群桩作为整体基础的计算
4.6群桩基础计算
桩底处地基,土受 到的压力比单桩大。
4.6群桩基础计算
4.6.1 群桩基础的工作特点
群桩基础的基础尺寸大,荷载传递的影响范围 也比单桩深,因此桩底下地基土层产生的压缩变形 和群桩基础的沉降比单桩大。
4.6群桩基础计算
4.6.1 群桩基础的工作特点
back
4.6群桩基础计算
4.6.5 基桩竖向承载力验算
1.荷载效应标准组合 承受轴心荷载桩基:
Nk R
承受偏心荷载桩基:
Nmax 1.2R
2.地震作用效应组合(承载力可以提高25%) 轴心荷载:
NEk 1.25R
偏心荷载:
N Ek max 1.25 R
back
4.6群桩基础计算
4.6.6桩基软弱下卧层承载力验算
Nk Qgn R
back
4.6群桩基础计算
4.6.10群桩基础沉降验算
《公桥基规》超静定结构桥梁或建于软土、湿陷 性黄土地基或沉降较大的其它土层的静定结构桥梁墩 台的群桩基础应计算沉降量并进行验算。
《建筑规范》以下桩基应进行沉降验算: (1)地基基础设计等级为甲级的建筑物桩基; (2)体形复杂荷载不均匀或桩端以下存在软弱土层 的设计等级为乙级的建筑物桩基; (3)摩擦型桩基。
Rh
0.75 3EI
vx
xoe
xoe
桩顶容许水平位移
vx
桩顶水平位移系数
back
4.6群桩基础计算
4.6.9桩基负摩阻力验算
Qgn nQn
n
sax say
/[d
(
qsn
' m
)
d] 4
4-桩基础计算
一般方法:要找出弯矩最大的截面所在的位置及相应 的最大弯矩Mmax值。一般可将各深度Z处的Mz值求出后绘 制Z-Mz图,即可从图中求得。
Q 3E 0 IAx M 2E0 IBx (9a)
式中:A x(A 1A x0B 1A 0D 1) B x(A 1B x0B 1B 0 C 1)
同理,将式( 7)分别代入式(3)、(4)、(4-5) 再经整理归纳即可得
z Q 2E 0 IAM E0IB
Mz
Q0
AmM0Bm
(9b) (9c)
QzQ0AQM0BQ (9d)
对于单排桩 ,若作用于承台底面中心的荷载为N、H、 My,当N在承台横桥向无偏心时,则可以假定它是平均分 布在各桩上的,即
Pi N n;Qi H n;Mi M ny 式中:n——桩的根数。
当竖向力N在承台横桥向有偏心距e时,即Mx=Ne, 因此每根桩上的竖向作用力可按偏心受压计算,即
pi
N Mx yi n yi2
根据已有的试验资料分析,现行规范认为计算宽度的 换算方法可用下式表示:
b1Kf K0Kb(或 d)
b1Kf K0Kb(或 d)
上式中: b(或d)——与外力H作用方向相垂直平面上桩的宽度 (或直径); Kf——形状换算系数。即在受力方向将各种不同截面形状 的桩宽度,乘以Kf换算为相当于矩形截面宽度,其值见 表4-3 ; K0——受力换算系数。即考虑到实际上桩侧土在承受水平 荷载时为空间受力问题,简化为平面受力时所给的修正系 数,其值见表4-3; K——桩间相互影响系数。
即C=mz。 基于这一基本假定,进行桩的内力与位移的理论公式
推导和计算。
4.6群桩基础计算-PPT文档资料
Hk H ik n
4.6群桩基础计算
4.6.4 桩顶作用效应简化计算
2.地震作用效应 对位于8度以下抗震设防区低承台桩基,满足下 列条件,计算桩顶作用效应时可不考虑地震作用; (1)按《建筑抗震设计规范》可不进行天然地基和 基础抗震承载力计算的建筑物; (2)不位于斜坡地带和地震可能导致滑移地裂地段 的建筑物; (3)桩端及桩身周围无可液化土层; (4)承台周围无可液化土、淤泥、淤泥质土。 对位于8度和8度以上抗震设防区的高大建筑物低 承台桩基.在计算算各这桩的作用效应和桩身内力时 要考虑地震作用。
4.6群桩基础计算
4.6.1 群桩基础的工作特点 4.6.2 承台下土对荷载的分担作用 4.6.3 复合基桩竖向承载力特征值 4.6.4 桩顶作用效应简化计算 4.6.5 基桩竖向承载力验算 4.6.6 桩基软弱下卧层承载力验算 4.6.7 桩基竖向抗拔承载力验算 4.6.8 桩基水平承载力验算 4.6.9 桩基负摩阻力验算 4.6.10 群桩基础沉降验算
back
4.6群桩基础计算
4.6.5 基桩竖向承载力验算
1.荷载效应标准组合 承受轴心荷载桩基:
Nk R
承受偏心荷载桩基:
N 1 .2 R m ax
2.地震作用效应组合(承载力可以提高25%) 轴心荷载:
N 1 .25 R Ek
偏心荷载:
N 1 . 25 R Ek max
back
4.6群桩基础计算
地基抗震承载力调整系 数,《抗震规范 a
4征值
承台荷载分担是以整体下沉为前提 下沉过大不满足变形要求 下列情况不考虑承台荷载分担效应: (1)承受经常出现的动力作用; (2)承台下土可能产生负摩阻力; (3)饱和软土中沉入密集桩群,引起超静孔隙 水压力和土体隆起,随着时间推移,桩间土逐渐 固结下沉而与承台脱离。
桩基础工程量计算
C1=桩身砼强度 d=桩直径(米) D=扩大头直径(米) hc=扩头圆台高(米) hb=圆缺高(米) H1=地面标高(米) H2=桩顶标高(米) H3=挖孔深度(米) H4=桩底标高(米) H=桩总高(米) h=护壁高(米) 30 1.3 1 0 0 221 220 16 205 14 15.8 单桩砼工程量: C2=护壁砼强度 20 分项 d1=桩主钢筋直径(毫米) 18 单桩身砼量(立方米) d2=桩主钢筋根数 16 单护壁砼量(立方米) d3=桩身箍筋直径(毫米) 10 单桩身主钢筋量(kg) d4=桩身加强筋直径(毫米) 16 单桩身箍筋量(kg) d5=护壁主筋直径(毫米) 6 单桩身加强筋量(kg) d6=护壁箍筋直径(毫米) 6 单护壁主钢筋量(kg) 桩身箍筋一圈长(毫米) 3895.57489 单护壁箍筋量(kg) 护壁箍筋一圈长(毫米) 4995.132319 桩身加强筋一圈长(毫米) 4055.57489 桩身上部高(米) 13.8 单砼总量(立方米) 单钢筋总量(kg) 工程量 18.4741356 12.81259294 467.5939217 95.40262907 34.35071932 158.6880276 136.8000238
31.28672854 892.8353215
桩身上部体积(立方米) 18.31705597 扩头圆台体积(立方米) 0 圆缺体积(立方米) 0 扩头0.2米高体积(立方米) 0.157079633
注:菊红色数据不用填,仅填写黄色部分数据。
下表:为上表同规格群桩工程总量: 1 15.5 群桩桩身上部之差总体积(立方米 20.57350489 群桩护壁之差总体积(立方米) 12.56931586 群桩桩身砼总量(立方米) 39.04764049 群桩护壁砼总量(立方米) 25.3819088
群桩基础承载力计算
群桩基础承载力计算
首先,计算桩端阻力。
桩端阻力主要包括桩尖端桩基与土层接触所产
生的端阻力和尖端摩阻力。
其中,端阻力是由于桩尖端与土层之间的摩擦
力所产生的,可通过土力学试验测得。
尖端摩阻力可以根据静力实验和岩
土工程经验进行估算。
其次,计算桩侧摩擦力。
桩侧摩擦力是桩身与土层之间的摩擦力所产
生的,与桩的长度和土层的性质有关。
桩侧摩擦力通常采用土力学单桩摩
擦力计算方法估算,再根据群桩排列的间距和数量来计算总的桩侧摩擦力。
最后,计算群桩基础的承载力。
群桩基础的承载力主要由桩端阻力和
桩侧摩擦力共同组成。
根据土力学理论和大量的试验数据,可以使用承载
力公式进行计算。
常用的计算方法有传统的反分析法、数值模拟方法、理
论模型法等。
这些方法均考虑了土体侧封闭效应和变形特征,能够较为准
确地计算群桩基础的承载力。
需要注意的是,在群桩基础承载力计算时还需要考虑到桩与桩之间的
相互作用效应。
桩与桩之间会相互影响,通过桩与土体之间土压力作用、
变形传递等方式进行相互作用。
因此,在计算时需要综合考虑群桩中各个
桩的单桩承载力和桩与桩之间相互作用的影响。
综上所述,群桩基础承载力计算是基于土力学理论和桩与土地相互作
用原理,综合考虑土层对桩基础的桩端阻力和桩侧摩擦力的影响,通过承
载力公式等方法进行计算。
在进行计算时,需要考虑桩与桩之间的相互作
用效应,以获得较为准确的承载力结果。
桩基础——群桩基础的计算实用教案
承台土抗力的综合群桩效应系数略大于1,非粘性土群桩较 粘性土更大一些。
第3页/共11页
第四页,共12页。
就实际工程而言,桩所穿越的土层往往是两种以上性 质土层交互出现,且水平向变化不均,由此计算群桩 效应确定承载力较为繁琐。另据美国、英国规范规定,
桩基础——群桩基础的计算
会计学
1
第一页,共12页。
2.摩擦桩:主要是通过桩侧 摩阻力将上部荷载传到桩周
及桩端土层中,侧摩阻力在 土中引起的附加应力按一定
角度沿桩长向下扩散分布,
至桩端平面处。
(1)当桩距较大时,桩端平面处各桩传来的压力互不重叠,此时群桩的工 作情况和单桩一样,所以群桩的承载力等于各单桩承载力之和。
(2)当桩距较小时,桩端平面处各桩传来的压力互相重叠,使得桩端 处压力要比单桩时增大很多,桩端以下压缩土层的厚度也比单桩要 深,此时群桩基础的承载力小于各单桩承载力之和,沉降量则大于 单桩的沉降量,存在所谓的群桩效应。
第1页/共11页
第二页,共12页。
群桩效应:把竖向荷载作用下的群
桩基础,由于承台、桩、土相
当桩距sa≥3d 时不考虑群桩效应。本规范第条所规 定的最小桩距除桩数少于3 排和9 根桩的非挤土 端承桩群桩外,其余均不小于3d。鉴于此,本规范 关于侧阻和端阻的群桩效应不予考虑,即取η s = η p=
1.0 。这样处理,方便设计,多数情况下可留给工程更多 安全储备。对单一粘性土中的小桩距低承台桩基,不应 再另行计入承台效应。
第6页/共11页
土力学课件:群桩基础计算
故单桩竖向极限承载力标准值为:
QukQskQpk u ∑qsik li qpk Ap
0.4(503807)60000.42/4
892.21753.98 1646.19 kN
因该桩基属桩数不超过3根的非端承桩基,可取
c 0,s p sp 1.0,s p 1.65。
对位于 8 度和 8 度以上抗震设防区的高大建筑物 低承台桩基,在计算各基桩的作用效应和桩身内 力时,可考虑承台(包括地下墙体)与基桩的共
同工作和土的弹性抗力作用。
5 基桩竖向承载力验算 (1) 荷载效应基本组合
承受轴心荷载的桩基,其承载力设计值R应符 合下式要求: oN ≤R (7-47)
承受偏心荷载的桩基,除应满足式(7-50)要求 外,尚应满足下式的要求:
的基桩称复合基桩。复合基桩的竖向承载力设计值R
的统一计算式为:
R s Qsk / s pQ pk / p c Qck / c
qck Ac Qck n
(7-40a) (7-40b)
当单桩极限承载力标准值Quk由静载试验确定时, 基桩的设计值R按下式计算:
R spQuk / sp cQck / c
《建筑桩基规范》推荐的方法称等效作用分层总和法 对桩中心距小于或等于 6倍桩径的桩基,其等效 作用面位于桩端平面;等效作用面积为桩承台投影 面积;等效作用附加应力 p近似取承台底平均附加应 力。 桩基的最终沉降量表达式可为:
s e s
nb 1 e C0 C1 (nb 1) C 2
传到桩端处土层上。 各桩端的压力没有重叠(图22),可认为端承型 群桩基础的工作性状与单桩基本一致; 同时,由于桩侧摩阻力不易发挥,桩与桩之间的 干扰很小,群桩基础的承载力就等于各单桩的承载力 之和;群桩的沉降量也与单桩基本相同。
《群桩基础计算》课件
多点控制法计算群桩基础
原理概述
详细解释多点控制法计算群桩基础的原理和方法。
输入参数
列举计算过程中需要使用的输入参数,如桩长、桩径等。
计算步骤
分步介绍多点控制法计算群桩基础的具体步骤。
有限元法计算群桩基础
原理与背景
详解有限元法计算群桩基础的原理和背景。
建模与分析
介绍如何建立群桩基础的有限元模型并进行分析。
结果解读
解读有限元计算得出的群桩基础的应力、位移等结果。
群桩基础优化设计
1 设计原则
讲解群桩基础的优化设计原则,如经济性、可行性等。
2 设计方法
介绍群桩基础的优化设计方法和常用工具。
3 案例分析
提供群桩基础优化设计的实际案例分析。
现场施工注意事项
1 施工前准备
指导现场施工前的准备 工作,如场地清理、管 线排查等。
群桩基础计算
本课件介绍群桩基础的概念与作用,分类及特点,设计步骤,承载力计算方 法,常用计算理论,施工注意事项,维护和管理,应用案例,发展现状,标 准规范,安全问题,土的力学特性,建筑物基础计算,地铁工程应用实例。
群桩基础的分类与特点
1 不同类型
介绍不同类型的群桩基础,如并桩、交叉桩等。
2 特点与优势
解释群桩基础相对于单桩基础的特点和优势。
3 适用场景
指出适用步骤
1
勘察与设计要求
详述群桩基础设计前的勘察与设计要
桩基选择
2
求。
介绍如何根据工程需求选择适当的类
型和数量。
3
布置方案
阐述合理的桩位布置方案设计,包括
计算和验算
4
桩间距、桩径等。
讲解群桩基础的计算和验算方法及步 骤。
水平承载力与位移,群桩基础计算
η c=0,η s =η p = η sp =1 当根据静载荷试验确定单桩竖向极限承载力标准
值时,基桩的竖向承载力设计值为:
R Quk sp
当承台底面与土脱开(非复合桩基)时,即取η c=0;
4 桩顶作用效应简化计算
1.基桩桩顶荷载效应计算
以承受竖向力为主的群
1.单桩的水平承载力
桩的水平荷载作用的特征 桩在水平荷载作用下,桩身产生挠曲变形,变
形的形式与桩和地基的刚度有关。桩身变形挤压侧 土体,而土体对桩侧产生水平抗力,其大小和分布 与桩的变形、地基条件和桩的入土深度有关。
桩在破坏之前,桩身与地基的变形是协调的,相 应地桩身产生了内力。随着桩身变形和内力的增大, 对于低配筋率的灌注桩来说常是桩身首先出现裂缝, 然后断裂破坏;
一般工业与民用建筑中的基础,常以承受竖向荷载 为主,但在桩基上作用有较大水平荷载时还必须对桩的水 平承载力进行验算。
一般来说当水平荷载和竖向荷载合力与竖直线的夹角 不超过5度时,竖直桩的水平承载力不难满足设计要求, 更应采用竖直桩。因此下面的讨论仅限于竖直桩的水平承 载力。
实践表明:桩的水平承载力远比竖向承载力要低!
(2).地震作用效应
对于抗震设防区主要承受竖向荷载的低承台桩 基,当同时满足下列条件时,桩顶作用效应计算可 不考虑地震作用:
(a)按《建筑抗震设计规范》规定可不进行天然 地基和基础抗震承载力计算的建筑物;
①群桩基础中各基桩的工作性 状与单桩基本一致;
②群桩基础承载力等于各单桩
承载力之和; 1 ③群桩的沉降量几乎等于单桩
的沉降量;
当各群 桩的沉降量几乎 等于单桩的沉降 量。
端承型群桩基础
第三章-五节_群桩基础计算
R Qsk / s (Qrk Qpk ) / p
四、桩顶作用效应简化计算 一般建筑物和受水平力较小的高大建筑物, 当桩径相同时,通常可假定:(1)、承台是刚 性的;(2)、各桩刚度相同;(3)、 x、y是 桩基平面的惯性主轴。桩顶作用计算公式为: F G 轴心竖向力作用下 Ni
考虑桩侧负摩阻力验算基桩竖向承载力设计值 R 时,1)、摩擦型基桩取中性点以上侧阻力为零, 满足下式: 0N R 2)端承型基桩应满足: n 0N R ( 0 N 1.27Qg ) 1.6R 当土层不均匀和建筑物对不均匀沉降较敏感 时,应将负摩阻力引起的下拉荷载计入附加荷载 验算桩基沉降。
此外还应按gb500102002混凝土结构设计规范验算桩身的抗拉承载力裂缝宽度或八桩基水平承载力验算八桩基水平承载力验算承受水平力的竖直桩设计时要求基桩的桩顶水平荷载设计值满足下式要求可由单桩水平静载试验确定或按下式进行估算
第五节 群桩基础计算
实际工程中,一般为群桩基础。群桩基础与 单桩的不同主要有两个方面: (1)、群桩基础,各桩的承载力发挥和沉降性 状往往与相同情况下的单桩有显著差别; (2)、承台底部的土反力也将分担部分荷载。
偏心竖向力作用下
n F G M x y i M y xi Ni 2 n yi xi2
水平力作用下
Hi H / n
当基桩承受较大水平力,或为高承台桩基时, 桩顶作用效应的计算应考虑承台与基桩协同工作 和土的弹性抗力。
五、基桩竖向承载力验算 1、荷载效应基本组合 承载力设计值 R 应符合下式:
二、承台下土对荷载的分担作用 复合桩基:在荷载作用下,由桩和承台底地基土 共同承担荷载的桩基。
群桩作为整体基础的计算excel
群桩作为整体基础的计算excel
计算群桩作为整体基础可以使用Excel进行如下步骤:
1. 打开Excel,创建一个新的工作表。
2. 在第一列输入桩号,从第1行开始逐行输入桩号。
3. 在第二列输入每个桩的截面面积。
4. 在第三列输入每个桩的长度。
5. 在第四列输入每个桩的承载力。
6. 在第五列输入每个桩的垂直荷载。
7. 在第六列输入每个桩的水平荷载。
8. 在第七列计算每个桩的基底受力,使用公式:基底受力 = 承载力 + (垂直荷载 * 长度) + (水平荷载 * 长度)
9. 在第八列计算每个桩的抗拔力矩,使用公式:抗拔力矩 = 垂直荷载 * 长度
10. 在第九列计算每个桩的抗倾覆力矩,使用公式:抗倾覆力矩 = 水平荷载 * 长度
11. 在第十列计算每个桩的地基承载力,使用公式:地基承载力 = 基底受力 / 截面面积
12. 在第十一列计算每个桩的抗拔稳定系数,使用公式:抗拔稳定系数 = 抗拔力矩 / (地基承载力 * 截面面积)
13. 在第十二列计算每个桩的抗倾覆稳定系数,使用公式:抗倾覆稳定系数 = 抗倾覆力矩 / (地基承载力 * 截面面积)
14. 根据需要进行其他计算。
以上步骤是一个简单的计算群桩作为整体基础的Excel表格,具体的计算公式和参数需要根据实际情况进行调整和修改。
桩基础工程量计算
31.28672854 892.8353215
桩身上部体积(立方米) 18.31705597 扩头圆台体积(立方米) 0 圆缺体积(立方米) 0 扩头0.2米高体积(立方米) 0.157079633
注:菊红色数据不用填,仅填写黄色部分数据。
下表:为上表同规格群桩工程总量: 1 15.5 群桩桩身上部之差总体积(立方米) 20.57350489 群桩护壁之差总体积(立方米) 12.56931586 群桩桩身砼总量(立方米) 39.04764049 群桩护壁砼总量(立方米) 25.3819088
群桩根数(根) 群桩桩身上部之差总长度(米) 群桩桩身主钢筋总量(kg) 群桩桩身箍筋总量(kg) 群桩桩身加强筋总量(kg) 群桩护壁主钢筋总量(kg) 群桩护壁箍筋总量(kg)
985.2871922 188.9938158 72.38187286 190.0256831 271.0025788
径(米) D=扩大头直径(米) hc=扩头圆台高(米) hb=圆缺高(米) H1=地面标高(米) H2=桩顶标高(米) H3=挖孔深度(米) H4=桩底标高(米) H=桩总高(米) h=护壁高(米) 30 1.3 1 0 0 221 220 16 205 14 15.8 单桩砼工程量: C2=护壁砼强度 20 分项 d1=桩主钢筋直径(毫米) 18 单桩身砼量(立方米) d2=桩主钢筋根数 16 单护壁砼量(立方米) d3=桩身箍筋直径(毫米) 10 单桩身主钢筋量(kg) d4=桩身加强筋直径(毫米) 16 单桩身箍筋量(kg) d5=护壁主筋直径(毫米) 6 单桩身加强筋量(kg) d6=护壁箍筋直径(毫米) 6 单护壁主钢筋量(kg) 桩身箍筋一圈长(毫米) 3895.57489 单护壁箍筋量(kg) 护壁箍筋一圈长(毫米) 4995.132319 桩身加强筋一圈长(毫米) 4055.57489 桩身上部高(米) 13.8 单砼总量(立方米) 单钢筋总量(kg) 工程量 18.4741356 12.81259294 467.5939217 95.40262907 34.35071932 158.6880276 136.8000238
浅谈桩基设计中的群桩效应
浅谈桩基设计中的群桩效应其承台底面土、桩间土、桩端以下土都参与工作,形成承台、桩、土相互影响共同作用。
桩顶荷载主要通过桩侧摩阻力传布到桩周和桩端土层中,产生应力重叠。
承台土反力也传布到承台以下一定范内的土层中,从而使桩侧阻力和桩端阻力受到干扰。
桩群中任一根桩的工作性状明显不同于孤立单桩,群桩承载力将不等于各单桩承载力之和,群桩沉降也明显地超过单桩。
1. 群桩效应的体现1.1 群桩抗侧摩阻力桩侧摩阻力只有在桩土间产生一定相对移的条件下才能充分发挥出来,并受到桩距、承台、桩长与承台宽度比、土性等因素的影响。
1.2 群桩的桩端阻力一般情况下桩端阻力随桩距减少而增大,同时也受到承台、土性与成桩工艺的影响。
1.3 群桩桩顶荷载的分配刚性承台群桩的桩顶荷载分配的规律一般是中心桩最小,角桩最大,边桩次之,其受到桩距、桩数、承台与上部结构综合刚度、土性的影响。
1.4 群桩沉降由于相邻桩应力的重叠导致桩端平面以下的应力水平提高和压缩层加深,因而群桩的沉降量和延续时间往往大于单桩,其受到桩数、桩距和长径比的影响。
1.5 群桩的破坏模式群桩的破坏模式分为桩群侧阻力的破坏和桩群端阻力的破坏,a)、桩群侧阻碍力的破坏分为桩土整体破坏和非整体破坏。
整体破坏是指桩、土形成整体,如同实体基础那样工作,破坏面受生了桩群外。
非整体破坏是指各桩的桩土之间产生相对移,破坏面发生于各桩侧面。
b)、桩端阻力的破坏可分为整体剪切、局部剪切、冲剪三种模式。
2 群桩整体强度的计算方法群桩基础的整体破坏和实体深埋基础相同。
极限承载力等于桩尖平面处,以桩群外包尺寸决定的面积上的极限承载力与桩周边土的极限抗剪强度之和。
式中N—桩基础上作用的上部结构荷重,kN;P—桩台及桩台上覆土的重量(常年地下水以下按有效重度计算),kN;G—桩及桩问土的总重量(常年地下水以下按有效重度计算),kN;K—安全系数。
根据τμ及Pu取值的可靠程度取值;τμ——桩身穿过土层的平均单不排水抗剪强度,kPa;Pu——桩尖处土层的单,kPa:a,b——群桩外的长度和宽度,m:l——自承台底面算起的桩有效长度.m。
群桩作为整体基础的计算表格excel
群桩作为整体基础的计算表格excel一、引言群桩基础是建筑工程中常用的一种基础形式,特别适用于土质较好,但承载力较低的地基。
群桩的计算是基础设计中的重要环节,通过计算表格excel可以方便地进行群桩整体基础的设计和分析。
下面将从群桩基础的设计原理、excel计算表格的编制方法以及实例分析等方面进行论述。
二、群桩基础的设计原理1. 群桩基础的工作原理群桩基础是通过多根桩同时工作,将上部荷载通过桩顶的承载能力传递到地基深部,从而达到分散荷载的目的。
群桩的承载能力受到桩身侧面摩阻力和桩底端阻力的共同作用,因此其承载能力要高于单根桩基础。
2. 群桩基础的设计要点在进行群桩基础设计时,需要考虑以下几个要点:(1)合理确定桩径和桩长;(2)合理确定桩的布置方式和间距;(3)考虑整个群桩基础的承载性能,尤其是沉降和倾斜的影响。
三、excel计算表格的编制方法1. excel表格的基本结构在编制群桩基础的计算表格excel时,可以按照以下基本结构来设计表格:(1)表头:包括项目名称、设计单位、栏目标题等;(2)输入参数:包括地基参数、荷载参数、桩身参数等;(3)计算结果:包括承载力计算、桩身摩阻力计算、桩底承载力计算等;(4)图表展示:包括承载力分布图、沉降曲线图等。
2. excel表格的编制步骤编制群桩基础的计算表格excel需要按照以下步骤进行:(1)确定设计计算方法和公式;(2)设置输入参数和计算变量;(3)编写计算公式和相关的宏命令;(4)进行计算和结果的展示。
四、群桩基础计算表格excel的实例分析下面以某工程项目的群桩基础计算为例,进行excel计算表格的实例分析。
(1)项目情况:地基土质为砂土,建筑物荷载为xxxkN;(2)桩身参数:桩径为xxxmm,桩长为xxxm;(3)计算方法:采用xxx方法进行桩身摩阻力和桩底承载力计算;(4)计算结果:承载力满足设计要求,桩身摩阻力和桩底承载力符合规范规定。
群桩沉降及周围土体沉降的计算
群桩沉降及周围土体沉降的计算群桩沉降及周围土体沉降的计算群桩基础是目前较为普遍使用的复合地基处理方式之一,由于其具有结构承载能力强、适应性广、可长期稳定等优点,因而在土建工程中被广泛应用。
然而,在工程实践中,群桩基础也存在一些问题,其中最典型的问题就是群桩之间的相互作用和周围土体沉降问题。
因此,如何准确地计算群桩沉降及周围土体沉降,对于保证工程的安全、稳定起着至关重要的作用。
本文将对群桩沉降及周围土体沉降的计算方法进行简单介绍和分析。
一、群桩沉降的计算方法1.排列方式对计算影响群桩沉降的计算方法一般分为两种,即单桩计算法和组合力法。
在单桩计算法中,假定每个桩的受力状态相同,按照单桩沉降曲线进行计算。
组合力法则是将多个桩的受力状态同时考虑,采用较为复杂的组合力学方法进行计算。
然而,在实际工程中,群桩之间的排列也会对计算结果产生影响。
当桩排布的中心线距离相对比较小时,桩之间的互相作用会使桩的受力状态发生变化,产生相互扰动。
在这种情况下,单桩计算法对于计算结果的准确性会有较大影响。
2.单桩计算法单桩计算法是最为简单、直接的计算方法,适用于单桩或者桩排布距离比较大的情况。
计算方法可以采用半经验公式进行,根据桩顶荷载、桩身周长等数据计算单桩的沉降变形。
其中,单桩沉降公式通常采用人工挖孔法或动探等方法采集的土质力学参数,可以采用约束模量法和弹塑性方法等进行计算,按照单桩受荷的弹性、弹塑性和塑性状态计算。
需要注意的是,单桩方法计算时,桩头和桩身沉降不能完全分开,必须在两者之间建立连接。
3.组合力法组合力法是将整个群桩看做一个整体,采用力平衡实现对整个体系的计算。
这种方法计算的准确性相对较高,适用于桩与桩之间距离较小、联合作用明显的情况。
在组合力法中,桩排布的形式和土层的性质对计算过程影响较大。
二、周围土体沉降的计算方法周围土体沉降是群桩基础中的另一个问题,其计算方法主要分为两种,即有限元法和碟形法。
1.有限元法有限元法是目前较为广泛采用的计算方法之一,基于理论分析,将土壤划分为有限的单元,采用有限元的计算方法进行分析和研究。
群桩基础的竖向分析及其验算
案例分析一:高层建筑群桩基础设计
高层建筑由于其高度大、荷载重,对基础的要求较高,群桩基础能够提供较好的 竖向承载力和稳定性。
在高层建筑群桩基础设计中,需要考虑建筑物的结构形式、荷载分布、地质条件 等因素,进行合理的桩位布置和桩身设计。
群桩基础的竖向分析及其验算
目录
• 群桩基础概述 • 群桩基础的竖向分析 • 群桩基础的验算 • 群桩基础的优化设计 • 群桩基础的实际应用与案例分析
01 群桩基础概述
定义与特点
定义
群桩基础是由多根桩组成的复合基础 ,通过桩身将上部结构的荷载传递到 下层土体中。
特点
群桩基础具有较大的承载能力、较好 的稳定性和较小的沉降量,适用于高 层建筑、大跨度结构等对基础承载力 和稳定性要求较高的工程。
确定计算参数 根据实际情况和规范要求,确定 相关计算参数,如土的物理性质、 桩身材料的力学性能等。
进行竖向分析 根据建立的模型和确定的参数, 进行竖向分析,计算群桩基础的 沉降量、承载力等指标。
04 群桩基础的优化设计
设计优化原则
01
02
03
04
结构安全原则
确保群桩基础在各种工况下的 安全性和稳定性,满足建筑物
受力分析
根据竖向荷载的大小和分布情况,对 群桩基础进行受力分析,包括桩身和 承台的内力、剪力和弯矩等。
稳定性验算
根据受力分析结果,对群桩基础进行 稳定性验算,确保其在竖向荷载作用 下的稳定性。
结果评估
根据验算结果,评估群桩基础的竖向 承载力和变形特性,为后续的设计和 施工提供依据。
竖向分析的注意事项
群桩基础的竖向分析及验算
群桩基础的竖向分析及验算群桩基础是一种常用于大型建筑物、桥梁和其他重型结构的基础形式。
它由多个桩组成,通过相互连接形成一个整体。
群桩基础分为竖向和水平向两个方向的力学分析。
本文将对群桩基础的竖向分析和验算进行探讨,主要包括以下内容:基本原理、计算方法、荷载传递机制和工程实例。
一、基本原理二、计算方法1.叠加法:对每根桩单独进行分析,然后将其响应叠加得到整个桩基的响应。
这种方法适用于桩间相互作用较小的情况。
2.几何法:基于桩间相互作用的考虑,直接分析群桩基础整体的响应。
这种方法适用于桩间相互作用较大的情况。
三、荷载传递机制1.桩体轴向力传递:当桩基受到垂直荷载时,桩身将承受轴向力,通过桩底横向传递给相邻的桩。
桩体的轴向力传递可由无约束体力学方程描述,如等效半空间理论。
2.土体侧阻力传递:当桩体侧面与土体发生摩擦时,土体对桩体施加一定的侧面阻力。
土体侧阻力的计算一般采用土力学理论,如COULOMB理论或摩擦圆理论。
四、工程实例以大型建筑物的群桩基础为例进行竖向分析和验算。
1.数据收集:收集桩的设计参数,包括直径、长度、深度、桩间距等。
同时,收集建筑物所受荷载的设计参数。
2.叠加法计算:根据每根桩的参数,计算其受力和变形。
然后将各根桩的响应叠加得到整个群桩基础的响应。
3.几何法计算:根据桩间相互作用的考虑,采用数值分析方法,求解整个群桩基础的响应。
4.荷载传递机制的分析:对桩体轴向力传递和土体侧阻力传递进行分析,计算各桩的受力情况。
5.结果分析:根据计算结果,评估群桩基础的承载能力和变形情况,判断其是否满足设计要求。
综上所述,群桩基础的竖向分析和验算是一项重要的工作,它涉及到力学理论、土力学理论和结构工程的知识。
通过合理的计算方法和荷载传递机制的分析,可以准确评估群桩基础的性能,为工程设计提供科学依据。
群桩基础承载力计算
群桩基础承载力计算①群桩的荷载传递机理一,概述由多根桩通过承台联成一体所构成的群桩基础,与单桩相比,在竖向荷载作用 下,不仅桩直接承受荷载,而且在一定条件下桩间土也可能通过承台底面参与承载: 同时各个桩之间通过桩间土产生相互影响;来自桩和承台的竖向力最终在桩端平面 形成了应力的叠加,从而使桩端平面的应力水平人人超过了单桩,应力扩散的范闱 也远人丁•单桩,这些方面影响的综合结果就是使群桩的工作性状号单桩仃很人的差别。
这种桩与土和承台的共同作用的结果称为群桩效应。
正确认识和分析群桩的工 作性状是搞好桩基设计的前提。
群桩效应主要表现在承我性能和沉降特性两方面,研究群桩效应的实质就是研1)端承桩型的荷載传递。
对于端承桩,桩底处为岩层或坚实的土层,轴向压力作用F 桩身几乎只令弹性压缩而无整体位移,侧壁摩擦阻力的发挥受到较人限制,在桩底平面处地 基所受压力町认为只分布在桩底面积范内,如图1所示。
在这种情况下,町以认为群桩基 础各桩的工作情况4独立单桩相同。
2)摩擦桩型的荷载传递。
对于摩擦桩,随着桩侧摩擦阻力的发挥,在桩土间发生荷我 传递,故桩底平而处地基所受压力就扩散分布到较大的而积上如图2 (a)所示。
试验表明, 当相邻桩的中心距Sa>6d 时(其中d 为桩的直径,有斜桩时Sa 应按桩底平面计算),桩底平 面处压力分布图才不致彼此重叠,肉而群桩中一根桩与独立单桩的工作惜况相同,如图2(b) 所示。
而当桩间距较小(中心距SaW6d)时,桩底平面处相邻桩的压力图将部分地发生重 叠现象,引起压力叠加,地基所受压力无论在数值上及其影响范柿I 和深度上都会明显加人, 如图2 (c)所示;这种现象就是群桩作用或群桩效应。
由此町见,只有摩擦桩群才有群桩效应问题,才需婆考虎群桩问题,因此,一下关于群宪群桩荷 下我们对 能做详细 二,群桩的荷群 通过承台 散应力, 路径传到 从而引起 为群桩的群 受到许多 复杂又务 的角度, 有两类:型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pmax
l
h
BL h A
N A
1
eA W
R
fa
(N.0.2-2)
A=ab
(N.0.2-3)
当桩的斜度
4
时
a
L0
dLeabharlann 2ltan 4
(N.0.2-4)
当桩的斜度
4
时
b
B0
d
2l
tan
4
(N.0.2-5)
a L0 d 2l tan
l— 桩的深度(m);
—承台底面以上土的重度(kN/m3);
L — 承台长度(m);
107
《公路桥涵地基与基础设计规范》报批稿
B — 承台宽度(m); N — 作用于承台底面合力的竖向分力(kN); A— 假定的实体基础在桩端平面处的计算面积(m2); a,b— 假定的实体基础在桩端平面处的计算宽度和长度(m); L0 — 外围桩中心围成的矩形轮廓长度(m); B0 — 外围桩中心围成的矩形轮廓宽度(m); d——桩的直径(m); W — 假定的实体基础在桩端平面处的截面抵抗矩(m3); e — 作用于承台底面合力的竖向分力对桩端平面处计算面积重心轴的偏心距(m); — 基桩所穿过土层的平均土内摩擦角(°); 1l1 、2l2 、…nln — 各层土的内摩擦角与相应土层厚度的乘积; fa —桩端平面处修正后的地基承载力特征值(kPa),按本规范第 4.3.4 条、第 4.3.5 条规定
采用,并应按本规范第 3.0.7 条予以提高; R ——抗力系数,见本规范第 3.0.7 条。
(a)
(b) 图 N.0.1 群桩作为整体基础计算示意
(c)
108
《公路桥涵地基与基础设计规范》报批稿
附录 N 群桩作为整体基础的计算
N.0.1 群桩(摩擦桩)作为整体基础时,桩基可视为图 N.0.1 中 acde 范围内的实体基础。
N.0.2 整体基础计算应符合下列规定:
1 轴心受压时,
p
l
h
BL h A
N A
fa
(N.0.2-1)
2 偏心受压时,除满足第 1 款外,尚应满足下列条件:
b B0 d 2l tan
1l1
2l2 nln l
(N.0.2-6) (N.0.2-7) (N.0.2-8)
式中:p—桩端平面处的平均压应力(kPa);
pmax —桩端平面处的最大压应力(kPa); — 承台底面至桩端平面包括桩的重力在内的土的平均重度(kN/m3);