我的碳纳米管PPT
合集下载
《碳纳米管》PPT课件
分类:
离子液体修饰碳纳米管 、表面活性剂 (十二 烷基磺酸钠(SDS)和十二烷基苯磺酸钠 (SDBS) )、聚间亚苯基亚乙烯(PmPV) 等
4 碳纳米管的基本性质
(1)力学性能:sp2杂化形成的C=C共价键是自然界 最强的价键之一,赋予碳纳米管极强的强度、韧性 及弹性模量,使碳纳米管具有优异的力学性能。由 于碳纳米管的纳米尺度和易缠绕的特点,直接用传 统实验方法测量其力学性能比较困难,因此最初对 碳纳米管力学性能的研究集中在理论预测上。
当今世界公开报道高质、高效、连续大批 量工业化生产碳纳米管的实例:沸腾床催化法、 化学气相沉积法
碳纳米管结构示意图
(A) 椅形单壁碳纳米管 (B) Z字形单壁碳纳米管 (C) 手性单壁碳纳米管 (D) 螺旋状碳纳米管 (E) 多壁碳纳米管截面图
(方A)法电和弧设放备电都法较:相其似方。法阴及极设采备用与厚制约备10Cmm60的, 直径约为30mm的高纯高致密的石墨片,阳极 采用直径约为6mm的石墨棒,整个系统保持 在气压约104Pa的氦气气氛中,放电电流为50 A左右,放电电压20V。通过调节阳极进给速 度,可以保持在阳极不断消耗和阴极不断生长 的同时,两电极的放电端面距离不变,从而可 以得到大面积离散分布的碳纳米管,同时还可 能产生碳纳米微粒。
(D)激光法
机理:与电弧放电法类似,主要是将一根金属催化剂/ 石墨混合的石墨靶放置于一长形石英管中间,该管 则置于一加热炉内。当炉温升至1200℃时,将惰性 气体充入管内,并将一束激光聚焦于石墨靶上。石 墨靶在激光照射下将生成气态碳,这些气态碳和催 化剂粒子被气流从高温区带向低温区,在催化剂的 作用下生长成碳纳米管。
发现:1991年,日本学者Ijima和美国的Bethune 等人在掺加过渡金属催化剂的石墨电极间起弧放 电,并在制备产物中分别发现了单壁纳米管。
离子液体修饰碳纳米管 、表面活性剂 (十二 烷基磺酸钠(SDS)和十二烷基苯磺酸钠 (SDBS) )、聚间亚苯基亚乙烯(PmPV) 等
4 碳纳米管的基本性质
(1)力学性能:sp2杂化形成的C=C共价键是自然界 最强的价键之一,赋予碳纳米管极强的强度、韧性 及弹性模量,使碳纳米管具有优异的力学性能。由 于碳纳米管的纳米尺度和易缠绕的特点,直接用传 统实验方法测量其力学性能比较困难,因此最初对 碳纳米管力学性能的研究集中在理论预测上。
当今世界公开报道高质、高效、连续大批 量工业化生产碳纳米管的实例:沸腾床催化法、 化学气相沉积法
碳纳米管结构示意图
(A) 椅形单壁碳纳米管 (B) Z字形单壁碳纳米管 (C) 手性单壁碳纳米管 (D) 螺旋状碳纳米管 (E) 多壁碳纳米管截面图
(方A)法电和弧设放备电都法较:相其似方。法阴及极设采备用与厚制约备10Cmm60的, 直径约为30mm的高纯高致密的石墨片,阳极 采用直径约为6mm的石墨棒,整个系统保持 在气压约104Pa的氦气气氛中,放电电流为50 A左右,放电电压20V。通过调节阳极进给速 度,可以保持在阳极不断消耗和阴极不断生长 的同时,两电极的放电端面距离不变,从而可 以得到大面积离散分布的碳纳米管,同时还可 能产生碳纳米微粒。
(D)激光法
机理:与电弧放电法类似,主要是将一根金属催化剂/ 石墨混合的石墨靶放置于一长形石英管中间,该管 则置于一加热炉内。当炉温升至1200℃时,将惰性 气体充入管内,并将一束激光聚焦于石墨靶上。石 墨靶在激光照射下将生成气态碳,这些气态碳和催 化剂粒子被气流从高温区带向低温区,在催化剂的 作用下生长成碳纳米管。
发现:1991年,日本学者Ijima和美国的Bethune 等人在掺加过渡金属催化剂的石墨电极间起弧放 电,并在制备产物中分别发现了单壁纳米管。
碳纳米管简介PPT课件
AFM image
CNT电性能测试装置(左) 电性能测试结果(右)
最新精品资料
➢ 热性能
性能
热稳定性 真空环境可耐温至2800oC,空气中700oC 热导率 理论值6000W.(m.K)-1;实验值3000W.(m.K)-1
❖ 单根MWNT(直径14nm)的热导性测 试结果
❖ 插图为用于热导性测试的微器件,标 尺为10μm
比碳纤维高一个数量级,约为钢的100
倍, 而密度仅为钢的1/6
拉伸强度 10~150GPa,石墨片层为36.5GPa,是
高强钢的20倍
韧性
拉伸形变至40%无明显脆性行为、塑性
形变和断裂
SWNT tensile test
before test
after test
before test
after test
率较低
最新精品资料
合成方法
➢激光烧蚀法(Laser Ablation)
惰性气氛中,利用激光的高能量蒸发石墨靶(含金属催化剂)来合成碳纳米管 可生产SWNT和MWNT 所得碳纳米管品质高,结构完整,缺陷较少,适合生长SWNT 成本高,收率低
最新精品资料
合成方法
➢化学气相沉积法(Chemical Vapor Deposition, CVD)
最新精品资料
应用前景
碳纳米管防弹衣
因纳米碳管既轻又强度极高, 是钢的10-100倍,用它来作 防弹衣就像用羽绒做成的防 寒服一样,既可折来叠去, 又能抵御强大的子弹的冲击 力。
最新精品资料
挑战与问题
与10年前相比,碳纳米管的价格有了显著降低,但仍显过高,特别是用于复合材料填 料时,与其它填料相比性价比偏高
品质和产量间存在矛盾,如CVD技术能用来大量生产碳管,但所得产品石墨化程度 低,缺陷多,性能不尽如人意
碳纳米管合成以及应用ppt课件
27
范守善院士
清华大学物理系
研究领域:近十余年的研究方向集中在纳米尺度材料的 科学与技术,主要研究方向为碳纳米管的生长机理、可 控制合成与应用探索。在深入揭示和理解碳纳米管生长 机理的基础上,实现了超顺排碳纳米管阵列、薄膜和线 材的可控制与规模化制备,研究并发现了碳纳米管材料 独特的物理化学性质,基于这些性质发展出了碳纳米管 发光和显示器件、透明柔性碳纳米管薄膜扬声器、碳纳 米管薄膜触摸屏等多种纳米产品,部分应用产品已具有 产业化前景,实现了从源头创新到产业化的转换。
32
CNT的基本性质:
高的机械强度和弹性。
强度≥100倍的钢,密度≤1/6倍的钢 优良的导体和半导体特性。量子限域所致 高的比表面积。 强的吸附性能。 优良的光学特性
发光强度随发射电流的增大而增强。 ……………
33
力学性能:
碳纳米管的抗拉强度达到50~200GPa,是钢的 100倍,密度却只有钢的1/6,至 少比常规石墨 纤维高一个数量级。它是最强的纤维,在强度 与重量之比方面,这种纤维是最理想的。
氢气为缓冲气 含硫化合物为生长促进剂 大阳极,阴极在其上方并 与其成一定角度 电极角度可控可半连续制 备
13
化学气相沉积法(CVD)
➢特点:
设备简单、条件易控、能大规模制备、可直接生长在合适的基底上
➢常用气体:
甲烷、一氧化碳、苯等
➢催化剂:
Fe、Co、Ni、Mo等以及它们的氧化物
14
激光蒸发法
影响因素: ➢催化剂 ➢保护压强(3.0x104一4.5 x 104 Pa) ➢气体(氦气、氩气) ➢激光脉冲时间间隔 (间隔越短, 产率越高) ➢激光脉冲功率(功率↑,直径↓)
34
力学性能:
范守善院士
清华大学物理系
研究领域:近十余年的研究方向集中在纳米尺度材料的 科学与技术,主要研究方向为碳纳米管的生长机理、可 控制合成与应用探索。在深入揭示和理解碳纳米管生长 机理的基础上,实现了超顺排碳纳米管阵列、薄膜和线 材的可控制与规模化制备,研究并发现了碳纳米管材料 独特的物理化学性质,基于这些性质发展出了碳纳米管 发光和显示器件、透明柔性碳纳米管薄膜扬声器、碳纳 米管薄膜触摸屏等多种纳米产品,部分应用产品已具有 产业化前景,实现了从源头创新到产业化的转换。
32
CNT的基本性质:
高的机械强度和弹性。
强度≥100倍的钢,密度≤1/6倍的钢 优良的导体和半导体特性。量子限域所致 高的比表面积。 强的吸附性能。 优良的光学特性
发光强度随发射电流的增大而增强。 ……………
33
力学性能:
碳纳米管的抗拉强度达到50~200GPa,是钢的 100倍,密度却只有钢的1/6,至 少比常规石墨 纤维高一个数量级。它是最强的纤维,在强度 与重量之比方面,这种纤维是最理想的。
氢气为缓冲气 含硫化合物为生长促进剂 大阳极,阴极在其上方并 与其成一定角度 电极角度可控可半连续制 备
13
化学气相沉积法(CVD)
➢特点:
设备简单、条件易控、能大规模制备、可直接生长在合适的基底上
➢常用气体:
甲烷、一氧化碳、苯等
➢催化剂:
Fe、Co、Ni、Mo等以及它们的氧化物
14
激光蒸发法
影响因素: ➢催化剂 ➢保护压强(3.0x104一4.5 x 104 Pa) ➢气体(氦气、氩气) ➢激光脉冲时间间隔 (间隔越短, 产率越高) ➢激光脉冲功率(功率↑,直径↓)
34
力学性能:
碳纳米管的制备与纯化ppt课件
天、军事等方面都有广泛. 应用。
碳纳米管是一种具有特殊结构的一维量 子材料,径向尺寸为2~20nm,轴向尺寸 为微米量级、管子两端基本上都封口主要 由呈六边形排列的碳原子构成数层到数十 层的同轴圆管。
.
碳纳米管也可以看成是由石墨层卷曲而成 的圆柱形管状物。 碳纳米管可以分为多壁碳纳米管和单壁碳 纳米管两类。 多壁碳纳米管:由多层石墨卷曲而成的一 组同轴圆柱形管。 单壁碳纳米管:由一层石墨卷曲而成的一 个圆柱形管。
.
.
碳纳米管的主要性质
.
二、制备方法
➲ 电弧放电法。(已用于工业化生产) ➲ 激光蒸发法。 ➲ 化学气相沉淀法。 ➲ 太阳能法。 ➲ 火焰法。 ➲ 增强等离子体热流体化学化学蒸气分解沉法。 ➲ 等离子体法。 ➲ 水热法。 ➲ 超临界流体技术。 ➲ 固相复分解反应制备法。…………
.
➲ 碳源 石墨是最早也是最容易获得的碳源。激光法、电弧 法中常以石墨靶为碳源,后来随着碳纳米管制备技 术的发展,纳米管的碳源也可从各种含碳物质的热 解或转化来制得。含碳和氢,以及混杂有氧、氮、 硫等其它杂质的有机化合物,低沸点的有机金属化 合物(如各种金属茂、金属酞脊等),在加热时,特 别是催化加热时通过歧化或炭化转化为高碳或纯碳 材料,然后在合适的条件下部分或完全转化成碳纳 米管。根据碳源的物理形态可以设计相应的实验。 如石墨可用作电弧法和激光蒸发法。co,烃类气体适 用于各类CVD法、低沸点的金属茂、金属酞菁等也 可通过加热升华后用于CVD法;苯、金属茂、金属酞 菁等经有机溶剂溶解,利用溶胶-凝胶技术和载体均
➲ 激光蒸发法
.
Smalley 等制备C60时,在电极中加入一 定量的催化剂,得到了单壁碳纳米管。Thess 等改进实验条件,采用该方法首次得到相对较 大数量的单壁碳纳米管。实验在1 473 K条件 下,采用50 ns的双脉冲激光照射含Ni/Co催 化剂颗粒的石墨靶,获得高质量的单壁碳纳米 管管束。这种方法易于连续生产,但制备出的 碳纳米管的纯度低,易缠结,且需要昂贵的激 光器,耗费大。
碳纳米管是一种具有特殊结构的一维量 子材料,径向尺寸为2~20nm,轴向尺寸 为微米量级、管子两端基本上都封口主要 由呈六边形排列的碳原子构成数层到数十 层的同轴圆管。
.
碳纳米管也可以看成是由石墨层卷曲而成 的圆柱形管状物。 碳纳米管可以分为多壁碳纳米管和单壁碳 纳米管两类。 多壁碳纳米管:由多层石墨卷曲而成的一 组同轴圆柱形管。 单壁碳纳米管:由一层石墨卷曲而成的一 个圆柱形管。
.
.
碳纳米管的主要性质
.
二、制备方法
➲ 电弧放电法。(已用于工业化生产) ➲ 激光蒸发法。 ➲ 化学气相沉淀法。 ➲ 太阳能法。 ➲ 火焰法。 ➲ 增强等离子体热流体化学化学蒸气分解沉法。 ➲ 等离子体法。 ➲ 水热法。 ➲ 超临界流体技术。 ➲ 固相复分解反应制备法。…………
.
➲ 碳源 石墨是最早也是最容易获得的碳源。激光法、电弧 法中常以石墨靶为碳源,后来随着碳纳米管制备技 术的发展,纳米管的碳源也可从各种含碳物质的热 解或转化来制得。含碳和氢,以及混杂有氧、氮、 硫等其它杂质的有机化合物,低沸点的有机金属化 合物(如各种金属茂、金属酞脊等),在加热时,特 别是催化加热时通过歧化或炭化转化为高碳或纯碳 材料,然后在合适的条件下部分或完全转化成碳纳 米管。根据碳源的物理形态可以设计相应的实验。 如石墨可用作电弧法和激光蒸发法。co,烃类气体适 用于各类CVD法、低沸点的金属茂、金属酞菁等也 可通过加热升华后用于CVD法;苯、金属茂、金属酞 菁等经有机溶剂溶解,利用溶胶-凝胶技术和载体均
➲ 激光蒸发法
.
Smalley 等制备C60时,在电极中加入一 定量的催化剂,得到了单壁碳纳米管。Thess 等改进实验条件,采用该方法首次得到相对较 大数量的单壁碳纳米管。实验在1 473 K条件 下,采用50 ns的双脉冲激光照射含Ni/Co催 化剂颗粒的石墨靶,获得高质量的单壁碳纳米 管管束。这种方法易于连续生产,但制备出的 碳纳米管的纯度低,易缠结,且需要昂贵的激 光器,耗费大。
新材料概论碳纳米管课件
通过化学或物理方法对碳纳米管进行改性, 以提高其分散性和界面稳定性。
环保与可持续性
在合成和使用过程中,考虑碳纳米管的环保 和可持续性问题也正在成为研究热点。
05
碳纳米管的生产与市场产主要采用气相沉积、电弧放 电和激光脉冲等方法。其中,气相沉积法具 有生长速度快、纯度高、可大规模生产等优 点,但设备成本较高。电弧放电法和激光脉 冲法具有设备简单、成本低等优点,但产量 较低。
02 将不同性能的材料进行复合,实现材料的多功能特性
,如强度、韧性、耐磨性、导电性、导热性等。
多功能复合材料应用
03
将多功能复合材料应用于不同的领域,如航空航天、
汽车、能源、生物医学等。
新兴应用领域拓展
01
新一代信息技术
发展新型电子器件、光电器件、 传感器的应用,推动信息技术领 域的创新发展。
02
化学稳定性
碳纳米管在大多数化学环境下都具 有很好的稳定性,使其在化学反应中 具有很好的应用前景。
挑战与瓶颈
01
生产与合成难度
碳纳米管的制备和合成仍存在一 定的挑战,其大规模生产和成本
控制是当前的研究重点。
03
界面稳定性差
在某些应用中,碳纳米管的界面 稳定性较差,可能会影响其性能
。
02
分散与纯化问题
其他制备方法
总结词
其他制备碳纳米管的方法
VS
详细描述
除上述方法外,还有许多其他制备碳纳米 管的方法,如燃烧合成法、溶胶凝胶法等 。这些方法各有优缺点,可根据实际需求 选择合适的方法。
03
碳纳米管的应用领域
纳米电子器件
碳纳米管在制造纳米电子器件方面具有高导电性和稳定性,可以用于制造高灵敏 度的场效应晶体管、逻辑电路和存储器等。
环保与可持续性
在合成和使用过程中,考虑碳纳米管的环保 和可持续性问题也正在成为研究热点。
05
碳纳米管的生产与市场产主要采用气相沉积、电弧放 电和激光脉冲等方法。其中,气相沉积法具 有生长速度快、纯度高、可大规模生产等优 点,但设备成本较高。电弧放电法和激光脉 冲法具有设备简单、成本低等优点,但产量 较低。
02 将不同性能的材料进行复合,实现材料的多功能特性
,如强度、韧性、耐磨性、导电性、导热性等。
多功能复合材料应用
03
将多功能复合材料应用于不同的领域,如航空航天、
汽车、能源、生物医学等。
新兴应用领域拓展
01
新一代信息技术
发展新型电子器件、光电器件、 传感器的应用,推动信息技术领 域的创新发展。
02
化学稳定性
碳纳米管在大多数化学环境下都具 有很好的稳定性,使其在化学反应中 具有很好的应用前景。
挑战与瓶颈
01
生产与合成难度
碳纳米管的制备和合成仍存在一 定的挑战,其大规模生产和成本
控制是当前的研究重点。
03
界面稳定性差
在某些应用中,碳纳米管的界面 稳定性较差,可能会影响其性能
。
02
分散与纯化问题
其他制备方法
总结词
其他制备碳纳米管的方法
VS
详细描述
除上述方法外,还有许多其他制备碳纳米 管的方法,如燃烧合成法、溶胶凝胶法等 。这些方法各有优缺点,可根据实际需求 选择合适的方法。
03
碳纳米管的应用领域
纳米电子器件
碳纳米管在制造纳米电子器件方面具有高导电性和稳定性,可以用于制造高灵敏 度的场效应晶体管、逻辑电路和存储器等。
碳纳米管的制备与应用 ppt课件
墨电弧法制备纳米碳管装置图
12
3.1 电弧法
复合电极电弧催化
掺有过渡金属其氧化物(如Fe, Co, Ni, Mo等)的石墨为电极
优势: 产物为SWNTs 副产物少 纯度高
催化剂粉末
劣势:产物中掺有少 量催化剂
复合电极电弧催化制备纳米碳管装置图 1.冷却水 2.真空 3.氦气
ppt课件
13
10nm
单壁碳纳米管束
ppt课件 SCIENCE VOL. 273 26 JULY115 996
3.3.1 化学气相沉积法(CVD)
利用纳米尺度的过渡金属或其氧化物为催化剂,在相对较低的 温度 (500-1200℃)下热解碳源气体(甲烷、乙炔、乙烯、丙烯、 苯和一氧化碳等)来合成碳纳米管
优势:产量大 生产方法简单 重复性高
11-160 0.38-1.55
3.6-3.8
断裂伸长率(%) 16 23.1
16.6-17.6
16-60 ~2
碳纳米管西装 ——防弹衣
ppt课件
7
2 碳纳米管的应用
在电磁学领域的应用
金纳米团簇-多壁 碳纳米管修饰电极
碳纳米管电 化学传感器
ppt课件
8
2 碳纳米管的应用
在催化剂材料领域的应用
在储氢材料领域领域的应用
chiral型SWNT5
1 碳纳米管的结构与特性
多壁碳纳米管 可视为“同轴多层碳圆柱体的组装体”– Russian doll 层间距~0.34 nm 多层碳圆柱体间由弱的Van de Waals力提供绑缚力
单壁碳纳米管 SWNTs
多壁碳纳米管 MWNTs
ppt课件
6
2 碳纳米管的应用
在力学领域的应用
12
3.1 电弧法
复合电极电弧催化
掺有过渡金属其氧化物(如Fe, Co, Ni, Mo等)的石墨为电极
优势: 产物为SWNTs 副产物少 纯度高
催化剂粉末
劣势:产物中掺有少 量催化剂
复合电极电弧催化制备纳米碳管装置图 1.冷却水 2.真空 3.氦气
ppt课件
13
10nm
单壁碳纳米管束
ppt课件 SCIENCE VOL. 273 26 JULY115 996
3.3.1 化学气相沉积法(CVD)
利用纳米尺度的过渡金属或其氧化物为催化剂,在相对较低的 温度 (500-1200℃)下热解碳源气体(甲烷、乙炔、乙烯、丙烯、 苯和一氧化碳等)来合成碳纳米管
优势:产量大 生产方法简单 重复性高
11-160 0.38-1.55
3.6-3.8
断裂伸长率(%) 16 23.1
16.6-17.6
16-60 ~2
碳纳米管西装 ——防弹衣
ppt课件
7
2 碳纳米管的应用
在电磁学领域的应用
金纳米团簇-多壁 碳纳米管修饰电极
碳纳米管电 化学传感器
ppt课件
8
2 碳纳米管的应用
在催化剂材料领域的应用
在储氢材料领域领域的应用
chiral型SWNT5
1 碳纳米管的结构与特性
多壁碳纳米管 可视为“同轴多层碳圆柱体的组装体”– Russian doll 层间距~0.34 nm 多层碳圆柱体间由弱的Van de Waals力提供绑缚力
单壁碳纳米管 SWNTs
多壁碳纳米管 MWNTs
ppt课件
6
2 碳纳米管的应用
在力学领域的应用
碳纳米管的结构PPT课件
第10页/共43页
★石墨层间化合物的功能与应用
石墨层间化合物的性质因嵌入物不同、阶数不同而不同,因而其 功能及应用是多方面的,主要可用于: 轻型高导电材料、电极材料、 新型催化剂、固体润滑剂、贮氢及同位素分离材料、防水防油剂等。
电极材料
石墨间隙化合物的电阻比石墨本身还低,在垂直方向降低了约10倍,沿石墨
碳纤维增强复合材料作结构材料, 可作飞机的尾翼或副翼, 通信卫星的天线系统和导波管、航天飞机的货舱门、燃料箱、 助推火箭的外壳。在建筑方面,可作碳纤维增强水泥地板,并 有取代钢筋的可能性。
作为非结构材料, 碳纤维复合材料可作密封材料、耐磨材料、 隔热材料、电极材料。
在原子能工程上用碳纤维-石墨复合材料作铀棒的幕墙材 料, 不仅可以防止铀棒的辐射变形, 使其对中子的吸收截面变小, 反射中子能力增强, 而且在光氧条件下能耐3000 ℃以上的高温。
碳纤维复合材料可作优质的化工容器、设备或零部件。 将碳纤维进行活化处理,得到活性碳纤维,是已知的比表 面积最大的物质之一(2500 m2·g-1),被称为第3代活性炭,作为 新型吸附剂具有重要的应用前景。 在医学上,碳纤维增强型塑料是一种理想的人工心肺管道 材料,也可作人工关节、假第肢16、页/假共4牙3页等。
性能的优点(而一般的石墨存在润滑性能下降的缺陷)。这是由于氟化石墨的层面由C -F键构成,其表面能极小,容易滑动之故。
贮氢及同位素分离材料 钾、铷、铯等碱金属的石墨层间化合物在一定温度下能化学或物理吸附氢。如
C8K吸附氢生成C8KHx(0≤x≤2),且离解温度及离解能低,吸附与解吸完全可逆,达 平衡的时间短,因而可作贮氢材料。更有趣的是这种吸附对氢、氖、氖有选择性, 因而可用于氢同位素分离,其H2-D2及H2-HT分离系数都高于硅酸盐系离子交换 体系。
★石墨层间化合物的功能与应用
石墨层间化合物的性质因嵌入物不同、阶数不同而不同,因而其 功能及应用是多方面的,主要可用于: 轻型高导电材料、电极材料、 新型催化剂、固体润滑剂、贮氢及同位素分离材料、防水防油剂等。
电极材料
石墨间隙化合物的电阻比石墨本身还低,在垂直方向降低了约10倍,沿石墨
碳纤维增强复合材料作结构材料, 可作飞机的尾翼或副翼, 通信卫星的天线系统和导波管、航天飞机的货舱门、燃料箱、 助推火箭的外壳。在建筑方面,可作碳纤维增强水泥地板,并 有取代钢筋的可能性。
作为非结构材料, 碳纤维复合材料可作密封材料、耐磨材料、 隔热材料、电极材料。
在原子能工程上用碳纤维-石墨复合材料作铀棒的幕墙材 料, 不仅可以防止铀棒的辐射变形, 使其对中子的吸收截面变小, 反射中子能力增强, 而且在光氧条件下能耐3000 ℃以上的高温。
碳纤维复合材料可作优质的化工容器、设备或零部件。 将碳纤维进行活化处理,得到活性碳纤维,是已知的比表 面积最大的物质之一(2500 m2·g-1),被称为第3代活性炭,作为 新型吸附剂具有重要的应用前景。 在医学上,碳纤维增强型塑料是一种理想的人工心肺管道 材料,也可作人工关节、假第肢16、页/假共4牙3页等。
性能的优点(而一般的石墨存在润滑性能下降的缺陷)。这是由于氟化石墨的层面由C -F键构成,其表面能极小,容易滑动之故。
贮氢及同位素分离材料 钾、铷、铯等碱金属的石墨层间化合物在一定温度下能化学或物理吸附氢。如
C8K吸附氢生成C8KHx(0≤x≤2),且离解温度及离解能低,吸附与解吸完全可逆,达 平衡的时间短,因而可作贮氢材料。更有趣的是这种吸附对氢、氖、氖有选择性, 因而可用于氢同位素分离,其H2-D2及H2-HT分离系数都高于硅酸盐系离子交换 体系。
神奇的储氢材料――碳纳米管PPT课件
目前的储氢材料都不能满足这一要求。
9
碳纳米管
Carbon nanotube (CNT)
由于纳米材料的研究热潮的带动,以碳和 纳米碳材料进行储氢成为新的研究热点。
10
纳米材料(1—100nm)的基本效应 1、小尺寸效应(体积效应) 2、量子尺寸效应 3、宏观量子隧道效应
4、表面效应
11
• 又叫巴基管,碳的同素异形体
2
氢能
hydrogen energy
3氢能被人们称ຫໍສະໝຸດ 理想的“绿色能源”氢能的优越性
1、安全环保:氢气分子量为2,比空气轻1/14,因此氢气泄露 空气中会自动逃离地面,不会形成聚集。而其他燃油燃气均会 聚集地面而构成易燃易爆危险。无味无毒,不会造成人体中毒, 燃料产物仅为水,不污染环境。 2、高温高能:1kg氢气的热值为34000Kcal, 是汽油的三倍。氢 氧焰温度高达2800度,高于常规液体。
31
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
32
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
24
储氢量与储氢压力(温度)关系图
25
氢气释放问题:
2005年7月26日,美国NIST和Turkey's Bilkent大学发 现,钛修饰碳纳米管可以解决有效储氢的两个关键 问题:不但能够吸附足够数量的氢分子,而且可以 在加热时轻易地释放.
研究人员正在试图用碳纳米管制作轻便的可携带 式的储氢容器。
9
碳纳米管
Carbon nanotube (CNT)
由于纳米材料的研究热潮的带动,以碳和 纳米碳材料进行储氢成为新的研究热点。
10
纳米材料(1—100nm)的基本效应 1、小尺寸效应(体积效应) 2、量子尺寸效应 3、宏观量子隧道效应
4、表面效应
11
• 又叫巴基管,碳的同素异形体
2
氢能
hydrogen energy
3氢能被人们称ຫໍສະໝຸດ 理想的“绿色能源”氢能的优越性
1、安全环保:氢气分子量为2,比空气轻1/14,因此氢气泄露 空气中会自动逃离地面,不会形成聚集。而其他燃油燃气均会 聚集地面而构成易燃易爆危险。无味无毒,不会造成人体中毒, 燃料产物仅为水,不污染环境。 2、高温高能:1kg氢气的热值为34000Kcal, 是汽油的三倍。氢 氧焰温度高达2800度,高于常规液体。
31
学习总结
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
32
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
24
储氢量与储氢压力(温度)关系图
25
氢气释放问题:
2005年7月26日,美国NIST和Turkey's Bilkent大学发 现,钛修饰碳纳米管可以解决有效储氢的两个关键 问题:不但能够吸附足够数量的氢分子,而且可以 在加热时轻易地释放.
研究人员正在试图用碳纳米管制作轻便的可携带 式的储氢容器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优点:纯度高,基本不需提纯。 缺点:设备复杂,能耗大,成
本高。
2
4
化学气相沉积法
用铁、钴等作催化剂,黏土、硅酸盐等作载体,氮气、氢气等作稀释气,乙炔、
甲烷等作碳源。一定温度下(一般600~1000℃)催化裂解生成自由碳原子形成 碳纳米管。
优点:设备简单,成本低,适于大规模化生产。
缺点:副产物多,提纯分离难。 【化学气相沉积法是目前应用最广泛,最易实现工业化生产的制备碳纳米管的 2 4
两电极棒均用高纯度石墨棒,
在惰性气体氛点:由于制备时温度高达几
千度,碳管直,石墨化更完全, 缺陷少。
缺点:制备工艺复杂,副产物
多,分离提纯难。
2
4
激光蒸发法
将碳靶臵于石英管中,加热至
1200度左右,然后通入惰性气 体,并用激光束照射碳靶,生 成气体碳。随气体从高温区流 向低温区,在催化剂作用下生 成单壁碳纳米管。
脱出; 碳材料对锂电位相对较低。 目前,在铿离子电池中具有使用价值或应用前 景的碳主要集中于三种碳:①石墨;②硬碳;③ 软碳。
碳纳米管的优势
碳纳米管的层间距(d=3.4~3.5nm)大于石墨的层间距(3.35nm),
大的层间距对锂离子来说进出有了大的通道,这些大的通道不仅增 大了锂离子的扩散能力,而且使锂离子能够更加深入的嵌入,同时 嵌锂时由于体积的膨胀,层间距要增加10%左右,因此石墨层要发 生移动,从而使嵌锂顺利进行。因此从这个原理上看碳纳米管的充 电容量要远大于石墨。
纳米碳管的管径为纳米级尺寸,管与管之间相互交错的缝隙也是纳
米数量级。这种特殊的微观结构,使锂离子不仅可嵌入到管内而且 可嵌入到管间的缝隙之中,为锂离子提供大量的嵌入空间位臵。此 外纳米碳管化学稳定性好,机械强度高,弹性模量大,宏观体积密 度小,且以相互交织的网状结构存在于电极中,能吸收在冲放电过 程中电极因体积变化而产生的应力,因而电极稳定性好,不易破损。
此外,碳纳米管还具有良好的宏观导电、导热性,可以避免由于电
极材料导热性差导致的欧姆极化及其对电池性能的不利影响。
既然碳纳米管有其他负极材料无可 比拟的优势,为什么没有被广泛应用呢? 一个很重要的原因就是生产难题。 之前我所介绍的三中最常见的制备 方法都还是实验室制备方法。 至于可工业化生产的新型的制备方 法就有待我们来解决了。
发中的应用。
锂离子电池对负极材料的要求
(1)在锂离子的嵌入反应中自由能变化小
(2)锂离子在负极的固态结构有高的扩散速率
(3)高度可逆的嵌入反应 (4)有良好的导电率 (5)热力学上稳定同时不与电质发生反应。
碳材料是理想的负极材料
碳材料热力学性质稳定,与电解质不发生反应; 都具有石墨的层状结构,锂离子能可逆的嵌入
定义 制备
特性
定义
纳米碳管(CNT),管状的纳米级石墨 晶体,是单层或多层石墨片围绕中心轴按 一定的螺旋角卷曲而成的无缝纳米级管, 每层的C是SP2杂化,形成六边形平面的圆 柱面。
制备
目前,有三种最有效的实验室制备纳米碳管的方法: 1.电弧放电法
2.激光蒸发法 3.化学气相沉积法
电弧放电法
方法。】
特性
纳米碳管具有尺寸小、机械强度高、比表面大、电导高和界面效应
强等特点,有优良的力学,热学,电学,吸附等性能。其顶端开填 充已用于高效催化载体、吸波材等。
近年来,锂离子电池研究者把碳米管用于锂离子电池中作为负极料,
发现它具有较高的可逆电容量等优良的电极性能。
这里我只介绍其在锂离子电池负极材料研
本高。
2
4
化学气相沉积法
用铁、钴等作催化剂,黏土、硅酸盐等作载体,氮气、氢气等作稀释气,乙炔、
甲烷等作碳源。一定温度下(一般600~1000℃)催化裂解生成自由碳原子形成 碳纳米管。
优点:设备简单,成本低,适于大规模化生产。
缺点:副产物多,提纯分离难。 【化学气相沉积法是目前应用最广泛,最易实现工业化生产的制备碳纳米管的 2 4
两电极棒均用高纯度石墨棒,
在惰性气体氛点:由于制备时温度高达几
千度,碳管直,石墨化更完全, 缺陷少。
缺点:制备工艺复杂,副产物
多,分离提纯难。
2
4
激光蒸发法
将碳靶臵于石英管中,加热至
1200度左右,然后通入惰性气 体,并用激光束照射碳靶,生 成气体碳。随气体从高温区流 向低温区,在催化剂作用下生 成单壁碳纳米管。
脱出; 碳材料对锂电位相对较低。 目前,在铿离子电池中具有使用价值或应用前 景的碳主要集中于三种碳:①石墨;②硬碳;③ 软碳。
碳纳米管的优势
碳纳米管的层间距(d=3.4~3.5nm)大于石墨的层间距(3.35nm),
大的层间距对锂离子来说进出有了大的通道,这些大的通道不仅增 大了锂离子的扩散能力,而且使锂离子能够更加深入的嵌入,同时 嵌锂时由于体积的膨胀,层间距要增加10%左右,因此石墨层要发 生移动,从而使嵌锂顺利进行。因此从这个原理上看碳纳米管的充 电容量要远大于石墨。
纳米碳管的管径为纳米级尺寸,管与管之间相互交错的缝隙也是纳
米数量级。这种特殊的微观结构,使锂离子不仅可嵌入到管内而且 可嵌入到管间的缝隙之中,为锂离子提供大量的嵌入空间位臵。此 外纳米碳管化学稳定性好,机械强度高,弹性模量大,宏观体积密 度小,且以相互交织的网状结构存在于电极中,能吸收在冲放电过 程中电极因体积变化而产生的应力,因而电极稳定性好,不易破损。
此外,碳纳米管还具有良好的宏观导电、导热性,可以避免由于电
极材料导热性差导致的欧姆极化及其对电池性能的不利影响。
既然碳纳米管有其他负极材料无可 比拟的优势,为什么没有被广泛应用呢? 一个很重要的原因就是生产难题。 之前我所介绍的三中最常见的制备 方法都还是实验室制备方法。 至于可工业化生产的新型的制备方 法就有待我们来解决了。
发中的应用。
锂离子电池对负极材料的要求
(1)在锂离子的嵌入反应中自由能变化小
(2)锂离子在负极的固态结构有高的扩散速率
(3)高度可逆的嵌入反应 (4)有良好的导电率 (5)热力学上稳定同时不与电质发生反应。
碳材料是理想的负极材料
碳材料热力学性质稳定,与电解质不发生反应; 都具有石墨的层状结构,锂离子能可逆的嵌入
定义 制备
特性
定义
纳米碳管(CNT),管状的纳米级石墨 晶体,是单层或多层石墨片围绕中心轴按 一定的螺旋角卷曲而成的无缝纳米级管, 每层的C是SP2杂化,形成六边形平面的圆 柱面。
制备
目前,有三种最有效的实验室制备纳米碳管的方法: 1.电弧放电法
2.激光蒸发法 3.化学气相沉积法
电弧放电法
方法。】
特性
纳米碳管具有尺寸小、机械强度高、比表面大、电导高和界面效应
强等特点,有优良的力学,热学,电学,吸附等性能。其顶端开填 充已用于高效催化载体、吸波材等。
近年来,锂离子电池研究者把碳米管用于锂离子电池中作为负极料,
发现它具有较高的可逆电容量等优良的电极性能。
这里我只介绍其在锂离子电池负极材料研