高中数学必修1第二章基本初等函数单元测试题(含参考答案)

合集下载

(完整word版)高中数学必修一第二章基本初等函数(Ⅰ)单元测试题(含答案)

(完整word版)高中数学必修一第二章基本初等函数(Ⅰ)单元测试题(含答案)

第二章综合测试题本试卷分第Ⅰ卷 (选择题 )和第Ⅱ卷 (非选择题 )两部分.满分 150分.考试时间 120 分钟.第Ⅰ卷 (选择题共 60 分 )一、选择题 (本大题共12 个小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.有以下各式:①na n= a;②若 a∈ R,则 ( a2-a+ 1)0= 1;③343- 5x4+ y3= x3+ y;④=6- 5 2.此中正确的个数是()A . 0B. 1C.2D. 32.三个数 log 21, 20.1,20.2的大小关系是()511A . log 25<20.1<20.2B. log25<20.2<20.111C.20.1<20.2<log 25D. 20.1<log25<20.23. (2016 山·东理, 2)设会合 A={ y|y= 2x, x∈ R} , B= { x|x2- 1<0} ,则 A∪ B= () A . (- 1,1)B. (0,1)C.( -1,+∞ )D. (0,+∞ )4.已知 2x= 3y,则x= ()ylg2lg3A.lg3B.lg223C.lg 3D. lg25.函数 f(x)= xln|x|的图象大概是()6.若函数f( x)= 3x+ 3-x与 g(x)= 3x-3-x的定义域均为R ,则 ()A . f(x)与 g(x)均为偶函数B.f(x)为奇函数, g(x)为偶函数C.f(x)与 g(x)均为奇函数D. f(x)为偶函数, g(x)为奇函数17.函数 y= (m2+ 2m- 2)xm-1是幂函数,则m= ()A . 1C .- 3 或1B .- 3D . 28.以下各函数中,值域为(0,+∞)的是( )xA . y = 2-2B . y = 1- 2xC .y = x 2+ x + 11D . y = 3x+119.已知函数:① y = 2x ;② y = log 2 x ;③ y = x -1 ;④ y = x 2;则以下函数图象 (第一象限部分 )从左到右挨次与函数序号的对应次序是()A .②①③④B .②③①④C .④①③②D .④③①②10.设函数 f(x)=1+ log 2 2- xx<1,则 f(- 2)+ f(log 212) = ()-1xx ≥ 12A . 3B . 6C .9D . 12a - 2 x , x ≥ 2, x 1≠ x 2 都有f x 1 -f x 2< 0 成11.已知函数 f( x)=1 x -1, x <2 知足对随意的实数x - x21 2立,则实数 a 的取值范围为()13A . (-∞, 2)B . (-∞, 8 ]C .( -∞, 2]13, 2)D . [ 812. (2016 汉·中高一检测 )假如一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下边的五个点M (1,1), N(1,2), P(2,1), Q(2,2), G(2, 1)中,2 能够是“好点”的个数为()A . 0 个B . 1 个C .2 个D . 3 个第Ⅱ卷 (非选择题共 90 分)二、填空题 (本大题共4 个小题,每题5 分,共 20 分,把正确答案填在题中横线上)1413.已知 a 2(a > 0),则 log 2 a = ________.=9314.已知函数 f(x)=log 2x , x > 0, 1则 f(f( ))= ________.3x , x ≤ 0,415.若函数y = log 1 (3x 2- ax + 5)在 [ - 1,+∞ )上是减函数,则实数a 的取值范围是2________.16.(2016 ·阳高一检测邵 )如图,矩形 ABCD 的三个极点 A ,B ,C 分别在函数y = log 221x ,y = x 2,y = ( 2)x 的图象上,且矩形的边分别平行于两坐标轴.若点 A 的纵坐标为 2,则2点 D 的坐标为 ________.三、解答题 (本大题共 6 个小题, 共 70 分,解答应写出文字说明,证明过程或演算步骤 )1 + ( 1 1lg32- lg9 + 1- lg 1+ 810.5log 35.17. (本小题满分 10 分 )计算:)-3 +0.25 27318. (本小题满分 12 分 )已知函数 f(x)= (12)ax , a 为常数,且函数的图象过点(- 1,2).(1) 求 a 的值;(2)若 g(x)=4 -x - 2,且 g(x)= f(x),求知足条件的 x 的值. 19. (本小题满分 12 分 )已知函数 f(x)= log a (1+ x), g(x)= log a (1- x),(a >0, a ≠ 1).(1)设 a = 2,函数 f(x)的定义域为 [3,63],求 f( x)的最值;(2)求使 f(x)- g(x)> 0 的 x 的取值范围.20. (本小题满分 12 分 )求使不等式 (1)x 2-8>a -2x 建立的 x 的会合 (此中 a>0,且 a ≠ 1).a21. (本小题满分 12 分 )(2016 雅·安高一检测 )已知函数 f(x)= 2x 的定义域是 [0,3] ,设 g(x)= f (2x)- f(x + 2),(1)求 g(x)的分析式及定义域;(2)求函数 g(x)的最大值和最小值.a122. (本小题满分 12 分 )若函数 f(x)知足 f(log a x)=a2-1·(x-x)(此中 a> 0且 a≠1).(1)求函数 f(x)的分析式,并判断其奇偶性和单一性;(2)当 x∈ (-∞, 2) 时, f( x)- 4 的值恒为负数,求 a 的取值范围.参照答案:1.[ 答案 ]B[分析 ]① na n=|a|, n 为偶数, (n>1,且 n ∈ N * ),故①不正确.a , n 为奇数② a 2- a + 1= (a -12)2+ 34>0 ,所以 (a 2- a + 1)0= 1 建立.③ 3 x 4+ y 3没法化简.④ 3 - 5<0 , 6-5 2>0,故不相等.所以选 B.2.[答案 ] A[分析 ]1 0.1<20.2,∵ log 2 <0,0<25∴ log 21<20.1<2 0.2,选A. 53.[答案 ]C[分析 ]A ={ y|y = 2x , x ∈ R} = { y|y>0} .B = { x|x 2- 1<0} = { x|- 1<x<1} ,∴ A ∪ B = { x|x>0} ∪ { x|- 1< x<1} = { x|x>- 1} ,应选 C.4.[答案 ]B[分析 ]由 2x = 3y 得 lg2x = lg3y ,∴ xlg2 = ylg3,x lg3∴ y=lg2.5.[答案 ] A[分析 ] 由 f(- x)=- xln|- x|=- xln|x|=- f(x) 知,函数 f(x)是奇函数,故清除C ,D ,11又 f(e )=- e <0,进而清除 B ,应选 A.6.[答案 ] D[分析 ]- xx= f( x),g( -x)= 3 -xx=- g(x),所以 f(x)是偶函数, g( x)由于 f(- x)= 3 + 3 - 3 为奇函数,应选 D.7.[答案 ]B1[分析 ]由于函数 y = (m 2+2m -2)xm-1是幂函数,所以m 2+ 2m - 2= 1 且 m ≠ 1,解得m =- 3.8.[答案 ] A[分析 ]A , y = 2x- 2 = ( 2)x 的值域为 (0,+ ∞ ). 2B ,由于 1- 2x ≥ 0,所以 2x ≤ 1, x ≤ 0,y = 1- 2x 的定义域是 (-∞ , 0],所以 0< 2x ≤ 1,所以 0≤1- 2x < 1, 所以 y = 1- 2x 的值域是 [0,1) .C ,y = x 2+ x + 1= (x + 1) 2+ 3的值域是 [ 3,+ ∞ ),2441∈ (- ∞ , 0)∪ (0,+ ∞ ),D ,由于 x + 11所以 y =3x+1的值域是 (0,1)∪ (1,+ ∞ ).9.[答案 ] D[分析 ]依据幂函数、指数函数、对数函数的图象可知选D.10.[答案 ] C[分析 ]2212)=2 log 212-1= 2log 26= 6,f( -2)= 1+ log (2 - (- 2))= 3, f(log∴ f(- 2)+ f(log 212)= 9,应选 C. 11.[答案 ] Ba - 2<0,[分析 ]由题意知函数 f(x) 是 R 上的减函数,于是有1由此解得2- 1,a - 2 × 2≤ 213,即实数 a 的取值范围是 (-∞ ,13a ≤ 88 ],选 B.12.[答案 ] C[分析 ]设指数函数为 y = a x(a>0, a ≠ 1),明显可是点 M 、 P ,若设对数函数为 y = log b x(b>0, b ≠ 1),明显可是 N 点,选 C.13.[答案 ] 414[分析 ]∵ a 2= (a > 0),9∴ (a 1)2= [( 2) 2] 2,即 a = (2)4,233∴ log 2 a = log 2 (23)4= 4.33114.[答案 ]9[分析 ]∵1> 0,∴ f(1)= log 21=- 2.4 4 4则 f(1) <0,∴ f(f(1))= 3-2=1.44915.[答案 ] (- 8,- 6]a[ 分析 ] 令 g(x) = 3x 2- ax + 5,其对称轴为直线x = a,依题意,有6≤ - 1, ,即6g - 1 > 0a ≤ - 6, a >- 8.∴ a ∈ (- 8,- 6].16.[答案 ]( 1,1)24[分析 ] 由图象可知,点 A(x2)在函数 y = log 2 x 的图象上,A,2所以 2= log2 x A ,x A = (2 1 )2= .2221点 B(x B,2)在函数 y = x 2的图象上,1所以 2= x B 2, x B = 4.点 C(4, y C )在函数 y = ( 2)x的图象上,2所以 y C =( 2)4= 1.2 4又 x D A1, y DC1,= x =2=y = 4所以点 D 的坐标为 (1,1).241117.[分析 ]原式= + (3-1)-3 + lg3- 1 2 - lg3-1+ (34)0.5log 350.5= 2+ 3+ (1- lg3) + lg3 + 32log 35= 6+ 3log 325= 6+ 25= 31.18.[分析 ]1 - a = 2,解得 a = 1.(1) 由已知得 ( )2(2)由 (1) 知 f(x)= (1)x,又 g( x)= f(x),2则 4-x-2= (12)x,即 (14)x -( 12)x- 2= 0,即 [(1)x ]2 -(1)x- 2= 0,22令 (12)x= t ,则 t 2- t - 2= 0,即 (t -2)( t + 1)= 0,又 t>0 ,故 t = 2,即 (1)x= 2,解得 x =-1. 2 19.[分析 ] (1) 当 a =2 时, f(x)= log 2(1+ x),在 [3,63] 上为增函数,所以当 x =3 时, f(x) 最小值为 2.当 x = 63 时 f(x)最大值为 6.(2)f(x)- g(x)> 0 即 f(x) >g(x)当 a >1 时, log a (1+ x)> log a (1- x)1+ x > 1- x知足 1+ x > 0∴ 0<x < 11- x > 0当 0<a < 1 时, log a (1+ x)> log a (1- x)知足1+ x < 1- x1+ x > 01- x > 0∴- 1<x < 0综上 a > 1 时,解集为 { x|0< x < 1}0< a <1 时解集为 { x|- 1<x < 0} .20.[分析 ]∵(1a ) x 2-8=a 8-x 2,∴原不等式化为 a 8 -x 2>a -2x .当 a>1 时,函数 y = a x 是增函数,∴ 8- x 2>-2x ,解得- 2<x<4;当 0<a<1 时,函数 y = a x 是减函数, ∴ 8- x 2<-2x ,解得 x<- 2 或 x>4.故当 a>1 时, x 的会合是 { x|- 2< x<4} ;当 0<a<1 时, x 的会合是 { x|x<- 2 或 x>4} .21.[分析 ](1) ∵ f(x)=2x ,∴ g(x)= f(2x)- f(x + 2)=22x - 2x +2.由于 f(x)的定义域是 [0,3] ,所以 0≤ 2x ≤3,0≤ x + 2≤3,解得 0≤ x ≤1.于是 g(x)的定义域为 { x|0≤ x ≤1} .(2)设 g(x)=(2 x )2- 4× 2x =(2x - 2)2- 4.∵ x ∈ [0,1] ,∴ 2x ∈ [1,2] ,∴当 2x = 2,即 x = 1 时, g(x)获得最小值- 4; 当 2x = 1,即 x = 0 时, g(x)获得最大值- 3. 22.[分析 ] (1) 令 log a x = t(t ∈ R),则 x =a t ,∴ f(t)= 2a(a t -a -t ). a- 1∴ f(x)= 2-a1(a x - a -x )(x ∈ R).a∵ f(- x)= 2 a - xx ax-a - x)=- f(x),∴ f(x)为奇函数.(a- a )=-2(aa - 1a - 1-a 2当 a >1 时, y = a x 为增函数, y =- a x 为增函数,且 a 2- 1>0,∴ f(x)为增函数.当 0<a < 1 时, y = a x 为减函数, y =- a -x 为减函数,且 a 2 < 0,a 2- 1∴ f(x)为增函数.∴ f(x)在 R 上为增函数.(2)∵ f(x)是 R 上的增函数,∴ y = f( x)- 4 也是 R 上的增函数.由 x < 2,得 f(x)< f(2),要使 f(x)- 4 在 (- ∞, 2)上恒为负数,只要 f(2) - 4≤ 0,即 2 a(a 2- a-2)≤ 4.a - 1aa 4- 1∴a 2-1(a2)≤ 4,∴ a 2+ 1≤ 4a ,∴ a 2- 4a + 1≤ 0, ∴ 2- 3≤ a ≤ 2+ 3.又 a ≠1,∴ a 的取值范围为 [2- 3, 1)∪ (1,2+ 3].。

(word完整版)高中数学必修1第二章基本初等函数单元测试题(含参考答案)

(word完整版)高中数学必修1第二章基本初等函数单元测试题(含参考答案)
高一数学单元测试题
必修
一.选择题.
1.若m0,
(每小题
0,
班级姓名
5分,共50分)
a0且a1,则下列等式中正确的是
序号
得分
m、n
A-(a)
C. logam logan loga(m n)
3>4
D. ■.m
-4 n
4
(mn)3
2.函数y
loga(3x 2)2的图象必过定点
A.(1,2)
B.(2,2)
C.(2,3)
A.减少1.99%
10%,
后两年每年降低
10%,则四年后的价格与原来价格比较, (
B.增加
1.99%
C.减少4%
D.不增不减
7.若100a5,
10b2,则
2a
8.函数f (x)
A.奇函数
B.1
lg(10x1)x是
2
B.偶函数
C.既奇且偶函数
D.非奇非偶函数
2
9.函数y loga(x 2x) (0 a
3.已知幕函f⑷
的值为
D.8
4.右
x(0,1),
则下列结论正确的是
x
2lgx
1 1
x"B.2xx2
lg x
C.
1
x2
2x
lg x
lg x
2x
5.函数y log(x 2)(5x)的定义域是
A.(3,4)
B.(2,5)
(2,3) U(3,5)
(,2) U (5,
6.某商品价格前两年每年提高 变化的情况是
11.计算:log427log58log9625
a 1)在区间[a,2a]上的最大值是最小值的3倍,则a=

必修1 第二章 基本初等函数测试题答案

必修1 第二章 基本初等函数测试题答案

必修1 第二章 基本初等函数测试题详解答案一、选择题1. Dy x ==,对应法则不同;2,(0)x y x x=≠ log ,(0)a x y a x x ==>;log ()x a y a x x R ==∈2. D 对于111,()()111x x x xx xa a a y f x f x a a a--+++=-===----,为奇函数; 对于22lg(1)lg(1)33x x y x x--==+-,显然为奇函数;x y x =显然也为奇函数; 对于1log 1ax y x +=-,11()log log ()11aa x xf x f x x x-+-==-=-+-,为奇函数; 3. D 由y x =--3得3,(,)(,)x y x y x y --=→--,即关于原点对称; 4. B1111122222()23,x xx x x x---+=+-=+=331112222()(1)x xx x x x ---+=+-+=5. D 11222log (32)0log 1,0321,13x x x -≥=<-≤<≤ 6. D 600.700.70.70.766log 60<><=1,=1,当,a b 范围一致时,log 0a b >;当,a b 范围不一致时,log 0a b < 注意比较的方法,先和0比较,再和1比较 7. D 由ln (ln )3434xf x x e =+=+得()34x f x e =+二、填空题1.<<<123413589222222=====,而1324138592<<<< 2. 1616==== 3. 2- 原式12222log 52log 5log 52log 52-=-+=--=-4. 0 22(2)(1)0,21x y x y -+-===且,22log ()log (1)0x x y ==5. 1- 33333,113x x xx xx ---⋅+===-+ 三、解答题1.解:x x x x a a a a --==+=222()222x x x x a a a a --+=+-=3322()(1)23x x x x x x x x x xa a a a a a a a a a-------++==-- 2.解:原式13lg32lg300=-+-+22l g 3l g 36=+-++=3.解:0x ≠且101xx +>-,11x -<<且0x ≠,即定义域为(1,0)(0,1)- ; 221111()log log ()11x x f x f x x x x x -+-=-=-+=--+-为奇函数; 212()log (1)11f x x x=-+-在(1,0)(0,1-和上为减函数。

2人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)

2人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高一数学单元测试题 必修1第二章《基本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m nm na a+= B .11mm a a= C .log log log ()a a a m n m n ÷=- D 43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞6. 三个数60.7 ,0.76 ,6log7.0的大小顺序是 ( )A .0.76<6log 7.0<60.7 B. 0.76<60.7<6log 7.0 C. 6log 7.0<60.7<0.76 D. 6log 7.0<0.76<60.77.若1005,102a b==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2xxf x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞10.已知 )2(log ax y a -=(0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2)C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= . 12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数)10(log )(<<=a x x f a 在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)4160.253216(24()849-+-⨯.(Ⅱ)21log 32393ln(log (log 81)2log log 12543+++-.17.(本小题满分12分)解方程:3)23(log )49(log 22+-=-x x18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数; (Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案一.选择题11. 9 . 12.12 . 13. 1-. 14. 4. 15. ③,④. 三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=.(Ⅱ)解:原式33log (425)33152232232222log ()25⨯=++⨯+=++⨯-=⨯.17.解原方程可化为:8log )23(log )49(log 222+-=-x x , 即012389=+⋅-xx .解得:23=x (舍去)或63=x, 所以原方程的解是6log 3=x 18.解:(Ⅰ)原不等式可化为:212x x aa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞.当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]ST =-, (2,3]S T =-.19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-.20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即3224x -==时,()y f x =有最小值31()()424f g =-=-;当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) . (Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >. ∴函数()f x 在R 上是减函数. (Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.。

(word完整版)人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(2021年整理)

(word完整版)人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(2021年整理)

(word完整版)人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((word完整版)人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(word完整版)人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(word 版可编辑修改)的全部内容。

高一数学单元测试题 必修1第二章《基本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m n m n a a +=B .11mm a a= C .log log log ()a a a m n m n ÷=- D 43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点(2,2,则(4)f 的值为 ( ) A .1 B . 2 C .12D .84.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2x x x >>5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是( )A .减少1.99%B .增加1.99%C .减少4%D .不增不减7.若1005,102a b ==,则2a b += ( ) A .0 B .1 C .2 D .38. 函数()lg(101)2x xf x =+-是 ( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2) D .[2,)+∞ 一.选择题(每小题5分,共50分)二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= .12.已知函数3log (0)()2(0)x x x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = .13.若3())2f x a xbx =++,且(2)5f =,则(2)f -= .14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log a y x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)4160.253216(22)4()849-+-⨯-.(Ⅱ)21log 32393ln(log (log 81)2log log 12543++++-17.( 12分)已知函数方程2840x x -+=的两根为1x 、2x (12x x <). (Ⅰ)求2212x x ---的值;(Ⅱ)求112212x x ---的值.18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2x T y y x ==-≥-求S T ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4,(Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数;(Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案一.选择题二.填空题.11. 9. 12. 12. 13. 1-. 14. 4. 15. ③,④.三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=.(Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯.17. 解:由条件得:14x =-24x =+.(Ⅰ)221221122121212()()11118()()()16x x x x x x x x x x x x --+-⨯-=+-===. (Ⅱ)1122121x x ---===. 18.解:(Ⅰ)原不等式可化为:212x x a a -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞.(Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =-, (2,3]S T =-.19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x =(Ⅱ)1()222xx f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-.20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-.(Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即322x -==,()y f x =有最小值31()24f g =-=-;当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) .(Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >. ∴函数()f x 在R 上是减函数.(Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-. 22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*) 对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.。

人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)[1]

人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)[1]

必修1第二章《根本初等函数》班级姓名序号得分一.选择题.(每小题5分,共50分)1.若,,且,则下列等式中准确的是 ( ) A.B.C. D.2.函数的图象必过定点 ( )A. B. C. D.3.已知幂函数的图象过点,则的值为()A.B. C. D.4.若,则下列结论准确的是()A.B.C.D.5.函数的界说域是()A. B. C. D.6.某商品价钱前两年每年进步,后两年每年下降,则四年后的价钱与本来价钱比较,变更的情形是()A.削减 B.增长 C.削减 D.不增不减7.若,则()A. B. C. D.8.函数是()A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数9.函数的单调递增区间是()A. B. C.D.10.若 (且)在上是的减函数,则的取值规模是()A.B. C. D.一.选择题(每小题5分,共50分)题号 1 2 3 4 5 6 7 8 9 10答案二.填空题.(每小题5分,共25分)11.盘算:.12.已知函数 ,则.13.若,且,则.14.若函数上的最大值是最小值的在区间倍,则=.15.已知,给出下列四个关于自变量的函数:①,②,③④.个中在界说域内是增函数的有.三.解答题(6小题,共75分)16.(12分)盘算下列各式的值:(Ⅰ).(Ⅱ).17.(12分)已知函数方程的两根为.().(Ⅰ)求的值;(Ⅱ)求的值.18.(共12分)(Ⅰ)解不等式.(Ⅱ)设聚集,聚集求,.19.( 12分)设函数.(Ⅰ)求方程的解.(Ⅱ)求不等式的解集.20.( 13分)设函数的界说域为,(Ⅰ)若,求的取值规模;(Ⅱ)求的最大值与最小值,并求出最值时对应的的值.21.(14分)已知界说域为的函数是奇函数.(Ⅰ)求的值;(Ⅱ)证实函数在上是减函数;(Ⅲ)若对随意率性的,不等式恒成立,求的取值规模.参考答案一.选择题题号 1 2 3 4 5 6 7 8 9 10答案 D A C B C A B B D C二.填空题.11.. 12.. 13.. 14.. 15.③,④.三.解答题:16.(Ⅰ).解:原式.(Ⅱ)解:原式.17.解:由前提得:,.(Ⅰ).(Ⅱ).18.解:(Ⅰ)原不等式可化为:.当时,.原不等式解集为.当时,.原不等式解集为.(Ⅱ)由题设得:,.∴,.19.解:(Ⅰ)(无解)或.∴方程的解为.(Ⅱ)或或.或即.∴不等式的解集为:.20.解:(Ⅰ)的取值规模为区间.(Ⅱ)记.∵在区间是减函数,在区间是增函数∴当即时,有最小值;当即时,有最大值.21.解:(Ⅰ)∵是奇函数,所以(经磨练相符题设) .(Ⅱ)由(1)知.对,当时,总有.∴,∴.∴函数在上是减函数.(Ⅲ)∵函数是奇函数且在上是减函数,∴..(*)对于(*)成立.∴的取值规模是.。

人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)

人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高一数学单元测试题 必修1第二章《基本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m nm na a+= B .11mm a a= C .log log log ()a a a m n m n ÷=- D 43()mn =2.函数log (32)2a y x =-+的图象必过定点 ( ) A .(1,2) B .(2,2) C .(2,3) D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( ) A .1 B . 2 C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是 ( ) A .减少1.99% B .增加1.99% C .减少4% D .不增不减7.若1005,102a b==,则2a b += ( ) A .0 B .1 C .2 D .3 8. 函数()lg(101)2xxf x =+-是 ( ) A .奇函数 B .偶函数 C .既奇且偶函数 D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( ) A .(1,)+∞ B .(2,)+∞ C .(,1)-∞ D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(0,2)C .(1,2)D .[2,)+∞二.填空题.(每小题5分,共25分)11.计算:459log 27log 8log 625⨯⨯= . 12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = . 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -= .14.若函数()log (01)f xax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x y a =,②2log ay x =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)4160.253216(24()849-+-⨯.(Ⅱ)21log 32393ln(log (log 81)2log log 12543+++-.17.( 12分)已知函数方程2840x x -+=的两根为1x 、2x (12x x <).(Ⅰ)求2212x x ---的值;(Ⅱ)求112212x x ---的值.18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x b f x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数; (Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案11. 9 . 12.12 . 13. 1-. 14. 4. 15. ③,④. 三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=. (Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯.17. 解:由条件得:14x =-24x =+.(Ⅰ)221221122121212()()1111()()()x x x x x x x x x x x x --+--=+-===. (Ⅱ)1122121x x ---===. 18.解:(Ⅰ)原不等式可化为:212x x aa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =- , (2,3]S T =- .19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-.20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤.∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即322x -==时,()y f x =有最小值31()24f g =-=-;当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) . (Ⅱ)由(1)知21()2(21)x xf x -=-+.对12,x x R ∀∈,当12x x <时,总有 2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x x x x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >.∴函数()f x 在R 上是减函数. (Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-.∴k 的取值范围是1(,)3-∞-.。

高一必修1第二章 初等函数单元复习测试题(附答案)

高一必修1第二章 初等函数单元复习测试题(附答案)

【高一数学必修(1)单元复习试题】第二章 基本初等函数命题人:增城中学 肖海英班级 学号 姓名一、选择题(每小题5分,共40分) 1.3334)21()21()2()2(---+-+----的值( ) A 437B 8C -24D -8 2.函数x y 24-=的定义域为( )A ),2(+∞B (]2,∞-C (]2,0D [)+∞,13.下列函数中,在),(+∞-∞上单调递增的是( ) A ||x y = B x y 2log = C 31x y = D x y 5.0=4.函数x x f 4log )(=与x x f 4)(=的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x y =对称5.已知2log 3=a ,那么6log 28log 33-用a 表示为 ( )A 2-aB 25-aC 2)(3a a a +-D 132--a a6.若函数)1,0)(1(≠>+-=a a b a y x 的图象在第一、三、四象限,则有( )A 1>a 且1<bB 1>a 且0>bC 10<<a 且0>bD 10<<a 且0<b7.已知10<<a ,0log log <<n m a a ,则 ( )A m n <<1B n m <<1C 1<<n mD 1<<m n 8.函数⎩⎨⎧>-≤-=--)1(23)1(2311x x y x x 的值域是A )1,2(--B ),2(+∞-C ]1,(--∞D ]1,2(--二、填空题(每小题5分,共20分)9.若n m a a )()(->-ππ,且1>>n m ,则实数a 的取值范围为 。

10.已知函数)(x f 为偶函数,当),0(+∞∈x 时,12)(+-=x x f ,当)0,(-∞∈x 时,=)(x f _____________.11.已知函数⎩⎨⎧<+≥=-),3)(1(),3(2)(x x f x x f x 则=)3(log 2f _________. 12.已知)2(log ax y a -=在]1,0[上是减函数,则a 的取值范围是_________三、解答题(共40分)13(本题满分10分)计算下列各式的值:(写出化简过程)(1)5.02120)01.0()412(2)532(-⨯+--;(5分)(2)432981⨯;(5分)14.已知函数x y 2=(1)作出其图象;(4分)(2)由图象指出单调区间;(2分)(3)由图象指出当x 取何值时函数有最小值,最小值为多少?(4分)15.已知[]2,1,4329)(-∈+⨯-=x x f x x(1)设[]2,1,3-∈=x t x ,求t 的最大值与最小值;(4分)(2)求)(x f 的最大值与最小值;(6分)16.已知函数.11lg )(xx x f +-= (1) 求证:);1()()(xyy x f y f x f ++=+(4分) (2) 若,2)1(,1)1(=--=++abb a f ab b a f 求)(a f 和)(b f 的值.(6分)《基本初等函数》参考答案一、1~8 CBCD ABAD二、9、{}1-<πa a 10、12)(+-=-x x f11、12112、{}21<<a a三、13、(1)1516 (2) 67314、(1)如图所示:(2(3) 由图象可知:当0=x 时,函数取到最小值1min =y15、解:(1)x t 3= 在[]2,1-是单调增函数∴ 932max ==t ,3131min ==-t(2)令x t 3=,[]2,1-∈x ,⎥⎦⎤⎢⎣⎡∈∴9,31t 原式变为:42)(2+-=t t x f ,x3)1()(2+-=∴t x f ,⎥⎦⎤⎢⎣⎡∈9,31t ,∴当1=t 时,此时1=x ,3)(min =x f ,当9=t 时,此时2=x ,67)(max =x f 。

2人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(最新整理)

2人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)(最新整理)

16.(Ⅰ). 解:原式 4 27 2 7 2 101.
(Ⅱ)解:原式 3 2 2 3 log3(4 25) 3 2 2 3 2 15 .
2
log3
(
1 2
1 5
)
2
2
17.解原方程可化为: log2 (9x 4) log2 (3x 2) log2 8 , 即 9x 8 3x 12 0 .
对于 t R (*)成立 k 1 . 3
∴ k 的取值范围是 (, 1) . 3
7
11.计算: log4 27 log5 8 log9 625

12.已知函数
f
(x)
lo2gx且3
x且 (x > 0) (x 0)
,则 f [ f (1)] 3

13. 若 f (x) a ln( x2 1 x) bx3 2 , 且 f (2) 5 , 则 f (2)

14.若函数 f (x) loga x(0 a 1) 在区间[a, 2a] 上的最大值是最小值的 3 倍,则 a
3)6 (2
4
2)3
4 (16 )
1 2
4
2
80.25

49
2
(Ⅱ) ln(e
e
)
log2
(log3
81)
21log2
3
log log9
3
1
4
2
1 3
2 log3 5 log3 125

17.(本小题满分 12 分)
解方程: log2 (9x 4) log2 (3x 2) 3
18.(共 12 分)(Ⅰ)解不等式 a2x1 ( 1 )x2 (a 0且 a 1) . a

人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)[1]

人教A版高中数学必修1第二章基本初等函数单元测试题(含参考答案)[1]

必修1第二章《基本初等函数》班级姓名序号得分一.选择题.(每小题5分,共50分)1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是() A .()m nm na a+=B .11mm aa=C .log log log ()a a a m n m n ÷=-D 43()mn = 2.函数y A .(1,2)3A .1B 4.若x ∈A .2x5.函数y A .(3,(2,3)(3,5)D .,2)(5,)+∞6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是()A .减少C .减少4%.不增不减 7.若100A .0B 8.函数f A 9.函数2log (2)(01)a y x x a =-<<的单调递增区间是()A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.若2log (2)y ax =-(0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是() A .(0,1)B .(0,2)C .(1,2)D .[2,)+∞一.选择题(每小题5分,共50分)二.填空题.(每小题5分,共25分) 11.计算:459log 27log 8log 625⨯⨯=. 12.已知函数3log (0)()2(0)xx x >f x x ⎧=⎨≤⎩,,,则1[(3f f =. 13.若3())2f x a x bx =++,且(2)5f =,则(2)f -=.14.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a =. 15.已知01a <<,给出下列四个关于自变量x 的函数:①y 16.(Ⅰ)(Ⅱ)17.((Ⅰ(Ⅱ18.((ⅡT ,S T .19.(4log 1x x ≥⎩(Ⅰ)求方程1()4f x =的解. (Ⅱ)求不等式()2f x ≤的解集.20.(13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数;(Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.参考答案一.选择题16.((1718(Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]ST =-,(2,3]S T =-.19.解:(Ⅰ)11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x =(Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-. 20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤. ∵231()(24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当当t =21.解:(Ⅱ22x ∴f ∴f ∴(∴f t ⇔3∴k 的取值范围是1(,)3-∞-.。

高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高中数学必修1第二章基本初等函数单元测试题(含参考答案)

高中数学必修1第二章基本初等函数单元测试题(含参考答案)高一数学单元测试题必修1第二章《基本初等函数》班级姓名序号得分一.选择题.(每小题5分后,共50分后)1.若m?0,n?0,a?0且a?1,则下列等式中正确的是()(a)?aa.mnm?n41344logam?logan?loga(m?n)d.mn?(mn)3b.a?mc.a1m2.函数y?loga(3x?2)?2的图象必过定点()a.(1,2)b.(2,2)c.(2,3)d.(,2)233.已知幂函数y?f(x)的图象过点(2,2),则f(4)的值为()2a.1b.2c.1d.824.若x?(0,1),则以下结论恰当的就是()a.2x?lgx?xb.2x?x?lgxc.x?2x?lgxd.lgx?x?2x5.函数y?log(x?2)(5?x)的定义域就是()a.(3,4)b.(2,5)c.(2,3)?(3,5)d.(??,2)?(5,??)6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是()a.减少1.99%b.增加1.99%c.减少4%d.不增不减7.若100?5,10?2,则2a?b?()a.0b.1c.2d.38.函数f(x)?lg(10?1)?xab12121212x就是()2a.奇函数b.偶函数c.既奇且偶函数d.非奇非偶函数9.函数y?loga(x?2x)(0?a?1)的单调递增区间是()a.(1,??)b.(2,??)c.(??,1)d.(??,0)10.未知y?log2(2?ax)(a?0且a?1)在[0,1]上就是x的减至函数,则a的值域范围就是()2a.(0,1)b.(0,2)c.(1,2)d.[2,??)一.选择题(每小题5分,共50分)题号答案12345678910二.填空题.(每小题5分,共25分)11.排序:log427?log58?log9625?.12.未知函数f(x)??(x>0)?log3x,1,则f[f()]?.x32,(x?0)?2313.若f(x)?aln(x?1?x)?bx?2,且f(2)?5,则f(?2)?.14.若函数f(x)?logax(0?a?1)在区间[a,2a]上的最大值是最小值的3倍,则a=.15.已知0?a?1,给出下列四个关于自变量x的函数:①y?logxa,②y?logax,③y?(log1x)④y?(log1x).aa2312其中在定义域内是增函数的有.三.解答题(6小题,共75分)16.(12分)计算下列各式的值:1?160.25(ⅰ)(32?3)?(2?2)?4?()2?42?8.49643(ⅱ)ln(ee)?log2(log381)?21?log23?log32?2log35.11log9?log31254317.谋以下各式中的x的值(共15分后,每题5分后)1(1)ln(x1)1(2)31?x?2?01(3)a2x1ax?2,其中a?0且a?1.18.(共12分)(ⅰ)解不等式a2x?11?()x?2(a?0且a?1).ax(ⅱ)设立子集s?{x|log2(x?2)?2},子集t?{y|y?()?1,x??2}谋s?t,s?t.122xx119.(12分后)设立函数f(x)??.logxx?1?4(ⅰ)求方程f(x)?1的求解.4(ⅱ)求不等式f(x)?2的解集.20.(13分后)设立函数f(x)?log2(4x)?log2(2x)的定义域为[,4],(ⅰ)若t?log2x,谋t的值域范围;(ⅱ)求y?f(x)的最大值与最小值,并求出最值时对应的x的值.21.(14分后)未知定义域为r的函数(ⅰ)谋b的值;(ⅱ)证明函数f?x?在r上是减函数;(ⅲ)若对任一的t?r,不等式f(t?2t)?f(2t?k)?0恒设立,谋k的值域范围.2214?2x?bf(x)?x?1是奇函数.2?222.已知函数f(x)?loga(a?1)(a?0且a?1),(1)求f(x)的定义域;(2)讨论函数f(x)的增减性。

数学必修一第二章《基本初等函数1》单元检测(内含答案解析)

数学必修一第二章《基本初等函数1》单元检测(内含答案解析)

数学必修一第三章《函数的概念与性质》单元检测(内含答案解析)一、选择题(本大题共12小题,每小题5分,共60分)1.若a<12,则化简4(2a -1)2的结果是( )A .2a -1B .-2a -1C .1-2aD .-1-2a2.函数y =lg x +lg (5-3x)的定义域是( )A .[0,53)B .[0,53]C .[1,53)D .[1,53]3.函数y =2+log 2(x 2+3)(x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[4,+∞)D .[3,+∞)4.已知2x =72y =A ,且1x +1y =2,则A 的值是( )A .7B .7 2C .±7 2D .98 5.若a>1,则函数y =a x 与y =(1-a)x 2的图象可能是下列四个选项中的( )6.下列函数中值域是(1,+∞)的是( )A .y =(13)|x -1|B .y =34x -C .y =(14)x +3(12)x +1D .y =log 3(x 2-2x +4)7.若0<a<1,在区间(-1,0)上函数f(x)=log a (x +1)是( )A .增函数且f(x)>0B .增函数且f(x)<0C .减函数且f(x)>0D .减函数且f(x)<08.已知函数f(x)=⎩⎨⎧ log 3x ,x>02x ,x ≤0,则f(f(19))等于( ) A .4B .14C .-4D .-149.右图为函数y =m +log n x 的图象,其中m ,n 为常数,则下列结论正确的是( )A .m<0,n>1B .m>0,n>1C .m>0,0<n<1D .m<0,0<n<110.下列式子中成立的是( )A .log 0.44<log 0.46B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 6711.方程log 2x +log 2(x -1)=1的解集为M ,方程22x +1-9·2x +4=0的解集为N ,那么M 与N 的关系是( )A .M =NB .M NC .M ND .M ∩N =∅12.设偶函数f(x)=log a |x +b|在(0,+∞)上具有单调性,则f(b -2)与f(a +1)的大小关系为( )A .f(b -2)=f(a +1)B .f(b -2)>f(a +1)C .f(b -2)<f(a +1)D .不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.log 34log 98=________. 14.函数f(x)=a x -1+3的图象一定过定点P ,则P 点的坐标是________.15.设log a 34<1,则实数a 的取值范围是________________.16.如果函数y =log a x 在区间[2,+∞)上恒有y>1,那么实数a 的取值范围是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f (x )=a x (a >0且a ≠1).(1)求f (x )的反函数g (x )的解析式;(2)解不等式:g (x )≤log a (2-3x ).18.(12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围.19.(12分)已知x>1且x≠43,f(x)=1+log x3,g(x)=2log x2,试比较f(x)与g(x)的大小.20.(12分)设函数f(x)=log2(4x)·log2(2x),14≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并写出最值时对应的x的值.21.(12分)已知f(x)=log a 1+x1-x(a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x的取值范围.22.(12分)已知定义域为R的函数f(x)=-2x+b2x+1+2是奇函数.(1)求b的值;(2)判断函数f(x)的单调性;(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.参考答案与解析1.C [∵a <12,∴2a -1<0. 于是,原式=4(1-2a )2=1-2a .]2.C [由函数的解析式得:⎩⎨⎧ lg x ≥0,x >0,5-3x >0,即⎩⎪⎨⎪⎧ x ≥1,x >0,x <53.所以1≤x <53.]3.C [∵x ≥1,∴x 2+3≥4,∴log 2(x 2+3)≥2,则有y ≥4.]4.B [由2x =72y =A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2, A 2=98.又A >0,故A =98=7 2.]5.C [∵a >1,∴y =a x 在R 上是增函数,又1-a <0,所以y =(1-a )x 2的图象为开口向下的抛物线.]6.C [A 选项中,∵|x -1|≥0,∴0<y ≤1;B 选项中,y =341x =14x 3,∴y >0;C 选项中y =[(12)x ]2+3(12)x +1,∵(12)x >0,∴y >1;D 选项中y =log 3[(x -1)2+3]≥1.]7.C [当-1<x <0,即0<x +1<1,且0<a <1时,有f (x )>0,排除B 、D.设u =x +1,则u 在(-1,0)上是增函数,且y =log a u 在(0,+∞)上是减函数,故f (x )在(-1,0)上是减函数.]8.B [根据分段函数可得f (19)=log 319=-2,则f (f (19))=f (-2)=2-2=14.]9.D [当x =1时,y =m ,由图形易知m <0,又函数是减函数,所以0<n <1.]10.D [A 选项中由于y =log 0.4x 在(0,+∞)单调递减,所以log 0.44>log 0.46;B 选项中函数y =1.01x 在R 上是增函数,所以1.013.4<1.013.5;C 选项中由于函数y =x 0.3在(0,+∞)上单调递增,所以3.50.3>3.40.3;D 选项中log 76<1,log 67>1,故D 正确.]11.B [由log 2x +log 2(x -1)=1,得x (x -1)=2,解得x =-1(舍)或x =2,故M ={2};由22x +1-9·2x +4=0,得2·(2x )2-9·2x +4=0,解得2x =4或2x =12, 即x =2或x =-1,故N ={2,-1},因此有M N .]12.C [∵函数f (x )是偶函数,∴b =0,此时f (x )=log a |x |.当a >1时,函数f (x )=log a |x |在(0,+∞)上是增函数,∴f (a +1)>f (2)=f (b -2);当0<a <1时,函数f (x )=log a |x |在(0,+∞)上是减函数,∴f (a +1)>f (2)=f (b -2).综上可知f (b -2)<f (a +1).] 13.43解析 原式=lg4lg3lg8lg9=lg4lg3×lg9lg8=2lg2×2lg3lg3×3lg2=43. 14.(1,4)解析 由于函数y =a x 恒过(0,1),而y =a x -1+3的图象可看作由y =a x 的图象向右平移1个单位,再向上平移3个单位得到的,则P 点坐标为(1,4). 15.(0,34)∪(1,+∞)解析 当a >1时,log a 34<0<1,满足条件;当0<a <1时,log a 34<1=log a a ,得0<a <34.故a >1或0<a <34.16.(1,2)解析 当x ∈[2,+∞)时,y >1>0,所以a >1,所以函数y =log a x 在区间[2,+∞)上是增函数,最小值为log a 2,所以log a 2>1=log a a ,所以1<a <2.17.解 (1)指数函数f (x )=a x (a >0且a ≠1),则f (x )的反函数g (x )=log a x (a >0且a ≠1).(2)∵g (x )≤log a (2-3x ),∴log a x ≤log a (2-3x )若a >1,则⎩⎨⎧ x >02-3x >0x ≤2-3x,解得0<x ≤12, 若0<a <1,则⎩⎨⎧ x >02-3x >0x ≥2-3x ,解得12≤x <23,综上所述,a >1时,不等式解集为(0,12];0<a <1时,不等式解集为[12,23).18.解 (1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈[18,1],故y =2t 2-t -1=2(t -14)2-98,t ∈[18,1],故值域为[-98,0].(2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2ax 2-x -1=0在(0,+∞)上有解. 记g (x )=2ax 2-x -1,当a =0时,解为x =-1<0,不成立;当a <0时,开口向下,对称轴x =14a <0,过点(0,-1),不成立;当a >0时,开口向上,对称轴x =14a >0,过点(0,-1),必有一个根为正,符合要求. 故a 的取值范围为(0,+∞).19.解 f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0.即当1<x <43时,f (x )<g (x );当x >43时,f (x )>g (x ).20.解 (1)∵t =log 2x ,14≤x ≤4,∴log 214≤t ≤log 24,即-2≤t ≤2.(2)f (x )=(log 24+log 2x )(log 22+log 2x ) =(log 2x )2+3log 2x +2,∴令t =log 2x ,则y =t 2+3t +2=(t +32)2-14,∴当t =-32即log 2x =-32,x =322 时,f (x )min =-14.当t =2即x =4时,f (x )max =12.21.解 (1)由对数函数的定义知1+x 1-x >0, 故f (x )的定义域为(-1,1).(2)∵f (-x )=log a 1-x 1+x =-log a 1+x 1-x=-f (x ), ∴f (x )为奇函数.(3)(ⅰ)对a >1,log a 1+x 1-x >0等价于1+x 1-x>1,①11 而从(1)知1-x >0,故①等价于1+x >1-x 又等价于x >0. 故对a >1,当x ∈(0,1)时有f (x )>0.(ⅱ)对0<a <1,log a 1+x 1-x >0等价于0<1+x 1-x<1,② 而从(1)知1-x >0,故②等价于-1<x <0.故对0<a <1,当x ∈(-1,0)时有f (x )>0.综上,a >1时,x 的取值范围为(0,1);0<a <1时,x 的取值范围为(-1,0).22.解 (1)因为f (x )是奇函数,所以f (0)=0, 即b -12+2=0⇒b =1.∴f (x )=1-2x2+2x +1. (2)由(1)知f (x )=1-2x 2+2x +1=-12+12x +1, 设x 1<x 2则f (x 1)-f (x 2)=12112121x x -++=()()2112222121x x x x -++. 因为函数y =2x 在R 上是增函数且x 1<x 2,∴22x -12x >0.又(12x +1)(22x +1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(-∞,+∞)上为减函数.(3)因为f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0.等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2. 即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修1第二章《基本初等函数》班级 姓名 序号 得分一.选择题.(每小题5分,共50分) 1.若0m >,0n >,0a >且1a ≠,则下列等式中正确的是 ( )A .()m n m na a += B .11mm a a= C .log log log ()a a a m n m n ÷=- D 43()mn = 2.函数log (32)2a y x =-+的图象必过定点( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点(2,2,则(4)f 的值为 ( ) A .1 B . 2 C .12D .8 4.若(0,1)x ∈,则下列结论正确的是 ( ) A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2xx x >> 5.函数(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞6.某商品价格前两年每年提高10%,后两年每年降低10%,则四年后的价格与原来价格比较,变化的情况是 ( )A .减少1.99%B .增加1.99%C .减少4%D .不增不减7.若1005,102ab==,则2a b += ( ) A .0 B .1 C .2 D .3 8.函数()lg(101)2x xf x =+-是( )A .奇函数B .偶函数C .既奇且偶函数D .非奇非偶函数9.函数2log (2)(01)a y x x a =-<<的单调递增区间是 ( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,0)-∞10.已知2log (2)y ax =- (0a >且1a ≠)在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(0,2) C .(1,2) D .[2,)+∞11.计算:459log 27log 8log 625⨯⨯= .12.已知函数3log (0)()2(0)x x x >f x x ⎧=⎨≤⎩,, ,则1[()]3f f = .13.若3())2f x a x bx =++,且(2)5f =,则(2)f -=.14.若函数()log (01)fx ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,则a = . 15.已知01a <<,给出下列四个关于自变量x 的函数:①log x ya =,②2log a yx =, ③31(log )ay x = ④121(log )ay x =.其中在定义域内是增函数的有 . 三.解答题(6小题,共75分) 16.(12分)计算下列各式的值:(Ⅰ)4160.253216(22)4()849-+-⨯-.(Ⅱ)21log 32393ln(log (log 81)2log log 12543++++-17.求下列各式中的x 的值(共15分,每题5分)1)1x (ln )1(<- 0231)2(x1<-⎪⎭⎫⎝⎛-1.a 0a ,1)3(212≠>⎪⎭⎫⎝⎛>--且其中x x a a18.(共12分)(Ⅰ)解不等式2121()x x a a--> (01)a a >≠且.(Ⅱ)设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求ST ,S T .19.( 12分) 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解.(Ⅱ)求不等式()2f x ≤的解集.20.( 13分)设函数22()log (4)log (2)f x x x =⋅的定义域为1[,4]4, (Ⅰ)若x t 2log =,求t 的取值范围;(Ⅱ)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.21.(14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(Ⅰ)求b 的值;(Ⅱ)证明函数()f x 在R 上是减函数;(Ⅲ)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.22.已知函数)1a (log )x (f xa -= )1a 0a (≠>且, (1)求f(x)的定义域;(2)讨论函数f(x)的增减性。

参考答案11. 9 . 12.12. 13. 1-. 14. 4. 15. ③,④.三.解答题:16.(Ⅰ). 解:原式427272101=⨯+--=. (Ⅱ)解:原式33log (425)3315223223211222log ()25⨯=++⨯+=++⨯-=⨯.17.(1)解:ln(x-1)<lne}1|{11-<∈∴+<∴<-∴e x x x e x ex}2log 1|{2log 12log 1)31()31(2)31()2(3131312log 1x 131+<∈∴+<∴>-∴<∴<--x x x x x x 解:1212,101212,11)3(212212<∴-<-<<>∴->->∴>∴⎪⎭⎫ ⎝⎛>----x x x a x x x a a a a axx x x 时当时当解:.18.解:(Ⅰ)原不等式可化为:212x x aa -->.当1a >时,2121x x x ->-⇔>.原不等式解集为(1,)+∞. 当1a >时,2121x x x -<-⇔<.原不等式解集为(,1)-∞. (Ⅱ)由题设得:{|024}(2,2]S x x =<+≤=-,21{|1()1}(1,3]2T y y -=-<≤-=-.∴(1,2]S T =-, (2,3]S T =-.19.解:(Ⅰ) 11()1424x x f x -<⎧⎪=⇔⎨=⎪⎩(无解)或411log 4x x x ≥⎧⎪⇔=⎨=⎪⎩∴方程1()4f x =的解为x = (Ⅱ)1()222x x f x -<⎧≤⇔⎨≤⎩或41log 2x x ≥⎧⎨≤⎩11x x <⎧⇔⎨≥-⎩或116x x ≥⎧⎨≤⎩. 11x ⇔-≤<或116x ≤≤即116x -≤≤.∴不等式()2f x ≤的解集为:[1,16]-. 20.解:(Ⅰ)t 的取值范围为区间221[log ,log 4][2,2]4=-. (Ⅱ)记22()(log 2)(log 1)(2)(1)()(22)y f x x x t t g t t ==++=++=-≤≤. ∵231()()24y g t t ==+-在区间3[2,]2--是减函数,在区间3[,2]2-是增函数∴当23log 2t x ==-即3224x -==时,()y f x =有最小值31()()424f g =-=-; 当2log 2t x ==即224x ==时,()y f x =有最大值(4)(2)12f g ==.21.解:(Ⅰ)∵()f x 是奇函数,所以1(0)014bf b -==⇔=(经检验符合题设) . (Ⅱ)由(1)知21()2(21)x x f x -=-+.对12,x x R ∀∈,当12x x <时,总有2112220,(21)(21)0x x x x ->++> .∴122112121212121122()()()0221212(21)(21)x x x x xx x x f x f x ----=-⋅-=⋅>++++,即12()()f x f x >. ∴函数()f x 在R 上是减函数. (Ⅲ)∵函数()f x 是奇函数且在R 上是减函数,∴22222(2)(2)0(2)(2)(2)f t t f t k f t t f t k f k t -+-<⇔-<--=-.22221122323()33t t k t k t t t ⇔->-⇔<-=--.(*)对于t R ∀∈(*)成立13k ⇔<-. ∴k 的取值范围是1(,)3-∞-.}0|{函数的定义域为,时10当}0|x {函数的定义域为,时1当1a 01(1)a :解22x x <<<>>∴>∴>-x x a x a.)0,()(,10;),0()(,1)2(上递增在时当上递增在时当-∞<<+∞>x f a x f a |。

相关文档
最新文档