m/sC. 3.0×10^5 km/sD. 3.0×10^8 km/s2. 根据能量守恒定律,下列说法正确的是()。

A. 能量可以在不同形式之间转换B. 能量可以在不同物体之间转移C. 能量的总量是恒定的D. 所有以上说法3. 牛顿第一定律也被称为()。

A. 惯性定律B. 作用力与反作用力定律C. 万有引力定律D. 动量守恒定律4. 电磁波谱中,波长最长的是()。

A. 无线电波B. 微波C. 红外线D. 可见光5. 以下哪个选项是描述电流的()。

A. 电荷的流动B. 电荷的静止C. 电荷的累积D. 电荷的消散6. 根据热力学第二定律,下列说法正确的是()。

A. 热量可以自发地从低温物体传递到高温物体B. 热量不能自发地从低温物体传递到高温物体C. 所有自发过程都是不可逆的D. 所有以上说法7. 根据库仑定律,两个电荷之间的力与它们之间的距离成()。

A. 正比B. 反比C. 无关D. 指数关系8. 光的折射定律,即斯涅尔定律,表明入射角和折射角之间的关系是()。

A. 入射角增大,折射角也增大B. 入射角增大,折射角减小C. 入射角和折射角成正比D. 入射角和折射角成反比9. 根据麦克斯韦方程组,变化的磁场会产生()。

A. 电场B. 磁场C. 引力场D. 以上都不是10. 根据量子力学,一个粒子的波函数可以描述()。

A. 粒子的位置B. 粒子的速度C. 粒子的动量D. 粒子的概率分布二、填空题(每题2分,共20分)1. 根据牛顿第二定律,力等于质量乘以_________。

2. 光的波长、频率和速度之间的关系可以用公式_________表示。

3. 一个物体的动能可以表示为_________,其中m是质量,v是速度。

4. 电流的单位是_________,符号为A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题5题5-2图题5-2图5-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题5--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题5-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =5-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷.试求:(1)在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强. 解: 如题5-4图所示题5-4图(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题5-4图所示由于对称性⎰=l Qx E 0d ,即Q E ϖ只有y 分量,∵ 22222220d d d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向5-7 半径为1R 和2R (21R R >)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰ϖϖ对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E5-9 如题5-9图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力做的功. 解: 如题5-9图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=题5-9图 题5-10图5-10 如题5-10图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两段直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题5-10图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 86)35251(5021=+=+=U U U AB V 习题66-5 在真空中,有两根互相平行的无限长直导线L 1和L 2,相距0.10 m ,通有方向相反的电流,120A I =,210A I =,如题6-5图所示.A ,B 两点与导线在同一平面内.这两点与导线L 2的距离均为5.0 cm.试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题6-5图解:如题6-5图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B ϖ在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m6-7 设题6-7图中两导线中的电流均为8 A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:(1)在各条闭合曲线上,各点的磁感应强度B 的大小是否相等? (2)在闭合曲线c 上各点的B 是否为零?为什么?题6-7图解: ⎰μ=⋅a l B 08d ϖϖ⎰μ=⋅bal B 08d ϖϖ⎰=⋅cl B 0d ϖϖ(1)在各条闭合曲线上,各点B ϖ的大小不相等.(2)在闭合曲线C 上各点B ϖ不为零.只是B ϖ的环路积分为零而非每点0=B ϖ.题6-10图6-10 如题6-10图所示,在长直导线AB 内通以电流120A I =,在矩形线圈CDEF 中通有电流210A I =,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0 cm ,b =20.0 cm ,d =1.0 cm ,求:(1)导线AB 的磁场对矩形线圈每边所作用的力; (2)矩形线圈所受合力和合力矩.解:(1)CD F ϖ方向垂直CD 向左,大小4102100.82-⨯==dI bI F CD πμ N 同理FE F ϖ方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F ϖ方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F ϖ方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F ϖϖϖϖϖ+++=方向向左,大小为4102.7-⨯=F N合力矩B P M m ϖϖϖ⨯= ∵ 线圈与导线共面∴ B P m ϖϖ//0=M ϖ.题6-12图6-12 一长直导线通有电流120A I =,旁边放一导线ab ,其中通有电流210A I =,且两者共面,如题6-12图所示.求导线ab 所受作用力对O 点的力矩. 解:在ab 上取r d ,它受力ab F ⊥ϖd 向上,大小为rI rI F πμ2d d 102= F ϖd 对O 点力矩F r M ϖϖϖ⨯=d M ϖd 方向垂直纸面向外,大小为r I I F r M d 2d d 210πμ== ⎰⎰-⨯===ba bar I I M M 6210106.3d 2d πμ m N ⋅题6-13图6-13 电子在47010T B -=⨯的匀强磁场中作圆周运动,圆周半径r =3.0 cm.已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如题6-13图所示.(1)试画出这电子运动的轨道; (2)求这电子速度v 的大小; (3)求这电子的动能k E . 解:(1)轨迹如图题6-13图(2)∵ rv m evB 2=∴ 7107.3⨯==m eBrv 1s m -⋅ (3) 162K 102.621-⨯==mv E J05.1===H H B o r μμμ T习题77-1 一半径r =10 cm 的圆形回路放在B =0.8 T 的均匀磁场中,回路平面与B 垂直.当回路半径以恒定速率=80drdtcm/s 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V题7-37-3 如题7-3图所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以d Id t的变化率增大,求:(1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε习题88-1 质量为10×10-3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3x t ππ=+(SI)的规律做谐振动,求:(1)振动的周期、振幅、初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t 2=5 s 与t 1=1 s 两个时刻的位相差. 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t8-2 一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表出.如果t =0时质点的状态分别是:(1)x 0=-A ;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过x =处向正向运动.试求出相应的初位相,并写出振动方程. 解:因为 ⎩⎨⎧-==0000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x8-3 一质量为10×10-3 kg 的物体做谐振动,振幅为24 cm ,周期为4.0 s ,当t =0时位移为+24 cm.求:(1)t =0.5 s 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x =12 cm 处所需的最短时间; (3)在x =12 cm 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E8-5 题8-5图为两个谐振动的x -t 曲线,试分别写出其谐振动方程.题8-5图解:由题8-5图(a),∵0=t 时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ 即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a 由题8-5图(b)∵0=t 时,35,0,2000πφ=∴>=v A x01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯= ∴ πω65=故 m t x b )3565cos(1.0ππ+=习题9 机械波9-4 已知波源在原点的一列平面简谐波,波动方程为y =A cos (Bt -Cx ),其中A ,B ,C 为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为l 处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d 的两点的位相差. 解: (1)已知平面简谐波的波动方程)cos(Cx Bt A y -= (0≥x )将上式与波动方程的标准形式)22cos(λππυxt A y -=比较,可知: 波振幅为A ,频率πυ2B =, 波长C πλ2=,波速CB u ==λυ,波动周期B T πυ21==. (2)将l x =代入波动方程即可得到该点的振动方程)cos(Cl Bt A y -= (3)因任一时刻t 同一波线上两点之间的位相差为)(212x x -=∆λπφ 将d x x =-12,及Cπλ2=代入上式,即得 Cd =∆φ.9-5 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10πt -4πx ),式中x ,y 以m 计,t 以s 计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度;(3)求x =0.2 m 处质点在t =1 s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25 s 时刻到达哪一点?解: (1)将题给方程与标准式)22cos(x t A y λππυ-= 相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅.(2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ.设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m9-7 如题9-7图所示,S 1和S 2为两相干波源,振幅均为A 1,相距λ4,S 1较S 2位相超前π2,求:题9-7图(1)S 1外侧各点的合振幅和强度;(2)S 2外侧各点的合振幅和强度.解:(1)在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r 0,0211===-=A I A A A(2)在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差.0)4(2222=-+-=∆r r λλππφ 2121114,2A A I A A A A ===+=9-9 一驻波方程为y =0.02cos 20x cos 750t (SI),求:(1)形成此驻波的两列行波的振幅和波速;(2)相邻两波节间距离.解: (1)取驻波方程为 t u x A y πυπυ2cos 2cos2= 故知 01.0202.0==A m 7502=πυ,则πυ2750=, 202=uπυ ∴ 5.37202/7502202=⨯==πππυu 1s m -⋅ (2)∵314.01.020/2====πυπυυλu m 所以相邻两波节间距离 157.02==∆λx m习题10 波动光学10-4 在杨氏双缝实验中,双缝间距d =0.20 mm ,缝屏间距D =1.0 m .试求:(1)若第2级明条纹离屏中心的距离为6.0 mm ,计算此单色光的波长;(2)求相邻两明条纹间的距离.解: (1)由λk dD x =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000= (2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm10-5 在双缝装置中,用一很薄的云母片(n =1.58)覆盖其中的一条缝,结果使屏幕上的第7级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为550 nm ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ10-7 在折射率n 1=1.52的镜头表面涂有一层折射率n 2=1.38的MgF 2增透膜,如果此膜适用于波长λ=550 nm 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k ∴ 222422)21(n n k n k e λλλ+=+= )9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA .当k 为其他整数倍时,也都满足要求.。

相关文档
最新文档