高一数学必修1第二章单元测试题

合集下载

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(含答案解析)(1)

(常考题)人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试卷(含答案解析)(1)

一、选择题1.已知a >0,b >0,a +b =1,则下列等式可能成立的是( ) A .221a b += B .1ab = C .212a b +=D .2212a b -=2.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9B .8C .7D .63.设1a b +=,0b >,则2244||ab b a a b++的最小值为( )A .14B .34C .54D .744.已知函数()24x x af x x++=,若对于任意[)1,x ∈+∞,()0f x >恒成立,则实数a的取值范围为( )A .[)5,+∞B .()5,-+∞C .()5,5-D .[]5,5-5.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测: 甲预测说:获奖者在乙、丙、丁三人中; 乙预测说:我不会获奖,丙获奖 丙预测说:甲和丁中有一人获奖; 丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A .甲和丁 B .乙和丁 C .乙和丙 D .甲和丙6.若不等式210x ax -+≥对一切[2,)x ∈+∞恒成立,则实数a 的最大值为( ) A .0B .2C .52D .37.下列命题中是真命题的是( )A .y =的最小值为2;B .当a >0,b >0时,114a b++; C .若a 2+b 2=2,则a +b 的最大值为2;D .若正数a ,b 满足2,a b +=则11+4+22a b +的最小值为12.8.已知A 、B 、C 为ABC 的三内角,且角A 为锐角,若tan 2tan B A =,则11tan tan B C+的最小值为( ) A .13B .12C .23D .19.已知AB AC ⊥,1AB t=,AC t =,若P 点是ABC 所在平面内一点,且4AB AC AP ABAC=+,则·PB PC 的最大值等于( ). A .13B .15C .19D .2110.如图,平行四边形ABCD 的对角线相交于点O ,过点O 的直线与AB ,AD 所在直线分别交于点M ,N ,若AB =m AM ,AN =n AD (m >0,n >0),则mn的最大值为( )A .22B .1C .2D .211.已知1x >,则41x x +-的最小值为 A .3B .4C .5D .612.若直线20(,1)ax by a b +-=>始终把圆222220x y x y +---=的周长分为1:2.则11a b+的最大值为( ) A .423-B .22-C 21D 2二、填空题13.设0b >,21a b -=,则242a a b+的最小值为_________.14.已知向量()2,1a y =-,(),3b x =,且a b ⊥,若x ,y 均为正数,则32x y+的最小值是______.15.设A .B 分别为双曲线22221x y a b-=(a >0,b >0)的左.右顶点,P 是双曲线上不同于A .B的一点,直线AP .BP 的斜率分别为m .n ,则当3b a 取最小值时,双曲线的离心率为__________.16.已知0x >,0y >,满足2126x y x y+++=,存在实数m ,对于任意x ,y ,使得2m x y ≤+恒成立,则m 的最大值为____________.17.ABC 中,点M ,N 在线段AB 上,且满足AM BM =,2BN AN =,若6C π=,||4CA CB ⋅=∣∣,则CM NC ⋅的最大值为________.18.已知关于x 的不等式()()22454130m m x m x +---+>对一切实数x 恒成立,则实数m 的取值范围为_____________. 19.已知0a >,0b >,若不等式212ma b a b+≥+恒成立,则m 的最大值为______. 20.若正数a ,b 满足2ab =,则11112M a b=+++的最小值为________. 三、解答题21.已知函数2()21f x kx kx =+-.(1)若不等式()0f x <的解集为3,12⎛⎫- ⎪⎝⎭,求实数k 的值;(2)若方程()0f x =在[]12,有解,求实数k 的取值范围. 22.2020年11月23日,贵州宣布最后9个深度贫困县退出贫困县序列,这不仅标志着贵州省66个贫困县实现整体脱贫,这也标志着国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,全国脱贫攻坚目标任务已经完成.在脱贫攻坚过程中,某地县乡村三级干部在帮扶走访中得知某贫困户的实际情况后,为他家量身定制了脱贫计划,政府无息贷款10万元给该农户种养羊,每万元可创造利润0.15万元.若进行技术指导,养羊的投资减少了x ()0x >万元,且每万元创造的利润变为原来的()10.25x +倍.现将养羊少投资的x 万元全部投资网店,进行农产品销售,则每万元创造的利润为()0.150.875a x -万元,其中0a >. (1)若进行技术指导后养羊的利润不低于原来养羊的利润,求x 的取值范围; (2)若网店销售的利润始终不高于技术指导后养羊的利润,求a 的最大值. 23.已知2,()23a f x ax x ∈=+-R .(Ⅰ)关于x 的方程()0f x =有且只有正根,求实数a 的取值范围; (Ⅱ)若()30f x a -≥对[1,0]a ∈-恒成立,求实数x 的取值范围.24.已知关于x 的不等式()22600kx x k k -+<≠.(1)若不等式的解集是{3x x <-或}2x >-,求k 的值;(2)若不等式的解集是R ,求k 的取值范围; (3)若不等式的解集为∅,求k 的取值范围.25.已知函数()|21||2|f x x x =---,M 为不等式()1f x <-的解集. (1)求M ;(2)当,a b M ∈且1a b +=时,4a b tab +≥恒成立,求t 的最大值.26.设2()(1)1f x m x mx m =+-+-.(1)当1m =时,解关于x 的不等式()0f x >;(2)若关于x 的不等式()0f x m ->的解集为()1,2,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据已知条件由2()2a b ab +≤可求出2212a b +≥,又由完全平方公式可得221a b +<,即可判断A 、B ;由已知条件可知01b <<,则2b b >,因此22212a b a b +>+≥,可判断C ;由平方差公式可得12a b -=,与1a b +=联立可求出满足条件的a 、b ,故D 可能成立. 【详解】001a b a b >>+=,,2222211()21212()12()222a b a b a b ab ab +∴+=+-=-≥-⋅=-⨯=, 当且仅当12a b ==时等号成立, 又0ab >,222()2121b a b a ab a b +=+-=-<∴,22112a b ≤+<∴,则221a b +=不可能成立; 2211()()224a b ab ≤==+,当且仅当12a b ==时等号成立,故1ab =不可能成立;001a b a b >>+=,,,01b ∴<<,2b b ∴>,22212b a b a +>+≥∴(由A 可知),则212a b +=不可能成立; ()()2212a b a b a b a b -=+-=-=,联立112a b a b +=⎧⎪⎨-=⎪⎩,解得31,44a b ==,满足条件,D 成立. 故选:D2.A解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b > ()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=, 当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】利用1a b +=,0b >,10b a =->,1a ∴>且0a ≠; 对a 进行分类讨论,分为10a >>和0a >,进行讨论,然后,求解即可得到2244||ab b a a b++的最小值【详解】1a b +=,0b >,10b a =->,1a ∴>且0a ≠;当10a >>,22224414||444ab b a ab b a b a a b ab a b ++++==++1544≥+=;当且仅当4b aa b =,又1b a =-,解得1a =-或13a =,又由10a >>,得13a =时,此时,23b =,2244||ab b a a b ++的最小值54;当0a >,222244134||4444ab b a ab b a b a a b ab a b ++++⎛⎫⎛⎫==-+-+-≥ ⎪ ⎪-⎝⎭⎝⎭,当且仅当4b aa b -=-时,解得1a =-或13a =,又由0a >,得1a =-,此时,2b =,2244||ab b a a b ++的最小值34;综上,2244||ab b a a b ++的最小值34;故选:B 【点睛】关键点睛:解题的关键在于利用1a b +=,0b >,10b a =->,可得1a >且0a ≠,对a 进行分类讨论,难点在于利用基本不等式进行求最值,本题属于中档题4.B解析:B 【分析】根据条件将问题转化为“24a x x >--在[)1,+∞上恒成立”,再根据()2max4a x x>--求解出a 的范围. 【详解】因为对于任意[)1,x ∈+∞,()0f x >恒成立,所以240x x a ++>对[)1,x ∈+∞恒成立, 所以()2max4a x x>--,[)1,x ∈+∞,又因为24y x x =--的对称轴为2x =-,所以24y x x =--在[)1,+∞上单调递减, 所以()()2max4145x x --=--=-,所以5a >-,故选:B. 【点睛】方法点睛:一元二次不等式在指定区间上恒成立求解参数范围问题的处理方法: (1)分类讨论法:根据参数的临界值作分类讨论;(2)分离参数法:将自变量和参数分离开来,自变量部分构造新函数,分析新函数的最值与参数的大小关系.5.B解析:B 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断 【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B 【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证6.C解析:C 【分析】采用参变分离法对不等式变形,然后求解变形后的函数的值域,根据参数与新函数的关系求解参数最值. 【详解】因为不等式210x ax -+≥对一切[)2,x ∈+∞恒成立,所以对一切[)2,x ∈+∞,21ax x ≤+,即21x a x+≤恒成立.令()[)()2112,x g x x x x x+==+∈+∞.易知()1g x x x=+在[)2,+∞内为增函数. 所以当2x =时,()min 52g x =,所以a 的最大值是52.故选C . 【点睛】常见的求解参数范围的方法:(1)分类讨论法(从临界值、特殊值出发); (2)参变分离法(考虑新函数与参数的关系).7.B解析:BCD 【分析】利用基本不等式分别判断A 、B 、D 选项,C 选项可设,a b αα==,利用三角函数的值域求范围. 【详解】A 选项,222x +≥0>,∴2y=≥==,即221x+=±时成立,又222x≥+,故A错;B选项,当a>0,b>0时,1124a b+++≥⨯=,当且仅当1a b=⎧=,即1a b==时等号成立,B正确;C选项,设,a bαα==,则2sin24a bπααα⎛⎫+==+≤⎪⎝⎭,C正确;D选项,2a b+=,()212192a b⎡⎤⎛⎫∴+++=⎪⎢⎥⎝⎭⎣⎦,则()121252229291111++4+22442+2242a b a baba ba b⎛⎫+⎪⎡⎤+⎛⎫⎛⎫+++=⨯++⎪⎪ ⎪⎢⎥++⎝⎭⎝=+⎣+⎭⎦ ⎪⎝⎭251942⎛≥⨯+=⎝⎭,当且仅当122422aba b++=++且2a b+=时等号成立,解得1a b==,故D正确.故选:BCD【点睛】本题考查基本不等式的应用、利用三角函数的值域求范围,注意取等号的条件,属于中档题.8.C解析:C【分析】将11tan tanB C+化为关于tan A的式子,然后利用基本不等式可以求出最小值.【详解】在ABC中,()tan tanC A B=-+,111111tan tantan tan tan tan tan tan tanA BB C B A B B A B,tan 2tan B A =, 211tan tan 112tan 12tan tan tan tan 2tan 3tan 6tan 3A B AAB A B A AA ,角A 为锐角,tan 0A ∴>,12tan 12tan 226tan 36tan 33A AA A , 当且仅当12tan 6tan 3A A ,即1tan 2A =时,等号成立,∴11tan tan B C +的最小值为23. 故选:C. 【点睛】本题考查三角形中角的互化,和的正切公式的应用,以及利用基本不等式求最值,属于中档题.9.A解析:A 【详解】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P(,4),所以114)PB t=--(,,14)PC t =--(,,因此PB PC ⋅11416t t =--+117(4)t t =-+,因为114244t t t t+≥⋅=,所以PB PC ⋅的最大值等于13,当14t t =,即12t =时取等号.考点:1、平面向量数量积;2、基本不等式.10.B解析:B 【分析】根据向量共线的推论,结合向量的线性运算求得12m n+=,再用基本不等式即可求得结果. 【详解】 因为1122AO AB AD =+,又AB =m AM ,AN =n AD , 故可得 122m AO AM AN n=+,又,,O M N 三点共线, 故可得1122m n +=,即12m n+=. 故211114m m m n n n ⎛⎫=⨯≤+= ⎪⎝⎭,当且仅当1m n ==时取得最大值. 故选:B . 【点睛】本题考查平面向量共线定理的推论以及基本不等式的应用,属综合中档题.11.C解析:C 【分析】由1x >,得10x ->,则441111x x x x +=-++--,利用基本不等式,即可求解. 【详解】由题意,因为1x >,则10x ->,所以44111511x x x x +=-++≥=--, 当且仅当411x x -=-时,即3x =时取等号,所以41x x +-的最小值为5,故选C . 【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.12.B解析:B 【分析】由圆的方程得圆心和半径,根据圆的周长被分为1:2,可推出圆心到直线的距离为1,即1=,化简整理后,再结合基本不等式的性质可得ab 的最小值,再求出11a b+的最大值. 【详解】把圆222220x y x y +---=化成标准形式为22(1)(1)4x y -+-=,其中圆心为(1,1),半径为2.设直线与圆交于A 、B 两点,圆心为C , 因为直线把圆的周长分为1:2,所以13601203ACB ∠=⨯︒=︒, 所以圆心(1,1)C 到直线20ax by +-=的距离为12221a b a b+-=+,因为a ,1b >,所以202()a ab b -++=,由基本不等式的性质可知,22()4ab a b ab +=+, 当且仅当a b =时,等号成立,此时有2(22)ab +,所以21(2)1111122222(22)ab a b a b ab ab ab+++===++=+. 所以11a b +的最大值为22- 故选:B . 【点评】本题主要考查直线与圆的综合问题,除圆的标准方程、点到直线的距离公式等基础知识外,还涉及利用基本不等式的性质求最值,考查学生的逻辑推理能力和运算能力,属于中档题.二、填空题13.4【分析】两次应用基本不等式验证等号能同时成立即得【详解】由题意当且仅当即时上述不等式中等号同时成立故答案为:4【点睛】本题考查了基本不等式求最值考查了运算求解能力逻辑推理能力在连续运用基本不等式求解析:4 【分析】两次应用基本不等式,242a a b +≥12b b +≥,验证等号能同时成立即得. 【详解】由题意211a b =+≥,2442a a b +≥===≥, 当且仅当2142b baa b⎧=⎪⎪⎨⎪=⎪⎩,即21a b =⎧⎨=⎩时上述不等式中等号同时成立. 故答案为:4. 【点睛】本题考查了基本不等式求最值,考查了运算求解能力,逻辑推理能力,在连续运用基本不等式求最值时,要注意等号能否同时成立.14.8【分析】由题意利用两个向量垂直的性质基本不等式求得的最大值可得要求式子的最小值【详解】解:向量且若均为正数则当且仅当时取等号则故答案为:8【点睛】本题主要考查两个向量垂直的性质基本不等式的应用属于解析:8 【分析】由题意利用两个向量垂直的性质,基本不等式,求得xy 的最大值,可得要求式子的最小值. 【详解】 解:向量(2,1)a y =-,(,3)b x =,且a b ⊥,∴23(1)0a b x y =+-=.若x ,y 均为正数,则23326x y xy +=,38xy ∴,当且仅当3232x y ==时,取等号. 则32233838y xx y xy++==, 故答案为:8. 【点睛】本题主要考查两个向量垂直的性质,基本不等式的应用,属于中档题.15.【分析】先根据点的关系确定mn 再根据基本不等式确定最小值最后根据最小值取法确定双曲线的离心率【详解】设则因此当且仅当时取等号所以离心率是故答案为:【点睛】本题考查双曲线离心率和基本不等式求最值的简单 【分析】先根据点的关系确定mn ,再根据基本不等式确定最小值,最后根据最小值取法确定双曲线的离心率. 【详解】设11(,)P x y ,则 22111222111y y y b mn x a x a x a a =⋅==+--,因此3b a+3b a a b =+≥= 当且仅当3a b 时取等号,所以离心率是c e a ===.【点睛】本题考查双曲线离心率和基本不等式求最值的简单综合问题,属于基础题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式ce a=求解;2.公式法:c e a ===3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.16.2【分析】首先根据题意得到从而得到即再根据恒成立即可得到的最大值【详解】因为所以所以即解得因为恒成立所以即所以的最大值为故答案为:【点睛】本题主要考查基本不等式同时考查了不等式的恒成立问题属于中档题解析:2 【分析】首先根据题意得到()228x y xy +≤,从而得到()8622x y y x≤+++,即224x y ≤+≤,再根据2m x y ≤+恒成立,即可得到m 的最大值.【详解】因为0x >,0y >,所以()()22221122248x y x y xy x y ++=⋅≤⨯=, 所以()()()22122862222228y x y x x y x y x y x y x y xy y x x y ++=+++=++≥++=++++. 即()8622x y y x≥+++, ()()226280x y x y +-++≤,解得224x y ≤+≤.因为2m x y ≤+恒成立,所以()min 2m x y ≤+,即2m ≤. 所以m 的最大值为2. 故答案为:2 【点睛】本题主要考查基本不等式,同时考查了不等式的恒成立问题,属于中档题.17.;【分析】由平面向量数量积的运算可知再根据平面向量的线性运算可分别得到故由基本不等式的性质可知将所得结论均代入的表达式即可得解【详解】解:根据题意作出如下图形由基本不等式的性质可知的最大值为故答案为解析:4233--; 【分析】由平面向量数量积的运算可知23CA CB =,再根据平面向量的线性运算可分别得到1()2CM CA CB =+,1(2)3NC CA CB =-+,故221(23)6CM NC CA CB CA CB =-++,由基本不等式的性质可知,22222||||CA CB CA CB +,将所得结论均代入CM NC 的表达式即可得解. 【详解】解:根据题意,作出如下图形,6C π=,||||4CA CB =,∴4cos236CA CB π=⨯=AM BM =,∴1()2CM CA CB =+,2BN AN =,∴111()(2)333NC AC AN AC AB CA CB CA CA CB =-=-=---=-+,∴22111()[(2)](23)236CM NC CA CB CA CB CA CB CA CB =+-+=-++,由基本不等式的性质可知,222222||||22||||82CA CB CA CB CA CB +=+=,∴142(82323)36CM NC -⨯⨯=∴CM NC 的最大值为423-故答案为:423- 【点睛】本题考查平面向量的线性运算和数量积运算、基本不等式的性质,熟练掌握平面向量的加法、减法、数乘和数量积的运算法则是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.18.【分析】分和两种情况讨论结合题可得出关于实数的不等式组由此可解得实数的取值范围【详解】当时可得或①当时可得合乎题意;②当时可得解得不合乎题意;当时由题意可得解得综上所述实数的取值范围是故答案为:【点 解析:1,19【分析】分2450m m +-=和2450m m +-≠两种情况讨论,结合题可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】当2450m m +-=时,可得1m =或5m =-. ①当1m =时,可得30>,合乎题意;②当5m =-时,可得2430x +>,解得18x >-,不合乎题意;当2450m m +-≠时,由题意可得()()22245016112450m m m m m ⎧+->⎪⎨∆=--+-<⎪⎩,解得119m <<.综上所述,实数m 的取值范围是1,19. 故答案为:1,19. 【点睛】本题考查利用一元二次不等式在实数集上恒成立求参数,考查计算能力,属于中等题.19.9【分析】将题目所给不等式分离常数利用基本不等式求得的最大值【详解】由得恒成立而故所以的最大值为【点睛】本小题主要考查不等式恒成立问题求解策略考查利用基本不等式求最值考查化归与转化的数学思想方法属于解析:9. 【分析】将题目所给不等式分离常数m ,利用基本不等式求得m 的最大值. 【详解】 由212m a b a b +≥+得()212m a b a b ⎛⎫≤++ ⎪⎝⎭恒成立,而()212225a b a b a b b a ⎛⎫++=++ ⎪⎝⎭5549≥+=+=,故9m ≤,所以m 的最大值为9. 【点睛】本小题主要考查不等式恒成立问题求解策略,考查利用基本不等式求最值,考查化归与转化的数学思想方法,属于中档题.20.【分析】求出设(当且仅当时成立)求出的最小值即可【详解】解:设(当且仅当时成立)的最小值为故答案为:【点睛】本题考查了基本不等式的性质考查转化思想属于中档题解析:23【分析】求出23154a M a a =-++,设254445259a a N a a a a a++==+++=(当且仅当2a =时“=”成立),求出M 的最小值即可. 【详解】 解:2ab =,0a >,0b >,2b a∴=, 21111114311411211414541a a M a b a a a a a a a a∴=+=+=+=+-=-++++++++++,设254445259a a N a a a a a++==+++=(当且仅当2a =时“=”成立), 1109N ∴<,1303N--<,23113N -<, 11112M a b ∴=+++的最小值为23, 故答案为:23. 【点睛】本题考查了基本不等式的性质,考查转化思想,属于中档题.三、解答题21.(1)13;(2)11,103⎡⎤⎢⎥⎣⎦. 【分析】 (1)由题意可得32-、1是方程2210kx kx +-=的两个根,利用两根之积列方程即可求解;(2)方程()0f x =在[]12,有解,可得212k x x=+在[]12,有解,利用二次函数的性质求出22y x x =+的范围,即可求解. 【详解】(1)因为2210kx kx +-<的解集是3,12⎛⎫- ⎪⎝⎭, 所以32-、1是方程2210kx kx +-=的两个根, 由根与系数的关系可得:31122k -⨯=-,解得:13k =, (2)因为方程()0f x =在[]12,有解, 所以2210kx kx +-=在[]12,有解, 212k x x=+在[]12,有解, 因为22y x x =+对称轴为14x =-,在[]12,上单调递增, 所以[]223,10y x x =+∈,可得2111,2103k x x ⎡⎤=∈⎢⎥+⎣⎦,所以实数k 的取值范围11,103⎡⎤⎢⎥⎣⎦. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解22.(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5. 【分析】(1)由题意得()()0.1510.25100.1510x x +-≥⨯,解不等式可得结果;(2)由题意得()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,分离出参数a 得510 1.58x a x ≤++恒成立,只要利用基本不等式求出5108x x +的最小值即可 【详解】 解:(1)由题意,得()()0.1510.25100.1510x x +-≥⨯, 整理得260x x -≤,解得06x ≤≤,又0x >,故06x <≤. (2)由题意知网店销售的利润为()0.150.875a x x -万元, 技术指导后,养羊的利润为()()0.1510.2510x x +-万元, 则()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,又010x <<,∴5101.58x a x≤++恒成立, 又51058x x+≥,当且仅当4x =时等号成立, ∴0 6.5a <≤,即a 的最大值为6.5.答:(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5.【点睛】关键点点睛:此题考查利用数学知识解决实际问题,考查不等式的解法,第2问解题的关键是由()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,转化为5101.58x a x≤++恒成立,然后利用基本不等式求5108x x+的最小值即可,属于中档题 23.无 24.无 25.无 26.无。

(必考题)高中数学必修一第二单元《函数》测试卷(含答案解析)

(必考题)高中数学必修一第二单元《函数》测试卷(含答案解析)

一、选择题1.已知函数()f x =的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<2.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,43.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y = D .||y x x =-4.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >5.已知函数()31,03,0x x x f x e x ⎧<⎪=⎨⎪≥⎩,则()()232f x f x ->的解集为( )A .()(),31,-∞-⋃+∞B .()3,1-C .()(),13,-∞-+∞ D .()1,3-6.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭7.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞8.若函数y =f (x )的定义域为[]1,2,则y =f (12log x )的定义域为( )A .[]1,4B .[]4,16C .[]1,2D .11,42⎡⎤⎢⎥⎣⎦9.定义在(0,)+∞上的函数()f x 满足:()()1122120x f x x f x x x -<-且()24f =,则不等式()80f x x->的解集为( ) A .(2,)+∞ B . ()0,2C .(0,4)D .(,2)-∞10.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-311.已知函数()2f x x ax b =-+-(a ,b 为实数)在区间[]22-,上最大值为M ,最小值为m ,则M m -( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,但与b 有关 D .与a 无关,且与b 无关12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.若函数()()21,f x ax bx a b =++∈R 满足:()()123f x f x x +-=+.设()f x 在[](),2t t t R +∈上的最小值为()g t ,则()g t =____.14.函数222421x x y x ++=+的值域为_________. 15.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.16.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.17.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.18.函数y x =+______.19.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.20.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.三、解答题21.已知()f x 是定义域为R +的增函数,且对任意正实数a 和b ,都有()()()1f ab f a f b =+-.(1)证明:当1x >时,()1f x >;(2)若又知1()02f =,解不等式(32)(1)()2f x f x f x -+-<+.22.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-.(1)求函数()f x 的解析式,并作出函数的大致的简图;(作图要求:①列表描点;②先用铅笔作出图象,再用黑色签字笔将图象描黑); (2)根据图象写出函数单调区间;(3)若不等式()21f x m -≥在[1,3]x ∈-上有解,求m 的取值范围. 23.在①()()121f x f x x +=+-,②()()11f x f x +=-且()03f =,③()2f x ≥恒成立且()03f =这三个条件中任选一个,补充在下面的问题中,并作答.问题:已知二次函数()f x 的图象经过点()1,2,_________. (1)求()f x 的解析式; (2)求()f x 在[]1,4-上的值域.24.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值; (3)求函数()22f x x x =-的所有的“和谐区间”.25.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的图象过()0,1A ,()1,5B 两点,且它的对称轴的方程为12x =-.(1)求该二次函数的表达式;(2)当26x ≤≤时,函数()22y ax b m x c =+-+的最大值为()G m ,最小值为()H m ,令()()()h m G m H m =-,求()h m 的表达式.26.已知a R ∈,奇函数()f x 与偶函数()g x 的定义域均为(,0)(0,)-∞+∞,且满足()()2af xg x x x-=+-. (1)分别求()f x 和()g x 的解析式: (2)若对任意[1,),()()0x f x g x ∞∈++>恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意;当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.2.C解析:C 【分析】根据题意,可得()f x 在R 上为单调递增函数,若x a ≥时为增函数,则3a ≥,若x a <时为增函数,则0a >,比较x=a 处两函数值的大小,即可求得答案, 【详解】因为()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在R 上为单调递增函数, 当x a ≥时,2()23f x x x =--的图象如图所示:因为()f x 在R 上为单调递增函数,所以3a ≥, 当x a <时,()11f x ax =-为增函数,所以0a >, 且在x=a 处222311a a a --≥-,解得4a ≤, 综上34a ≤≤, 故选:C. 【点睛】解题的关键是熟悉分段函数单调性的求法,根据单调性,先分析分段点两侧单调性,再比较分段点处函数值的大小即可,考查推理分析,化简计算的能力,属中档题.3.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).4.A解析:A 【分析】利用抽象函数的定义域列不等式判断A ;利用特例法判断BCD. 【详解】因为函数()f x 的定义域为(1,4),由21412x x <<⇒<<或21x -<<-,所以函数()2f x 的定义域为(2,1)(1,2)--⋃,A 正确;1y x =+和1,11,1x x y x x +≥-⎧==⎨--<-⎩,对应法则不同,不表示同一函数,B 错; 偶函数()1f x =在(0,)+∞和(,0)-∞上不具有相反的单调性,C 错;0a b 时,不等式220ax bx ++>恒成立,但280b a -<且0a >不成立,D 错;故选:A. 【点睛】方法点睛:若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出,若已知函数()()f g x 的定义域为[],a b ,则()f x 的定义域为()g x在[],x a b ∈时的值域.5.B解析:B 【分析】先分析分段函数的单调性,然后根据单调性将关于函数值的不等式转化为关于自变量的不等式,从而求解出解集. 【详解】 因为313y x =在R 上单调递增,所以313y x =在(),0-∞上单调递增, 又因为xy e =在R 上单调递增,所以xy e =在[)0,+∞上单调递增,且0311003e =>=⋅,所以()f x 在R 上单调递增, 又因为()()232f x f x ->,所以232xx ->,解得()3,1x ∈-,故选:B. 【点睛】思路点睛:根据函数单调性求解求解关于函数值的不等式的思路: (1)先分析出函数在指定区间上的单调性;(2)根据单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式,从而求解出不等式的解集.6.C解析:C 【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C.【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.7.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b-≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.8.D解析:D 【分析】根据复合含定义域的求法,令121log 2x ≤≤,求函数的定义域.【详解】函数()y f x =的定义域为[]1,2,12log y f x ⎛⎫∴= ⎪⎝⎭的定义域,令121log 2x ≤≤,解得:1142x ≤≤ ,即函数的定义域为11,42⎡⎤⎢⎥⎣⎦. 故选:D 【点睛】方法点睛:一般复合函数的定义域包含以下几点:已知函数()y f x =的定义域为D ,求()y f g x ⎡⎤=⎣⎦的定义域,即令()g x D ∈,求x 的取值范围,就是函数()y f g x ⎡⎤=⎣⎦的定义域;已知()y f g x ⎡⎤=⎣⎦的定义域为D ,求函数()y f x =的定义域,即求函数()g x ,x D ∈ 的值域.9.B解析:B 【分析】构造新函数()()g x xf x =,得出函数()g x 在(0,)+∞为单调递减函数,把()80f x x->,转化为()()220f xf x -<,得到()()2g x g >,结合单调性和定义域,即可求解. 【详解】 由题意,定义在(0,)+∞上的函数()f x 满足()()1122120x f x x f x x x -<-,设()()g x xf x =,可得()()12120g x g x x x -<-,所以函数()g x 在(0,)+∞为单调递减函数,因为()24f =,则()228f =, 不等式()80f x x ->,可化为()80xf x x-<,即()80xf x -<,即()()220f xf x -<,即()()2g x g >,可得20x x <⎧⎨>⎩,解得02x <<, 所以不等式()80f x x->的解集为()0,2.故选:B. 【点睛】本题主要考查了利用函数的单调性求解不等式,其中解答中根据已知条件,构造新函数,利用新函数的单调性和特殊点的函数值,得出不等式关系式是解答的关键,着重考查构造思想,以及推理与运算能力.10.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.11.B解析:B 【解析】函数()2f x x ax b =-+-的图象是开口朝上且以直线2ax =-为对称轴的抛物线, ①当22a -> 或22a-<-,即4a -< ,或4a >时, 函数f x () 在区间[]2,2-上单调, 此时224M m f f a -=--=()(), 故M m - 的值与a 有关,与b 无关 ②当022a≤-≤ ,即40a -≤≤ 时, 函数f x ()在区间[2]2a --,上递增,在[2]2a -, 上递减,且22f f -<()() , 此时2322424a a M m f f a -=---=--()(),故M m - 的值与a 有关,与b 无关③当202a-≤-≤,即04a ≤≤时, 函数f x ()在区间[2]2a -,上递减,在[2]2a --,上递增, 且22f f <-()()此时222424a a M m f f a -=--=-+()(),故M m - 的值与a 有关,与b 无关 综上可得M m - 的值与a 有关,与b 无关 故选B【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】根据题意求得ab 的值可得的解析式分别讨论三种情况结合二次函数图像与性质即可求得结果【详解】由题意得:所以所以解得所以为开口向上对称轴为的抛物线当即时在上单调递减所以当即时在上单调递减在上单调解析:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【分析】根据题意,求得a ,b 的值,可得()f x 的解析式,分别讨论3t <-,31t -≤≤-,1t >-三种情况,结合二次函数图像与性质,即可求得结果. 【详解】由题意得:22(1)(1)(1)121f x a x b x ax a ax bx b +=++++=+++++,所以()()222111223ax a ax bx b ax bx ax a f b x x x f +++++---=++=-=++,所以223ax x a b =⎧⎨+=⎩,解得1,2a b ==,所以22()21(1)f x x x x =++=+,为开口向上,对称轴为1x =-的抛物线, 当21t +<-,即3t <-时,()f x 在[],2t t +上单调递减,所以2()(2)(3)g t f t t =+=+,当12t t ≤-≤+,即31t -≤≤-时,()f x 在[,1)t -上单调递减,在[1,2]t -+上单调递增,所以()(1)0g t f =-=;当1t >-时,()f x 在[],2t t +上单调递增,所以2()()(1)g t f t t ==+,综上:22(3),3()0,31(1),1t t g t t t t ⎧+<-⎪=-≤≤-⎨⎪+>-⎩故答案为:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【点睛】求二次函数在区间[,]a b 上最值时,一般用分类讨论的方法求解,讨论对称轴位于区间的左右两侧,位于区间内,再根据二次函数图像与性质,求解即可,考查分析求解的能力,属中档题.14.【分析】将函数变形为关于的方程分析二次项的系数并结合与的关系求解出的取值范围从而值域可求【详解】因为所以所以当即时此时;当即时此时所以综上可知:所以的值域为故答案为:【点睛】易错点睛:利用判别式法求 解析:[]0,4【分析】将函数变形为关于x 的方程,分析二次项的系数并结合∆与0的关系求解出y 的取值范围,从而值域可求.因为222421x x y x ++=+,所以222+42yx y x x +=+,所以()22420y x x y -++-=, 当20y -=,即2y =时,此时0x =;当20y -≠,即2y ≠时,此时()216420y ∆=--≥,所以[)(]0,22,4y ∈,综上可知:[]0,4y ∈,所以222421x x y x ++=+的值域为[]0,4, 故答案为:[]0,4. 【点睛】易错点睛:利用判别式法求解函数值域需要注意的事项: (1)原函数中分子分母不能约分; (2)原函数的定义域为实数集R .15.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i AB ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.16.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f (x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.17.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围. 【详解】函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +, 由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥; 若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去; 综上得实数a 的取值范围是[)3,+∞, 故答案为:[)3,+∞. 【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题.18.【分析】利用换元法将函数换元构造出新函数由新函数的定义域结合二次函数的性质求出最值即可得到值域【详解】设则所以原函数可化为:由二次函数性质当时函数取最大值2由性质可知函数无最小值所以值域为:故答案为 解析:(],2-∞【分析】利用换元法将函数换元构造出新函数,由新函数的定义域结合二次函数的性质求出最值即可得到值域. 【详解】设)0t t =≥,则21x t =-, 所以原函数可化为:()2210y t t t =-++≥,由二次函数性质,当1t =时,函数取最大值2,由性质可知函数无最小值, 所以值域为:(],2-∞. 故答案为:(],2-∞. 【点睛】本题考查换元法求函数值域,当函数解析式中含有根式时,一般考虑换元法,用换元法时要注意一定写出新变量数的取值范围.19.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围. 【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+,所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-,又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥,()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤, 又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3. 【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.20.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .三、解答题21.(1)证明见解析;(2)12x <<. 【分析】(1)计算出(1)f 后由单调性可证;(2)求得(2)2f =,利用定义不等式可化为([(32)(1)](2)f x x f x --<,然后由单调性求解. 【详解】解(1)令1a b ==,代入条件式子得(1)1f =;()f x 在R +上单调递增∴当1x >时,()(1)1f x f >=,得证.(2)令1,22a b ==,代入①式得1(1)()(2)1(2)22f f f f =+-⇒= (32)(1)()2f x f x f x ∴-+-<+(32)(1)()(2)f x f x f x f ⇔-+-<+320,10,0,[(32)(1)]1(2)1x x x f x x f x ->⎧⎪->⎪⇔⎨>⎪⎪--+<+⎩11121(32)(1)223x x x x x x x ⎧>⎧>⎪⎪⇔⇔⇔<<⎨⎨--<<<⎪⎪⎩⎩.【点睛】关键点点睛:本题考查抽象函数的单调性的应用,解关于抽象函数的不等式,关键是利用函数的定义,把不等式转化为12()()f x f x <形式,然后由单调性求解.转化时注意函数的定义域.22.(1)222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩,简图答案见解析;(2)单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-;(3)1m .【分析】(1)设0x <,则0x ->,利用()f x f x =--()即可求出0x <时,()f x 的解析式,进而可得函数()f x 的解析式,按步骤列表描点连线即可作出函数图象; (2)根据图象上升和下降趋势即可得单调区间;(3)将原问题转化为max 21m f x ≤-(),利用单调性求出()f x 在区间[1,3]-上的最大值即可求解. 【详解】(1)设0x <,则0x ->,因为f x ()是奇函数所以()()()2222f x f x x x x x ⎡⎤=--=----=--⎣⎦() 所以222,02,0x x x f x x x x ⎧-≥=⎨--<⎩() , 列表如下:(2)由图知:函数f x ()的单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-(3)不等式21f x m -≥()在1[]3x ∈-,上有解, 等价于在21m f x ≤-()在1[]3x ∈-,有解.可得max 21m f x ≤-(), 由(2)可知f x ()在[11-,)上单调递减,在[1]3,上单调递增, 因为()()()211211f -=---⨯-=,()233233f =-⨯=所以()max 3f x =,所以2312m ≤-=,所以1m 【点睛】方法点睛:求不等式有解问题常用分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()min g x λ≥或()()max g x x D λ≤∈,求()g x 的最值即可.23.(1)()223x x x f =-+;(2)[]2,11.【分析】(1)若选①:利用待定系数法并结合()f x 的图象经过点()1,2求解二次函数()f x 的解析式;若选②:根据对称轴方程以及()03f =并结合()f x 的图象经过点()1,2求解二次函数()f x 的解析式;若选③:根据已知条件判断出()1,2为图象的最低点,由此分析出对称轴,则二次函数的解析式可求;(2)根据(1)得到()f x 的解析式,然后利用配方法和整体替换的方法求解出()212x -+的取值范围,则()f x 在[]1,4-上的值域可求.【详解】 解:若选①,(1)设()()20f x ax bx c a =++≠,则()()()()221112f x a x b x c ax a b x a b c +=++++=+++++. 因为()()121f x f x x +=+-,所以()22221ax a b x a b c ax bx c x +++++=+++-,所以221a a b =⎧⎨+=-⎩,解得1a =,2b =-.因为()f x 的图象经过点()1,2,所以()1122f a b c c =++=-+=,所以3c =. 故()223x x x f =-+.若选②,(1)设()()20f x ax bx c a =++≠,则()f x 图象的对称轴方程为2bx a=-. 由题意可得()()120312b a fc f a b c ⎧-=⎪⎪==⎨⎪=++=⎪⎩,解得123a b c =⎧⎪=-⎨⎪=⎩.故()223x x x f =-+.若选③,(1)()()20f x ax bx c a =++≠.因为()03f =,所以3c =.因为()()21f x f ≥=,所以()13212f a b b a ⎧=++=⎪⎨-=⎪⎩,解得1a =,2b =-.故()223x x x f =-+.(2)由(1)可知()()222312f x x x x =-+=-+. 因为14x -≤≤,所以213x -≤-≤,所以()2019x ≤-≤,所以()221211x ≤-+≤. 即()f x 在[]1,4-上的值域为[]2,11. 【点睛】方法点睛:求解函数解析式常用的方法有:(1)换元法:适用于求解已知()()f g x 的解析式求解()f x 的解析式的类型;(2)待定系数法:适用于已知函数的类型求解函数解析式,如已知函数为一次函数可设()()0f x kx b k =+≠或已知函数为二次函数可设()()20f x ax bx c a =++≠; (3)方程组法:适用于已知()(),f x f x -组成的方程求解()f x 的解析式或已知()1,f x f x ⎛⎫ ⎪⎝⎭组成的方程求解()f x 的解析式的类型. 24.(1)[]1,0-、[]0,1、[]1,1-;(2)2;(2)[]1,0-和[]1,3-.【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令312x x -=,解得25x =或2,最后绘出函数图像,结合函数图像即可得出结果; (3)本题可令22x x x -=,解得0x =或3,然后结合函数图像即可得出结果.【详解】(1)函数()3f x x =是增函数,定义域为R , 令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、[]0,1、[]1,1-. (2)因为()312f x x =-,所以()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩, 因为[]()0,0m m >为函数()312f x x =-的一个“和谐区间”, 所以可令312x x -=,解得25x =或2, 如图所示,绘出函数图像:结合“和谐区间”的定义易知,当2x =时满足题意,故m 的值为2.(3)函数()22f x x x =-,定义域为R , 令22x x x -=,解得0x =或3,如图所示,绘出函数图像:结合图像易知,函数()f x 的所有“和谐区间”为[]1,0-和[]1,3-.【点睛】关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.25.(1)2221y x x =++;(2)()22728,5116913,59221255,91322872,13m m m m m h m m m m m m -<⎧⎪⎪-+≤≤⎪=⎨⎪-+<≤⎪⎪->⎩. 【分析】(1)待定系数法求出参数,,a b c ,写出二次函数表达式即可;(2)由(1)知22(22)1y x m x =+-+,即对称轴为12m x -=,讨论12m -与区间[]2,6的位置关系求m 范围及对应()h m .【详解】解:(1)由题可得12215b a c a b c ⎧-=-⎪⎪=⎨⎪++=⎪⎩,解得221a b c =⎧⎪=⎨⎪=⎩,即2221y x x =++; (2)22(2)2(22)1y ax b m x c x m x =+-+=+-+,其图象对称轴的方程为12m x -=. ①当122m -<时,即5m <时,()8512G m m =-,()134H m m =-,()728h m m =-;②当1242m -≤≤时,即59m ≤≤时,()8512G m m =-,221()2m m H m -++=,21169()1322h m m m =-+; ③当1462m -<≤时,即913m <≤时,()134G m m =-,221()2m m H m -++=,2125()522h m m m =-+; ④当162m ->时,即13m >时,()134G m m =-,()8512H m m =-,()872h m m =-.综上,()22728,5116913,59221255,91322872,13m m m m m h m m m m m m -<⎧⎪⎪-+≤≤⎪=⎨⎪-+<≤⎪⎪->⎩. 【点睛】关键点点睛:已知过定点及对称轴,应用待定系数法求二次函数解析式;当对称轴含参数时,研究区间最值需要讨论对称轴与区间的关系确定最值情况.26.(1)(),()2,(,0)(0,)a f x x g x x x∞∞=+=∈-⋃+;(2)3a >-. 【分析】(1)利用函数的奇偶性,列方程组,求函数的解析式;(2)由(1)知,()()2,[1,)a f x g x x x x∞+=++∈+,方法一,讨论a 的正负,以及函数的单调性,转化为求函数的最小值大于0,求a 的取值范围;方法二,利用参变分离,()22a x x >-+,转化为求函数最大值,即求a 的取值范围.【详解】(1)由已知条件()()2a f x g x x x-=+-——① ①式中以x -代替x ,得()()2a f x g x x x ---=---——② 因为()f x 是奇函数,()g x 是偶函数,故()(),()()f x f x g x g x -=--=②可化为()()2a f x g x x x --=---——③ ①-③,得22()2a f x x x =+故(),()2,(,0)(0,)a f x x g x x x∞∞=+=∈-⋃+ (2)由(1)知,()()2,[1,)a f x g x x x x ∞+=++∈+ 当0a ≥时,函数()()f x g x +的值恒为正;当0a <时,函数()()2a f x g x x x +=++在[1,)+∞上为增函数 故当1x =时,()f x 有最小值3a +故只需30a +>,解得30a -<<.综上所述,实数a 的取值范围是(3,)-+∞法二:由(1)知,()()2a f x g x x x+=++ 当[1,)x ∈+∞时,()()0f x g x +>恒成立,等价于()22a x x >-+ 而二次函数()222(1)1y x x x =-+=-++在[1,)+∞上单调递减 1x =时,max 3y =-故3a >-【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.。

高一数学必修一第二章单元测试题.doc

高一数学必修一第二章单元测试题.doc

高一数学模块一第二章单元测试试题说明:本试题测试时间为50分钟,满分100分一、选择题:(本大题共8小题,每小题6分,共48分)答案填在答题卷答题卡内,否则不计分. 1、 函数32+=-x a y (a >0且a ≠1)的图象必经过点 ( ) (A )(0,1) (B ) (1,1) (C ) (2,3) (D )(2,4) 2、三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是( )(A )b c a <<. (B ) c b a << (C )c a b << (D )a c b << 3、函数 的定义域为( )(A )[1,3] (B )),3()1,(+∞⋃-∞ (C )(1,3) (D )(1,2)∪(2,3) 4、已知镭经过1,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是( ) (A )y =(0.9576)100x (B )y =(0.9576)100x (C )y =()x(D )y =1-(0.0424)100x5、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a =( )(A ) (B ) 2 (C ) 3 (D ) 6、下列函数中,在区间(0,2)上不是增函数的是( ) (A ) 0.5log (3)y x =- (B ) 12+=x y (C ) 2x y -= (D )x y 22=7、函数 与 ( )在同一坐标系中的图像只可能是( ); ; ; 。

8、(4~10班做)对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)+f (x 2);② f (x 1·x 2)=f (x 1)+f (x 2 ) ;③1212()()f x f x x x -->0;④1212()()()22x x f x f x f ++<.当f (x )=lo g 2 x 时,上述结论中正确结论的序号选项是(A ) ①④ (B ) ②④ (C )②③(D )①③8、(1~3班做)已知⎩⎨⎧≥<+-=1,log 1,4)13()(x x x a x a x f a 是(,)-∞+∞上的减函数,那么a 的取值范围是 (A )(0,1) (B )1(0,)3(C )11[,)73(D )1[,1)7二、填空题(本大题共4小题,每小题5分,共9、 函数)5lg()(-=x x f 的定义域是 .1009576.02131xa y =x y a log -=1,0≠>a a 且)34(log 1)(22-+-=x x x f10、求值:013312log log 12(0.7)0.252-+-+=________ _. 11、已知幂函数()y f x =的图象经过点(3,3),那么这个幂函数的解析式为 .12、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________ 三、解答题(第12题7分,13题10分,第14题15分,共32分, 解答应写出文字说明,证明过程或演算步骤)13、求log 2.56.25+lg1001+ln e +3log 122+的值.14、已知m >1,试比较(lg m )0.9与(lg m )0.8的大小.15、已知()(01)xxf x a a a a -=+>≠且(Ⅰ)证明函数f ( x )的图象关于y 轴对称;(4分 )(Ⅱ)判断()f x 在(0,)+∞上的单调性,并用定义加以证明;(7分)(4~10班做)(Ⅲ)当x ∈[1,2]时函数f (x )的最大值为25,求此时a 的值. (4分)(1~3班做)(Ⅲ)当x ∈[-2,-1]时函数f (x )的最大值为25,求此时a 的值. (4分)高一数学模块一第二章单元测试答题卷班级座号姓名得分二、填空题(本大题共4小题,每小题5分,共9、;10、;11、;12、.三、解答题(第12题7分,13题10分、14题15分,共32分,解答应写出文字说明,证明过程或演算步骤)13、14、15、高一数学模块一第二章单元测试参考答案一、选择题 DBDA CCAC 7、取a =2和a = 作图筛选得A8、解:依题意,有0<a <1且3a -1<0,解得0<a <13,又当x <1时,(3a -1)x +4a >7a -1,当x ≥1时,log a x ≤0,所以7a -1≥0解得a ≥17故选C二、填空题8、 ;9、 4 ;10、 ;11、 .11、设这个幂函数的解析式为 ,将(3, )代入得21=α12、.【解析】1ln 2111(())(ln )222g g g e ===.三、解答题 (本大题有3小题,共32分) 解答应写出文字说明,证明过程或演算步骤)12、解: 原式=2-2+ ln e +6log 22…………3分= +6 …………5分=216 …………7分14、解:∵m >1,∴lg m >0;以下分类为①lg m >1,②lg m =1;③0<lg m <1三种情形讨论(lg m )0.9与(lg m )0.8的大小.…………2分①当lg m >1即m >10时,(lg m )0.9>(lg m )0.8;…………5分②当lg m =1即m =10时,(lg m )0.9=(lg m )0.8;…………7分③当0<lg m <1即1<m <10时,(lg m )0.9<(lg m )0.8.…………10分15、解:(Ⅰ)要证明函数f ( x )的图象关于y 轴对称则只须证明函数f ( x )是偶函数…1分∵x ∈R …………2分 由)()(x f a a a ax f x x x x=+=+=--- …………3分∴函数f ( x )是偶函数,即函数f ( x )的图象关于y 轴对称…………4分(Ⅱ)证明:设210x x <<,则12()()f x f x -=21211111112211)1)(()11()()(x x x x x x x x x x x x x a a a a a a a a a a a a x ++----=-+-=+-+ (1)当a >1时,由0<12x x <,则x 1+x 2>0,则01>x a 、02>x a 、21x x a a <、121>+x x a ;12()()f x f x -<0即12()()f x f x <;(2)当0<a <1时,由0<12x x <,则x 1+x 2>0,则01>x a、02>x a 、21x x a a >、1021<<+x x a ;12()()f x f x -<0即12()()f x f x <;)5,(-∞21x y =21αx y =2121213所以,对于任意a (10≠>a a 且),f (x )在(0,)+∞上都为增函数.(4~10班做)(Ⅲ)由(Ⅱ)知f (x )在(0,)+∞上为增函数,则当x ∈[1,2]时,函数f (x )亦为增函数;由于函数f (x )的最大值为25,则f (2)= 25即25122=+aa ,解得2=a ,或22=a (1~3班做)(Ⅲ)由(Ⅰ)(Ⅱ)证知f (x ) 是偶函数且在(0,)+∞上为增函数,则知f (x )在)0,(-∞上为减函数;则当x ∈[-2,-1]时,函数f (x )为减函数 由于函数f (x )的最大值为25,则f (-2)= 25即25122=+a a ,解得2=a ,或22=a。

高一北师大版数学必修1第二章 函数单元测试题试卷含答案解析

高一北师大版数学必修1第二章 函数单元测试题试卷含答案解析

阶段性检测卷二(时间:120分钟,满分:150分)一、选择题(本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0} D .{x |0≤x ≤1}答案 D2.已知(x ,y )在映射f 作用下的像是(x +y ,x -y ),则(1,2)关于f 的原像是( )A .(1,2)B .(3,-1)C.⎝ ⎛⎭⎪⎫32,-12 D.⎝ ⎛⎭⎪⎫-12,32 解析 由⎩⎪⎨⎪⎧x +y =1,x -y =2.得⎩⎪⎨⎪⎧x =32,y =-12.故选C.答案 C3.下列函数中,既是偶函数,又在(0,+∞)上单调递减的函数是( )A .y =x -2B .y =x -1C .y =x 2D .y =x 13答案 A4.下列函数中,是同一函数的是( ) A .y =(x -1)0与y =1 B .y =x 与y =xC .y =|x |与y =⎩⎪⎨⎪⎧x ,x ≥0-x ,x <0D .y =x 2与y =(x -1)2解析 A 中y =(x -1)0的定义域为{x |x ∈R ,且x ≠1},y =1的定义域为R ,定义域不同,故不是同一函数;B 中y =x 的定义域为[0,+∞),y =x 的定义域为R ,定义域不同,故不是同一函数,D 中的对应法则不同.答案 C5.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 解析 由-1<2x +1<0,解得-1<x <-12,故函数f (2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12. 答案 B6.若在[1,+∞)上,函数y =(a -1)x 2+1与y =ax 均单调递减,则a 的取值范围是( )A .a >0B .a >1C .0≤a ≤1D .0<a <1解析 显然a ≠1,且a ≠0,由题意得⎩⎪⎨⎪⎧a -1<0,a >0,得0<a <1.答案 D7.设f (x )是定义在R 上的增函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+1)<f (2a )D .f (a 2+1)>f (a )解析 ∵a 2+1-a =⎝ ⎛⎭⎪⎫a -122+34>0∴a 2+1>a ,由函数的单调性可知f (a 2+1)>f (a ).答案 D8.函数y =x 53的图像大致是下图中的( )解析 y =x 53为奇函数,定义域为R ,且53>1,∴x >0时图像是下凸的,故选B.答案 B9.定义在R 上的偶函数f (x ),对任意x 1,x 2∈[0,+∞)(x 1≠x 2),有f (x 1)-f (x 2)x 1-x 2<0,则( )A .f (3)<f (-2)<f (1)B .f (1)<f (-2)<f (3)C .f (-2)<f (1)<f (3)D .f (3)<f (1)<f (-2)解析 由已知f (x 1)-f (x 2)x 1-x 2<0,得f (x )在x ∈[0,+∞)上单调递减,由偶函数性质得f (3)<f (-2)<f (1),故选A.答案 A10.已知偶函数f (x )在区间[0,+∞)上是增加的,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A .[13,23)B .(13,23)C .(12,23)D .[12,23)解析 作出示意图可知:f (2x -1)<f ⎝ ⎛⎭⎪⎫13⇒-13<2x -1<13,即13<x <23,故选B.答案 B二、填空题(本大题共5小题,每题5分,共25分.将答案填在题中横线上.)11.设函数f (x )=⎩⎪⎨⎪⎧x 2+2(x ≤2),2x(x >2),)则f (-4)=________,若f (x 0)=8,则x 0=________.解析 f (-4)=(-4)2+2=18,由f (x 0)=8,得⎩⎪⎨⎪⎧ x 0≤2,x 20+2=8,或⎩⎪⎨⎪⎧x 0>2,2x 0=8,得x 0=-6,或x 0=4. 答案 18 -6或4 12.函数y =(m 2-m -1)·xm 2-2m -3是幂函数,且当x ∈(0,+∞)时为减函数,则m =________.解析 由题意得m 2-m -1=1,得m =2,或m =-1,当m =-1时,y =x 0不合题意,当m =2时,y =x -3,符合题意.答案 213.将y =1x 的图像沿x 轴向右平移1个单位,再向上平移两个单位得到的函数的解析式为________.答案 f (x )=2x -1x -114.函数f (x )=x 2+2mx +1在(-∞,-1]上单调递减,在[-1,+∞)上单调递增,则实数m =________.解析 由于f (x )在(-∞,-1]上单调递减,在[-1,+∞)上单调递增,知f (x )的对称轴为x =-1,即-m =-1得m =1.答案 115.函数y =x 2-2x +5,在x ∈[1,2]上的最大值是________,最小值是________.解析 ∵函数y =x 2-2x +5在[1,2]上单调递增,∴当x =1时,y min =1-2+5=4,当x =2时,y max =4-4+5=5.答案 5 4三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.(12分)求函数f (x )=3x +1x 2-x -2的定义域.解 欲使该函数有意义,需⎩⎪⎨⎪⎧3x +1≥0,x 2-x -2≠0,得⎩⎨⎧x ≥-13,x ≠-1且x ≠2,即x ≥-13,且x ≠2.∴该函数的定义域为⎣⎢⎡⎭⎪⎫-13,2∪(2,+∞).17.(12分)已知幂函数f (x )=x -2m 2+m +3(m ∈Z )为偶函数,且在(0,+∞)上是增函数,求f (x )的解析式.解 由题意得-2m 2+m +3>0,得-1<m <32, 又m ∈Z ,m =0,或m =1,又f (x )为偶函数, ∴m =1,f (x )=x 2.18.(12分)已知函数f (x )=x 2+ax +b ,(1)若对于任意的实数x ,都有f (1+x )=f (1-x )成立,求实数a 的值;(2)若f (x )为偶函数,求a 的值. 解 (1)∵f (x )满足f (1+x )=f (1-x ),∴f (x )关于x =1对称,∴-a2=1, ∴a =-2.(2)∵f (x )为偶函数,∴f (-x )=f (x ), ∴x 2-ax +b =x 2+ax +b , ∴a =0.19.(13分)如图所示,函数的图像是由两条射线及抛物线的一部分组成,求函数的解析式.解 设左侧射线对应的解析式为y =kx +b (x ≤1), ∵(1,1),(0,2)在射线上.∴⎩⎪⎨⎪⎧ k +b =1,b =2,得⎩⎪⎨⎪⎧k =-1,b =2.∴x ≤1时,f (x )=-x +2.设右侧射线对应的解析式为y =k 1x +b 1(x ≥3),∵(3,1),(4,2)在射线上,∴⎩⎪⎨⎪⎧3k 1+b 1=1,4k 1+b 1=2,得⎩⎪⎨⎪⎧k 1=1,b 1=-2.∴当x ≥3时,f (x )=x -2. 设1≤x ≤3时f (x )=a (x -2)2+2,将(1,1)代入上式得a =-1.∴当1≤x ≤3时,f (x )=-(x -2)2+2=-x 2+4x -2. 综上得f (x )=⎩⎪⎨⎪⎧-x +2,x <1,-x 2+4x -2,1≤x ≤3,x -2,x >3.20.(13分)求函数f (x )=(4-3a )x 2-2x +a 在区间[0,1]上的最大值.解 (1)当4-3a =0,即a =43时,f (x )=-2x +43在[0,1]上为减函数,∴f (x )max =f (0)=43.(2)当a >43时,4-3a <0,开口向下,对称轴为x =14-3a <0,则二次函数在区间[0,1]上为减函数∴f (x )max =f (0)=a .(3)当a <43时,4-3a >0,开口向上,对称轴为x =14-3a >0,①当0<14-3a ≤12时,即a ≤23时,f (x )max =f (1)=2-2a , ②当14-3a >12时,即23<a <43时,f (x )max =f (0)=a ,综上所述,当a >23时,f (x )max =a ; 当a ≤23时,f (x )max =2-2a .21.(13分)已知函数f (x )=ax +b1+x 2是定义域为(-1,1)的奇函数,且f ⎝ ⎛⎭⎪⎫12=25. (1)求实数a ,b 的值.(2)判断f (x )在(-1,1)上的单调性,并用定义证明. (3)解不等式:f (t -1)+f (t )<0.解(1)有⎩⎨⎧f (0)=0,f ⎝ ⎛⎭⎪⎫12=25,解得a =1,b =0.(2)f (x )在(-1,1)上是增函数,证明如下:在(-1,1)上任取两数x 1和x 2且-1<x 1<x 2<1,则f (x 1)-f (x 2)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)∵-1<x 1<x 2<1,∴x 1-x 2<0,1-x 1x 2>0, 故f (x 1)-f (x 2)=(x 1-x 2)(1-x 1x 2)(1+x 21)(1+x 22)<0, ∴f (x 1)<f (x 2),∴f (x )在(-1,1)上为增函数.(3)f (x )为奇函数,定义域为(-1,1),由f (t -1)+f (t )<0得f (t -1)<-f (t )=f (-t ),∵f (x )在(-1,1)上为增函数, ∴-1<t -1<-t <1,解得0<t <12. 所以原不等式的解集为⎩⎨⎧⎭⎬⎫t |0<t <12.。

一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

 一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。

高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一第二章一元二次函数、方程和不等式单元测试试卷 (3)数学第二章测试卷A卷本试卷满分100分,考试时间80分钟。

一、单项选择题(本大题共5小题,每小题5分,共计25分。

在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应位置上)1.若$a+b+c=0$,且$a<b<c$,则下列不等式一定成立的是A。

$ab<bc$B。

$ab<ac$XXX<bc$D。

$ab<bc$2.已知正数$a$、$b$满足$\frac{22}{1194}+\frac{a}{b}=1$,则$\frac{a}{b}+\frac{b}{a}$的最小值是A。

6B。

12C。

24D。

363.已知二次函数$f(x)=x^2+bx+c$的两个零点分别在区间$(-2,-1)$和$(-1,0)$内,则$f(3)$的取值范围是A。

$(12,20)$B。

$(12,18)$C。

$(18,20)$D。

$(8,18)$4.若$x>0$,$y>0$,且$\frac{2}{x+1}+\frac{1}{x+2y}=1$,则$2x+y$的最小值为A。

2B。

$\frac{2}{3}$C。

$2+\frac{2}{3}$D。

$3$5.关于$x$的不等式$(ax-1)<x$恰有2个整数解,则实数$a$的取值范围是A。

$-\frac{34}{43}<a\leq-\frac{3}{4}$或$\frac{4}{3}<a\leq\frac{43}{34}$B。

$-\frac{3}{4}<a\leq-\frac{2}{3}$或$\frac{2}{3}<a\leq\frac{3}{4}$C。

$-\frac{34}{43}\leq a<-\frac{3}{4}$或$\frac{4}{3}\leq a<\frac{43}{34}$D。

$-\frac{3}{4}\leq a<-\frac{2}{3}$或$\frac{2}{3}\leq a\leq\frac{3}{4}$二、多项选择题(本大题共2小题,每小题5分,共计10分。

高中数学人教版必修1第二章基本初等函数单元测试卷(B)Word版含答案

高中数学人教版必修1第二章基本初等函数单元测试卷(B)Word版含答案

第二章 基本初等函数 单元测试卷(B )时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.有下列各式:①na n=a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43 +y ;④3-5=6(-5)2.其中正确的个数是( ) A .0 B .1 C .2D .32.三个数log 215,20.1,20.2的大小关系是( ) A .log 215<20.1<20.2B .log 215<20.2<20.1C .20.1<20.2<log 215D .20.1<log 215<20.23.(2016·山东理,2)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)4.已知2x=3y,则xy =( )A.lg2lg3B.lg3lg2 C .lg 23 D .lg 325.函数f (x )=x ln|x |的图象大致是( )6.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为奇函数,g (x )为偶函数 C .f (x )与g (x )均为奇函数 D .f (x )为偶函数,g (x )为奇函数7.函数y =(m 2+2m -2)x 1m -1 是幂函数,则m =( ) A .1 B .-3 C .-3或1D .28.下列各函数中,值域为(0,+∞)的是( ) A .y =2-x2B .y =1-2xC .y =x 2+x +1D .y =31x +19.已知函数:①y =2x;②y =log 2x ;③y =x -1;④y =x 12 ;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ) (x <1)2x -1 (x ≥1),则f (-2)+f (log 212)=( )A .3B .6C .9D .1211.已知函数f (x )=⎩⎨⎧(a -2)x ,x ≥2,(12)x-1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( ) A .(-∞,2) B .(-∞,138] C .(-∞,2]D .[138,2)12.(2016·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,可以是“好点”的个数为( ) A .0个 B .1个 C .2个D .3个第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.已知a 12 =49(a >0),则log 23a =________.14.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (14))=________. 15.若函数y =log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,则实数a 的取值范围是________.16.(2016·邵阳高一检测)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log 22 x ,y =x 12 ,y =(22)x 的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题满分10分)计算:10.25+(127)-13 +(lg3)2-lg9+1-lg 13+810.5log 35.18.(本小题满分12分)已知函数f (x )=(12)ax,a 为常数,且函数的图象过点(-1,2). (1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.19.(本小题满分12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值范围.20.(本小题满分12分)求使不等式(1a )x 2-8>a -2x 成立的x 的集合(其中a >0,且a ≠1).21.(本小题满分12分)(2016·雅安高一检测)已知函数f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(本小题满分12分)若函数f (x )满足f (log a x )=a a 2-1·(x -1x )(其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围.第二章 基本初等函数 单元综合测试二 答案第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分) 1.[答案] B [解析] ①na n=⎩⎪⎨⎪⎧|a |,n 为偶数,a ,n 为奇数(n >1,且n ∈N *),故①不正确.②a 2-a +1=(a -12)2+34>0,所以(a 2-a +1)0=1成立.③3x 4+y 3无法化简.④3-5<0,6(-5)2>0,故不相等.因此选B. 2.[答案] A[解析] ∵log 215<0,0<20.1<20.2, ∴log 215<20.1<20.2,选A. 3.[答案] C[解析] A ={y |y =2x ,x ∈R }={y |y >0}.B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B ={x |x >0}∪{x |-1<x <1}={x |x >-1},故选C. 4.[答案] B[解析] 由2x =3y 得lg2x =lg3y ,∴x lg2=y lg3, ∴x y =lg3lg2. 5.[答案] A[解析] 由f (-x )=-x ln|-x |=-x ln|x |=-f (x )知,函数f (x )是奇函数,故排除C ,D ,又f (1e )=-1e <0,从而排除B ,故选A.6.[答案] D[解析]因为f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x),所以f(x)是偶函数,g(x)为奇函数,故选D.7.[答案] B[解析]因为函数y=(m2+2m-2)x 1m-1是幂函数,所以m2+2m-2=1且m≠1,解得m=-3.8.[答案] A[解析]A,y=2-x2=(22)x的值域为(0,+∞).B,因为1-2x≥0,所以2x≤1,x≤0,y=1-2x的定义域是(-∞,0],所以0<2x≤1,所以0≤1-2x<1,所以y=1-2x的值域是[0,1).C,y=x2+x+1=(x+12)2+34的值域是[34,+∞),D,因为1x+1∈(-∞,0)∪(0,+∞),所以y=31x+1的值域是(0,1)∪(1,+∞).9.[答案] D[解析]根据幂函数、指数函数、对数函数的图象可知选D. 10.[答案] C[解析]f(-2)=1+log2(2-(-2))=3,f(log212)=2log212-1=2log26=6,∴f(-2)+f(log212)=9,故选C.11.[答案] B[解析]由题意知函数f(x)是R上的减函数,于是有⎩⎨⎧a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138],选B. 12.[答案] C[解析] 设指数函数为y =a x (a >0,a ≠1),显然不过点M 、P ,若设对数函数为y =log b x (b >0,b ≠1),显然不过N 点,选C.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.[答案] 4[解析] ∵a 12 =49(a >0), ∴(a 12)2=[(23)2]2,即a =(23)4, ∴log 23 a =log 23 (23)4=4.14.[答案] 19[解析] ∵14>0,∴f (14)=log 214=-2. 则f (14)<0,∴f (f (14))=3-2=19. 15.[答案] (-8,-6][解析] 令g (x )=3x 2-ax +5,其对称轴为直线x =a6,依题意,有⎩⎨⎧a 6≤-1,g (-1)>0,即⎩⎪⎨⎪⎧a ≤-6,a >-8.∴a ∈(-8,-6]. 16.[答案] (12,14)[解析] 由图象可知,点A (x A,2)在函数y =log 22 x 的图象上,所以2=log 22 x A ,x A =(22)2=12. 点B (x B,2)在函数y =x 12 的图象上, 所以2=x B 12 ,x B =4.点C (4,y C )在函数y =(22)x的图象上, 所以y C =(22)4=14. 又x D =x A =12,y D =y C =14, 所以点D 的坐标为(12,14).三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.[解析] 原式=10.5+(3-1)-13 +(lg3-1)2-lg3-1+(34)0.5log 35 =2+3+(1-lg3)+lg3+32log 35 =6+3log 325=6+25=31.18.[解析] (1)由已知得(12)-a=2,解得a =1. (2)由(1)知f (x )=(12)x,又g (x )=f (x ),则4-x-2=(12)x ,即(14)x -(12)x-2=0,即[(12)x ]2-(12)x-2=0,令(12)x =t ,则t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即(12)x =2,解得x =-1. 19.[解析] (1)当a =2时,f (x )=log 2(1+x ), 在[3,63]上为增函数,因此当x =3时,f (x )最小值为2. 当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x ) 当a >1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧ 1+x >1-x 1+x >01-x >0∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧1+x <1-x 1+x >01-x >0∴-1<x <0综上a >1时,解集为{x |0<x <1} 0<a <1时解集为{x |-1<x <0}. 20.[解析] ∵(1a )x 2-8=a 8-x 2, ∴原不等式化为a 8-x 2>a -2x . 当a >1时,函数y =a x 是增函数, ∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x 是减函数,∴8-x2<-2x,解得x<-2或x>4.故当a>1时,x的集合是{x|-2<x<4};当0<a<1时,x的集合是{x|x<-2或x>4}.21.[解析](1)∵f(x)=2x,∴g(x)=f(2x)-f(x+2)=22x-2x+2.因为f(x)的定义域是[0,3],所以0≤2x≤3,0≤x+2≤3,解得0≤x≤1.于是g(x)的定义域为{x|0≤x≤1}.(2)设g(x)=(2x)2-4×2x=(2x-2)2-4.∵x∈[0,1],∴2x∈[1,2],∴当2x=2,即x=1时,g(x)取得最小值-4;当2x=1,即x=0时,g(x)取得最大值-3.22.[解析](1)令log a x=t(t∈R),则x=a t,∴f(t)=aa2-1(a t-a-t).∴f(x)=aa2-1(a x-a-x)(x∈R).∵f(-x)=aa2-1(a-x-a x)=-aa2-1(a x-a-x)=-f(x),∴f(x)为奇函数.当a>1时,y=a x为增函数,y=-a-x为增函数,且a2a2-1>0,∴f(x)为增函数.当0<a<1时,y=a x为减函数,y=-a-x为减函数,且a2a2-1<0,∴f(x)为增函数.∴f(x)在R上为增函数.(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数.由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即aa2-1(a2-a-2)≤4.∴aa2-1(a4-1a2)≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-3≤a≤2+ 3.又a≠1,∴a的取值范围为[2-3,1)∪(1,2+3].。

高一数学第一、二章综合测试题必修1试题

高一数学第一、二章综合测试题必修1试题

桃江四中高一数学?第一、二章?综合测试题 必修一制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日总分150分 时间是:120分钟一、选择题(每一小题5分,一共40分)1.集合A={}|12,x x -≤≤B={}|1x x <,那么()R A B =( )A.{}|1x x >B.{}|1x x ≥C.{}|12x x <≤D.{}|12x x ≤≤ 2.计算552log 10log 0.25+=( )A.0B.1 C 3.函数221,1(),[(0)]4,1若x x f x f f a x ax x ⎧+<==⎨+≥⎩,那么实数a =( ) A.12 B.45C ()()1212,(0,)都有x x f x f x ∈+∞>的是 ( ) A.1()x f x x +=B.2()(1)f x x =-C.()x f x e =D.()()ln 1f x x =+ 5.设0.53log 2,ln 2,5,a b c -===那么 ( )A.a b c <<B.b c a <<C.c a b <<D.c b a <<6.幂函数(1)y x x α=≥的图像如下图,那么a 满足的条件是A.1a <-B.10a -<<C.01a <<D.1a >7.把函数2log (21)y x =+ ( )A.2log (2 1.5)y x =+B.2log (22)y x =+C.2log (20.5)y x =+D.21log y x =+()f x 在[0,)+∞上递增,1()03f =,那么0.125(log )0f x >的解集是( ) A.(0,)+∞ B.1(0,)(2,)2+∞ C.11(0,)(,2)82 D.1(0,)2二、填空题(每一小题5分,一共35分)9.29log 3log 4⨯= 110假设221log 01a a <+,那么a 的取值范围是 12a > ()f x 的图像经过点11(2,),()42则f = 4 12.则5()lg ,(10)f x x f == 1513函数y x =的值域为 1(,]4-∞ 14.函数231()log log 3,()2,(2010)2010若则f x a x b x f f =-+== 4 x 的函数2()lg 1x f x x =+,有以下结论: ①该函数的定义域是(0,)+∞;②该函数是奇函数;③该函数的最小值为lg2-④当01x << 时()f x 为增函数,当1x >时()f x 为减函数其中,所有..正确结论的序号是 ①④ 三、解答题(一共75分)16.求以下函数的定义域:(1).y =20(54)lg(43)x y x x =+-+11()3x f x +⎛⎫= ⎪⎝⎭.(1)作出这个函数的大致图像;(2).由图像指出其增区间和减区间.18.函数⎩⎨⎧=x x x f 3log )(2)0()0(≤>x x (1)作出()f x 的大致图像;(2) 关于x 的方程0)(=-+a x x f 有且仅有两个实根,务实数a 的取值范围19.(1)函数()f x 是奇函数,且当x >0时,()2,x f x e =-求()f x 在0x <时的解析式;(2)设0a >,()x xe af x a e =+是R 上的偶函数,求a 的值( 2.71828e =)20.函数216()f x x x=+ (1).直接写出()f x 在(,4]-∞-上的值域;(2).证明()f x 在[2,)+∞为增函数.21.设a ∈R,函数1,0,())1,0.a x x f x x a x ⎧-+<⎪=-->(Ⅰ) 当a =2时, 解不等式()1f x x >-(Ⅱ) 假设对任何x ∈R ,且0x ≠,都有()1f x x >-,求a 的取值范围制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。

高中数学必修第一册,第2章 一元二次函数、方程和不等式单元测试题1

高中数学必修第一册,第2章 一元二次函数、方程和不等式单元测试题1

第二章一元二次函数、方程和不等式一、选择题1.(2019·全国高一课时练)集合2}{0|A x x x =-<(),{|11}B x x =-<<,则A B = ()A .{|12}x x -<<B .{|1x x <-或2x >}C .{|01}x x <<D .{|0x x <或}2.(2019·全国高一课时练)已知c b a <<,且0ac <,下列不等式中,不一定成立的是()A .ab ac >B .()0c b a ->C .22cb ab <D .()0ac a c -<3.(2019·全国高一课时练)不等式20ax x c -+>的解集为{}21,x x -<<则函数2y ax x c =++的图像大致为()A. B.D.4.(2019·河南高一期末)设0a >,0b >,若21a b +=,则21a b+的最小值为A .B .8C .9D .10(2019·全国高一课时练)若01t <<,则关于x 的不等式()10t x x t ⎛⎫--> ⎪⎝⎭的解集为()A.1{|}x x t t<< B.1{}x xx t t<或 C.1{|}x xx t t或 D.1 {|}x t x t<<6.(2019·全国高一课时练)函数2228(0)y x ax a a =-->,记0y ≤的解集为A ,若()1,1A -⊆,则a 的取值范围()A.1,2⎡⎫+∞⎪⎢⎣⎭B.1,4⎡⎫+∞⎪⎢⎣⎭C.11,42⎛⎫⎪⎝⎭D.11,42⎡⎤⎢⎣⎦7.(2019·辽河油田高级中学高一课时练)若关于x 的不等式2−4≥对任意x ∈[0,1]恒成立,则实数m 的取值范围是()A .m≤-3B .m≥-3C .-3≤m≤0D .m≤-3或m≥08.(2019江西高一联考)某市原来居民用电价为0.52元/kw h ⋅,换装分时电表后,峰时段(早上八点到晚上九点)的电价0.55元/kw h ⋅,谷时段(晚上九点到次日早上八点)的电价为0.35元/kw h ⋅.对于一个平均每月用电量为200kw h ⋅的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为()A .110kw h⋅B .114kw h⋅C .118kw h⋅D .120kw h⋅9.(2019广东揭阳三中高一课时练)在R 上定义运算:a b c d ⎛⎫ ⎪⎝⎭ =ad-bc,若不等式-1-21x a a x ⎛⎫⎪+⎝⎭ ≥1对任意实数x 恒成立,则实数a 的最大值为()A .-12B .-32C .12D .3210.(2019·新疆乌鲁木齐市第70中高一期末)正数,a b 满足191a b+=,若不等式2418a b x x m +≥-++-对任意实数x 恒成立,则实数m 的取值范围是()A .[3,)+∞B .(,3]-∞C .(,6]-∞D .[6,)+∞二、填空题11.不等式2450x x --+≤的解集为________________.(用区间表示)12.(2019·全国高一课时练习)某公司一年需要购买某种原材料400吨,计划每次购买x 吨,已知每次的运费为4万元/次,一年总的库存费用为4x 万元,为了使总的费用最低,每次购买的数量x 为_____________;13.(2019·全国高一课时练)已知集合A ={t |t 2–4≤0},对于满足集合A 的所有实数t ,则使不等式x 2+tx-t >2x -1恒成立的x 的取值范围是14.(2019·河北高一期末)已知关于x 的不等式()224300x ax a a -+<>的解集为()12,x x ,则1212ax x x x ++的最小值是______.三、解答题15.(2019·黑龙江双鸭山一中高一期末)若不等式()21460a x x --+>的解集是{}31x x -<<.(1)求a 的值;(2)当b 为何值时,230ax bx ++≥的解集为R .16.(2019·山西省永济中学高一期末)如果用akg 糖制出bkg 糖溶液,则糖的质量分数为ab.若在上述溶液中再添加mkg 糖.(Ⅰ)此时糖的质量分数增加到多少?(请用分式表示)(Ⅱ)请将这个事实抽象为数学问题,并给出证明.17.(2019·安徽高一期末)已知关于x 的函数()()221f x x ax a R =-+∈.(Ⅰ)当3a =时,求不等式()0f x ≥的解集;(Ⅱ)若()0f x ≥对任意的()0,x ∈+∞恒成立,求实数a 的最大值.18.(2019·黑龙江高一期末)设函数()()()2230f x ax b x a =+-+≠.(1)若不等式()0f x >的解集(1,1)-,求,a b 的值;(2)若()12f =,①0,0a b >>,求14a b+的最小值;②若()1f x >在R 上恒成立,求实数a 的取值范围.第二章一元二次函数、方程和不等式(答案与解析)二、选择题1.(2019·全国高一课时练)集合2}{0|A x x x =-<(),{|11}B x x =-<<,则A B = ()A .{|12}x x -<<B .{|1x x <-或2x >}C .{|01}x x <<D .{|0x x <或}【答案】C【解析】由题意可得{|02}A x x =<<,{|11}B x x =-<<,所以{|01}A B x x =<< .故选C.2.(2019·全国高一课时练)已知c b a <<,且0ac <,下列不等式中,不一定成立的是()A .ab ac >B .()0c b a ->C .22cb ab <D .()0ac a c -<【答案】C【解析】因为c b a <<且0ac <,所以0a >,0c <,b R ∈.对于A ,因为0a >,c b <,所以ac ab <,即ab ac >一定成立.对于B ,因为b a <,所以0b a -<,所以()0cb a ->一定成立.对于C ,因为b R ∈,所以当0b =时,22cb ab <不成,故22cb ab <不一定成立.对于D ,因为c b a <<,0a >,0c <,所以0a c ->,()0aca c -<一定成立.故选C .3.(2019·全国高一课时练)不等式20ax x c -+>的解集为{}21,x x -<<则函数2y ax x c =++的图像大致为()A. B.D.【答案】C【解析】由题知-2和1是ax 2-x+c=0的两根,由根与系数的关系知-2+1=1a ,,−2×1=c a,∴a=-1,c=2,∴2y ax x c =++=-x 2+x+2=-(x-12)2+94,故选C 4.(2019·河南高一期末)设0a >,0b >,若21a b +=,则21a b+的最小值为A .B .8C .9D .10【答案】C【解析】由题意知,0a >,0b >,且21a b +=,则()212122()5925b a a b a b a b b a ++=+=++≥+=当且仅当22b a a b =时,等号成立,21a b+的最小值为9,故答案选C 。

(典型题)高中数学必修一第二单元《函数》测试题(包含答案解析)

(典型题)高中数学必修一第二单元《函数》测试题(包含答案解析)

一、选择题1.已知函数()f x =的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<2.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤<B .32a --≤≤C .2a ≤-D .0a <3.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -4.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞5.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞6.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值D .有最大值83,无最小值 7.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)8.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .29.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .410.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦, B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,11.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.函数()()2325f x kx k x =+--在[)1+∞,上单调递增,则k 的取值范围是________. 14.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.15.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.16.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.17.已知函数()f x 的定义域为(1,1)-,则函数()()(1)2xg x f f x =+-的定义域是________.18.已知()()21353m f x m m x+=++是幂函数,对12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,若,a b ∈R ,0a b +<,0ab <,则()()f a f b +________0(填>,<).19.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.20.已知函数2262()2x ax x f x a x x⎧-+⎪=⎨>⎪⎩,≤,,是R 上的减函数,则a 的取值范围为______.三、解答题21.定义:满足()f x x =的实数x 为函数()f x 的“不动点”,已知二次函数()()20f x ax bx a =+≠,()1f x +为偶函数,且()f x 有且仅有一个“不动点”.(1)求()f x 的解析式;(2)若函数()()2g x f x kx =+在()0,4上单调递增,求实数k 的取值范围;(3)是否存在区间[](),m n m n <,使得()f x 在区间[],m n 上的值域为[]3,3m n ?若存在,请求出m ,n 的值;若不存在,请说明理由.22.已知函数()f x 为二次函数,满足()()139f f -==,且()03f =.(1)求函数()f x 的解析式;(2)设()()g x f x mx =-在[]1,3上是单调函数,求实数m 的取值范围. 23.定义在()0,∞+的函数()f x ,满足()()()f mn f m f n =+,且当1x >时,()0f x >.(1)求证:()()m f f m f n n ⎛⎫=- ⎪⎝⎭(2)讨论函数()f x 的单调性,并说明理由; (3)若()21f =,解不等式()()333f x f x +->. 24.已知函数()x af x x+=(a 为常数),其中()0f x <的解集为()4,0-. (1)求实数a 的值;(2)设()()g x x f x =+,当()0x x >为何值时,()g x 取得最小值,并求出其最小值. 25.已知二次函数()2()f x ax bx a b R =+∈、满足:①()()11f x f x +=-;②对一切x ∈R ,都有()f x x ≤.(1)求()f x ;(2)是否存在实数(),m n m n <使得()f x 的定义域为[],m n 、值域为[]3,3m n ,如果存在,求出m ,n 的值;如果不存在,说明理由. 26.已知11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭. (1)求()f x 的表达式;(2)判断()f x 在其定义域内的单调性,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意;当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩;④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.2.B解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.3.A解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--, 当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.4.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题5.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.6.D解析:D 【分析】作出函数()f x 的图象,结合图象可得出结论. 【详解】由已知可得(){}min 24,41,2f x x x x =-+++,作出函数()f x 的图象如下图所示:函数()f x 的图象如上图中的实线部分,联立224y x y x =+⎧⎨=-+⎩,解得2383x y ⎧=⎪⎪⎨⎪=⎪⎩,由图象可知,函数()f x 有最大值83,无最小值. 故选:D. 【点睛】关键点点睛:本题考查函数最值的求解,解题的关键就是结合函数()f x 的定义,进而作出函数()f x 的图象,利用图象得出结论.7.D解析:D 【分析】根据所给条件,结合二次函数的图像与性质,分类讨论,即可得解. 【详解】当0m <时,二次函数2()(3)1f x mx m x =--+的图像开口向下,()g x mx =单调递减,故存在x 使得()f x 与()g x 同时为负,不符题意; 当0m =时,()31f x x =-+,()0g x =显然不成立; 当0m >时,2109m m ∆=-+, 若∆<0,即19m <<时,显然成立,0∆=,1m =或9m =,则1m =时成立,9m =时,13x =-时不成立,若0∆>,即01m <<或9m >,由(0)1f =可得:若要()f x 与()g x 的值至少有一个为正数,如图,则必须有302mm->,解得01m <<, 综上可得:09m <<, 故答案为:D. 【点睛】本题考查了二次函数和一次函数的图像与性质,考查了分类讨论思想和计算能力,属于中档题.解决此类问题的关键主要是讨论,涉及二次函数的讨论有: (1)如果平方项有参数,则先讨论; (2)再讨论根的判别式; (3)最后讨论根的分布.8.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求.【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.9.C解析:C 【分析】根据定义求出()M x 的表达式,然后根据单调性确定最小值. 【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==. 故选:C . 【点睛】关键点点睛:本题考查新定义函数,解题关键是确定新定义函数的解析式,根据新定义通过求最大值得出新函数的解析式,然后根据分段函数研究新函数的性质.10.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围. 【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B 【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.11.D解析:D 【解析】因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C ,综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】根据函数的解析式分和两种情况讨论利用一次二次函数的性质即可求解【详解】由已知函数在上单调递增可得当时函数在上单调递减不满足题意;当时则满足解得综上所述实数的取值范围是故答案为:【点睛】本题主解析:25⎡⎫+∞⎪⎢⎣⎭, 【分析】根据函数的解析式,分0k =和0k ≠两种情况讨论,利用一次、二次函数的性质,即可求解. 【详解】由已知函数()()2325f x kx k x =+--在[)1+∞,上单调递增可得, 当0k =时,函数()25f x x =--在[)1+∞,上单调递减,不满足题意; 当0k ≠时,则满足03212k k k >⎧⎪-⎨-≤⎪⎩,解得25k ≥,综上所述,实数k 的取值范围是25⎡⎫+∞⎪⎢⎣⎭,. 故答案为:25⎡⎫+∞⎪⎢⎣⎭,. 【点睛】本题主要考查了函数单调性的应用,其中解答中熟记一次函数、二次函数的图象与性质是解答的关键,着重考查了分类讨论思想,以及推理与计算能力,属于基础题.14.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f(x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.15.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.16.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+, 所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-,又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥,()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤, 又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3. 【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.17.【分析】根据题意得到函数满足即可求解【详解】由题意函数的定义域为则函数满足即解得即函数的定义域为故答案为:【点睛】本题主要考查了抽象函数的定义域的求解其中解答中熟记抽象函数的定义域的求解方法是解答的 解析:()0,2【分析】根据题意,得到函数()g x 满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即可求解. 【详解】由题意,函数()f x 的定义域为(1,1)-,则函数()()(1)2x g x f f x =+-满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即2202x x -<<⎧⎨<<⎩,解得02x <<, 即函数()g x 的定义域为()0,2. 故答案为:()0,2. 【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考查推理与运算能力,属于基础题.18.【分析】先根据是幂函数求出的值再根据且有得出为增函数进而得到函数解析式再根据函数的奇偶性即可求解【详解】解:是幂函数解得:或当时当时又对且时都有在上单调递增易知的定义域为且为上的奇函数且在上单调递增 解析:<【分析】先根据()()21353m f x m m x+=++是幂函数,求出m 的值,再根据12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,得出()f x 为增函数,进而得到函数解析式,再根据函数的奇偶性即可求解. 【详解】 解:()()21353m f x m m x +=++是幂函数,23531m m +∴+=,解得:23m =-或1m =-, 当23m =-时,()13f x x =,当1m =-时,()01f x x ==,又对12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-,()f x ∴在(0,)+∞上单调递增, ()13f x x∴=,易知()f x 的定义域为R ,且()()()1133f x x x f x -=-=-=-,()f x ∴为R 上的奇函数,且在R 上单调递增,0a b <+,a b ∴<-,()()()f a f b f b ∴<-=-,()()0f a f b ∴+<.故答案为:<. 【点睛】关键点点睛:本题解题的关键是利用幂函数以及单调性得出函数的解析式.19.【分析】分析的奇偶性根据的结果求解出的值【详解】令因为为上的奇函数且也为上的奇函数所以为上的奇函数所以所以且所以故答案为:【点睛】结论点睛:已知(1)当为奇数时且此时为奇函数;(2)当为偶数时为偶函数 解析:12-【分析】分析()()2h x g x =-的奇偶性,根据()()22h h +-的结果求解出()2g -的值. 【详解】令()()()2h x g x af x bx =-=+,因为()f x 为R 上的奇函数,且y bx =也为R 上的奇函数,所以()()2h x g x =-为R 上的奇函数,所以()()220h h +-=, 所以()()22220g g -+--=,且()216g =,所以()212g -=-, 故答案为:12-. 【点睛】结论点睛:已知()(),0nf x x a n Z n =+∈≠,(1)当n 为奇数时,且0a =,此时()f x 为奇函数; (2)当n 为偶数时,()f x 为偶函数.20.2【分析】由已知利用分段函数的性质及二次函数与反比例函数的单调性可求【详解】解;是上的减函数解可得故答案为:【点睛】本题主要考查了分段函数的单调性的应用二次函数及反比例函数性质的应用是求解问题的关键解析:[2,209] 【分析】由已知利用分段函数的性质及二次函数与反比例函数的单调性可求. 【详解】 解;226,2(),2x ax x f x a x x⎧-+⎪=⎨>⎪⎩是R 上的减函数,∴204462a a a a ⎧⎪⎪>⎨⎪⎪-+⎩, 解可得,2029a. 故答案为:202,9⎡⎤⎢⎥⎣⎦【点睛】本题主要考查了分段函数的单调性的应用,二次函数及反比例函数性质的应用是求解问题的关键,属于中档题.三、解答题21.(1)21()2f x x x =-+(2)3,8⎡⎫+∞⎪⎢⎣⎭(3)4,0m n =-=,证明见解析 【分析】(1)根据二次函数的对称性求出2b a =-,再将()f x 有且仅有一个“不动点转化为方程()f x x =有且仅有一个解,从而得出()f x 的解析式;(2)当102k -=时,由一次含函数的性质得出12k =满足题意,当102k -≠时,讨论二次函数()g x 的开口方向,根据单调性确定112x k=-与区间()0,4端点的大小关系得出实数k 的取值范围; (3)由2111()(1)222f x x =--+得出16m n <,结合二次函数的单调性确定()f x 在区间[],m n 上是增函数,从而得出()3()3f m m f n n=⎧⎨=⎩,再解方程2132x x x -+=得出m ,n 的值.【详解】(1)22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++为偶函数20,22a bb a a+∴=∴=-- 2()2f x ax ax ∴=-f x 有且仅有一个“不动点”∴方程()f x x =有且仅有一个解,即[](21)0ax x a -+=有且仅有一个解211210,,()22a a f x x x ∴+==-=-+(2)221()()2g x f x kx k x x ⎛⎫=+=-+ ⎪⎝⎭,其对称轴为112x k=- 函数()()2g x f x kx =+在()0,4上单调递增∴当12k <时,1412k -,解得3182k < 当12k =时,()g x x =符合题意 当12k >时,1012k<-恒成立综上,3,8k ⎡⎫∈+∞⎪⎢⎣⎭(3)221111()(1)2222f x x x x =-+=--+ f x 在区间[],m n 上的值域为[]3,3m n ,113,26nn ∴,故16m n < ()f x ∴在区间[],m n 上是增函数()3()3f m m f n n =⎧∴⎨=⎩,即22132132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩∴,m n 是方程2132x x x -+=的两根,解得0x =或4x =-4,0m n ∴=-=【点睛】关键点睛:已知函数21()2g x k x x ⎛⎫=-+ ⎪⎝⎭在具体区间上的单调性求参数k 的范围时,关键是讨论二次项系数的值,结合二次函数的单调性确定参数k 的范围. 22.(1)()2243f x x x =-+;(2)8m ≥或0m ≤.【分析】(1)设函数()2f x ax bx c =++(0a ≠),代入已知条件解得,,a b c ,得解析式;(2)由对称轴不在区间内可得. 【详解】(1)设函数()2f x ax bx c =++(0a ≠)∵()()139f f -==,且()03f = ∴99313a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得243a b c =⎧⎪=-⎨⎪=⎩∴()2243f x x x =-+.(2)由(1)()()2243g x x m x =-++,其对称轴为4144m mx +==+ ∵()()g x f x mx =-在[]1,3上单调函数,∴134m +≥,或114m+≤,解得:8m ≥或0m ≤. 【点睛】方法点睛:本题考查求二次函数的解析式,二次函数的单调性.二次函数解析式有三种形式:(1)一般式:2()f x ax bx c =++;(2)顶点式:2()()f x a x h m =-+;(3)交点式(两根式):12()()()f x a x x x x =--. 23.(1)见解析;(2)见解析;(3)3023x x ⎧⎫<<⎨⎬⎩⎭【分析】(1)由()m f m f n n ⎛⎫=⋅⎪⎝⎭,结合题意即可得结果; (2)利用函数单调性的定义证明即可;(3)将原不等式等价转化为()()324f x f x +>,结合定义域和单调性即可得结果. 【详解】解:(1)由题可得()()m m f m f n f f n n n ⎛⎫⎛⎫=⋅=+ ⎪ ⎪⎝⎭⎝⎭, 即()()m f f m f n n ⎛⎫=- ⎪⎝⎭;(2)任取1x ,()20,x ∈+∞,且12x x <,则211x x >, 由(1)得:()()22110x f x f x f x ⎛⎫-=>⎪⎝⎭,即()()21f x f x >, ()f x ∴在()0,∞+上是增函数;(3)()21f =,()()()2224f f f ∴=+=,()()()3428f f f =+=,()()333f x f x +->, ()()()338f x f x f +>+,()()324f x f x +>,又()f x 在()0,∞+上为增函数,30,240,324,x x x x +>⎧⎪∴>⎨⎪+>⎩, 解得:0323x <<, 故不等式()()333f x f x +->的解集为3023x x ⎧⎫<<⎨⎬⎩⎭. 【点睛】关键点点睛:本题解题的关键是利用()m f m f n n ⎛⎫=⋅ ⎪⎝⎭,再结合题意,即可判断函数单调性和解不等式.24.(1)4a =;(2)当2x =时,()g x 取得最小值为5. 【分析】(1)利用不等式的解集,推出对应方程的根,然后求解a . (2)化简函数的解析式,利用基本不等式转化求解函数的最值即可. 【详解】(1)因为()00x af x x+<⇔<的解集为()4,0-, 故()0x af x x+==一个根为-4, 404a-+=- 得4a =(2)()()441x g x x f x x x x x+=+=+=++因为0x >,所以4115x x ++≥=, 当且仅当4x x=,即2x =时取等号; 所以当2x =时,()g x 取得最小值为5. 【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.25.(1)21()2f x x x =-+;(2)存在,40m n =-⎧⎨=⎩.【分析】(1)由(1)(1)f x f x +=-,得到20b a +=,再由()f x x ≤恒成立,列出方程组,求得,a b 的值,得到函数的解析式;(2)假设存在()m n m n <、,根据题意得到[],m n 必在对称轴的左侧,且()f x 在[],m n 单调递增,列出方程组,即可求解. 【详解】(1)因为22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++,22(1)(1)(1)(2)f x a x b x ax a b x a b -=-+-=-+++,由()()11f x f x +=-可知,20a b +=,由于对一切x ∈R ,都有()f x x ≤即2()(1)0f x x ax b x -=+-≤,于是由二次函数的性质可得()()21400*a b a <⎧⎪⎨∆=--⨯≤⎪⎩由()*知()210b -≤,而()210b -≥,所以()210b -=即1b =,将1b =代入20a b +=得12a =-, 所以21()2f x x x =-+; (2)因为221111()(1)2222f x x x x =-+=--+≤, 若存在满足条件的实数(),m n m n <则必有132n ≤,解得16n ≤, 又因为()f x 在(],1-∞上单调递增,所以()f x 在[],m n 上单调递增.所以()()33fm m fn n ⎧=⎪⎨=⎪⎩,22132132m m mn n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得40m n =-⎧⎨=⎩或04m n =⎧⎨=-⎩,因为m n <,所以40m n =-⎧⎨=⎩,故存在40m n =-⎧⎨=⎩满足条件.【点睛】关键点点睛:本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质,以及根据函数的值域判断出函数在[,]m n 上的单调性是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 26.(1)()1(2)1f x x x =≥-;(2)()f x 在[)2,+∞上递减,证明见解析. 【分析】 (1)令1(2)t t x =≥,则1x t=,求得()1(2)1f t t t =≥-,从而可得答案. (2)()f x 在[)2,+∞上递减,证任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>,可证明()()120f x f x -<,从而可得结论.【详解】 (1)令1(2)t t x =≥,则1x t= 因为11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭所以()111(2)11t tf t t t ==≥--, 所以()1(2)1f x x x =≥-; (2)()f x 在[)2,+∞上递减,证明如下:任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>,因为()()12121111f x f x x x -=--- ()()()()21121111x x x x ---=-- ()()2112011x x x x -=<--所以()()12f x f x <,则()f x 在[)2,+∞上递减.【点睛】方法点睛:利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x -> 可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数.。

高一数学必修一第二章测试题及答案

高一数学必修一第二章测试题及答案

人教版高中数学必修一第二章 《一元二次函数、方程和不等式》测试题及答案解析(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式x 2≥2x 的解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2}D .{x |x ≤0或x ≥2}解析:选D 由x 2≥2x 得x (x -2)≥0,解得x ≤0或x ≥2,故选D. 2.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >BD .A >B解析:选B ∵A-B =a 2+3ab -(4ab -b 2)=⎝ ⎛⎭⎪⎫a -b 22+34b 2≥0,∴A ≥B.3.不等式组⎩⎨⎧x 2-1<0,x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}解析:选C 由⎩⎨⎧x2-1<0,x2-3x<0,得⎩⎨⎧-1<x<1,0<x<3,所以0<x<1,即不等式组的解集为{x|0<x<1},故选C.4.已知2a +1<0,则关于x 的不等式x 2-4ax -5a 2>0的解集是( ) A .{x |x <5a 或x >-a } B .{x |x >5a 或x <-a } C .{x |-a <x <5a }D .{x |5a <x <-a }解析:选A 方程x 2-4ax -5a 2=0的两根为-a ,5a.因为2a +1<0,所以a<-12,所以-a>5a.结合二次函数y =x 2-4ax -5a 2的图象,得原不等式的解集为{x|x<5a 或x>-a},故选A.5.已知a ,b ,c ∈R ,则下列说法中错误的是( ) A .a >b ⇒ac 2≥bc 2 B.a c >b c,c <0⇒a <b C .a 3>b 3,ab >0⇒1a <1bD .a 2>b 2,ab >0⇒1a <1b解析:选D 对于A ,c 2≥0,则由a>b 可得ac 2≥bc 2,故A 中说法正确; 对于B ,由a c >b c ,得a c -b c =a -bc >0,当c<0时,有a -b<0,则a<b ,故B 中说法正确;对于C ,∵a 3>b 3,ab>0,∴a 3>b 3两边同乘1a3b3,得到1b3>1a3,∴1a <1b,故C 中说法正确;对于D ,∵a 2>b 2,ab>0,∴a 2>b 2两边同乘1a2b2, 得到1b2>1a2,不一定有1a <1b,故D 中说法错误.故选D.6.若关于x 的一元二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( )A .m ≤-2或m ≥2B .-2≤m ≤2C .m <-2或m >2D .-2<m <2解析:选B 因为不等式x 2+mx +1≥0的解集为R ,所以Δ=m 2-4≤0,解得-2≤m≤2.7.某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-300x +80 000,为使平均处理成本最低,该厂每月处理量应为( )A .300吨B .400吨C .500吨D .600吨解析:选B 由题意,月处理成本y(元)与月处理量x(吨)的函数关系为y=12x 2-300x +80 000,所以平均处理成本为s =y x =12x2-300x +80 000x =x 2+80 000x -300,其中300≤x≤600,又x 2+80 000x-300≥2x 2·80 000x-300=400-300=100,当且仅当x 2=80 000x 时等号成立,所以x =400时,平均处理成本最低.故选B.8.设正数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y-2z的最大值是( ) A .0 B .1 C.94D .3解析:选B 由题意得xy z =xy x2-3xy +4y2=1x y +4y x -3≤14-3=1,当且仅当x=2y 时,等号成立,此时z =2y 2.故2x +1y -2z =-1y2+2y =-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时,等号成立,故所求的最大值为1.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知不等式ax 2+bx +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <2,则下列结论正确的是( )A .a >0B .b >0C .c >0D .a +b +c >0解析:选BCD 因为不等式ax 2+bx +c>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x<2,故相应的二次函数y =ax 2+bx +c 的图象开口向下,所以a<0,故A 错误;易知2和-12是关于x 的方程ax 2+bx +c =0的两个根,则有c a =2×⎝ ⎛⎭⎪⎫-12=-1<0,-b a =2+⎝ ⎛⎭⎪⎫-12=32>0,又a<0,故b>0,c>0,故B 、C 正确;因为ca =-1,所以a +c =0,又b>0,所以a +b +c>0,故D 正确.故选B 、C 、D.10.下列结论中正确的有( )A .若a ,b 为正实数,a ≠b ,则a 3+b 3>a 2b +ab 2B .若a ,b ,m 为正实数,a <b ,则a +m b +m <a bC .若a c 2>bc2,则a >bD .当x >0时,x +2x的最小值为2 2解析:选ACD 对于A ,∵a ,b 为正实数,a ≠b ,∴a 3+b 3-(a 2b +ab 2)=(a -b)2(a +b)>0,∴a 3+b 3>a 2b +ab 2,故A 正确;对于B ,若a ,b ,m 为正实数,a<b ,则a +m b +m -a b =m (b -a )b (b +m )>0,则a +m b +m >ab,故B 错误;对于C ,若a c2>bc2,则a>b ,故C 正确; 对于D ,当x>0时,x +2x 的最小值为22,当且仅当x =2时取等号,故D正确.故选A 、C 、D.11.下列各式中,最大值是12的是( )A .y =x 2+116x 2B .y =x 1-x 2(0≤x ≤1)C .y =x 2x 4+1D .y =x +4x +2(x >-2) 解析:选BCA中,y =x 2+116x2≥2x2·116x2=12⎝ ⎛⎭⎪⎫当且仅当x =±12时取等号,因此式子无最大值;B 中,y 2=x 2(1-x2)≤⎝⎛⎭⎪⎫x2+1-x222=14,y ≥0, ∴0≤y ≤12,当且仅当x =22时y 取到最大值12; C 中,当x =0时,y =0,当x≠0时,y =1x2+1x2≤12x2·1x2=12,当且仅当x =±1时y 取到最大值12;D 中,y =x +4x +2=x +2+4x +2-2≥2(x +2)·4x +2-2=2(x>-2)(当且仅当x =0时取等号),无最大值,故选B 、C.12.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏,若售价每提高1元,则日销售量将减少2盏.为了使这批台灯每天获得400元以上(不含400)的销售收入,则这批台灯的售价x (元)的取值可以是( )A .10B .15C .16D .20解析:选BC 设这批台灯的售价定为x 元,x ≥15,则[30-(x -15)×2]·x>400,即x 2-30x +200<0,因为方程 x 2-30x +200=0的两根分别为x 1=10,x 2=20,所以x 2-30x +200<0的解集为{x|10<x<20},又因为x≥15,所以15≤x<20.故选B 、C.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知a >b ,a -1a >b -1b同时成立,则ab 应满足的条件是________.解析:因为a -1a >b -1b ,所以⎝ ⎛⎭⎪⎫a -1a -⎝ ⎛⎭⎪⎫b -1b =(a -b )(ab +1)ab >0.又a>b ,即a -b>0,所以ab +1ab>0,从而ab(ab +1)>0,所以ab<-1或ab>0.答案:ab<-1或ab>014.一个大于50小于60的两位数,其个位数字b 比十位数字a 大2.则这个两位数为________.解析:由题意知⎩⎨⎧50<10a +b<60,b -a =2,0<a ≤9,0≤b ≤9,解得4411<a<5311. 又a∈N*,∴a =5.∴b =7,∴所求的两位数为57. 答案:5715.一元二次不等式x 2+ax +b >0的解集为{x |x <-3或x >1},则a +b =________,一元一次不等式ax +b <0的解集为________.解析:由题意知,-3和1是方程x 2+ax +b =0的两根, 所以⎩⎨⎧-3+1=-a ,-3×1=b ,解得⎩⎨⎧a =2,b =-3, 故a +b =-1.不等式ax +b<0即为2x -3<0, 所以x<32.答案:-1⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<32 16.已知正数x ,y 满足x +2y =2,则x +8yxy的最小值为________. 解析:因为x ,y 为正数,且x +2y =2,所以x 2+y =1,所以x +8yxy =⎝ ⎛⎭⎪⎫1y +8x ·⎝ ⎛⎭⎪⎫x 2+y =x 2y +8yx +5≥2x 2y ·8y x +5=9,当且仅当x =4y =43时,等号成立,所以x +8yxy的最小值为9. 答案:9四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解下列不等式: (1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1.解:(1)原不等式可化为2x 2-3x -2<0,所以(2x +1)(x -2)<0,故原不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x<2. (2)原不等式可化为2x 2-x -1≥0. 所以(2x +1)(x -1)≥0,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x≤-12或x≥1.18.(本小题满分12分)当p ,q 都为正数且p +q =1时,试比较代数式(px +qy )2与px 2+qy 2的大小.解:(px +qy)2-(px 2+qy 2)=p(p -1)x 2+q(q -1)y 2+2pqxy. 因为p +q =1,所以p -1=-q ,q -1=-p ,所以(px +qy)2-(px 2+qy 2)=-pq(x 2+y 2-2xy)=-pq(x -y)2. 因为p ,q 都为正数,所以-pq(x -y)2≤0,因此(px +qy)2≤px 2+qy 2,当且仅当x =y 时等号成立.19.(本小题满分12分)已知关于x 的方程x 2-2x +a =0.当a 为何值时, (1)方程的一个根大于1,另一个根小于1?(2)方程的一个根大于-1且小于1,另一个根大于2且小于3?解:(1)已知方程的一个根大于1,另一个根小于1,结合二次函数y =x 2-2x +a 的图象(如图所示)知,当x =1时,函数值小于0,即12-2+a<0,所以a<1.因此a 的取值范围是{a|a<1}.(2)由方程的一个根大于-1且小于1,另一个根大于2且小于3,结合二次函数y =x 2-2x +a 的图象(如图所示)知,x 取-1,3时函数值为正,x 取1,2时函数值为负,即⎩⎨⎧1+2+a>0,1-2+a<0,4-4+a<0,9-6+a>0,解得-3<a<0.因此a 的取值范围是{a|-3<a<0}.20.(本小题满分12分)已知a >0,b >0且1a +2b=1.(1)求ab 的最小值; (2)求a +b 的最小值.解:(1)因为a>0,b>0且1a +2b =1,所以1a +2b≥21a ·2b=22ab,则22ab≤1, 即ab≥8,当且仅当⎩⎪⎨⎪⎧1a +2b =1,1a =2b ,即⎩⎨⎧a =2,b =4时取等号,所以ab 的最小值是8. (2)因为a>0,b>0且1a +2b =1,所以a +b =⎝ ⎛⎭⎪⎫1a +2b (a +b)=3+b a +2ab≥3+2b a ·2ab=3+22, 当且仅当⎩⎪⎨⎪⎧1a +2b =1,b a =2a b ,即⎩⎪⎨⎪⎧a =1+2,b =2+2时取等号,所以a +b 的最小值是3+2 2.21.(本小题满分12分)设y =ax 2+(1-a )x +a -2.(1)若不等式y ≥-2对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式ax 2+(1-a )x +a -2<a -1(a ∈R).解:(1)ax 2+(1-a)x +a -2≥-2对于一切实数x 恒成立等价于ax 2+(1-a)x +a≥0对于一切实数x 恒成立.当a =0时,不等式可化为x≥0,不满足题意; 当a≠0时,由题意得⎩⎨⎧a>0,(1-a )2-4a2≤0,解得a≥13.所以实数a的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥13.(2)不等式ax 2+(1-a)x +a -2<a -1等价于ax 2+(1-a)x -1<0. 当a =0时,不等式可化为x<1,所以不等式的解集为{x|x<1}; 当a>0时,不等式可化为(ax +1)(x -1)<0,此时-1a<1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x<1; 当a<0时,不等式可化为(ax +1)(x -1)<0,①当a =-1时,-1a=1,不等式的解集为{x|x≠1};②当-1<a<0时,-1a >1,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<1或x>-1a ;③当a<-1时,-1a <1,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<-1a 或x>1. 综上所述,当a<-1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<-1a 或x>1;当a =-1时,不等式的解集为{x|x≠1};当-1<a<0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<1或x>-1a ;当a =0时,不等式的解集为{x|x<1};当a>0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x<1. 22.(本小题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q (万件)与广告费x (万元)之间的关系式为Q =3x +1x +1(x ≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试写出年利润W (万元)与年广告费x (万元)的关系式;(2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少? 解:(1)由题意可得,每年产品的生产成本为(32Q +3)万元,每万件销售价为⎝⎛⎭⎪⎫32Q +3Q ×150%+x Q ×50%万元, ∴年销售收入为⎝⎛⎭⎪⎫32Q +3Q ×150%+x Q ×50%·Q =32(32Q +3)+12x , ∴W =32(32Q +3)+12x -(32Q +3)-x=12(32Q +3)-12x =12(32Q +3-x) =-x2+98x +352(x +1)(x≥0).(2)由(1)得,W =-x2+98x +352(x +1)=-(x +1)2+100(x +1)-642(x +1)=-x +12-32x +1+50.∵x +1≥1,∴x +12+32x +1≥2x +12·32x +1=8, ∴W ≤42,当且仅当x +12=32x +1,即x =7时,W 有最大值42,即当年广告费投入7万元时,企业年利润最大,最大年利润为42万元.。

高一数学必修一第二单元试题

高一数学必修一第二单元试题

第二章 基本初等函数(Ⅰ)一、选择题 1.对数式log32-(2+3)的值是( ).A .-1B .0C .1D .不存在2.当a >1时,在同一坐标系中,函数y =a -x与y =log a x 的图象是( ).A B C D3.如果0<a <1,那么下列不等式中正确的是( ). A .(1-a )31>(1-a )21 B .log 1-a (1+a )>0 C .(1-a )3>(1+a )2D .(1-a )1+a>14.函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象如图所示,则a ,b ,c ,d 的大小顺序是( ).A .1<d <c <a <bB .c <d <1<a <bC .c <d <1<b <aD .d <c <1<a <b5.已知f (x 6)=log 2 x ,那么f (8)等于( ). A .34B .8C .18D .21 6.如果函数f (x )=x 2-(a -1)x +5在区间⎪⎭⎫ ⎝⎛121 ,上是减函数,那么实数a 的取值范围是( ).A . a ≤2B .a >3C .2≤a ≤3D .a ≥37.函数f (x )=2-x-1的定义域、值域是( ). A .定义域是R ,值域是RB .定义域是R ,值域为(0,+∞)C .定义域是R ,值域是(-1,+∞)D .定义域是(0,+∞),值域为R8.已知-1<a <0,则( ).(第4题)A .a <a⎪⎭⎫ ⎝⎛21<2aB .2a<a⎪⎭⎫ ⎝⎛21<aC .2a<a<a⎪⎭⎫⎝⎛21D .a⎪⎭⎫ ⎝⎛21<a <2a9.已知函数f (x )=⎩⎨⎧+-1 log 1≤413> ,,)(x x x a x a a是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1)B .⎪⎭⎫⎝⎛310,C .⎪⎭⎫⎢⎣⎡3171,D .⎪⎭⎫⎢⎣⎡171,10.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ). A .(0,1) B .(1,2) C .(0,2) D .[2,+∞)二、填空题11.满足2-x >2x的x 的取值范围是 .12.已知函数f (x )=(-x 2+4x +5),则f (3)与f (4)的大小关系为 . 13.64log 2log 273的值为_____.14.已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x 则⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为_____.15.函数y =)-(34log 5.0x 的定义域为 . 16.已知函数f (x )=a -121+x,若f (x )为奇函数,则a =________. 三、解答题17.设函数f (x )=x 2+(lg a +2)x +lg b ,满足f (-1)=-2,且任取x ∈R ,都有f (x )≥2x ,求实数a ,b 的值.18.已知函数f (x)=lg(ax2+2x+1) .(1)若函数f (x)的定义域为R,求实数a的取值范围;(2)若函数f (x)的值域为R,求实数a的取值范围.19.求下列函数的定义域、值域、单调区间:(1)y=4x+2x+1+1;(2)y=2+3231x-x⎪⎭⎫⎝⎛.20.已知函数f(x)=log a(x+1),g(x)=log a(1-x),其中a>0,a≠1.(1)求函数f(x)-g(x)的定义域;(2)判断f(x)-g(x)的奇偶性,并说明理由;(3)求使f(x)-g(x)>0成立的x的集合.参考答案一、选择题 1.A 解析:log 32-(2+3)=log 32-(2-3)-1,故选A . 2.A解析:当a >1时,y =log a x 单调递增,y =a -x单调递减,故选A . 3.A解析:取特殊值a =21,可立否选项B ,C ,D ,所以正确选项是A .4.B解析:画出直线y =1与四个函数图象的交点,它们的横坐标的值,分别为a ,b ,c ,d 的值,由图形可得正确结果为B .5.D解析:解法一:8=(2)6,∴ f (26)=log 22=21. 解法二:f (x 6)=log 2 x ,∴ f (x )=log 26x =61log 2 x ,f (8)=61log 28=21. 6.D解析:由函数f (x )在⎪⎭⎫⎝⎛121 ,上是减函数,于是有21-a ≥1,解得a ≥3. 7.C解析:函数f (x )=2-x-1=x ⎪⎭⎫ ⎝⎛21-1的图象是函数g (x )=x⎪⎭⎫ ⎝⎛21图象向下平移一个单位所得,据函数g (x )=x⎪⎭⎫⎝⎛21定义域和值域,不难得到函数f (x )定义域是R ,值域是(-1,+∞).8.B解析:由-1<a <0,得0<2a<1,0.2a>1,a⎪⎭⎫⎝⎛21>1,知A ,D 不正确.当a =-21时,2121-⎪⎭⎫⎝⎛=501.<201.=2120-.,知C 不正确.∴ 2a<a⎪⎭⎫ ⎝⎛21<0.2a.9.C解析:由f (x )在R 上是减函数,∴ f (x )在(1,+∞)上单减,由对数函数单调性,即0<a <1 ①,又由f (x )在(-∞,1]上单减,∴ 3a -1<0,∴ a <31②,又由于由f (x )在R 上是减函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最小值7a -1要大于等于f (x )在[1,+∞)上的最大值0,才能保证f (x )在R 上是减函数.∴ 7a -1≥0,即a ≥71③.由①②③可得71≤a <31,故选C . 10.B解析:先求函数的定义域,由2-ax >0,有ax <2,因为a 是对数的底,故有a >0且a ≠1,于是得函数的定义域x <a2.又函数的递减区间[0,1]必须在函数的定义域内,故有1<a2,从而0<a <2且a ≠1.若0<a <1,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )增大,即函数y =log a (2-ax )在[0,1]上是单调递增的,这与题意不符.若1<a <2,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )减小,即函数y =log a (2-ax )在[0,1]上是单调递减的.所以a 的取值范围应是(1,2),故选择B . 二、填空题11.参考答案:(-∞,0). 解析:∵ -x >x ,∴ x <0. 12.参考答案:f (3)<f (4).解析:∵ f (3)= 8,f (4)= 5,∴ f (3)<f (4). 13.参考答案:21. 解析:64log 2log 273=3lg 2lg ·64lg 27lg =63=21.14.参考答案:41. 解析:⎪⎭⎫⎝⎛91f =log 391=-2,⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛91f f =f (-2)=2-2=41. 15.参考答案:⎥⎦⎤⎝⎛143 ,. 解析:由题意,得 ⎪⎩⎪⎨⎧0 34log 0345.0≥)-(>-x x ⇔ ⎪⎩⎪⎨⎧13443 ≤->x x ∴ 所求函数的定义域为⎥⎦⎤⎝⎛143 ,. 16.参考答案:a =21. 解析:∵ f (x )为奇函数,∴ f (x )+f (-x )=2a -121+x -121+x -=2a -1212++x x =2a -1=0,∴ a =21. 三、解答题17.参考答案:a =100,b =10.解析:由f (-1)=-2,得1-lg a +lg b =0 ①,由f (x )≥2x ,得x 2+x lg a +lg b ≥0(x ∈R ).∴Δ=(lg a )2-4lg b ≤0 ②.联立①②,得(1-lg b )2≤0,∴ lg b =1,即b =10,代入①,即得a =100. 18.参考答案:(1) a 的取值范围是(1,+∞) ,(2) a 的取值范围是[0,1]. 解析:(1)欲使函数f (x )的定义域为R ,只须ax 2+2x +1>0对x ∈R 恒成立,所以有⎩⎨⎧0 <440a -a >,解得a >1,即得a 的取值范围是(1,+∞); (2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞) 的所有值. ①当a =0时,a x 2+2x +1=2x +1,当x ∈(-21,+∞)时满足要求; ②当a ≠0时,应有⎩⎨⎧0 ≥440a -a =>Δ 0<a ≤1.当x ∈(-∞,x 1)∪(x 2,+∞)时满足要求(其中x 1,x 2是方程ax 2+2x +1=0的二根).综上,a 的取值范围是[0,1].19.参考答案:(1)定义域为R .令t =2x(t >0),y =t 2+2t +1=(t +1)2>1, ∴ 值域为{y | y >1}.t =2x 的底数2>1,故t =2x 在x ∈R 上单调递增;而 y =t 2+2t +1在t ∈(0,+∞)上单调递增,故函数y =4x+2x +1+1在(-∞,+∞)上单调递增.(2)定义域为R .令t =x 2-3x +2=223⎪⎭⎫ ⎝⎛x --41⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡,+∞41-t ∈. ∴ 值域为(0,43].∵ y =t⎪⎭⎫⎝⎛31在t ∈R 时为减函数,∴ y =2+3-231x x ⎪⎭⎫⎝⎛在 ⎝⎛-∞,⎪⎭⎫23上单调增函数,在 ⎝⎛23,+∞⎪⎪⎭⎫为单调减函数. 20.参考答案:(1){x |-1<x <1}; (2)奇函数;(3)当0<a <1时,-1<x <0;当a >1时,0<x <1.解析:(1)f (x )-g (x )=log a (x +1)-log a (1-x ),若要式子有意义,则 即-1<x <1,所以定义域为{x |-1<x <1}.(2)设F (x )=f (x )-g (x ),其定义域为(-1,1),且F (-x )=f (-x )-g (-x )=log a (-x +1)-log a (1+x )=-[log a (1+x )-log a (1-x )]=-F (x ),所以f (x )-g (x )是奇函数.(3)f (x )-g (x )>0即log a (x +1)-log a (1-x )>0有log a (x +1)>log a (1-x ).当0<a <1时,上述不等式 解得-1<x <0;当a >1时,上述不等式 解得0<x <1. x +1>01-x >0x +1>01-x >0 x +1<1-x x +1>0 1-x >0 x +1>1-x。

(典型题)高中数学必修一第二单元《函数》测试题(答案解析)

(典型题)高中数学必修一第二单元《函数》测试题(答案解析)

一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2 D .3,24⎡⎫⎪⎢⎣⎭3.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x的最大值为2 C .()F x的最大值为7- D .()F x 的最大值为3,最小值为-14.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -5.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦6.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >7.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-8.若函数22,2 ()13,22x ax xf xa xx⎧-≤⎪=⎨->⎪⎩是R上的单调减函数,则实数a的取值范围为()A.115,24⎡⎤⎢⎥⎣⎦B.4,215⎡⎤⎢⎥⎣⎦C.41,152⎡⎤⎢⎥⎣⎦D.152,4⎡⎤⎢⎥⎣⎦9.设二次函数2()()f x x bx b=+∈R,若函数()f x与函数(())f f x有相同的最小值,则实数b的取值范围是()A.(,2]-∞B.(,0]-∞C.(,0][2,)-∞+∞D.[2,)+∞10.已知函数224()3f x xx=-+,()2g x kx=+,若对任意的1[1,2]x∈-,总存在2[1,3]x∈,使得12()()g x f x>,则实数k的取值范围是().A.1,12⎛⎫⎪⎝⎭B.12,33⎛⎫- ⎪⎝⎭C.1,12⎛⎫-⎪⎝⎭D.以上都不对11.已知函数()f x的定义域为R,(1)f x-是奇函数,(1)f x+为偶函数,当11x-≤≤时,()13131xxf x+-=+,则以下各项中最小的是()A.()2018f B.()2019f C.()2020f D.()2021f12.如图是定义在区间[]5,5-上的函数()y f x=的图象,则下列关于函数()f x的说法错误的是()A.函数在区间[]53-,-上单调递增B.函数在区间[]1,4上单调递增C.函数在区间][3,14,5⎡⎤⋃⎣⎦-上单调递减D.函数在区间[]5,5-上没有单调性二、填空题13.函数()2f x x a=-在区间[]1,1-上的最大值()M a的最小值是__________.14.已知函数(3)5,1()2,1a x xf x axx--≤⎧⎪=⎨->⎪⎩是R上的增函数,则a的取值范围是________.15.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________16.若函数()()21,f x ax bx a b =++∈R 满足:()()123f x f x x +-=+.设()f x 在[](),2t t t R +∈上的最小值为()g t ,则()g t =____.17.已知函数(31)4,2(),2a x a x f x ax x -+<⎧=⎨-≥⎩满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-,则a 的取值范围是______________.18.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________19.二次函数()222f x x x =-+在区间[]0,3上的最大值为________.20.若233()1x x f x x -+=-,()2g x x =+,求函数()()y f g x =的值域________.三、解答题21.已知函数2()7f x x mx m =++-,m R ∈.(1)若()f x 在区间[2,4]上单调递增,求m 的取值范围; (2)求()f x 在区间[1,1]-上的最小值()g m ;22.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式.23.定义在[]1,1-上的奇函数()f x ,当10x -≤<时,23()6x x xf x +=. (1)求()f x 在[]1,1-上的解析式;(2)求()f x 的值域; (3)若实数a 满足1()()0a f f a a-+<,求实数a 的取值范围. 24.已知函数()0ky x k x=+>在区间(k 单调递减,在区间),k +∞单调递增.(1)求函数2y x x=+在区间(),0-∞的单调性;(只写出结果,不需要证明) (2)已知函数()()2131x ax f x a x ++=∈+R ,若对于任意的x N *∈,有()5f x ≥恒成立,求实数a 的取值范围.25.已知二次函数()2f x ax bx =+满足()20f =,且方程()f x x =有两个相等实根.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使()f x 的定义域是[],m n ,值域是[]3,3m n .若存在,求,m n 的值,若不存在,请说明理由.26.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的图象过()0,1A ,()1,5B 两点,且它的对称轴的方程为12x =-.(1)求该二次函数的表达式;(2)当26x ≤≤时,函数()22y ax b m x c =+-+的最大值为()G m ,最小值为()H m ,令()()()h m G m H m =-,求()h m 的表达式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =, 当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.D解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.3.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值,所以由232||2x x x -=-得2x =2x =结合函数图象可知当2x =()F x 有最大值7- 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =+或27x =-,得出答案,属于中档题. 4.A解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--, 当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.5.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章一、单选题1.已知集合A ={x‖x ―2|<1}, B ={x |x 2―2x ―3<0}.则A ∩B =A .{x |1<x <3}B .{x |―1<x <3}C .{x |―1<x <2}D .{x |x >3}2.下列结论成立的是( )A .若ac >bc ,则a >bB .若a >b ,则a 2>b 2C .若a >b ,c <d ,则a+c >b+dD .若a >b ,c >d ,则a ﹣d >b ﹣c3.已知关于 x 的不等式 a x 2―2x +3a <0 在 (0,2] 上有解,则实数 a 的取值范围是( )A .(―∞,33)B .(―∞,47)C .(33,+∞)D .(47,+∞)4.当x >3时,不等式x+1x ―1≥a 恒成立,则实数a 的取值范围是( ) A .(﹣∞,3]B .[3,+∞)C .[ 72,+∞)D .(﹣∞, 72]5.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a +b ≥―2|ab |C .a 2+b 2≥―2abD .a +b ≤2|ab |6.已知 x >2 ,函数 y =4x ―2+x 的最小值是( ) A .5B .4C .8D .67.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xy z取得最大值时,2x +1y ―2z 的最大值是( )A .0B .1C .94D .38.已知正数x ,y 满足x+y =1,且 x 2y +1+y 2x +1≥m ,则m 的最大值为( ) A .163B .13C .2D .4二、多选题9.设正实数a ,b 满足a +b =1,则( )A .a 2b +b 2a ≥14B .1a +2b +12a +b ≥43C .a 2+b 2≥12D .a 3+b 3≥1410.若a ,b ∈(0,+∞),a +b =1,则下列说法正确的有( )A .(a +1a)(b +1b )的最小值为4B .1+a +1+b 的最大值为6C.1a +2b的最小值为3+22D.2aa2+b+ba+b2的最大值是3+23311.已知a,b是正实数,若2a+b=2,则( )A.ab的最大值是12B.12a+1b的最小值是2C.a2+b2的最小值是54D.14a+b+2a+b的最小值是3212.已知a,b,c为实数,则下列命题中正确的是( )A.若a c2<bc2,则a<b B.若ac>bc,则a>bC.若a>b,c>d,则a+c>b+d D.若a<b<0,则1a >1 b三、填空题13.不等式﹣2x(x﹣3)(3x+1)>0的解集为 .14.已知正实数x,y满足xy―x―2y=0,则x+y的最小值是 . 15.已知a,b均为正数,且ab―a―2b=0,则a24+b2的最小值为 .16.以max A表示数集A中最大的数.已知a>0,b>0,c>0,则M=max{1c +ba,1ac+b,ab+c}的最小值为 四、解答题17.已知U=R且A={x∣x2―5x―6<0},B={x∣―4≤x≤4},求:(1)A∪B;(2)(C U A)∩(C U B).18.解下列关于x的不等式:(1)x2―2x―3≤0;(2)―x2+4x―5>0;(3)x2―ax+a―1≤019.已知关于x的不等式2x2+x>2ax+a(a∈R).(1)若a=1,求不等式的解集;(2)解关于x的不等式.20.某县一中计划把一块边长为20米的等边三角形ABC的边角地辟为植物新品种实验基地,图中DE 需把基地分成面积相等的两部分,D在AB上,E在AC上.(1)设AD=x(x≥10),ED=y,试用x表示y的函数关系式;(2)如果DE是灌溉输水管道的位置,为了节约,则希望它最短,DE的位置应该在哪里?如果DE 是参观线路,则希望它最长,DE的位置又应该在哪里?说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】B,C,D10.【答案】B,C,D11.【答案】A,B12.【答案】A,C,D13.【答案】(﹣∞,﹣1)∪(0,3)314.【答案】3+2215.【答案】816.【答案】217.【答案】(1)解:因为A={x∣x2―5x―6<0}=(―1,6),且B={x∣―4≤x≤4}=[―4,4],则A ∪B=[―4,6).(2)解:由(1)可知,A=(―1,6),B=[―4,4],则C U A=(―∞,―1]∪[6,+∞),C U B=(―∞,―4)∪(4,+∞),所以(C U A)∩(C U B)=(―∞,―4)∪[6,+∞).18.【答案】(1)解:x2―2x―3≤0,(x―3)(x+1)≤0⇒x≤―1或x≥3,故解集为: (―∞,―1]∪[3,+∞).(2)解:―x2+4x―5>0,∴x2―4x+5<0⇒(x―2)2+1<0⇒x无解,故解集为: ∅(3)解:x2―ax+a―1≤0,∴[x―(a―1)](x―1)≤0,当a―1<1,即a<2时,解集为[a―1,1],当a―1=1,即a=2时,解集为x=1,当 a ―1>1 ,即 a >2 时,解集为 [1,a ―1] .所以:当 a <2 时,解集为 [a ―1,1] ,当 a =2 时,解集为 x =1 ,当 a >2 时,解集为 [1,a ―1] .19.【答案】(1)解:2x 2+x >2ax +a ,∴x (2x +1)>a (2x +1),∴(x ―a )(2x +1)>0,当a =1时,可得解集为{x |x >1或x <―12}.(2)对应方程的两个根为a ,―12,当a =―12时,原不等式的解集为{x |x ≠―12},当a >―12时,原不等式的解集为{x |x >a 或x <―12},当a <―12时,原不等式的解集为{x |x <a 或x >―12}.20.【答案】(1)解:∵△ABC 的边长是20米,D 在AB 上,则10≤x≤20,S △ADE = 12S △ABC ,∴12 x•AEsin60°= 12 • 34 •(20)2,故AE= 200x,在三角形ADE 中,由余弦定理得:y= x 2+4⋅104x 2―200 ,(10≤x≤20);(2)解:若DE 作为输水管道,则需求y 的最小值, ∴y= x 2+4⋅104x 2―200 ≥ 400―200 =10 2 ,当且仅当x 2= 4⋅104x 2即x=10 2 时“=”成立.。

高一数学必修1第二单元测试(含答案)

高一数学必修1第二单元测试(含答案)

高一数学必修 1 第二单元测试(含答案)一、选择题(每小题 5 分)1、对数函数的图象过点,则()A.B.C.D.2、已知不等式,则实数 的取值范围是( )A. 3、已知 A. 4、函数 A.B.或C.D.或是其定义域上的增函数,那么 的取值范围是( )B.C.D.的图象可能是( )C.D.B.5、已知,且,则 的值是( )A. 6、已知 A.m<n<p 7、设函数 关系为( ) A. C. 8、若B.B.m<p<n(且C.D.,则这三个数的大小关系是( )C.p<m<nD.p<n<m)在上单调递增,则与,则B. D.不确定 用 表示为( )的大小A.B.C.D.二、填空题(每小题 5 分)9、已知函数 的取值范围是__________.,且 ≠1 ,如果对于任意 ∈[3,+∞)都有成立,则10、函数的定义域为__________.11、已知函数若,则 __________.12、函数的最小值是__________.三、解答题(本大题共 3 小题,共 40 分。

解答应写出文字说明、证明过程或演算步骤)13、(1)已知,试用 表示;(2)化简求值:14、已知在区间上是增函数,求 的取值范围.15、已知函数 (Ⅰ)求函数 (Ⅱ)判断函数(Ⅲ)求使的定义域; 的奇偶性,并予以证明;成立的 的集合.,(其中,且)第 1 题答案 A 第 1 题解析设对数函数为,则所以,故选 A.答案解析第 2 题答案 D 第 2 题解析∵,∴,∴或,∴或,故选 .第 3 题答案 B 第 3 题解析 由题意得:或,不符合题意; ,故选 .第 4 题答案 D 第 4 题解析解析:由得函数的定义域为,因此排除选项 A、B,又因为在上单调递增,所以 在上单调递减,由此排除 C 选项,故选 D.第 5 题答案 B第 5 题解析由得到,,且,代入到得:,即等价于 则,故选,所以,又第 6 题答案 C第 6 题解析根据题意得:,所以 p<m<n,故选 C., ,第 7 题答案 B第 7 题解析易知为偶函数,所以在上单调递减,所以,所以,所以.第 8 题答案 A 第 8 题解析.第 9 题答案 (1,3]∪[ ,1)第 9 题解析当时,对于 ∈[3,+∞),都有.所以,,在[3,+∞)上为增函数,∴对于任意 ∈[3,+∞),有.因此,要使对于任意 ∈[3,+∞)都成立.只要即可,∴.当时,对于 ∈[3,+∞),有,∴.∵在[3,+∞)上为减函数,∴在[3,+∞)上为增函数.∴对于任意 ∈[3,+∞)都有.因此,要使对于任意 ∈[3,+∞)都成立,只要成立即可,∴,即,∴.综上,使对任意 ∈[3,+∞)都成立的 a 的取值范围是:(1,3]∪[ ,1).第 10 题答案 第 10 题解析(1,2]由题意可得,解得 1<x≤2,故函数的定义域为:(1,2],故答案为:(1,2]第 11 题答案第 11 题解析因为,所以当时,得,即当时,得,即所以所求.. ,舍去.第 12 题答案 第 12 题解析 令..由 的最小值是 ,而函数知,函数的定义域是 ; 是增函数,所以原函数的最小值是第 13 题答案 (1);(2).第 13 题解析(1)由对数的运算性质以及换底公式可得.(2) =.第 14 题答案第 14 题解析 令∴在∵在上是减函数,且上是增函数,在上恒成立.∴即,∴,∴满足条件的 a 的取值范围是第 15 题答案(Ⅰ)(Ⅱ)奇函数(Ⅲ)当时,不等式的解集为或;当时,不等式解集为空集.第 15 题解析(1)由,解得;所求定义域为 (Ⅱ)令 定义域为. .∴为奇函数.(Ⅲ)所以当时,,得当时,.不等式解集为空集.综上所述:当时,不等式的解集为当时,不等式解集为空集..或;或;。

完整版)高中数学必修一第二章测试题(含答案)

完整版)高中数学必修一第二章测试题(含答案)

完整版)高中数学必修一第二章测试题(含答案)1.已知p>q>1,0<a<1,则下列各式中正确的是:A。

ap>aq B。

pa>qa C。

a-p>a-q D。

p-a>q-a正确答案:A解析:因为p>q>1,所以p-q>0,又因为0<a<1,所以a 的p-q次方小于1,即a^p-q<1,所以ap<aq,即选项A正确。

2.已知f(10x)=x,则f(5)=?A。

105 B。

510 C。

lg10 D。

lg5正确答案:B解析:将f(10x)=x代入x=5/10=1/2中,得到f(1/2)=5,又因为f(5)=f(1/2)/10=5/10=1/2,所以选项B正确。

3.当a≠0时,函数y=ax+b和y=ba^x的图象只可能是?正确答案:直线和指数函数曲线解析:当a=1时,y=x+b和y=be^x,即两个函数都是直线;当a>1时,y=ax+b的图象是一条上升的直线,y=ba^x的图象是一条上升的指数函数曲线;当0<a<1时,y=ax+b的图象是一条下降的直线,y=ba^x的图象是一条下降的指数函数曲线。

4.当a≠1时,函数y=a^(x+b)和y=b^(ax)的图象只可能是?正确答案:指数函数曲线解析:y=a^(x+b)可以化为y=a^b*a^x,因此是一条上升的指数函数曲线;y=b^(ax)可以化为y=(b^a)^x,因此也是一条上升的指数函数曲线。

5.设y1=4,y2=80.90.48,y3=1/2,则递增区间是?正确答案:(0,+∞)解析:因为y1<y3<y2,所以递增区间是(0,+∞)。

6.下列函数中,在区间(0,+∞)上为增函数的是?A。

y=ln(x+2) B。

y=-x+1 C。

y=1/(1+x) D。

y=sin(x)正确答案:A解析:求导可得y'=(1/(x+2))>0,所以y在区间(0,+∞)上为增函数,因此选项A正确。

高一数学必修一第二单元测试题及答案

高一数学必修一第二单元测试题及答案

高一数学必修一第二单元测试题及答案一、选择题1.(20 13年高考四川卷)设集合a={1,2,3},集合b={ -2,2},则a∩b等于( b )(a) (b){2}(c){-2,2} (d){-2,1,2,3}解析:a∩b={2},故挑选b.(a){2} (b){0,2}(c){-1,2} (d){-1,0,2}解析:依题意得集合p={-1,0,1},(a)1个 (b)2个 (c)4个 (d)8个4.(年高考全国新课标卷ⅰ)已知集合a={x|x2-2x>0},b={x|-(a)a∩b= (b)a∪b=r解析:a={x|x>2或x<0},∴a∪b=r,故挑选b.5.已知集合m={x ≥0,x∈r},n={y|y=3x2+1,x∈r},则m∩n等于( c )(a) (b){x|x≥1}(c){x|x>1} (d){x|x≥1或x<0}解析:m={x|x≤0或x>1},n={y|y≥1}={x|x≥1}.∴m∩n={x|x>1},故选c.6.设子集a={x + =1},子集b={y - =1},则a∩b等同于( c )(a)[-2,- ] (b)[ ,2](c)[-2,- ]∪[ ,2] (d)[-2,2]解析:集合a表示椭圆上的点的横坐标的取值范围a=[-2,2],集合b表示双曲线上的点的纵坐标的取值范围b=(-∞,- ]∪[ ,+∞),所以a∩b=[-2,- ]∪[ ,2].故选c.二、填空题7.( 年高考上海卷)若集合a={x|2x+1>0},b={x||x-1|<2},则a∩b=.解析:a={x x>- },b={x|-1所以a∩b={x -答案:{x -解析:因为2∈a,所以 <0,即(2a-1)(a- 2)>0,Champsaura>2或a< .①若3∈a,则 <0,即为( 3a-1)(a-3)>0,解得a>3或a< ,①②挑关连得实数a的值域范围就是∪(2,3].答案: ∪(2,3]若a≠0,b=(- ),∴- =-1或- =1,∴a=1或a=-1.所以a=0或a=1或a=-1组成的集合为{-1,0,1}.答案:{-1,0,1}10.已知集合a={x|x2+ x+1=0},若a∩r= ,则实数m的取值范围是.解析:∵a∩r= ,∴a= ,∴δ=( )2-4<0,∴0≤m<4.答案:[0,4)11.已知集合a={x|x2-2x-3>0},b={x|x2+ax+b≤0},若a∪b=r,a∩b={x| 3解析:a={x|x<-1或x>3},∵a∪b=r,a∩b={x|3∴b={x|-1≤x≤4},即方程x2+ax+b=0的两根为x1=-1,x2=4.∴a=-3,b=-4,∴a+b=-7.答案:-7三、解答题12.未知子集a={-4,2a-1,a2},b={a-5,1-a,9},分别谋适宜以下条件的a的值.(1)9∈(a∩b);(2){9}=a∩b.解:(1) ∵9∈(a∩b),∴2a-1= 9或a2=9,∴a=5或a=3或a=-3.当a=5时,a={-4,9,25},b={0,-4,9};当a=3时,a-5=1-a=-2,不满足集合元素的互异性;当a=-3时,a={-4,-7,9},b={-8,4,9},所以a=5或a=-3.(2)由(1)所述,当a=5时,a∩b={-4,9},相左题意,当a=-3时,a∩b={9}.所以a=- 3.13.已知集合a={x|x2-2x-3≤0};b={x|x2-2mx+m2-4≤0,x∈r,m∈r}.(1)若a∩b=[0,3],谋实数m的值;解:由已知得a={x|-1≤x≤3},b={x|m-2≤x≤m+2}.(1)∵a∩b=[0,3],∴∴m=2.∴m-2>3或m+2<-1,即m>5或m<-3.14.设u=r,子集a={x |x2+3x+2=0},b={x|x2+(m+1)x+m=0},若解:a={x|x=-1或x=-2},方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,当-m=-1,即m=1时,b={-1},当-m≠-1,即m≠1时,b={-1,-m},∴-m=-2,即m=2.所以m=1或m=2.集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合a={1,2},集合b={2,1},则集合a=b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修1第二章单元测试题(A 卷)
班级 姓名 分数
一、选择题:(每小题5分,共30分)。

1.若0a >,且,m n 为整数,则下列各式中正确的是 ( )
A 、m m n n a a a ÷=
B 、n m n m a a a ⋅=⋅
C 、()n m m n a a +=
D 、01n n a a -÷=
2.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )
A .
41 B .2
1 C .
2 D .4 3.式子82log 9log 3
的值为 ( ) (A )23 (B )32
(C )2 (D )3 4.已知(10)x f x =,则()100f = ( ) A 、100 B 、10010 C 、lg10 D 、2 5.已知0<a <1,log log 0a a m n <<,则( ).
A .1<n <m
B .1<m <n
C .m <n <1
D .n <m <1
6.已知3.0log a 2=,3.02b =,2.03.0c =,则c b a ,,三者的大小关系是( )
A .a c b >>
B .c a b >>
C .c b a >>
D .a b c >>
二、填空题:请把答案填在题中横线上(每小题5分,共20分).
7.若24log =x ,则x = .
8.则,3lg 4lg lg +=x x = .
9.函数2)23x (lg )x (f +-=恒过定点 。

10.已知37222
--<x x , 则x 的取值范围为 。

三、解答题:解答应写出文字说明、证明过程或演算步骤(共50分).
11.(16分)计算:
(1)7log 263log 3
3-; (2)63735a a a ÷⋅;
12.(16分)解不等式:(1)13232)1()1(-++<+x x a a
(0≠a )
13.(18分)已知函数f (x )=)2(log 2-x a , 若(f 2)=1;
(1) 求a 的值; (2)求)23(f 的值;(3)解不等式)2()(+<x f x f .
14.(附加题)已知函数()22x ax b f x +=+,且f (1)=52,f (2)=174
.(1)求a b 、;(2)判断f (x )的奇偶性;(3)试判断函数在(,0]-∞上的单调性,并证明;
高一数学必修1第二章单元测试题(B 卷)
班级 姓名 分数
一、选择题:(每小题5分,共30分)。

1.函数y =a x -
2+log (1)a x -+1(a >0,a ≠1)的图象必经过点( ) A .(0,1) B .(1,1) C .(2,1) D .(2,2)
2.已知幂函数f ( x )过点(2,
22),则f ( 4 )的值为 ( ) A 、2
1 B 、 1 C 、
2 D 、8 3.计算()()5lg 2lg 25lg 2lg 22⋅++等于 ( )
A 、0
B 、1
C 、2
D 、3
4.已知ab>0,下面的四个等式中,正确的是( )
A.lg()lg lg ab a b =+;
B.lg lg lg a a b b
=-; C .b a b a lg )lg(212= ; D.1lg()log 10ab ab =. 5.已知3log 2a =,那么33log 82log 6-用a 表示是( )
A 、52a -
B 、2a -
C 、23(1)a a -+
D 、 2
31a a --
6.函数x y 2log 2+=()1≥x 的值域为 ( )
A 、()2,+∞
B 、(),2-∞
C 、[)2,+∞
D 、[)3,+∞
二、填空题:请把答案填在题中横线上(每小题5分,共20分) 7.已知函数)]91(f [f ,)0x (20)(x x log )x (f x 3则,,⎩
⎨⎧≤>=的值为 8.计算:453log 27log 8log 25⨯⨯=
9.若n 3log ,m 2log a a ==,则2n
3m a -=
10.由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13
,问现在价格为8100元的计算机经过15年后,价格应降为 。

三、解答题:解答应写出文字说明、证明过程或演算步骤(共50分).
11.(16分)计算:4160.250321648200549-+---)()()
12.设函数421()log 1
x x f x x x -⎧<=⎨>⎩, 求满足()f x =41的x 的值.
13.(18分)已知函数)1a (log )x (f x a
-= )1a 0a (≠>且,(1)求f(x)的定义域;(2)讨论函数f(x)的增减性。

14.(附加题)已知()2x
f x =,()
g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.
高一数学必修1第二章单元测试题(A 卷)参考答案
一、DDADAA
二、7.2; 8.12; 9.(1,2); 10.x<4 ;
三、11解:(1)原式=9log 763log 7log 63log )7(log 63log 3333233
==-=-=2 (2)原式=226373563735
1a a a
a a a ===÷⋅--+ 12.解:∵0≠a , ∴112>+a ∴ 指数函数y=(12+a )x 在R 上为增函数。

从而有 133-<+x x 解得2>x ∴不等式的解集为:{}2|>x x 13.解:(1) ∵(f 2)=1,∴ 1)22(log 2=-a 即12log =a 解锝 a=2
(2 ) 由(1)得函数)2(log )(22-=x x f ,则)23(f =416log ]2)23[(log 222==-
(3)不等式)2()(+<x f x f 即为]2)2[(log )2(log
2222-+<-x x 化简不等式得)24(log )2(log 2222++<-x x x
∵函数上为增函数在),0(log 2+∞=x y ,∴24222++<-x x x
即 44->x 解得 1->x 所以不等式的解集为:(-1,+)∞
14.(附加题)解:(1)由已知得:
2522217424
a b a b
++⎧=+⎪⎪⎨⎪=+⎪⎩,解得10a b =-⎧⎨=⎩. (2)由上知()22
x x f x -=+.任取x R ∈,则()()()22x x f x f x ----=+=,所以()f x 为
偶函数. (3)可知()f x 在(,0]-∞上应为减函数.下面证明:
任取12(,0]x x ∈-∞、,且12x x <,则
()()()()1122122222x x x x f x f x ---=+-+()12121122()22x x x x =-+-
=()()12121222221
22x x x x x x --,因为12(,0]x x ∈-∞、,且12x x <,所以120221x x <<≤,从而
12220x x -<,122210x x -<,12220x x >, 故()()120f x f x ->,由此得函数()f x 在(,0]-∞上为减函数
高一数学必修1第二章单元测试题(B 卷)参考答案
一、DABCBC
二、7、4
1; 8、9; 9、362 ;10、2400元; 三、11、解:原式=1
411113633224447(23)(22)42214
⨯+⨯-⨯-⨯- =22×33+2 — 7— 2— 1=100 12、解:当x ∈(﹣∞,1)时,由 x -2=41,得x=2,但2∉(﹣∞,1),舍去。

当x ∈(1,+∞)时,由log 4x=4
1,得x=2,2∈(1,+∞)。

综上所述,x=2
}
0|{,10}
0|x {,11
a 0
1(1)a :.13x x <<<>>∴>∴>-x x a x a 函数的定义域为时当函数的定义域为时当解 .
)0,()(,10;
),0()(,1)2(上递增在时当上递增在时当-∞<<+∞>x f a x f a 14.(附加题)解:
g(x)是一次函数 ∴可设g(x)=kx+b (k ≠0) ∴f []()g x =2kx b + g []()f x =k 2x
+b ∴依题意得222225k b k b +⎧=⎪⎨+=⎪⎩即212453
k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ∴()23g x x =-.。

相关文档
最新文档