宁波市【小升初】小升初数学必考题型

合集下载

小升初选拔数学必考题型

小升初选拔数学必考题型

小升初选拔数学必考题型
小升初选拔数学必考题型包括但不限于:
1. 分数和小数的转换:将分数转换为小数或将小数转换为分数。

2. 单位换算:例如,将米转换为厘米或将千克转换为克等。

3. 计算时间、速度和距离:例如,计算行驶某段距离所需的时间或速度,或计算在给定时间内行驶的距离。

4. 图形和几何问题:例如,计算图形的面积、周长或体积等。

5. 比例和百分比问题:例如,计算两个数的比例或一个数占另一个数的百分比。

6. 代数表达式和方程:例如,解一元一次方程或求解代数表达式的值。

7. 逻辑推理问题:例如,根据给定的条件或信息,推断出未知数或关系。

8. 组合和排列问题:例如,计算从n个不同元素中取出k个元素的组合数或排列数。

9. 最大值和最小值问题:例如,在给定的一组数中找到最大值或最小值,或确定满足某个条件的最大或最小值。

10. 应用题:例如,计算购物时找零的金额、计算银行利息等。

以上题型只是其中的一部分,具体题型和难度可能会因地区和选拔要求而有所不同。

建议查阅所在地区的小升初数学考试大纲,以获取更准确的信息。

小升初数学常考题型

小升初数学常考题型

小学数学常考题型1、和差问题已知两数的和与差,求这两个数。

例:已知两数和是10,差是2,求这两个数。

【口诀】和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。

按口诀,则大数=(10+2)÷2=6,小数=(10-2) ÷2=42、差比问题例例:甲数比乙数大12且甲:乙=7:4,求两数。

【口诀】我的比你多,倍数是因果。

分子实际差,分母倍数差。

商是一倍的,乘以各自的倍数,两数便可求得。

先求一倍的量,12÷(7-4)=4,所以甲数为:4X7=28,乙数为:4X4=16。

3、年龄问题例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄是小军的3倍?【口诀】岁差不会变,同时相加减。

岁数一改变,倍数也改变。

抓住这三点,一切都简单。

分析:岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。

已知差及倍数,转化为差比问题。

26÷(3-1)=13,几年后爸爸的年龄是13X3=39岁,小军的年龄是13X1=13岁,所以应该是5年后。

例2:姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数的和是40岁时,两人各应该是多少岁?分析:岁差不会变,今年的岁数差13-9=4几年后也不会改变。

几年后岁数和是40,岁数差是4,转化为和差问题。

则几年后,姐姐的岁数:(40+4) ÷2=22,弟弟的岁数:(40-4) ÷2=18,所以答案是9年后。

4、和比问题已知整体,求部分。

例:甲乙丙三数和为27,甲:乙:丙=2:3:4,求甲乙丙三数。

【口诀】家要众人合,分家有原则。

分母比数和,分子自己的。

和乘以比例,就是该得的。

分母比数和,即分母为:2+3+4=9;分子自己的,则甲乙丙三数占和的比例分别为2/9,3/9,4/9。

和乘以比例,则甲为27X2/9=6,乙为27X3/9=9,丙为27X4/9=125、鸡兔同笼问题例:鸡免同笼,有头36,有脚120,求鸡兔数。

小升初数学经典必考题型50道

小升初数学经典必考题型50道

小升初数学经典必考题型1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2. 3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5. 甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

小升初数学必考题型2024试卷

小升初数学必考题型2024试卷

小升初数学必考题型2024试卷数学测试卷一、选择题(每题3分,共30分)下列哪个数不是质数?A. 2B. 3C. 4D. 5下列哪个方程表示的是一条直线?A. y2=xB. y=x2C. y=2x+1D. ∣y∣=x一个圆的半径是3厘米,它的面积是多少平方厘米?A. 9πB. 18πC. 27πD. 36π下列哪个数是无理数?A. 21B. 4C. πD. 3.14下列哪个不等式是正确的?A. 5<3B. 7≥8C. −2<1D. 0>−1若 a2=25,则 a 的值是多少?A. 5B. -5C. ±5D. 0下列哪个函数在 x=0 处连续?A. x1B. x2−1C. xx2D. x−11一个三角形的两边长分别为3和4,第三边的长度可能是多少?A. 1B. 5C. 7D. 8下列哪个表达式可以化简为x−1?A. x2−1B. xx2−1C. x2−xD. x−x1若一个数的倒数是它本身,这个数是多少?A. 1B. -1C. ±1D. 0二、填空题(每题2分,共20分)32+22= _______。

方程2x−5=15的解是 x= _______。

圆的周长公式是 C= _______。

已知 a=2,b=3,则 ab= _______。

若f(x)=x3−6x2+11x−6,则 f(2)= _______。

已知 y 是 x 的正比例函数,且当 x=4 时,y=8,则 y 关于 x 的函数表达式为 y= _______。

已知 x 和 y 满足 x+y=5 和 xy=6,则 x2+y2= _______。

已知 a 和 b 互为相反数,c 和 d 互为倒数,则 a+b+cd= _______。

若 n 为正整数,且n2−1是质数,则 n= _______。

已知 a,b,c 是三角形的三边长,且满足a2+b2=10a+8b−41,c 是最长边,求 c 的取值范围_______。

小升初数学必考题型大全(必刷)word版

小升初数学必考题型大全(必刷)word版

小升初数学必考题型大全一.解答题(共50题,共300分)1.一种圆柱形状的铁皮油桶,量得底面直径8dm,高5dm.做一个这样的铁皮油桶至少需多少平方米铁皮?(铁皮厚度不计,结果保留整数)2.一个圆锥体钢制零件,底面半径是3cm,高是2m,这个零件的体积是多少立方厘米?3.一条公路全长1500m,修路队第一天修了全长的45%,第二天修了全长的。

还剩下多少米没有修?4.一个圆柱形的金鱼缸,底面半径是40cm,里面有一座假山石全部浸没在水中(水没有溢出),取出假山石后,水面下降了5cm。

这座假山的体积是多少?5.一件上衣打八折后的售价是160元,老板说:“如果这件上衣对折就不赚也不亏”。

这件上衣成本是多少元?6.某电视机厂去年电视机生产情况统计图(单位:台; 2011年1月)看图列式计算:(1)全年共生产电视机多少台?(2)平均每月生产电视机多少台?(3)第四季度比第一季度增产百分之几?7.我们把李明从家出发,向西走了500米记作走了-500米,那么李明又接着走了+800米是什么意思?这时李明离家的距离有多远?8.2018年2月,王阿姨把一些钱存入银行,定期三年,如果年利率是5.0%,到期后可以取出92000元。

王阿姨当时存入银行多少钱?9.在打谷场上,有一个近似于圆锥的小麦堆,高是1.2米,测得底面直径是4米。

每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整千克数)10.一个无盖圆柱形油桶,底面半径2分米,高8分米,里面装满汽油,1升汽油重0.8千克。

这个油桶最多装多少千克的汽油?11.某水果店新进一批水果,其中苹果占新进水果总量的30%,香蕉占40%,已知这两种水果共70kg,这批水果的总量是多少?12.某建筑物内有6根圆柱形大柱,高10米,大柱周长25.12分米,要全部涂上油漆,如果按每平方米的油漆费为80元计算,需用多少钱?13.1990年~1995年下列国家年平均森林面积(单位:平方千米)的变化情况是:如果规定将“增加”记为正,请用正数和负数表示这六个国家1990年~1995年年平均森林面积的增长量。

宁波市小升初数学专项专项练习经典测试题(培优提高)

宁波市小升初数学专项专项练习经典测试题(培优提高)

考试范围:xxx;满分:***分;考试时间:100分钟;命题人:xxx 学校:__________ 姓名:__________ 班级:__________ 考号:__________一、解答题小时跑了1300千米,复兴号动车48分钟跑了280千米.谁的速度快一1.和谐号动车133些?2.李大爷将20000元存入银行,存期为一年。

一年后,李大爷得到利息多少元?3.下面两幅统计图反映的是乐乐、佳佳近阶段在家学习的情况。

(1)从图上可以看出,________的成绩提高得快;________的练习时间多一些,比另一个人的练习时间多________%。

(2)你喜欢谁的学习方式?为什么?算出他这五次的平均成绩。

4.一辆汽车从甲地开往乙地,前3小时行了156千米。

照这样的速度,从甲地到乙地共需8小时,甲、乙两地相距多少千米?(用比例解)5.一个圆锥形的沙堆,底面积是28. 26平方米,高是2.5米,用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?6.为做好国庆安保工作,某单位派人乘坐汽车到某地执行任务。

上午9时出发到12时共行180km。

照这样的速度,下午4时可到达目的地,到达目的地共行了多少千米?(列比例解答)7.前进小学六(1)班学生上学方式分为接送、乘车、骑车三种情况。

下图是反映各种情况的人数的条形统计图(部分)和扇形统计图,请根据统计图回答以下问题。

(1)六(1)班学生上学接送的有多少?并在图中画出来。

(2)六(1)班学生上学骑车的比乘车的少百分之几?8.装订一批绘本,如果每本25页,可以装订480本,现在每本装32页,可以装订多少本?(用比例解)9.李强在市民图书馆借了一本历史故事书,如果每天看16页,15天能全部看完。

如果要在规定期限内准时归还,而不必交延时服务费,李强每天至少要看几页?10.李阿姨要买16瓶某种品牌的酸奶,经了解,甲、乙两个商店这种品牌酸奶的单价都是8.5元/瓶,甲店:每瓶打八折出售,乙店:每2瓶一组,第1瓶全价,第2瓶半价。

【小升初】小升初数学必考题型

【小升初】小升初数学必考题型

一、填空题。

(必考、易考题型)1、求近似值改写用“万”、“亿”做单位或省略“万”、“亿”后面的尾数或“四舍五入”以及数的组成(必然出现一种)典型题(0)七千零三十万四千写作(),改写用“万”做单位的数是(),省略“万”后面的尾数是()。

(1)5个1,16个1/100组成的数是()。

(2)第五次全国人口普查结果,全国总人口为十二亿九千五百三十三万,这个数写作(),四舍五入到亿位约是()。

(3)0.375读作(),它的计数单位是()。

(4)付河大桥投资约36250万元,改写成用“亿”作单位的数是()亿。

(5)用万作单位的准确数5万与进似数5万比较,最多相差()。

(6)由三个百、六个一、七个十分之一、八个万分之一组成的小数是(),保留两位小数约是()。

2、找规律可能考典型题找规律:1,3,2,6,4,(),(),12,……3、中位数、众数或平均数(必考一题)典型题(1)六(3)班同学体重情况如下表体重/30 33 36 39 42 45 48千克人数 2 4 5 12 10 4 3上面这组数据中,平均数是(),中位数是(),众数是()。

(2)甲乙丙三个偶数的平均数是16,三个数的比是3:4:5,甲乙丙三个偶数分别是()、()、()。

(3)有三个数,甲乙两数的平均数是28.5,乙丙两数的平均数是32,甲丙两数的平均数是21,那么甲数是(),乙数是()。

4、负数正数有可能考典型题(1)0、0.9、1、-1、4、103、-320七个数中,()是自然数,()是整数。

(2)月球的表面白天的平均气温是零上126摄氏度,记作()摄氏度,夜间平均气温是零下150摄氏度,记作()摄氏度。

5、倒数可能考典型题(1)一个最小的质数,它的倒数是作()。

(2)6又5/7的倒数是(),()的倒数是最小的质数。

6、最简比及比值可能考典型题(1)3/4与0.125的最简整数比是(),比值是()。

(2)一个小圆的直径和大圆的半径都是4厘米,大圆与小圆的周长的最简整数比是(),面积的最简整数比是()。

小升初必考数学题型

小升初必考数学题型

小升初必考数学题型小升初数学考试是小学生升入初中前的最后一次全面考试,考察的内容既包括基础知识点,也会涉及一些有难度的题型。

以下是一些小升初必考的数学题型及对应的解题方法:1、基础计算题:这类题目主要考察学生的计算能力,包括加减乘除、分数和小数的计算等。

学生应熟练掌握各种运算法则,提高计算速度和准确性。

2、应用题:应用题是数学考试中的重要题型,主要考察学生运用数学知识解决实际问题的能力。

常见的应用题类型包括路程问题、工程问题、生产问题等。

学生需要理解题意,建立数学模型,通过分析、推理和计算得出答案。

3、图形题:图形题主要考察学生的空间想象能力和几何知识。

常见的题型包括平面几何和立体几何的面积、周长、体积等计算。

学生需要掌握基本图形的性质和特点,能够灵活运用勾股定理、相似三角形等知识解决实际问题。

4、逻辑思维题:逻辑思维题主要考察学生的逻辑推理和分析能力,通常以选择题的形式出现。

这类题目没有固定的解题方法,需要学生通过分析和推理排除干扰项,找到正确答案。

5、代数题:代数题主要考察学生的代数知识和代数运算能力。

常见的题型包括方程求解、不等式求解、函数图像等。

学生需要掌握代数的基本概念和运算规则,能够灵活运用代数方法解决实际问题。

6、组合数学题:组合数学题主要考察学生的组合数学知识和逻辑思维能力。

常见的题型包括排列组合、概率计算、逻辑推理等。

学生需要掌握组合数学的基本概念和性质,能够运用逻辑推理和演绎法解决问题。

为了更好地应对小升初数学考试,学生需要做到以下几点:1、熟练掌握基础知识点:学生应熟练掌握数学的基础知识点,包括整数、小数、分数、比例、百分数等,以及各种运算法则和性质。

2、多做习题:通过多做习题,学生可以加深对知识点的理解,提高解题速度和准确性。

建议学生选择一些具有代表性的习题进行练习,注重解题思路和方法。

3、归纳总结:学生应对所学知识进行归纳总结,找出知识点之间的联系和规律,形成完整的知识体系。

小升初数学必考常考题型

小升初数学必考常考题型

小升初数学必考常考题型【1】行程问题是小升初考试和小学四大杯赛四大题型之一(计算、数论、几何、行程)。

具体题型变化多样,形成10多种题型,都有各自相对独特的解题方法。

一、一般相遇追及问题包括一人或者二人时(同时、异时)、地(同地、异地)、向(同向、相向)的时间和距离等条件混合出现的行程问题。

在杯赛中大量出现,约占80%左右。

建议熟练应用标准解法,即s=v×t结合标准线段画图(基本功)解答。

由于只用到相遇追及的基本公式即可解决,在解题的时候,一旦出现比较多的情况变化时,结合自己画出的图分段去分析情况。

二、复杂相遇追及问题(1)多人相遇追及问题。

比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题。

解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态。

(2)多次相遇追及问题。

即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称“反复折腾型问题”。

分为标准型(如已知两地距离和两者速度,求n次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数)和纯周期问题(少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数)。

标准型解法固定,不能从路程入手,将会很繁,最好一开始就用求单位相遇、追及时间的方法,再求距离和次数就容易得多。

如果用折线示意图只能大概有个感性认识,无法具体得出答案,除非是非考试时间仔细画标准尺寸图。

一般用到的时间公式是(只列举甲、乙从两端同时出发的情况,从同一端出发的情况少见,所以不赘述):单程相遇时间:t单程相遇=s/(v甲+v乙)单程追及时间:t单程追及=s/(v甲-v乙)第n次相遇时间:tn= t单程相遇×(2n-1)第m次追及时间:tm= t单程追及×(2m-1)限定时间内的相遇次数:N相遇次数=[ (tn+ t单程相遇)/2 t单程相遇]限定时间内的追及次数:M追及次数=[ (tm+ t单程追及)/2 t单程追及]注:[]是取整符号之后再选取甲或者乙来研究有关路程的关系,其中涉及到周期问题需要注意,不要把运动方向搞错了。

小升初数学必考题型讲解

小升初数学必考题型讲解

小升初数学必考题型讲解
一、题型一:计算题
1. 知识点:小数乘法、小数除法、分数乘法、分数除法。

2. 常见考法:小数、分数混合运算,应用题。

3. 解题技巧:将小数或分数转化为整数,再进行运算,注意小数点的处理。

4. 易错点:运算顺序错误、小数点处理不当、运算符号看错等。

5. 详细解析:在计算小数、分数混合运算时,要按照从左到右的顺序进行计算,先乘除后加减,有括号的先算括号里面的。

在处理小数或分数时,可以将小数或分数转化为整数进行计算。

在应用题中,需要注意小数点的处理和运算顺序。

二、题型二:方程题
1. 知识点:一元一次方程、二元一次方程、三元一次方程。

2. 常见考法:解方程、方程应用题。

3. 解题技巧:设未知数、列方程、解方程、检验。

4. 易错点:未知数处理不当、方程变形错误、解方程不彻底等。

5. 详细解析:设出未知数,找到等量关系列出方程,进行变形求解,最后检验。

在解方程时,需要注意未知数的处理和方程变形的方法。

在应用题中,需要找到等量关系列出方程,进行变形求解,最
后检验。

三、题型三:几何题
1. 知识点:平面几何、立体几何。

2. 常见考法:计算面积、计算体积、应用题。

3. 解题技巧:找到几何元素之间的对应关系,利用公式进行计算。

4. 易错点:几何元素对应关系不明确、公式使用错误等。

5. 详细解析:在几何题中,需要找到几何元素之间的对应关系,如面积、周长、体积等。

对于平面几何,需要利用直角三角形的勾股定理进行计算;对于立体几何,需要利用公式进行计算。

小升初数学必考计算题型

小升初数学必考计算题型

小升初数学必考计算题型
小升初数学考试中,常见的计算题型包括以下几种:
1.四则运算:包括加法、减法、乘法和除法。

考察学生对基础运算规则的掌握和灵活运用能力。

2.组合运算:将多个运算符号或数字进行组合,要求学生按照正确的顺序进行计算。

例如:(7+3)×2-4÷2,要求学生按照括号内的运算优先级进行计算。

3.算式填空:给出一个不完整的算式,要求学生填写缺失的数字或符号。

例如:8+□=15,要求学生找出符合等式的缺失数字。

4.近似计算:给出一些较大或较复杂的算式,要求学生根据近似计算的原理,估算出结果的大小。

例如:685+327+49,要求学生快速估算出结果的范围。

5.时钟问题:涉及到时间的加减运算,要求学生计算时间间隔或计算经过了多少时间。

例如:9点15分再过40分钟是几点?。

小升初数学必考题型汇总

小升初数学必考题型汇总

2024小升初数学必考题型汇总2024小升初数学必考题型汇总一、计算1、数的加减法 (1)整数和小数的加减法 (2)分数和百分数的加减法2、数的乘法与除法 (1)整数的乘法与除法 (2)分数的乘法与除法 (3)小数和百分数的乘法与除法3、方程 (1)一元一次方程 (2)二元一次方程 (3)三元一次方程4、简算与巧算 (1)加减法简算与巧算 (2)乘除法简算与巧算 (3)混合运算简算与巧算二、几何1、平面图形 (1)直线、射线、线段 (2)角的度量与计算 (3)三角形、四边形、多边形2、立体图形 (1)长方体、正方体、圆柱、圆锥 (2)球、棱柱、四面体三、统计与概率1、统计初步知识 (1)数据的收集与整理 (2)统计表与统计图2、概率初步知识 (1)事件的发生与可能性 (2)事件的概率与概率计算四、应用题1、行程问题 (1)一般行程问题 (2)多次相遇问题 (3)变速行程问题2、工程问题 (1)一般工程问题 (2)周期工程问题 (3)分工合作工程问题3、比例问题 (1)一般比例问题 (2)百分数比例问题 (3)浓度问题4、分数问题 (1)一般分数问题 (2)分数工程问题 (3)分数行程问题五、拓展题1、多位数问题2、逻辑推理问题3、数独问题2024小升初数学必考题型分类汇总2024小升初数学必考题型分类汇总一、计算题1、有括号的先算小括号里面的,没有括号的先算乘除,再算加减。

2、递等式计算题,不能急于求成,要按照先乘除,后加减,遇到有括号的要先算括号里面的运算顺序进行计算。

3、混合运算题,不能掉以轻心,要认真仔细,先算乘除,后加减,遇到括号要先计算括号里面的运算。

二、填空题1、填空题一定要仔细审题,比较大小题,大于号和小于号一定填正确。

2、填空题答案不唯一,要认真审题,填写正确的答案。

3、填空题涉及到的知识点较多,需要加强练习,积累经验。

三、选择题1、选择题不要盲目选择,要仔细分析题目,选择正确的答案。

小升初数学必考题型

小升初数学必考题型

小升初数学必考题型小升初数学的必考题型1、求近似值改写用“万”、“亿”做单位或省略“万”、“亿”后面的尾数或“四舍五入”以及数的组成2、中位数、众数或平均数3、因数倍数(重点考质数、合数、偶数、奇数、互质数、最大公因数、最小公倍数)4、量与计量5、分数、小数、百分数及比的互化6、比例尺7、鸡兔同笼8、抽屉原理9、现价与原价问题关系的计算(重点考打折问题)10、求每份数和分数答小升初数学题方法1、运算技巧的考察2、几何直观的观察3、推理演绎能力的考察小升初数学考试要注意哪些知识点一、圆柱(锥)问题要认识圆柱的底面、侧面和高;认识圆锥的底面和高。

要知道圆柱侧面展开的图形,理解求圆柱的侧面积、表面积的计算方法,会计算圆柱体的侧面积和表面积。

二、面积、体积问题主要考虑以下内容:平行四边形面积计算公式怎样得到的?三角形和梯形面积计算公式怎样得到的?圆的面积计算公式呢?思索正方形面积是怎样计算的?为什么?三、统计问题简单的统计表、统计图、还学过求平均数和求百分数等都是统计初步知识。

常见统计图有以下三类:条形统计图;折线统计图;扇形统计图。

小升初数学考试注意事项有哪些一、粗心问题粗心这个问题好像我们从小到大都在听别人跟我们说,不管你做得到底多好,总是会出现粗心的状况,听着听着这个理由,也就听烦了,可是又不知道怎么去改,于是一而再、再而三的不了了之。

二、审题不清审题不清这个问题很简单,跟第一条里的粗心有的一比,或者说有时审题不清也是粗心造成的。

三、计算速度计算速度,指的并不是“计算题”的速度,而是说整个考试中算数的速度,真正的计算速度却不仅仅是从做题中训练出来的。

小升初考多少分算优秀小升初考试总共考三门,语数外,每门满分是100,共计300分。

而想进初中只需及格,也就是说每科考60就能上初中,想进好初中总分就得接近满分,一般都是按名次来分。

小升初考试大体可以总结为两种主要形式,即笔试和面试。

其中笔试考查主要是数学和语文两个科目,一般来说每科平均考试时间为60分钟。

2023年浙江省宁波市小升初数学多题型100道思维应用题精编三卷含答案及精讲

2023年浙江省宁波市小升初数学多题型100道思维应用题精编三卷含答案及精讲

2023年浙江省宁波市小升初数学多题型100道思维应用题精编三卷含答案及精讲学校:________ 班级:________ 姓名:________ 考号:________一、思维应用题(共100题,每题1分)1.某工程队修一段长504千米的路,前6天修了22千米,照这样的速度,剩下的需要几天修完?(用比例解)2.今年王老师的年龄是陈强的3倍,王老师6年前的年龄和陈强10年后的年龄相等,陈强和王老师今年各是多少岁?3.有一块地共157亩,用大小拖拉机各两台耕了3.5小时后,还剩17亩未耕,已知每台小拖拉机每小时耕地8亩,问每台大拖拉机每小时比小拖拉机多耕多少亩地.4.一批产品有125件,共有25件合格,这批产品的合格率为多少?5.去年王村共收水稻48吨,今年收的水稻比去年增产二成.他们把收获水稻的94%晒干运往仓库储存,剩余的送往加工厂,可加工出大米多少吨?(水稻的出米率按80%计算)6.笼子里一共有鸡和兔25只,数一数它们一共有74条腿,兔、鸡各有多少只?7.小华在60米的跑道上走了3次,第一次走了119步,第二次走了118步,第三次走了123步,小华的平均步长约是多少米?他从家到学校共走了1500步,小华家到学校大约有多少米?8.某商品9月份的价格比8月份涨了10%,10月份价格比9月份又回落10%,10月份的价格和8月份比是涨了还是降了?变化幅度是多少?9.一块三角形麦地,底长38米,高30米,今年共收小麦307.8千克。

平均每公顷收小麦多少千克?10.王老师去家电市场买5台台扇和3台落地扇,只知道5台台扇与3台落地扇的价钱恰好相等,每台台扇的单价比每台落地扇少64元.王老师带了1000元,够吗?为什么?用列式计算来说明.11.甲乙两辆汽车同时从相距450千米的两个车站相对开出,经过6小时相遇.已知甲车每小时行36千米,乙车每小时行多少千米?(用方程解答)12.甲、乙、丙三人共103张邮票,甲的邮票数是乙的2倍,乙的邮票比丙的3倍多1张,甲、乙、丙各有多少张邮票?13.王老师从家到学校有975米,共走了15分.他用同样的速度,从家走到390米处的少年宫,要走多少分?14.甲、乙两辆汽车同时从A,B两地相对开出,甲行驶到全程的7/12时与乙相遇.相遇后,乙车速度不变,继续以每小时40千米的速度前进,3.5小时后到达A地.(1)求A,B两地的路程.(2)若甲车以匀速行驶,求甲车的速度.15.商店里出售的水杯有三种:不锈钢水杯,售价48元;钢化玻璃杯,售价32元;塑料水杯,售价16元.石老师打算买15只同样的水杯,他只带了500元,买哪一种合适?16.甲、乙、丙三人各要加工60个零件,当甲完成任务时,乙加工了40个,丙还差28个.按照这个速度,当乙完成任务时,丙加工了多少个零件.17.甲、乙两人轮流从1,2,3,…,100,101这101个自然数中每次划掉9 个数,经过11次后,还剩下两个数.如果甲第一个划数,请问甲是否有方法使得最后剩下的两个数之差是55?并说明理由.18.王老师身高1.86米,淘气站在0.55米的旗台上比王老师高0.15米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题。

(必考、易考题型)1、求近似值改写用“万”、“亿”做单位或省略“万”、“亿”后面的尾数或“四舍五入”以及数的组成(必然出现一种)典型题(0)七千零三十万四千写作(),改写用“万”做单位的数是(),省略“万”后面的尾数是()。

(1)5个1,16个1/100组成的数是()。

(2)第五次全国人口普查结果,全国总人口为十二亿九千五百三十三万,这个数写作(),四舍五入到亿位约是()。

(3)0.375读作(),它的计数单位是()。

(4)付河大桥投资约36250万元,改写成用“亿”作单位的数是()亿。

(5)用万作单位的准确数5万与进似数5万比较,最多相差()。

(6)由三个百、六个一、七个十分之一、八个万分之一组成的小数是(),保留两位小数约是()。

2、找规律可能考典型题找规律:1,3,2,6,4,(),(),12,……3、中位数、众数或平均数(必考一题)典型题(1)六(3)班同学体重情况如下表体重/30 33 36 39 42 45 48千克人数 2 4 5 12 10 4 3上面这组数据中,平均数是(),中位数是(),众数是()。

(2)甲乙丙三个偶数的平均数是16,三个数的比是3:4:5,甲乙丙三个偶数分别是()、()、()。

(3)有三个数,甲乙两数的平均数是28.5,乙丙两数的平均数是32,甲丙两数的平均数是21,那么甲数是(),乙数是()。

4、负数正数有可能考典型题(1)0、0.9、1、-1、4、103、-320七个数中,()是自然数,()是整数。

(2)月球的表面白天的平均气温是零上126摄氏度,记作()摄氏度,夜间平均气温是零下150摄氏度,记作()摄氏度。

5、倒数可能考典型题(1)一个最小的质数,它的倒数是作()。

(2)6又5/7的倒数是(),()的倒数是最小的质数。

6、最简比及比值可能考典型题(1)3/4与0.125的最简整数比是(),比值是()。

(2)一个小圆的直径和大圆的半径都是4厘米,大圆与小圆的周长的最简整数比是(),面积的最简整数比是()。

7、因数倍数必考一题(重点考质数、合数、偶数、奇数、互质数、最大公因数、最小公倍数)。

典型题(1)5162至少加上(),才能被3整除。

(2)互质的两个数的最小公倍数是390,如果这两个数都是合数,则这两个数是()和()。

(3)两个数都是合数,又是互质数,它们的最小公倍数是120,这两个数分别是()和()。

(4)145□,要使得它能被3整除,□里填的数字()。

(5)三个质数的积是273,这三个质数的和是()。

(6)在1~30这些自然数中,既不是3的倍数也不是4的倍数的数有()个。

(7)在1、2、4、9、11、16等数中,奇数有(),偶数有(),质数有(),合数有(),既是奇数又是合数的数是(),既是偶数又是质数的数是()。

(8)24和30的最大公因数是(),最小公倍数是()。

(9)a与b是互质数,则a与b的最大公因数是(),最小公倍数是()。

(10)一个分数的整数部分是自然数中既不是质数也不是合数的数,分数部分的分子是偶数中的质数,分母是10以内的奇数中的合数,这个数是()。

(11)8752至少加上(),才能被2、3、5整除。

8、量与计量(单位互化)必考一题典型题(1)2.5米=()厘米 1080千克=()吨 4800毫升=()升=()立方分米(2)3.6千克=()克 5千米90米=()千米(3)6吨500千克=()千克(4)4.3时=()时()分(5)45分=()时1.05立方分米=()毫升9、数(小数、分数)比较大小。

典型题在1/6、4 /25、16、16.7%这些数中,()最小。

10、分数、小数、百分数及比的互化必考一题。

典型题(1)()÷32=15/()=0.625=()%=():().(2)12.5%=2/( )=1:()=3÷()=()小数11、三角形的性质、三边关系、周长、面积计算可能考一道(三角形面积重点考:1.等底等高的三角形,面积相等;2.底相等,高成倍数关系,面积也成倍数关系或高相等,底成倍数关系,面积也成倍数关系;3、两个三角形等底时,它们的面积之和等于底乘以它们高之和除以2;两个三角形等高时,它们的面积之和等于高乘以它们底之和除以2。

)典型题(1)一个直角三角形的三条边的长度分别是5厘米、4厘米、3厘米,它的面积是()。

(2)如图所示,ABFE和CDEF都是长方形,AB是6厘米,BC是4厘米,则图上阴影部分的面积是()。

(3)一个三角形中,三个角的度数分别是45度、44度、91度,这是个()三角形。

12、图形计数必考一道典型题(1)图中共有()三角形。

(2)锐角AOB中有5条从定点引出的射线(如图所示),图中共有()个角。

13、鸡兔同笼必考一题典型题(1)在一次环保知识抢答赛中,按规定答对一题加10分,答错一题扣6分,一名选手抢答了16题,最后得分为16分,他答对了()道题。

(2)蜘蛛和蜻蜓共28只,每只蜘蛛8条腿,每只蜻蜓6条腿,共有194条腿,蜘蛛有()只,蜻蜓有()只。

14.圆的有关计算典型题(1)如果小圆的半径是大圆半径的一半,那么小圆的面积是大圆面积的()%(2)把三段横截面半径同为2厘米的圆钢焊接起来成为一段后,它的表面积比原来减少了()平方厘米。

(3)如果一个圆的周长是2πr,这个圆的半圆的周长是()。

15.比例尺。

必考一题典型题(1)一副图上的数值比例尺是1:4000000,把它改成一条直线比例尺,1厘米相当于实际距离( )km.。

(2)在比例尺是5:1的平面图上,量得一个零件长15厘米,这个零件的实际长度是()毫米。

16.裁剪图形问题。

典型题16、一块长1米20厘米,宽90厘米的铁皮,剪成直径是30厘米的圆片,最多可以剪成()块。

17.关于方程思想。

典型题公司准备包一辆大客车送家在外地的员工回家过年,包车费是固定的,根据外地员工数统计,每人需付15元。

后来知道有6人不会去,这样每人需多付3元,包车费是()元。

18.关于二倍原则性及平均分典型题小明、小军、小红三人出一样多的钱买了一些苹果,分时小明、小军各多分了6㎏,每人就补小红14元。

每千克苹果()元。

19.抽屉原理必考一题典型题(1)一副扑克牌有四种花色(大小王除外),每种花色有13张,从中任意抽牌,最少抽()张牌,才能保证4张牌是同一花色的。

(2)把红黄蓝白四种颜色的球各10个放到一个袋子里,至少取()个球,可以保证取到两个颜色相同的球;至少取()个球,可以保证取到的球有两种颜色。

20.字母表示数有可能考典型题小英今年a岁,爸爸的年龄比小英的4倍大2岁,爸爸的年龄用一个式子表示是()岁。

21.判断是否成比例及比例的性质必考一题典型题(1)一种农药是由药液和水按1:400配成的,现有药液1.2 ㎏,应加水()㎏。

(2)在比例中,两个内项互为倒数,其中一个外项是1又7/9,另一个外项是()。

(3)分数的值一定,分子和分母成()比例。

(4)在一个比例中,两个内项互为倒数,其中一个外项是2/5,另一个外项是()。

(5)当()一定时,()和()成反比例。

(6)被减数、减数、差的和,再除以被减数,商是();被减数、减数、差的和是72,减数与差的比是4:2,减数是()。

(7)比例的两外项之积减去两内项之积,差是()。

22.什么率典型题六(3)班今天到校47人,请假3人,出勤率是()。

23.列车过桥典型题15辆汽车排成一列通过一个隧道,前后两辆车之间都保持2米的距离,隧道长180米,每辆汽车长5米。

从第一辆车头到最后一辆车尾共长()米24.现价与原价问题关系的计算(重点考打折扣问题)典型题(1)一种商品降价10元后售价为40元,降低了()%。

(2)某商品先降价1/10,要恢复成原价,应提价()。

25.求每份数和分数必考一题典型题(1)把4米长的钢条平均分成7段,每段占全长的(),每段长()米。

(2)一车石油重4吨,平均分给5个商店出售,平均每个商店分得这车油的()/(),平均每个商店分得()吨。

26.商,倍数关系,比,除法关系,分数关系的灵活转化必考一题典型题(1)甲数除以乙数的商是1又1/(),甲数与乙数的比是()。

(2)已知a是b 的4倍,那么a:(a+b)=( ).(3)男生是女生的4/5 ,女生人数占全班人数的()。

(4)六(1)班男生人数和女生人数的比是5:3,女生是男生人数的()%,男生占全班的()%。

27.多边形角度计算典型题一个三角形的内角和是180度,一个七边形的内角和是()度。

28.图形(正方体和长方体)的拼图,切图,表面积的变化及体积的计算典型题(1)用两个长5厘米,宽4厘米,高3厘米的长方体,拼成一个表面积最大的长方体,拼成后的长方体表面积比原来两个长方体的表面积少()平方厘米(2)用9个1平方分米的小正方体拼成一个大正方体,这个大正方体的边长是()米。

(3)三个完全一样的长方体拼成一个正方体,其中一个长方体的表面积与这个正方体的表面积的比是()。

29.植树问题(略)30.列举法典型题(1)用1、2、3、4可以组成()没有重复数字的四位数。

(2)恰有两位数字相同的三位数共有()个。

31.()比a多或少n/m, a比()多或少n/m,a是()的n/m,()是a 的n/m,b比a多或少()% 必考一题典型题8米比()米少20%,比10吨多3/4是()吨。

32.身份证辨别男女及出生年月日可能考典型题某人的身份证号为:511126************,他的生日是()。

33.对称轴,旋转,平移必考一题典型题等边三角形有()条对称轴,正方形有()条对称轴,圆有()条对称轴。

34.可能性典型题(抽奖问题)35、按比例分配典型题35、一个长方体棱长总和是36厘米,长、宽、高之比是4:3:2,这个长方体的体积是()。

36、圆柱与圆锥(重点考1、等底等高时,圆柱的体积是圆锥的3倍,2、等底等体积时,圆柱的高是圆锥的1/3,3、等高等体积时,圆柱的底面积是圆锥的1/3)典型题一个圆柱和一个圆锥等底等高,它们的体积和是100立方厘米,体积的差是()立方厘米。

37工程问题典型题给一个水池注水,1 .5小时能注入水池的2/5,()小时()分可以注满水池。

38、图示法典型题一个长方形的长和宽各增加10厘米后,它的面积就增加300平方厘米,原来这个长方形的周长是()厘米。

39、时钟问题典型题钟面上分针旋转三周,时针旋转()度。

40、正方体或长方体里削最大的圆柱或圆锥典型题把一个棱长4厘米的正方体削成一个最大的圆柱体,圆柱体的体积是()立方厘米。

二.判断题1.圆柱与圆锥体积1/3的关系条件:等底等高2.A比B多1/3,那么B 比A少1/3。

……(×)3.什么率,达标率小于等于百分之百4.假分数大于或等于1的变式问题5.百分数不能带单位6.众数可有多个,也有可能没有。

相关文档
最新文档