第5章 电感器和变压器知识全解
电子元器件知识电感器介绍 ppt课件
格 物 致 新 ·厚 德 泽 人
PPT课件
27
不同类型的变压器图
格 物 致 新 ·厚 德 泽 人
PPT课件
28
(一)变压器的分类
1、按工作频率分类
变压器按工作频率可分为高频变压器、中频变压器和低频变压器。
(1)低频变压器可分为音频变压器(20HZ-20KHZ)和电源变压器(50HZ)。
低频变压器:用来传送信号电压和信号功率,还可实现电路之间的阻抗 匹配,对直流电具有隔离作用。主要有输入输出变压器(使末级功放 的输出阻抗与扬声器音圈阻抗匹配)。
电感线圈的标注方法:
①直标法:电感量用数字和单位直接标注在外壳上。单位uH或mH。 如 220uH±5%
②色标法:卧式的与电阻色环法相似。立式的常采用色点法。 单位uH
③数码法:采用格 三物 致位新 数·厚 码德 泽表人 示,P前PT课两件 位有效数,第三位零的个数14 .
注意:小数点用R表示,最后英文字母表示误差。如:8R2J表 示8.2uH。超小型元件(片状)不标偏差,一般为±5%。
格 物 致 新 ·厚 德 泽 人
PPT课件
29
(3)高频变压器一般在收音机做天线线圈和电视机中做天线的阻 抗变换器。
2、按用途分类
变压器按其用途可分为电源变压器、音频变压器、中频变压器、 高频变压器、脉冲变压器、恒压变压器、耦合变压器、自耦变压 器、隔离变压器等多种。
格 物 致 新 ·厚 德 泽 人
格 物 致 新 ·厚 德 泽 人
PPT课件
20
固定线圈按用途分有
电感器按用途可分为振荡电感器、校正电感器、显像管偏 转电感器、阻流电感器、滤波电感器、隔离电感器、补 偿电感器等。
高频阻流圈:阻止高频交流电流通过,而让低频交流电 流通过。高频扼流圈在塑料或瓷骨架上绕成蜂房式结构, 一般电感量小在2.5-10mH之间。
变压器电感基础知识介绍
THANKS FOR WATCHING
感ห้องสมุดไป่ตู้您的观看
变压器电感的应用场景
变压器电感在电力电子、 通信、控制等领域有广泛 应用。
在通信领域,变压器电感 用于信号传输、天线调谐 等电路中。
ABCD
在电力电子中,变压器电 感用于实现直流-直流转 换器、逆变器等电路中的 电压和电流控制。
在控制领域,变压器电感 用于电机控制、电源管理 等领域。
02 变压器电感的参数与性能
变压器电感通常由导磁材料(如铁芯) 和绕组组成,绕组可以是单层或多层 的线圈。
变压器电感的工作原理
当电流通过变压器电感的绕组 时,会产生磁场,该磁场与绕 组相互作用产生感应电动势。
感应电动势的大小与磁场的变 化率成正比,当电流增加时, 磁场增强,感应电动势也相应 增加。
变压器电感通过磁场耦合的方 式传递能量,实现电压和电流 的变化。
变压器电感的材料选择
导线材料
磁芯材料
选择具有高导电性能的导线材料,如铜、 铝等。
根据应用需求选择合适的磁芯材料,如铁 氧体、硅钢等。
绝缘材料
其他辅助材料
选择具有良好绝缘性能的绝缘材料,如漆 、胶等。
选择合适的辅助材料,如支架、螺丝等, 以支撑和固定电感线圈。
04 变压器电感的常见问题与 解决方案
变压器电感的制造工艺
绕线工艺
根据设计要求,将导线绕制在磁芯上,形成 线圈。
装配与测试
将线圈装配到变压器中,并进行性能测试, 以确保电感性能符合要求。
浸漆与固化
对绕制好的线圈进行浸漆处理,并经过高温 固化,以提高绝缘性能和机械强度。
质量检测与控制
对制造过程中各个环节进行质量检测和控制, 以确保最终产品的质量。
第五章--单相并网逆变器
第5章单相并网逆变器后级的DC- AC部分,采用单相全桥逆变电路,将前级 DC- DC输出的400V 直流电转换成220V/50Hz 正弦交流电,完成逆变向电网输送功率。
光伏并网逆变器实现并网运行必须满足要求:输出电压与电网电压同频同相同幅值,输出电流与电网电压同频同相(单位功率因数),而且其输出还应满足电网的电能质量要求,这些都依赖于逆变器的有效并网控制策略。
光伏并网逆变器拓扑结构按逆变器主电路的拓扑结构分类,主要有推挽逆变器、半桥逆变器和全桥逆变器。
5.1.1推挽式逆变电路推挽式逆变电路由两只共负极的功率开关元件和一个原边带有中心抽头的升压变压器组成。
它结构简单,两个功率管可共同驱动,两个开关元件的驱动电路具有公共地,这将简化驱动电路的设计。
U图5-1 推挽式逆变器电路拓扑推挽式电路的主要缺点是很难防止输出变压器的直流饱和,另外和单电压极性切换的全桥逆变电路相比,它对开关器件的耐压值也高出一倍。
因此适合应用于直流母线电压较低的场合。
此外,变压器的利用率较低,驱动感性负载困难。
推挽式逆变器拓扑结构如图5-1 所示。
5.1.2半桥式逆变电路}半桥式逆变电路使用的功率开关器件较少,电路结构较为简单,但主电路的交流输出电压幅值仅为输入电压的一半,所以在同等容量条件下,其功率开关的额定电流要大于全桥逆变电路中功率元件额定电流,数值为全桥电路的2 倍。
由于分压电容的作用,该电路具有较强的抗电压输出不平衡能力,同时由于半桥式逆变电路控制较为简单,且使用元件少、成本低,因此在小功率等级的逆变电源中常被采用。
其主要缺点是直流侧电压利用率低,在同样的开关频率下电网电流的谐波较大。
图5-2 半桥式逆变器电路拓扑5.1.3全桥式逆变电路全桥逆变电路可以认为是由2 个半桥逆变电路组成的,在单相电压型逆变电路中是应用最多的电路,主要用于大容量场合。
在相同的直流输入电压下,全桥逆变电路的最大输出电压是半桥式逆变电路的2 倍。
变压器与电感器设计手册
变压器与电感器设计手册第一章:引言
1.1研究背景
1.2本手册的目的
1.3变压器与电感器的概念和应用
第二章:变压器设计原理
2.1变压器的基本原理
2.2变压器的结构和工作原理
2.3变压器的主要参数
第三章:变压器设计步骤
3.1根据需求确定变压器的规格和参数
3.2计算铁心尺寸和匝数
3.3计算线圈参数
3.5计算变压器的损耗和效率
3.6设计变压器的辅助电路
第四章:变压器设计技术
4.1变压器设计中常见的问题和解决方法4.2变压器的特殊设计技术
4.3变压器的保护和维护
第五章:电感器设计原理
5.1电感器的基本原理
5.2电感器的结构和工作原理
5.3电感器的主要参数
第六章:电感器设计步骤
6.1根据需求确定电感器的规格和参数6.2计算电感器的线圈参数
6.4计算电感器的性能指标
6.5设计电感器的辅助电路
第七章:电感器设计技术
7.1电感器设计中常见的问题和解决方法7.2电感器的特殊设计技术
7.3电感器的保护和维护
第八章:实例分析与应用
8.1实际变压器设计案例分析
8.2实际电感器设计案例分析
8.3变压器与电感器在不同领域的应用第九章:未来发展及展望
9.1变压器与电感器技术的发展趋势
9.2变压器与电感器设计的挑战与机遇
结论
参考文献
变压器与电感器是电气工程中常见的元件,广泛应用于各种电路
和系统中。
本手册旨在系统地介绍变压器与电感器的设计原理、步骤、技术和实例分析,以及展望未来的发展趋势。
希望对电气工程师和相
关专业人士有所帮助。
电路分析基础(第四版)张永瑞答案第5章
第5 章 互感与理想变压器 解 自耦变压器对求 U1、I1、U2、I2 来说可以等效为题解
5.9图所示的理想变压器。 设a端到c端的匝数为N1, b端到c端 的匝数为N2, 显然, 有
N1 U1 220 1.1 N2 U2 200
41
第5 章 互感与理想变压器
设 U2 2000 V , 则
题解5.7图
36
第5 章 互感与理想变压器 5.8 求题5.8图所示的两个电路从ab端看的等效电感Lab。
题5.8图
37
第5 章 互感与理想变压器 解 应用互感T形去耦等效, 将题5.8图(a)、 题5.8图(b)分
别等效为题解5.8图(a)、 题解5.8图(b)。 图 (a): Lab=1+2∥2=2 H 图 (b): Lab=1+[4+(-1)]∥(2+4)+3=6 H
题解5.6图
33
第5 章 互感与理想变压器 5.7 题5.7图所示为全耦合空芯变压器, 求证:当次级短
路时从初级两端看的输入阻抗Zin=0; 当次级开路时从初级两 端看的输入阻抗Zin=jωL1。
题5.7图
34
第5 章 互感与理想变压器
证明 k=1知互感 M L1L2 。 画T形去耦等效电路并
R r1 r2 Z cosjz 300.8 24
阻抗Z中的电抗即相串联的两个互感线圈等效电感的感抗
X L Z sinjz 30 1 0.82 18
等效电感
L X L 18 57.3mH
2 f 100
25
第5 章 互感与理想变压器
由于是顺接,
0.5
d i1 dt
(2)
电感器和变压器的检测和识别
误差 ±20% ±1% ±2% ±3% ±4%
±5% ±10%
知识3 电感器和变压器的检测方法
电感线圈只有一部分(阻流圈、振荡线圈LC固定电感线圈)是按标准生 产出来的产品,绝大多数是非标产品,自制。铁心线圈只能用于低频, 铁氧体线圈、空心线圈可用于高频。
1、电感器线圈的测量 用万用表的欧姆档测量电感器的直流电阻,应不为0和无穷大。
(3)高频扼流圈
用在高频电路中阻碍高频电流的通过。常与电容器串联组成滤波电路, 起到分开高频和低频信号的作用改变磁芯在线圈中的位置就可以达到
改变电感量的目的。如:磁棒式天线线圈-可变电感线圈,其电感量在 一定范围内可以调节。与可变电容器组成调谐器,用于改变谐振回路的 谐振频率。 3、电感器的主要参数 (1)电感量标称值与误差 电感量表示电感线圈工作能力的大小。电感=磁通/电流 L
变压器也是一种电感器。它是利用两个电感线圈靠近时的互感应现 象工作的。在电路中可以起到电压变换和阻抗变换的作用,是电子产品中 十分常见的元件。 (1)低频变压器 (有两种) 音频变压器:实现阻抗匹配、耦合信号、将信号倒相等。(只有在阻
抗匹配的情况下,音频信号的传输损耗及其失真才能降 到最小。)(20Hz~20KHz) 电压变压器:将220V交流电压升高或降低,变成所需的各种交流电压。 (2)中频变压器(又叫中周) 中周是超外差式收音机和电视机中的重要元件。
例:4N7: 4.7 nH ; 4R7:4.7 μH; 47N:47 nH ; 6R8:6.8 μH 。 其允许偏差也用文字符号表示。
例:±1% ±2% ±5% ±10% ±20% ±30%
FG JK
M
N
(3)数码法:用三位数码表示电感量的标称值。一、二位为有效数, 第三位为倍率,即零的个数,单位为μH。 例:102J: 1000 μH,允许偏差±5%; 183K: 18000 μH,允许偏差±10%;
电气基础理论知识
电气基础理论知识1. 涡流是怎样产生的?有何利弊?答:置于变化磁场中的导电物体内部将产生感应电流,以反抗磁通的变化,这种电流以磁通的轴线为中心呈涡旋形态,故称涡流。
在电机中和变压器中,由于涡流存在,将使铁芯产生热损耗,同时,使磁场减弱,造成电气设备效率降低,容量不能充分利用,所以,多数交流电气设备的铁芯,都是用0.35或0.5毫米厚的硅钢片迭成,涡流在硅钢片间不能穿过,从而减少涡流的损耗。
涡流的热效应也有有利一面,如可以利用它制成感应炉冶炼金属,可制成磁电式、感应式电工仪表,还有电度表中的阻尼器,也是利用磁场对涡流的力效应制成的。
2. 什么是趋表效应?趋表效应可否利用?答:当直流电流通过导线时,电流在导线截面分布是均匀的,导线通过交流电流时,电流在导线截面的分布是不均匀的,中心处电流密度小,而靠近表面电流密度大,这种交流电流通过导线时趋于表面的现象叫趋表效应,也叫集肤效应。
考虑到交流电的趋表效应,为了有效地节约有色金属和便于散热,发电厂的大电流母线常用空心的槽形或菱形截面母线。
高压输配电线路中,利用钢芯铝线代替铝绞线,这样既节约了铝导线,又增加了导线的机械强度。
趋表效应可以利用,如对金属进行表面淬火,对待处理的金属放在空心导线绕成的线圈中,线圈中通过高频电流,金属中就产生趋于表面的涡流,使金属表面温度急剧升高,达到表面淬火的目的。
3. 什么是正弦交流电?为什么普遍采用正弦交流电?答:正弦交流电是指电路中的电流、电压及电势的大小都随着时间按正弦函数规律变化,这种大小和方向都随时间做周期性变化的电流称交变电流,简称交流。
交流电可以通过变压器变换电压,在远距离输电时,通过升高电压可以减少线路损耗。
而当使用时又可以通过降压变压器把高压变为低压,这既有利安全,又能降低对设备的绝缘要求。
此外,交流电动机与直流电动机比较,则具有构造简单,造价低廉,维护简便等优点。
在有些地方需要使用直流电,交流电又可通过整流设备将交流电变换为直流电,所以交流电目前获得了广泛地应用。
变压器的基本知识
变压器的基本知识一基本知识一、变压器的用途变压器是借助于电磁感应,以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。
变压器的用途很广,在国民经济的各部门,都十分广泛应用着各种各样的变压器。
从电力系统角度而言,一个电力网将许多发电厂和用户联在一起。
从发电厂发出的电能往往需经远距离传输才能到达用电地区,在传输的功率恒定时,传输电压越高,则所需电流越小。
因为电压降正比于电流,电能损耗正比于电流的平方,所以用较高的输电电压可以大大降低线路的电压降和线路的损耗。
要制造电压很高的发电机,目前技术上还很困难,所以需用升压变压器将发电机端的电压升高以后再输送出去。
随着输送距离的增加,输电功率的增大,对变压器的容量和电压等级的要求也就越来越高。
而电力网内部存在多种电压等级,这就需要各种规格电压等级和容量的变压器来联接。
另一方面,当电能输送到受电端时,又必须用降压变压器将输电线路上的高电压降低到配电系统的电压,然后再经过一系统的配电变压器将电压降低到符合用户各种电气设备要求的电压。
由此可见,在电力系统中变压器的地位是十分重要的,不仅需要变压器数量多,通常,变压器的安装总容量为发电机安装总容量的8~10倍。
而且要求其性能好,运行安全可靠。
二、变压器的分类(1)按用途分类,有电力变压器、电炉变压器、整流变压器、弧焊变压器、试验变压器、调压变压器,电抗器和互感器等。
(2)按电源输出相数分类,有单相变压器、三相变压器。
(3)按绝缘介质分类,有干式变压器、油浸式变压器及充气变压器(4)按冷却方式分类,有油浸自冷式变压器、油浸风冷式变压器、油浸强迫油循环风冷却变压器、油浸强迫油循环水冷却变压器及干式变压器。
(5)按绕组数量分类,有双绕组变压器、三绕组变压器及自耦变压器。
(6)按调压方式分类,有无励磁调压变压器、有载调压变压器。
(7)按中性点绝缘水平分类,有全绝缘变压器、分级绝缘变压器。
三、变压器型号及额定参数1、变压器型号变压器的各种分类不能包含变压器的全部特征,需要产品型号把所有的特征均表达出来。
变压器电感基础知识介绍页PPT文档
变压器电感基础知识介绍页PPT文档一、电感的基本概念和定义电感是指导体中产生电磁感应的现象,同时也是一种可以储存电能的元件。
当变化的电流通过导体时,它会产生一个与电流变化有关的电磁场,这种电磁场会产生电位能,而这种电位能在电流发生变化时会释放出来。
二、变压器的基本原理变压器是利用电磁感应原理来实现电压或电流的升降的电气设备。
它由两个或多个线圈绕在同一个铁芯上构成。
当输入线圈中有交变电流流过时,通过铁芯产生的磁场会在输出线圈中产生感应电动势,从而使得输出电流和输入电流之间实现了电磁转换。
三、电感的具体特性1.阻碍交流电流通过:电感对交流电具有阻抗,即电感的阻碍作用使得电流不能通过,只能在电感中产生磁场。
2.对直流电具有短暂性阻抗:当电感通直流电时,初始时刻电感对电流具有短暂性阻抗,即会阻碍电流通过,但随着时间的推移,电感的短暂阻抗逐渐减小。
3.储存和释放电能:当交变电流通过电感时,电感会储存电能,当电流中断时,电感会释放储存的电能。
这个特性使得电感作为储能元件被广泛应用于电路中。
四、电压和电流的关系1. 基本关系:根据法拉第电磁感应定律,产生的感应电动势与电流的变化率成正比。
即感应电动势E= -N*dI/dt,其中E为感应电动势,N 为线圈匝数,dI/dt为电流变化率。
2.电势能的转换:电感上的电势能可以转换为输入电流的动能,也可以转换为输出电流的动能。
3.基于电压变比的关系:在理想的变压器中,输出电压和输入电压之间的比例关系取决于线圈的匝数比。
即输出电压与输入电压之比等于输出线圈的匝数与输入线圈的匝数之比。
五、变压器的应用领域1.电力系统中:变压器在电力系统中是非常重要的设备,用于实现电压升降。
2.电子设备中:变压器在电子设备中被用于隔离、滤波和振荡电路等方面。
3.确定电路参数:通过变压器的反变换,可以测量出未知值的电阻、电感或电容等参数。
4.充电和放电:变压器可以用于充电和放电电路中的储能。
六、小结电感是一种能够储存和释放电能的元件,它具有阻碍交流电流通过、对直流电具有短暂性阻抗和对电压和电流的转换等特性。
变压器电感基础知识介绍
变压器电感基础知识介绍变压器是电能的传递装置,它可以通过电磁感应的方式将一种电压转化为另一种电压,是电力系统中非常重要的设备之一、变压器的工作原理基于法拉第电磁感应定律,即在闭合线圈中通过电流时会产生磁场,当磁场发生变化时会在线圈中感应出电流。
变压器主要由两个或更多的线圈组成,通过磁场的耦合来实现电能的传递。
在变压器中,一般有两个线圈,分别称为主线圈和副线圈。
主线圈是供电线圈,副线圈是输出线圈。
这两个线圈通过能够导磁的铁芯连接在一起,使它们的磁场能够彼此感应。
当主线圈中通入交流电时,其产生的磁场通过铁芯传递到副线圈中,从而在副线圈中感应出电流。
由于线圈之间的匝数比不同,根据法拉第电磁感应定律,如果副线圈的匝数比大于主线圈的匝数比,那么输出电压将比输入电压高,称为升压变压器;反之,如果副线圈的匝数比小于主线圈的匝数比,那么输出电压将比输入电压低,称为降压变压器。
在变压器的设计中,核心重要的参数是变比,即主线圈匝数与副线圈匝数的比值。
变比决定了输入和输出的电压之间的关系。
除了变比之外,还有一些其他的参数也需要考虑,比如变压器的功率、效率、温升等。
此外,还要考虑线圈和铁芯的尺寸和材料选择,以及绝缘和散热等问题。
变压器的工作原理可以通过以下步骤来解释:1.主线圈通电产生磁场:当交流电通入主线圈时,其产生的磁场将通过铁芯传递到副线圈中。
2.磁场感应副线圈中产生电流:副线圈中的磁场发生变化,根据法拉第电磁感应定律,在副线圈中就会感应出电流。
3.电流产生电磁场:在副线圈中感应出的电流反过来又产生了磁场。
4.根据变压器的功率平衡原理,主线圈和副线圈中的电流和电压成反比关系。
即电压高的一边电流小,电压低的一边电流大。
5.根据电能守恒原理,输入功率与输出功率相等,即输入电压乘以输入电流等于输出电压乘以输出电流。
6.变压器通过调整线圈之间的匝数比来实现不同电压的输出。
变压器在电力传输和分配中扮演着重要的角色。
在电厂中,变压器用于将发电机产生的高压交流电转化为输电线路所需的较高电压;在输电线路上,变压器用于将高压电流转化为在终端用户处所需的较低电压;在终端用户处,变压器用于将电压进一步降低,以满足不同用电设备的需求。
第5章 电感式传感器原理及其应用
自感式传感器结构图
5.2.2自感式传感器的工作原理 自感式传感器的工作原理 自感式传感器是把被测量变化转换成自感L的变化 的变化, 自感式传感器是把被测量变化转换成自感 的变化, 通过一定的转换电路转换成电压或电流输出。 通过一定的转换电路转换成电压或电流输出。 传感器在使用时,其运动部分与动铁心(衔铁) 传感器在使用时,其运动部分与动铁心(衔铁)相 当动铁芯移动时, 连,当动铁芯移动时,铁芯与衔铁间的气隙厚度 δ 发生改变,引起磁路磁阻变化, 发生改变,引起磁路磁阻变化,导致线圈电感值发 生改变,只要测量电感量的变化, 生改变,只要测量电感量的变化,就能确定动铁芯 的位移量的大小和方向。 的位移量的大小和方向。
1.差动式自感传感器的结构 差动式自感传感器的结构
(a)变气隙式; 变气隙式; 变气隙式
(b)变面积式; )变面积式; 差动式自感传感器
(c)螺管式 )
三种形式的差动式自感传感器以变气隙厚度式电 感传感器的应用最广。 感传感器的应用最广。
变气隙式差动式自感传感器结构剖面图
2.差动式自感传感器的特点 差动式自感传感器的特点 自感系数特性曲线如图所示。 自感系数特性曲线如图所示。
(4)调相电路 ) 调相电路的基本原理是, 调相电路的基本原理是,传感器电感的变化将引起 的变化。 输出电压相位 ϕ 的变化。
第5章 电感式传感器原理及其应用 章
5.1概述 概述 5.2 自感式传感器 5.3差动变压器式传感器 差动变压器式传感器 5.4电涡流式传感器 电涡流式传感器
5.1概述 概述
1.电感式传感器的定义 电感式传感器的定义 利用电磁感应原理将被测非电量转换成线圈 的变化, 自感系数 L 或互感系数 M 的变化,再由测 量电路转换为电压或电流的变化量输出, 量电路转换为电压或电流的变化量输出,这 种装置称为电感式传感器。 种装置称为电感式传感器。
精品文档-测试技术与传感器(罗志增)-第5章
第5章 电感式传感器 图 5-10 电压输出型全波整流电路(全波电压输出)
第5章 电感式传感器
从图5-10的电路结构可知,不论两个次级线圈的输出瞬时
电压极性如何,流经电容C1的电流方向总是从2到4,流经电容
C2的电流方向总是从6到8,故整流电路的输出电压为
U 2
以
UU2240;U当68衔。铁当在衔零铁位在以零上位时时,,因因为为
线,虚线为实际特性曲线。
以上分析表明,差动变压器输出电压的大小反映了铁芯位
移的大小,输出电压的极性反映了铁芯运动的方向。
第5章 电感式传感器 图 5-9 差动变压器输出电压的特性曲线
第5章 电感式传感器 由图5-9可以看出,当衔铁位于中心位置时,差动变压器输
出电压并不等于零,我们把差动变压器在零位移时的输出电压称 为零点残余电压。它的存在使传感器的输出特性不经过零点,造 成实际特性与理论特性不完全一致。零点残余电压主要是由传感 器的两次级绕组的电气参数和几何尺寸不对称,以及磁性材料的 非线性等引起的。零点残余电压的波形十分复杂,主要由基波和 高次谐波组成。基波产生的主要原因是传感器的两次级绕组的电 气参数、几何尺寸不对称,导致它们产生的感应电势幅值不等, 相位不同,因此不论怎样调整衔铁位置,两线圈中的感应电势都 不能完全抵消。高次谐波中起主要作用的是三次谐波,其产生的 原因是磁性材料磁化曲线的非线性(磁饱和、磁滞)。零点残余电 压一般在几十毫伏以下,实际使用时,应设法减小它,否则将会 影响传感器的测量结果。
Δ 0
2
Δ 0
3
(5-8)
第5章 电感式传感器
由上式可求得电感增量ΔL和相对增量ΔL/L0的表达式,即
ΔL
L0
Δ 0
变压器和电感基础知识
培训教材文件编码:
版本:A.0
页数:13 OF 69
标题第一章基础培训教材
第二节电子元件基础知识
制订日期:
二、变压器(Transformer)和电感器(Inductor)
变压器和电感器是很容易混乱的,因为它们有同样的物理形状。
它们之间只有一个规律可分别出来,变压器用“QTK”标明,电感器用“QHP”标明。
(一)变压器
下面是一些我们常用的变压器的类型:
变压器的电路符号是:T。
变压器常用“QTK”标在元件体上加以识别。
变压器是有极性的,它的第一个管脚通常用一白色标志、一个孔或一个尖角表示。
(二)电感器
电感器的元件符号是:L。
电感器和元件体上常用“QHP”标示。
电感的单位是亨利(H),毫亨(MH),
微亨(UH)。
电感器是有极性的,电感器的一号管
脚用一尖角表示,插时应对准板上的
白点插入。
轴向引线电感器和电阻的外形是非常相似的,可区别它们的标志是电感器的一头有一条宽的
银色色环。
轴向引线由电感器用五个色环表示,第一环银色环比其它的色环大两倍,以下的
三环标示电感的毫亨值,第五环表示电感的误差值。
其后四环的标识方法和四环电阻的相同。
例:某电感器的后四环颜色依次为:红、红、黑、银,
则其电感值为:22微亨,±10%。
如果第二环或第三环的颜色是金色,则此金色环表示电感值的小数点.
例:某电感值的后四环颜色依次为:黄,金,紫,银,则其电感值为4.7UH±10%.。
电感式传感器习题及解答
^第5章电感式传感器一、单项选择题1、电感式传感器的常用测量电路不包括()。
A. 交流电桥B. 变压器式交流电桥C. 脉冲宽度调制电路D. 谐振式测量电路2、电感式传感器采用变压器式交流电桥测量电路时,下列说法不正确的是()。
A. 衔铁上、下移动时,输出电压相位相反B. 衔铁上、下移动时,输出电压随衔铁的位移而变化|C. 根据输出的指示可以判断位移的方向D. 当衔铁位于中间位置时,电桥处于平衡状态3、下列说法正确的是()。
A. 差动整流电路可以消除零点残余电压,但不能判断衔铁的位置。
B. 差动整流电路可以判断衔铁的位置,但不能判断运动的方向。
C. 相敏检波电路可以判断位移的大小,但不能判断位移的方向。
D. 相敏检波电路可以判断位移的大小,也可以判断位移的方向。
4、对于差动变压器,采用交流电压表测量输出电压时,下列说法正确的是()。
—A. 既能反映衔铁位移的大小,也能反映位移的方向B. 既能反映衔铁位移的大小,也能消除零点残余电压C. 既不能反映位移的大小,也不能反映位移的方向D. 既不能反映位移的方向,也不能消除零点残余电压5、差动螺线管式电感传感器配用的测量电路有()。
A.直流电桥 B.变压器式交流电桥C.差动相敏检波电路 D.运算放大电路6、通常用差动变压器传感器测量()。
【A.位移 B.振动 C.加速度 D.厚度7、差动螺线管式电感传感器配用的测量电路有( )。
A.直流电桥 B.变压器式交流电桥C.差动相敏检波电路 D.运算放大电路二、多项选择题1、自感型传感器的两线圈接于电桥的相邻桥臂时,其输出灵敏度()。
A. 提高很多倍B. 提高一倍—C. 降低一倍D. 降低许多倍2、电感式传感器可以对()等物理量进行测量。
A位移 B振动 C压力 D流量 E比重3、零点残余电压产生的原因是()A传感器的两次级绕组的电气参数不同B传感器的两次级绕组的几何尺寸不对称C磁性材料磁化曲线的非线性D环境温度的升高#4、下列哪些是电感式传感器()A.差动式 B.变压式 C.压磁式 D.感应同步器三、填空题1、电感式传感器是建立在基础上的,电感式传感器可以把输入的物理量转换为或的变化,并通过测量电路进一步转换为电量的变化,进而实现对非电量的测量。
《电路分析基础》课件第5章 互感与理想变压器
感压降亦取负号;若一个电流从互感线圈的同名端流入,另一个电流从互感线
圈的同名端流出,磁通相消,互感压降与自感压降异号,即自感压降取正号时
互感压降取负号,自感压降取负号时互感压降取正号。
只要按照上述方法书写,不管互感线圈给出的是什么样的同名端位置,也
不管两线圈上的电压、电流参考方向是否关联,都能正确书写出它们电压、电
第5章 耦合电感与理想变压器 (本章共63页)
5.1 耦合电感元件 P2
一、耦合电感的基本概念
二、耦合电感线圈上的电压、电流关系
5.2
P15
一、耦合电感的串联等效
5.5 实际变压器模型 P51 一、空芯变压器
二、铁芯变压器
二、耦合电感的T型等效 5.3 含互感电路的相量法分析 P25
一、含互感电路的方程法分析
u2
L2
d i2 dt
+?
M d i1 dt
(2)判断电流是否同时流入同名端。
u1
L1
d i1 dt
?-
M
d i2 dt
u2
L2
d i2 dt
?-
M
d i1 dt
图(a)是。取“+”。
(2) 电流同时流入异名端。故取“-”。
第 5-9 页
前一页 下一页 回本章目录
5.1 耦合电感元件
关于耦合电感上电压、电流关系这里再强调说明两点:
前一页 下一页 回本章目录
5.1 耦合电感元件
此例是为了给读者起示范作用,所以列写的过程较详细。以后再遇到写互
感线圈上电压、电流微分关系,线圈上电压、电流参考方向是否关联、磁通是 相助或是相消的判别过程均不必写出,直接可写出(对本互感线圈)
电子变压器.电感器生产制造基本知识及工艺规范
电子变压器、电感器生产制造基本知识及工艺规范1.目的:为使我公司电子变压器,电感器(统称变压器)生产的管理者,作业者对变压器的生产有个全面了解和统一认识。
以期在生产中采用合理的工艺要求和操作手法,提高产品质量、提高工效、节省材料,特制定编写本文。
2.适用范围:本规范只适用于我公司电子变压器的生产中,一般性的工艺要求,对于特殊要求,依图纸规定执行,本文内容只作为参考.生产过程中,如遇有与产品规格书要求不一致处,应以产品规格书为准。
3.变压器的基本工作原理:变压器是一种变换电压的电子原件,故称之为“变压器"。
它是由铜线绕制的线包和磁性材料构成的铁芯组合而成,是各种电子设备中不可缺少的重要部件之一。
变压器的工作原理:当初级线圈加上交复信号后,初级线圈将产生交变磁场.交变磁场通过磁芯(铁芯)感应到次级线圈上,于是在次级线圈中产生感应电压。
该感应电压的频率与初级外加信号相同,而电压值则取决于次级线圈的匝数多少。
输出功率则决定于外接负载和初级输入信号的功率.因此,正确的设计初、次级线圈的圈数比即可得到需要的次级输出电压值。
工作原理如右图所示:Uin:输入电压Uout:次级输出电压N1:初级匝数N2:次级匝数Uout=Vin*N2/N1*(1+K)(K:损耗系数约为5%-10%)4.变压器生产中使用的主要材料:变压器生产中使用的材料主要为三类:导电材料、磁性材料和绝缘材料.现分述如下:4.1导电材料主要用于绕制线包绕组和隔离,屏蔽,导电材料种类繁多,使用时要注意区分。
4.1.1常用的铜漆包线:铜线表面包裹绝缘漆面称为铜漆包线,简称为铜线或漆包线,使用中除注意其外径外,还要注意区分绝缘层的特性。
漆包线分为:A.可焊型:即以锡温可以熔化掉漆包层,常用的有:0UEW1UEW2UEW—使用最多的一种3UEW从0-3型,其漆包层由厚到薄。
B。
不可焊型:即以锡温不能熔化漆层,需以特殊方法,去漆层后焊锡.常用的有:PEW “F"PEW “H”多用于工作在高温条件下,一般使用较少。
第5章电感传感器。
第三节 电感式传感器的应用
一、位移测量
轴向式 电感测微 器的外形
航空插头
红宝石测头
其他电感测微头
模拟式及数字式 电感测微仪
轴向式电感测微器的内部结构
1—引线电缆 2—固定磁筒
3—衔铁
4—线圈
5—测力弹簧 6—防转销
7—钢球导轨(直线轴承)
8—测杆
9—密封套
10—测端 11—被测工件
12—探基头准面
当 ? ? ?? 1时,
? L2
?
??
?
? ?
?
?
2
? ?
?
? ?
?
?
3
? ?
? ......
?0
L0 ? 0 ? ? 0 ? ? ? 0 ?
忽略高次项: ? L2 ? L0 ? ? ?0
12
2、差动自感传感器
衔铁下移:
L1 ? ? 0 AW 2
?
2(? 0 ? ? ? )
L2 ? ? 0 AW 2 2(? 0 ? ? ? )
上一页
下一页
5.2.1 差动变压器
变隙式差动变压器 螺线管式差动变压器 差动变压器应用
返回
上一页
下一页
变隙式差动变压器
当一次侧线圈接入激励电压后,二次侧线圈将产生感应电压输出 互感变化时,输出电压将作相应变化
两个初级绕组的同名端顺向串联, 而两个次级绕组的同名端则反向串联。
返回
上一页
下一页
1. 工作原理
3
? ?
?
?? ?
?
? ??0
5
? ?
?
......
? ?
?
?
《电感与变压器》PPT课件
可变电感线圈
在线圈中插入磁芯(或铜芯),改变 磁芯的位置就可以达到改变电感量的目 的。如磁棒式天线线圈就是一个可变电 感线圈,其电感量可在一定的范围内调 节。它还能与可变电容组成调谐器,用 于改变谐振回路的谐振频率。
6
变压器
变压器是用做变换电路中电压、电流 和阻抗的的器件,按其工作频率的高低 可分为低频变压器、中频变压器、高频 变压器。
新产品均为一体化行输出变压器。
11
电感线圈的命名方法如图
区别代号,用字母表示 型式,用字母表示(如X表示小型) 特征,用字母表示(如G表示高频) 主称,用字母表示(L表示线圈,ZL表示高频扼流线圈)
12
中频变压器的型号命名方法
它由三部分组成: 第一部分:主称,用字母表示; 第二部分:尺寸,用数字表示; 第三部分:级数,用数字表示。
按结构特点可分为单层、多层、蜂房式、磁 心式等。
2
小型固定式电感线圈
这种电感线圈是将铜线绕在磁心上,再用环氧 树脂或塑料封装而成。它的电感量用直标法和色 标法表示,又称色码电感器。它具有体积小、重 量轻、结构牢固和安装使用方便等优点,因而广 泛用于收录机、电视机等电子设备中,在电路中 用于滤波、陷波、扼流、振荡、延迟等。固定电 感器有立式和卧式两种,其电感量一般为0.1~ 3000μH,允许误差分为Ⅰ、Ⅱ、Ⅲ三档,即 ±5%、±10%、±20%,工作频率在10kHz~ 200MHz之间。
意义
字母
意义
DB CB RB GB
电源变压器 音频输出变压器 音频输入变压器
高频变压器
HB
SB或 ZB
SB或 EB
灯丝变压器 音频(定阻式)输送变压器
音频(定压式或自耦式变压 器)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器隔离特性
变压器电路
变压器同名端
铁氧体材料磁性元件实物
5.6 变压器电路详解
• 5.6.1 典型电源变压器电路详解 • 5.6.2 次级带抽头电源变压器电路详解
典型电源变压器电路
次级线圈带抽头电源变压器电路
5.7 动手实验篇之五: 交流电压测量和变压器检测方法
• 5.7.1 万用表交流电压挡实验方法解说 • 5.7.2 变压器检测方法解说
测量初级和次级线圈电阻
测量绝缘电阻
5.8扩展快速阅读篇之四: 认识多种变压器Fra bibliotek多种变压器
• 请见书P162-164
电感器感抗的等效理解电路
线圈中反向电动势极性判别方法
种情况下反向电动势判断方法
电感器主要特性小结
5.3 电感电路详解
• 5.3.1 电感器的串联和并联 • 5.3.2共模和差模电感电路
共模和差模电感电路
共模和差模电感电路
差模和共模电流流过共模电感示意图
差模电感器电路
5.4 普通变压器知识全解
第5章 电感器和变压器知识全解
5.1 电感器知识全解
• • • • 5.1.1 5.1.2 5.1.3 5.1.4 电感器种类和工作原理 电感器外形特征和电路符号 电感器主要参数标注方法 电感器故障处理方法
电感器电路符号解说
万用表测量电感器直流电阻
5.2 电感器主要特性和电感电路详解
• • • • • 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 说 • 5.2.6 通直阻交特性解说 电感器感抗特性解说 电感器电励磁特性解说 磁励电特性解说 线圈中的电流不能发生突变特性解 电感器主要特性小结
• • • • • • 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 普通变压器种类和外形特征解说 变压器电路符号 变压器结构和工作原理 变压器主要参数解说 变压器六种故障特征 变压器修理和选配方法
几种变压器电路符号解说
变压器结构
5.5 变压器主要特性
• • • • • • 5.5.1 5.5.2 5.5.3 5.5.4 5.5.5 5.5.6 变压器隔离特性解说 隔直通交特性解说 变压器变压比解说 变压器电压、电流和阻抗之间关系 变压器同名端特性解说 屏蔽和磁性元件