曲线梁桥的受力施工特点及设计方法分析_百度文库

合集下载

小半径曲线桥梁设计要点探析

小半径曲线桥梁设计要点探析

小半径曲线桥梁设计要点探析一、小半径曲线桥梁的结构受力特点小半径曲线桥梁由于主梁的平面弯曲使得下部结构墩柱的支承点不在同一条直线上,形成了其独有的受力特点:(1)主梁受曲率影响,梁截面发生竖向弯曲的同时会产生扭转,而产生的弯矩和扭矩相互影响,使梁处于弯扭耦合状态;(2)由于弯扭耦合作用,弯桥的变形比同跨径的直桥要大,主梁外边缘的挠度大于内边缘的,而且曲率半径越小,桥越宽,这一趋势越明显。

同时在梁端可能出现翘曲,当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势;(3)曲线桥梁上汽车荷载的偏心布置及其行驶时的离心力,也会造成曲线梁桥向外偏转并增加主梁扭矩和扭转变形。

另外,曲线桥梁即使在对称荷载作用下也会产生较大的扭矩,该扭矩通常会使得外梁超载,内梁卸载;(4)主梁的扭转传递到梁端部时,会造成端部各支座横向受力分布严重不均,通常呈曲线外侧支反力变大,内侧变小的趋势,有时内侧支座甚至会出现负反力。

(5)曲线桥的中横梁是保持全桥稳定的重要构件,与直线桥相比,其刚度一般较大。

(6)采用连续梁体系的曲线桥,预应力效应对支反力的分配有较大的影响,在计算支座反力时必须考虑预应力效应的影响。

二、小半径曲线桥梁的设计要点(一)小半径曲线桥梁支座的布置形式曲线箱梁桥支座的布置型式通常采用三种形式(如下图):a. 全部采用抗扭支承, b. 两端设置抗扭支承,中间设单支点铰支承,c.两端设置抗扭支承,中间既有单支点铰支承,又有抗扭支承的混合式支承。

近年来,在曲线箱梁桥工程实际应用中,两端为抗扭支座(双支座),联内安置几个单点铰支座,即中支点下部采用独柱支承的曲线桥多次发生侧倾事故。

其主要原因多为主梁在偏心荷载作用下发生扭转,当转角大到一定程度时,支反力的下滑分力将超过支座侧向的约束能力,扭矩将全部转移到梁端造成曲线内侧支座脱空,主梁发生倾覆。

所以此类支座布置的形式在工程应用中已不多见。

对于小半径的曲线箱梁,通常全部采用抗扭支承。

浅谈弯桥结构的设计与受力分析

浅谈弯桥结构的设计与受力分析

浅谈弯桥结构的设计与受力分析浅谈弯桥结构的设计与受力分析张杰(1余姚市公路管理段,浙江余姚315400)摘要:在现今公路建设中,部分桥梁在布线时受平面线形的影响而位于平曲线内。

针对此情况,本文对弯桥设计中主要考虑的一些因素作出阐述,可供设计人员进行弯桥设计时,作为参考。

1 概述交通事业的迅猛发展,使国内公路工程建设进入黄金时代。

公路等级不断提高,在设计总体布局方面要求桥位确定、桥梁设计应服从路线线形标准设计。

所以为了满足布线时的平曲线形指标,就会有部分桥梁在路线总体线形限制下处于曲线段,使桥梁结构类型的选择、结构计算方面难度加大。

同时从桥梁美观学考虑,曲线桥梁在整体布置方面要求更高。

因此曲线桥梁的设计计算就显得尤为重要。

2 设计理论分析2.1非重力荷载下平面弯梁的内力及内力横向分配2.1.1温度变化,混凝土收缩混凝土收缩可以按规范折算成温度均匀下降来考虑,可引起弯梁桥在水平面内的位移,这类位移属于弧线段膨胀或缩短性质的位移,它只涉及到曲率半径的变化,而圆心角不发生改变。

同时温度变化、混凝土收缩使弯梁桥产生的内力,除水平弯矩My、轴向力Nz外,还有径向的水平剪力Qx。

2.1.2弯梁桥水平温度力的特点及其与下部结构的关系弯梁桥在温度变化时,一般会产生水平内力,特别对于桥越宽、半径越小的弯桥,支座对水平位移的约束越大,水平温度力亦越大,因此弯桥设计中必须考虑这些力。

温度变化使梁在支座上位移的数值很小,在设计弯桥支座时,不要把它的横桥向位移固定死,只要让它发生很小一点横向位移,就可大大减小支座及梁的温度力。

对于弯梁,即使顺桥向布置了足够多的自由滑动支座,梁内仍然可能会有轴向力,这种轴向力是各支座的径向约束力在梁轴切线方向上的分力造成的。

如果弯梁绕铅垂竖轴的转动位移在某个墩台上被固定死,这个墩台可能受到很大的水平转动力矩。

当同一个墩台上设置多个制动支座时,将会发生此种情况,故设计时应注意避免。

从以上分析可以得出要减小弯梁桥水平温度力,我们可以采取以下主要措施:①放松一部分墩台支座的径向约束;②采用弹性水平约束支座;③对于环形立交桥,可考虑将环道设计成连续的闭合圆环。

连续曲线梁桥设计探析

连续曲线梁桥设计探析

连续曲线梁桥设计探析文章论述了曲线桥梁的受力性,并且阐述了设计时要注意的要素。

标签:曲线梁桥;受力特点;结构设计1 概述曲线桥是当前的道桥项目中非常关键的一个组成部分,尤其是在最近几年它得到了非常广泛的应用。

对于那些互通型的立交匝道来讲,它的使用更是非常的明显。

在设计匝道的时候会受到很多要素的干扰,比如地形以及所在区域的规模等,这些要素的存在使得该项设计有如下的一些特征。

第一,此类桥的宽度不是很宽,通常匝道的尺寸在六米到十米之间。

第二,匝道本身是为了辅助道路转向的,在立交工程中会受到土地规模的影响,因此这类桥大多数是小尺寸的曲线桥。

第三,匝道桥的纵向坡度非常大,有时会横跨下方的车道,此时就使得桥的长度变长。

因为这种桥本身弯斜,形状特别,所以它的设计工作无法正常的开展。

2 曲线梁桥的平面及纵、横断面布置最近几年高速路在设计的时候更加的关注线形方面的内容,规定设计要合乎线形要求。

因此在布局桥梁平面的时候,要遵照总的线形布局规定,其纵坡也要和路线的纵坡保持一致。

通常为了应对截面的扭矩以及弯矩,在设计的时候常使用箱形的截面。

由于桥面超高的需要及梁体受扭时外边梁受力较大的需要,所以可以在其水平方向上把主梁设置成不一样的高度。

为了便于构造,方便建设,也可以将其设置成一样高度的,其超高横坡由墩台顶面形成。

3 曲线梁桥结构受力特点3.1 梁体的弯扭耦合作用一般来说,当受到外在力影响的时候,曲梁会出现一定的弯矩以及扭矩,两者会彼此影响,进而导致截面处在一种耦合的状态中,截面的拉力要较之于直梁大,这个特征是这种梁所特有的。

因为这种桥会承受较高的扭矩力,所以会发生变形现象,它的外侧的挠度要比相同尺寸的直桥大一些。

因为存在耦合作用,所以在桥上方会存在翘曲现象。

3.2 内外梁无法均匀受力对于曲梁桥来讲,因为其扭矩较大,所以会导致外梁发生超载而内梁出现卸载的情况,特别是当桥梁较宽的时候这种现象更加的明显。

因为两个梁的支点反力差别非常大,如果活载发生了偏移的话,内梁就会生成一种反向力,此时假如内梁无法承受这种力的话,就会使得梁体和支座分离。

小半径曲线桥梁设计方法分析

小半径曲线桥梁设计方法分析

小半径曲线桥梁设计方法分析摘要本文结合多年工作实践,主要介绍小半径曲线桥梁的力学特性,分析曲线桥梁存在的病害及成因,提出了小半径曲线桥梁设计应该注意事项。

关键词曲线桥梁;设计方法;特性;成因近年来,随着经济的快速增长,城市交通的发展也越来越迅猛,由于受原有地物或地形的限制,以及城市交通功能的需要,小半径曲线桥梁在城市立交中应用越来越广泛。

因曲线桥梁受力复杂,设计及施工难度大,很多建成后的曲线桥梁在运营的过程中也逐渐出现了很多病害。

本文结合多年的设计经验,提出小半径曲线桥梁设计中应该注意的几点事项。

1曲线桥梁受力特性1)梁体的弯扭耦合作用。

曲线梁在外荷载的作用下会同时产生弯矩和扭矩,并且互相影响,使梁截面处于弯扭耦合作用的状态,其截面主拉应力往往比相应的直线梁桥大得多,这是曲梁独有的受力特点。

曲线梁桥由于受到强大的扭矩作用,产生扭转变形,其曲线外侧的竖向挠度大于同跨径的直桥;由于弯扭耦合作用,在梁端可能出现翘曲;当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势。

2)内梁和外梁受力不均匀。

在曲线梁桥中,由于存在较大的扭矩,因而通常会使外梁超载、内梁卸载,尤其在宽桥情况下内、外梁的差异更大。

由于内、外梁的支点反力有时相差很大,当活载偏置时,内梁甚至可能产生负反力,这时如果支座不能承受拉力,就会出现梁体与支座的脱离,即“支座脱空”现象。

3)离心力作用。

由于内外侧支座反力相差较大,使各墩柱所受垂直力出现较大差异。

曲线梁桥下部结构墩顶水平力,除了与直线桥一样有制动力、温度变化引起的内力、地震力等外,还存在离心力和预应力张拉产生的径向力。

因预应力钢束所具有的空间曲率,使得预应力束对于梁体将有水平径向力,这种径向力将对梁体的剪切中心产生扭转,而该扭转的存在又会使得曲线梁中产生附加的弯矩和扭矩,即在曲线梁中产生更显著的“弯、剪、扭”效应。

2现实中曲线桥梁存在的病害及成因1)曲线梁体向曲线外侧径向整体侧移。

支座布置不合理。

曲线梁桥的受力特点和分析方法

曲线梁桥的受力特点和分析方法

曲线梁桥的受力特点和分析方法摘要:由于在经济和审美上的优势,曲线梁桥被广泛应用于现代公路立交系统。

曲线梁的竖曲和扭转耦合,由于结构上的特点,相对于直梁桥而言,曲线梁的分析更为复杂。

本文对弯道梁桥的受力特点进行了介绍,并总结了分析弯道梁桥的有关理论。

关键词:曲线梁桥;弯扭耦合;支承体系;有限元法引言曲线梁桥是指主梁本身为弧形的弯曲桥梁。

由于其独特的线形,曲线梁桥突破了多种地形的限制,同时在高速公路、山地公路、城市桥梁等方面,由于其优美的曲线造型而得到了更快的发展。

曲线梁桥具有现实意义,发展前景非常看好,无论从几何角度、美学角度,还是从经济角度,都是如此。

1曲线桥梁受力特性1.1弯扭耦合作用由于受弯曲率的影响,当竖向弯曲时,曲线梁截面必然会产生扭转,而这种扭转又会导致梁的挠曲变形,这种挠曲变形被称为“弯扭耦合作用”。

对于弯道梁桥的设计,相对于直线型梁桥来说,要特别注意,因为弯道扭力耦合作用所产生的附加扭力,会使梁体结构产生较不利的受力条件,从而增加结构的挠曲变形。

值得注意的是,由于自重在使用荷载下占绝大多数,对于混凝土曲线箱梁桥而言,也会导致更明显的弯扭耦合。

由于弯道梁桥沿弯梁的线形布置支承不成直线,因此由于弯道外侧较重,导致桥体恒载重心相对于形心向外偏移。

曲线梁在自重的作用下,也会产生扭转和扭曲的变形,从而使曲线桥发生翻转,出现匍匐的现象,这就是曲线梁在自重的作用下产生的变形[1]。

1.2曲线梁内外侧受力不均匀曲线桥因弯曲和扭动耦合作用,变形大于同跨径的直线桥,且曲率半径越小、桥越宽,因此其简支曲线梁外缘的挠度比内缘大,这种变化趋势是显而易见的。

曲线梁桥体具有向外扭转的较大扭力、弯曲扭力耦合和偏载作用的可能。

扭转作用会越来越明显,曲率半径越小、跨度越大的曲线梁桥甚至会引起抗扭支座内侧支座产生空心现象,这种情况在抗扭转支座的内部支座上会产生空心现象,这种情况的发生曲线桥的支点反力与直线桥相比,有一种倾向,它的外侧会变大、内侧会变小,甚至在内侧产生负反力。

对曲线梁桥的研究总结报告

对曲线梁桥的研究总结报告

对曲线梁桥的研究总结报告摘要:曲线梁桥指的是平面线形呈某种曲线形状的梁桥。

从平面形状来看,曲线梁桥大多数位于圆曲线上,有时也会位于缓和曲线上。

根据孔跨布置和地面构筑物的要求,曲线梁桥分为扇形曲线梁桥或斜交曲线梁桥,由于斜交曲线梁桥受力更复杂,设计者往往尽量采用曲线梁桥。

本文就当前曲线梁桥的基本情况、受力特点、设计理论以及有限元模型的建立进行分析。

关键词:曲线梁桥、设计理论、有限元模型1概述城市现代化建设的发展使得城市交通系统的压力增大。

为保证城市交通顺畅,迫切需要更新原有的道路设施和开辟新的交通线。

以桥梁结构物布置为主的路线线型布设已无法满足高等级公路线型标准的要求,因此桥涵结构物的布置必须以路线线型布设为主,曲线梁桥由于能适应特殊线形需要且更具有曲线结构线条平顺、流畅、明快的美学价值,在现代化的公路立交及城市立交中的应用已十分普遍。

2曲线梁桥受力特点(1)弯桥梁截面在发生竖向弯曲时,必然产生扭转,而这种扭转作用又将导致梁的挠曲变形称为“弯-扭”耦合作用,使得弯桥的外边缘挠度大于内边缘挠度,且曲率半径越小、桥越宽,这一趋势越明显;(2)弯桥的支点反力与直线桥相比,有曲线外侧变大、内侧变小的倾向,内侧甚至产生负反力;(3)弯桥的中横梁,除具有直线桥中的功能外,还是保持全桥稳定的重要构件,与直线桥相比刚度较大;除影响直线桥受力特性的因素,与曲线桥受力特性有关的主要因素有:圆心角、桥宽与曲率半径之比、弯扭刚度比。

本文从圆心角和曲率半径两个方面对弯桥受力特性进行分析。

3曲线梁桥的设计理论3.1 纯扭转理论即将曲线梁桥结构作为集中在梁中心线处的弹性杆件来处理。

该理论概念清楚、计算简便,但未能考虑杆件截面翘曲、畸变的影响。

3.2 约束扭转理论1939-1940年,苏联学者乌曼斯基提出了闭合截面弹性薄壁杆件的计算理论,其基础是先假定截面周边不变形,其次假定可从自由扭转的纵向位移表达式中导出约束扭转位移表达式。

曲线梁桥受力特点分析

曲线梁桥受力特点分析

曲线梁桥受力特点分析关键词:圆心角;曲线桥;支反力;桥梁宽度中图分类号:U448.42 文献标识码:A 文章编号:1674-0696引言近年来高速公路、城市立交和高架道路的日益增多,以往道路设计服从桥梁设计的理念逐渐改变为一般桥梁设计服从道路要求的概念,因此,弯桥的建造需求越来越多。

曲线桥常出现支座脱空、侧向位移,甚至侧倾等严重事故。

造成严重的人员伤亡、经济损失和社会影响。

1曲线桥受力特点(1)由于曲率的影响,梁截面在发生竖向弯曲时,必然产生扭转,而这种扭转作用又将导致梁的挠曲变形,称之为“弯—扭”耦合作用。

(2)弯桥的变形比同样跨径直线桥大,外边缘的挠度大于内边缘的挠度,曲率半径越小、桥越宽,这一趋势越明显。

(3)弯桥即使在对称荷载作用下也会产生较大的扭转,通常会使外梁超载,内梁卸载。

2有限元模拟分析通过有限元软件Midas/Civil2020建立三跨3×30m连续曲线箱梁。

箱梁采用单箱单室,箱顶宽16.25米,箱底宽8.5米,单侧悬臂长度3.875米,梁高4.0米,腹板厚度50cm。

跨度相同,调整圆心角大小(0°、30°、60°、90°、120°)对曲线梁进行分析。

2.1 圆心角主梁的弯曲程度是影响曲线桥受力特性最重要的因素,但是曲率半径并不能全面反映弯曲程度。

能全面反映主梁弯曲程度的参数是圆心角,它是跨长与半径的比值,反映了与跨径有关的相对弯曲关系。

图2为三跨连续梁在均布荷载作用下的内力图。

支座均为双支座,模拟抗扭支承,均布荷载10kN/m。

图 2 三跨连续梁在均布荷载作用下内力图从图中可以看出改变圆心角大小对于梁的弯矩和剪力几乎没有影响,且圆心角越小,数值也越接近;对于扭矩,数值随着圆心角的增大而增大,且成倍增加,影响比较明显。

虽然扭矩比直桥大,但扭矩的影响线的标值比扭矩小一个数量级,所以通常情况下,曲线桥的扭矩并不控制主要截面的设计。

曲线梁桥的受力施工特点及设计方法分析

曲线梁桥的受力施工特点及设计方法分析

曲线梁桥的受力施工特点及设计方法分析摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。

关键词:曲线梁桥,结构,施工近年来,随着公路建设事业的快速发展,涉及到曲线梁的桥梁设计已经越来越多了,以往设计者希望通过调整路线方案,尽量避开这种结构形式,或由于曲线半径较大,采用以“直”代“曲”的形式,在桥梁上部(如翼缘、护栏等)进行曲线调整,以期达到与路线线形一致。

这些严格意义上说都不是曲线桥。

由于受原有地物或地形的限制,一些城市的立交桥梁和交叉工程的桥梁曲线半径比较小,桥墩基本上要设在指定位置,这种情况下只能考虑设计曲线梁桥。

1曲线梁桥的力学特性1.1曲线梁的受力情况曲线梁桥能很好地克服地形、地物的限制,可以让设计者较自由地发挥自己的想象,通过平顺、流畅的线条给人以美的享受。

但是曲线梁桥的受力比较复杂。

与直线梁相比,曲线梁的受力性能有如下特点: (1)轴向变形与平面内弯曲的耦合; (2)竖向挠曲与扭转的耦合; (3)它们与截面畸变的耦合。

其中最主要的是挠曲变形和扭转变形的耦合。

曲梁在竖向荷载和扭距作用下,都会同时产生弯距和扭距,并相互影响。

同时弯道内外侧支座反力不等,内外侧反力差引起较大的扭距,使梁截面处于“弯-扭”耦合作用状态,其截面主拉应力比相应的直梁桥大得多。

故在曲线梁桥中,应选用抗扭刚度较大的箱型截面形式。

在曲梁中,由于存在较大的扭矩,通常会出现“外梁超载,内梁卸载”的现象,这种现象在小半径的宽桥中特别明显。

另外,由于曲梁内外侧支座反力有时相差很大,当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,通常称为“支座脱空”。

1.2下部桥梁墩台的受力情况由于内外侧支座反力不相等,使各墩柱所受垂直力出现较大差距。

当扭矩很大时,如果设置了拉压支座,有些墩柱甚至会出现拉力。

曲线梁桥下部结构墩顶水平力,除了与直桥一样,有制动力、温度力、地震力等以外,还因为弯梁曲率的存在,多了离心力和预应力张拉时产生的径向力。

结合实际探讨曲线桥梁设计工作

结合实际探讨曲线桥梁设计工作

结合实际探讨曲线桥梁设计工作随着交通行业的不断发展,桥梁工程越来越多的出现在人们的生活中,本文根据自身工作经验,介绍了曲线桥梁的受力特点,并分析了曲线梁桥设计中遇到的相关问题,发表在工作中所积累和总结的若干看法。

标签:曲线梁桥;受力特点;设计要点;下部支承1、前言曲线桥梁的美观与实用,线形突出和不占用太多土地等特点受到广大桥梁设计者的欢迎和青睐,从而在实际中得到广泛应用。

但是曲线桥梁设计比较复杂,受力状态明显区别于其他结构形式的桥梁,所以设计中更加要求设计师综合考虑各种可能对设计结果有不利影响的因素,特别是对桥主梁和桥墩有影响的因素。

在我国已经出现多起因为设计因素而导致的桥梁事故的发生,比如主梁的开裂、偏转或者支座脱落,事故发生后,更需投入人力物力财力对原桥进行拆除,给国家带来严重的经济损失。

综上所述,曲线梁桥的设计,必须引起充分重视,并使用空间分析程序对其上下部结构进行全面的整体的计算。

下面就曲线梁桥设计中遇到的一些实际问题进行分析。

2、曲线桥梁的特点及其受力形式探讨2.1曲线桥梁梁体的弯扭耦合作用曲线桥梁的曲梁在受到其他荷载的作用下,和其他受力体一样会产生弯矩和扭矩,由于受整理受力体的影响,弯矩和扭矩相互作用影响,从而使的梁处于弯扭耦合作用状态。

此时,弯梁曲线桥表现出明显区别于其他桥梁的受力状态—截面主拉应力比普通直梁大的多。

此时由于扭矩的作用,外侧的竖向挠度明显较大,使得桥产生扭转变形,由于弯扭耦合作用,在梁端可能出现翘曲,当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势。

2.2下部受力复杂由于每个桥墩的内部和外部的支座反力有明显差异,垂直力有明显不同。

弯桥的墩顶水平力,与直桥的制动力,内力,温度变化等引起的地震力相差不大,但也存在径向力,径向力主要由离心力和预应力张拉所产生。

基于上述的曲线梁桥的受力特点,可以得出在单立柱支承曲线梁桥结构设计中,配合其全面的整体空间受力计算分析,只采用横向分布的简化计算方法,不能满足设计要求。

第2讲 曲线梁桥结构受力特点及构造

第2讲 曲线梁桥结构受力特点及构造

20
湖南大学土木工程学院桥梁工程系
2.5 曲线梁桥支座布置 曲线梁桥的支座布置是一个比较复杂的问题,支座布置是否合理,不但会影 响结构的受力,而且会影响车辆的正常行驶,其核心是如何通过支座布置来有效 承受由自重和活载偏载等因素所产生的组合扭矩作用。我国近年来一些城市所设
计的连续弯梁桥中,常因支座的布置不当而出现故障。
桥台支座不具备抗扭能力,致使运营过程中出现内侧支座脱空,端部向 外侧偏移,而内侧则超上其翘,伸缩缝装置破坏,被迫中断交通; 中间桥墩均布置单点活动支座,且不具备限制桥面径向位移的功能,在 升温作用下,桥梁向径向起拱,桥面中轴线向外弧侧偏移,从而加大了恒 载产生的扭矩,最后使整个桥面向外弧册产生不同程度的倾斜; 桥墩刚度设计不合理。
5
湖南大学土木工程学院桥梁工程系
2.3 曲线梁桥的变形特点
引起曲线梁桥在水平面内产生位移的因素有两大类,且两类位移的方向 有很大的差别。 (1)由于温度变化和混凝土收缩引起的水平位移 这类位移属于弧线膨胀或收缩性质的位移,它只涉及到曲率半径的变化, 而圆心角不发生改变。 如梁的左端为固定支座,其余为多向活动支座,当降温(或混凝土收缩) 时,位于1#、2#、3#支座处的桥面将分别产生沿01,02,03方向的位移,均指 向固定支座(0#)。值得注意的是,此时支座均发生了沿径向和切向的位移。
2
1
3
0 (1 ), ( p )
3 r0 ( 0 )
连续曲线梁桥在预应力和混凝土徐变作用下的平面内变形
9
湖南大学土木工程学院桥梁工程系
2.3 曲线梁桥的布置与构造 (1)曲线梁桥平、纵、横布置 每一座桥梁的设计总会涉及到诸多因素与制约条件,在综合考虑这些因 素之后,拟订总体布置方案。桥服从路线要求。 主要内容包括: 结构体系的选择:弯梁桥、弯拱桥、弯刚构桥、弯斜拉桥等。 桥梁分孔:连续弯梁桥的跨度大多是集中在50~60米以下的中等跨径 梁高选择:多采用等高度截面梁,当跨度较大时采用变高度截面。 主梁截面选择:板结构、T梁、I型梁及箱形截面

分析预应力混凝土连续弯梁桥的受力特点

分析预应力混凝土连续弯梁桥的受力特点

分析预应力混凝土连续弯梁桥的受力特点一、预应力混凝土连续弯梁桥受力特点平面弯曲的曲线梁桥又称弯梁桥,它的受力特点主要有以下三点:第一,在外荷载作用下,梁截面内产生弯矩的同时,必然伴随产生“弯扭耦合”,即所称的“弯—扭”耦合作用。

第二,在结构自重作用下,除支点截面以外,弯梁桥外边缘的挠度一般大于内边缘的挠度,而且曲线半径越小,这种差异越严重。

第三,对于两端均有抗扭支座的弯梁桥,其外弧侧的支座反力一般大于内弧侧,曲率半径R较小时,内弧侧还可能出现负反力。

产生这些现象的原因可以从以下两个方面解释:1.荷载因素(1)体积重心的偏心以等厚度矩形截面实心板为例,当在桥中心轴线上截取单位弧长,再从弯曲中心O引出两根辐射线与该弧长两端相连,便构成两个扇形截面。

由于外弧侧的扇形截面面积大于内弧侧面积,全截面的体积重心将偏离轴线向外弧一侧,其偏心距离为e。

这就是说,即使桥面上为均布荷载,对梁弯桥的作用也可分解为一个作用于桥中心线的垂直分力和向外弧側倾翻的扭矩。

(2)桥面横坡的影响梁弯桥桥面常设置横向坡度,其铺装层在外弧侧的厚度大于内弧侧的厚度,工程上称之路面超高,这样更加大了体积偏心。

当然,在设计上可以将桥跨结构斜置,使桥面铺装作为等厚度的,以减小恒载偏心。

(3)车辆行驶时的离心力车辆在桥面上行驶时,除了轴重的垂直力PV外,还有指向外弧侧且离桥面高度大约1.2m的离心力,该力也要对结构产生向外倾翻的扭矩。

2.力的平衡条件由图1可以看出,对于两端具有抗扭支座的单跨弯梁桥,当跨中C点有集中力P作用时,由于A、B、C三点不在同一直线上,且荷载点C距AB连线的垂距为e,故支点除支反力RA和RB外,还有支点的反力扭矩TA和TB。

因此,在桥跨内每个截面上除了弯矩以外,还产生扭矩,曲率半径越小,此扭矩值越大。

如果将每个支点反力和反力扭矩先进行分解再合成,便会出现外侧支座反力大,内侧支座反力小甚至为负反力现象,这些都是和直桥的最大差别。

小半径曲线梁桥受力特性及设计对策

小半径曲线梁桥受力特性及设计对策

小半径曲线梁桥受力特性及设计对策作者:杨世荣来源:《中国新技术新产品》2010年第12期摘要:本文通过对曲线梁桥的内力和病害的分析,讨论了曲线梁桥的设计与直线梁桥的设计的区别,重点探讨小半径曲线梁桥的设计要点以及避免病害产生的设计对策。

关键词:小半径;曲线桥梁;直线桥梁;病害1 内力、变形特征和病害对于直线桥,在主梁自重和预应力钢束作用下,由于荷载在横向是对称的,对主梁并不产生扭矩和扭转变形,仅活荷载的偏心会产生扭矩和扭转变形。

但是在曲线梁桥中,自重、预应力和活荷载作用所产生的扭矩和扭转变形是不容忽视的。

预应力钢束径向力产生最大扭矩值可达纵向最大弯矩值的50%以上。

另外,由于桥梁下部结构往往采用独柱支承方式,抗扭能力较弱,所以须在桥梁两端部设置抗扭支承,以增加桥梁的整体稳定性。

主梁的扭矩造成端部支座横向受力严重不均,甚至使一侧支座出现负反力。

由于曲线梁桥与直线桥内力和变形的差别,造成曲线梁桥一些独特的病害:1.1 曲线梁桥在温度变化的长期作用下,因两端的约束较大,其中间部分会在平面内缓慢向外侧移动和转动。

升温时,会出现朝圆心向外的侧向位移Ai,降温时出现朝圆心向内的侧向位移△。

,如果支座位置和形式设置不合理,在降温时,由于重力及支座的摩擦约束,使A1>A2。

如此年复一年,整个梁体不断向外移动,移动到一定量后,其后果是不言而喻的。

1.2 预应力混凝土曲线箱梁在张拉纵向力筋时,腹板中产生横向分力,易使腹板混凝土裂缝,其原因是产生径向水平压力使钢筋混凝土腹板超载(其实在预应力钢束附近基本是素混凝土),超载可能造成混凝土破坏,严重者将使混凝土崩裂,预应力钢束拉直,并从腹板内溢出。

1.3 支座布置、墩柱形式、支撑横向间距布置的不合理,造成支座过早的破坏,甚至引起墩柱开裂。

其原因,是梁体在自重、预应力以及外部荷载的作用下引起的扭转和翘曲造成的。

2 直、曲梁桥的计算的差别及分界深圳市华强立交A匝道第三联在投入使用两年后曲线梁桥突然向外移动和向外侧翻转,曲线梁体径向最大位移为47cm,切向最大位移为16cm,扭转达2.42。

曲线梁桥设计计算分析

曲线梁桥设计计算分析
下 也 会 产 生 较 大 的扭 矩 , 通
Di s c us s i o n o n t he c ur v e d be a m b r i dg e d e s i g n a nd c a l c u l a t i o n
病害 , 包括梁体产 生扭转变形 、 侧 向变形 、 外沉 内翘 、 “ 爬坡” 现象等…。要避免曲线梁桥 出现病害 , 保证桥
梁安全运 营, 必 需了解 曲线梁桥 的受力特点 , 正确进
桥宽度一般较小 , 端支承 的间距 不大, 若存 在较大 的 扭矩将使 内侧端支座产生 负反 力 , 支座脱空 , 同时靠
常会使 曲线外侧主梁超载 , 内侧 主梁卸 载 , 内外侧主
ZHAO Zh a n—we i ,L I U Fe n g—mi n
( Wu h a n Hi g h w a y S u r v e y a n d D e s i g n I n s t i t u t e ,H u b e i W u h a n 4 3 0 0 1 5 C h i n a )
梁产生应力差别。( 4 ) 支承反 力有 曲线外侧 变大 、 内 侧 变小 的倾 向, 当活载偏置时 , 内侧支承甚 至可能产
生负 反 力 , 同时 也应 防止 外 侧 支 座 超 载 。 ( 5 ) 中 横 梁
Ab s t r a c t : T h r o u g h c a l c u l a t i o n a n d d e s i g n f r o m a n a c t u a l e n g i n e e r i n g,me c h a n i c a l c h a r a c t e r i s t i c s a n d t h e d e s i g n p o i n t s o f t h e c u r v e d g i r d e r B id r g e s a r e i n t r o d u c e d ; Ac — c o r d i n g t o c o mp re a t h e d i f f e r e n t c a l c u l a t i o n me t h o d s, i t g e t s t h e i d e a l r e s u l t s c o n s i s t e n t wi t h t h e t h e o r y . Ke y wo r d s : c u ve r d b e a m b i r d g e; me c h a n i c a l c h a r a c t e r i s — t i c s ;d e s i g n p o i n t s .

曲线梁桥设计要点分析

曲线梁桥设计要点分析

曲线梁桥设计要点分析引言在国内大中城市道路的立体交叉工程中,曲线梁桥是实现各个方向交通联结的必要手段;另外在城市高架桥和高大桥梁两端的引桥工程中,由于交通功能的要求和地形条件的限制,也多采用曲线梁桥,可以说曲线梁桥己经成为高速公路、城市立交、高架桥梁中的基本结构形式。

从工程实际出发对曲线梁桥设计中存在的一些问题进行了深入的研究具有一定的工程實用价值。

1曲线梁桥的受力特点1.1梁体的弯扭耦合作用曲梁在外荷载的作用下会同时产生弯矩和扭矩,并且互相影响。

使梁截面处于弯扭耦合作用状态,其截面主拉应力往往比相应的直梁桥大得多.这是弯梁曲线桥独有的受力特点。

弯梁曲线桥由于受到强大的扭矩作用,产生扭转变形,其曲线外侧的竖向挠度大于同跨径的直桥;由于弯扭耦合作用,在梁端可能出现翘曲,当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势。

1.2内梁和外梁受力不均在曲线梁桥中,由于存在较大的扭矩,因而通常会使外梁超载、内梁卸载。

尤其在宽桥情况下内、外梁的差异更大。

由于内、外梁的支点反力有时相差很大,当活载偏置时,内梁甚至可能产生负反力,这时如果支座不能承受拉力,就会出现梁体与支座的脱离.即“支座脱空”现象。

1.3下部受力复杂由于内外侧支座反力相差较大,使各墩柱所受垂直力出现较大差异。

弯桥下部结构墩顶水平力,除了与直桥一样有制动力、温度变化引起的内力、地震力等外,还存在离心力和预应力张拉产生的径向力。

综合以上曲线梁桥受力特点,故在独柱支承曲线梁桥结构设计中,应对其进行全面的整体的空间受力计算分析,只采用横向分布等简化计算方法,不能满足设计要求。

必须对其在承受纵向弯曲、扭转和翘曲作用下,结合自重、预应力和汽车活载等荷载进行详细的受力分析,充分考虑其结构的空间受力特点才能得到安全可靠的结构设计。

2下部支承方式对曲线桥内力的影响曲线梁桥的不同支承方式,对其上、下部结构内力影响非常大,根据其结构受力特点一般采用的支承方式为:在曲线粱桥两端的桥台或盖梁处采用两点或多点支承的支座,这种支承方式可有效地提高主梁的横向抗扭性能,保证其横向稳定性。

浅析曲线梁桥设计

浅析曲线梁桥设计

浅析曲线梁桥设计摘要:曲线梁桥因其自身优点日益被采用。

本文就曲线梁桥的设计从计算图式、跨径布置、下部构造设计、横截面设计和横隔板设置等方面进行阐述总体设计应考虑的因素,供同行借鉴参考。

关键词:公路曲线桥设计要点曲线梁桥具有美观、伸缩缝少、行车舒适、受力合理等优点,是现代桥梁设计中经常采用的一种桥型,特别是在城市立交桥中或受地形地物条件限制时必需采用的桥型,中间墩可采用独柱墩,非常符合城市立交的轻巧美观、占地少的要求。

现代城市立交桥中的曲线梁桥主要以预应力连续曲线梁桥为主,并得到广泛的应用,跨度有逐步加大的趋势。

1 计算图式为了分析简单起见,设计中选取上部结构计算图式一般为:l)曲梁桥平面线型为单段圆弧或分段圆弧线之组合;2)各支承均为径向布置,即通常所说的扇形曲线梁,或正弯梁桥。

分析时可采用圆柱坐标系、曲线坐标系或流动直角坐标系,这样桥中线和支承线均能与坐标方向一致,计算较简便。

支承分为固定铰支承、固定支承、点铰支承三种。

固定铰支承就是能抗扭而无抗弯约束的铰支承,常用的固定铰支承即为沿桥径向布置的双支座,就是具有抗扭约束的单铰支承。

固定支承就是抗弯约束的支承,即墩梁固结;点铰支承就是无抗扭、抗弯约束,具有两个点点铰支承的简支弯梁桥是一种不稳定体系,当沿桥中轴线,恒载和活载不对称时,梁体会发生扭转,倾覆。

所以,梁桥必须至少有一个固定铰支承和一个点铰支承才能保持结构的静力稳定。

对于曲线梁,因其变形不同于直线梁,在支承布置时,还需根据实际情况,确定支承约束,而且计算模型应尽量与实际情况吻合,以免造成设计偏差。

2 跨径布置曲线桥的跨径布置原则与直线桥基本相同,主要是跨越障碍物,如江河、道路、地下管线等,按照地形地物进行布设的布设。

l)边、中跨比可参照直线桥取值,范围一般为0.6-0.8,当采用钢筋混凝土结构时,边、中跨比值可略取大些;当采用预应力钢筋混凝土结构时,由于有效的预应力在梁两端较大,在梁中间段较小,故边、中跨度比值可略取小些,受力较为合理。

小半径曲线梁桥受力特性及设计对策

小半径曲线梁桥受力特性及设计对策
工程技术
C ̄weoin r ■ ■ 圃 I ■ h N ho dot 囵团翟墨豳 i e c s s 山 墨 n T ng径 曲线 梁桥 受 力特 性 及设 计对策
杨 世 荣
( 嵩县公路 管理局 , 河南 嵩县 4 10 ) 7 40
反力 。 由于曲线 梁桥与 直线 桥 内力和 变形 的差 别, 造成曲线梁桥一些独特的病害 : 1 . 1曲线梁桥在温度 变化的长期作用 下 , 因
两端 的约束较大 ,其 中间部分会在平 面内缓慢 向外侧移动和转动。 升温时 , 出现朝 圆心 向外 会 的侧向位 A ,降温 时出现朝 圆心向 内的侧 向 移 i 位移 △。, 如果支座 位置和形 式设 置不合理 , 在 降温时 ,由于重力及支座的摩擦约束 , AI 使 > A 。如此年复—年 , 2 整个梁体不断 向外移动 , 移 动到_定量后, 其后果是不 言而喻 的。 1 . 2预应力混凝土曲线箱梁在张拉纵向力 筋时 , 腹板中产生横 向分力 , 易使腹板混凝 土裂 缝 , 原因是产 生径向水平压力使 钢筋 混凝土 其 腹板超载 ( 其实在预应力钢束附近基本是素混 凝 土 ) 载可能造成 混凝土 破坏 , 重者将 使 , 超 严 混凝土崩裂,预应力钢束拉直 , 并从腹板内溢

桥 与 弯桥 双支座 抗扭 支撑 的最 大正 弯矩 相差 求 ; 证在力 筋弯 曲的部位 , 道不 出现尖 弯 ; 保 管 0 %, 大负弯矩 相差 l%。 - 最 6 - 可见 在活载作用下 在构 造上要 减少 张拉操作 引起 的预应力损失 ; 7 对 于单点支 撑直桥与弯桥的计算结果相差 比较 在 易开裂 部 位可 用纤维 混凝 土代 替普 通混凝 大, 采用抗扭支撑可以较大的减小负弯矩 。 土, 例如在锚具 周围及支座腹板处等 。 3曲梁桥设 计要点 及病害对策探讨 3 普通钢 筋的设 计 5 小半径 曲线梁桥 的构造形式与直线梁桥有 普通钢筋 的设计应考 虑其 弯曲、 扭转、 剪力 不 少相似之处 , 上所述 , 但综 可以看到曲线梁桥 的复合受力作 用。特别要考虑 内外腹板剪力的 具有 不同的结构受力特点 ,处理不当会发生一 不均匀性和支 座处 的剪力集中对箍筋加密及抗 些独特 的病 害。如何从 设计的角度来 解决这些 剪钢筋设计 的影响。并采用普通钢筋抵 抗内力 问题 , 是非常值得探讨的。 矩。 曲梁 为弯扭耦合构件 , 可按扭矩剪应力 和弯 3 . 1桥梁结 构布局与曲梁要素 的关 系 矩剪应力综合确定 箍筋间距。曲梁的抗扭配筋 在立交桥的设计过程 中,桥梁的结构布局 应包 括抗扭箍筋 和抗扭纵筋 ,在配置箍筋 的同 应尽可能地 服从平面线形 ,因此各种 分又布局 时 ,必须同时配置 与曲梁轴线方 向平行 的抗扭 的曲线梁桥 不可避免地经常出现 。在结构设计 纵筋。 抗扭纵筋直径应不小于箍筋直径 , 确定抗 中应充分考虑 曲线梁桥的力学特性。通过对曲 扭纵筋 数量后在 腹板箍 筋内侧 四周 均匀布置 , 梁要素 的评 判 , 合理地进行结 构简化 , 用合 适 在支点附近需加密布置。 采 除此之外, 由于曲线预 的理论进行分析 。 应力 会对弯梁 内侧 的产生径向压力 , 如不采取 3 . 2曲线 梁桥支承方式的选择 防崩裂措施, 可能会将箱梁腹板混凝土崩裂, 国 在支承形式上 , 小半径 曲线梁桥通 常三种 外已出现此类事故。 因此, 必须在梁体腹板内 设 布置形式 :全部采用抗扭支承两端设置抗扭支 置 防崩裂 的构造 钢筋 。 承, 中间设单支 点铰支承 ; 端设置抗 扭支 承 , 两 3 - 国现行 的桥 梁规范还未对 曲线梁桥 6我 中间既有单支点铰 支承 ,又有抗扭支承 的混合 最大扭转变形作 出限制的规 定 式支承。下部 墩柱 当与支承形式相匹配。 经过对 几 座曲线梁桥破坏的分析,为保证 根据 相关研究 ,一般认为 :对于宽桥 f 其安 全 , B > 在设计 曲线 形梁桥时 , 应对其在恒 载、 1m的曲线 梁桥 , 2】 由于荷 载及预 应力对 主梁 的 预应力 、 活载的最大扭转变形值加以控制 。 扭转作用小 , 以及宽大主梁横 向稳定性的要求 , 3 . 7墩柱截面的合理选用 宜在 中墩处 采用具有抗扭较强的多柱或多支座 当采用墩柱与梁固结的支承形式时就必须 支承 方式 ; 对于窄桥和曲率半径 较小( 1m,< 注意墩柱 的弯矩 变化 。在主梁的扭转变形过大 B 2 R < 8-的曲线 梁桥 , 0) n 如匝道 桥 , 由于荷载及预应力 的同时墩柱弯矩也很大( 一般墩柱较矮) 的情况 对主梁的扭转作用大 ,一般在 中支座处可采取 下 , 圆形截 面墩柱 固结是不经济的 。首先 , 采用 单点支承 , 通过放松的扭转约束 , 达到减小箱梁 墩柱受力过 大配筋不易通过 ,仅仅加大墩柱直 扭转 内力 的 目的。 径, 会使墩柱刚度 增加很多 , 在预应力径 向力作 3 . 3单点支承曲线梁桥偏心距 的选择 用下墩柱径向弯矩和在温度荷载作用下纵向弯 通过 中支点预偏心的办法 ,虽不能完全消 矩都会增加 , 后的弯矩会更大 , 合成 更不利于墩 除梁桥外扭 矩的作用 , 可以改变外扭矩沿梁 柱受力。 但 跨的分 布 , 取得合 理的设 计。在设置预偏心时 , 4结语 除注 重调整主梁扭矩以外 ,也应充分考虑主梁 小半径 曲线梁 桥的设计计 算 比较复杂 , 其 的扭转变形 。 确定偏心距的具体方法 可以为 : 调 温度效应 、 预应力效应 、 的影响面加载都不 活载 整支座 预偏 心值 ,计算曲线梁在 白重及预应力 同于直线桥梁 的计算 。但 通过高精度 的有 限元 作用 下的扭 转角 , 支点 和跨中截面的扭转角 分析计算 ,我们可 以较 为准确地掌握其结构的 使 接近 相等 ( 方向相 反 )同时控 制各 截 面的 受力行 为。 一般 , 针对其 不同于直线梁 的受力特点 , 在 扭矩 , 保证支座不产生脱空 , 这样可将主梁 调整 设 计中采用相应 的有效措施 , 是可 以设计 出较 到最佳平衡位置 。如果桥梁承担 的交通 量非常 为可靠 且经济适 用的曲线桥梁 的。 大, 也可以适 当考虑一部 分活载 的作用 。 参 考 文 献 3 预应力对 曲线梁桥 内力的影响 4 f杨兴 旺 大跨 度斜拉桥施 工全过程 非线性行为 1 ] 从设计的角度 , 具体来说 主要应采用 以下 研 究Dl 南交通 大学, 0 年 )西 2 7 0 的措施 : 充分调整预应力筋 曲率 ; 曲线管道 之间 【吕建根 大跨度 索拱组合体 系非线性静动 办陛 2 1 为防止混凝士挤碎 应留有 足够的净间距 , 力筋 能研 究 l 南大学, 0 年 湖 2 7 0 束尽量分散布置 , 并保证力筋 的混凝土保 护层 【王会 利. 锚 式斜拉一 索协作体 系桥 结构性 3 ] 自 悬 厚度 ;局部板 的作用可能是实际造成开裂 的最 能分析 与试验研究嘲 . 大连理工大学' 0 年 2 7 0 重要的因素 , 应特别注意腹板的 区域性作用。 计 算必须考虑预应力侧 向作 用 , 向预张拉力假 侧 作者简 介 : 杨世 荣( 6 -男、 1 9) 河南洛阳人 。 9

连续曲线梁桥的结构受力分析

连续曲线梁桥的结构受力分析

连续曲线梁桥的结构受力分析发布时间:2021-06-17T13:59:05.963Z 来源:《基层建设》2021年第7期作者:高富健1 [导读] 摘要:随着我国城市交通的高速发展,曲线梁桥在各大城市被广泛应用。

1.重庆交通大学土木工程学院重庆 400041摘要:随着我国城市交通的高速发展,曲线梁桥在各大城市被广泛应用。

本文以某16+16+16m连续曲线梁桥为工程背景,采用MIDAS/Civil有限元软件,分别对该桥的在恒载、偏载及温度荷载作用下的结构受力分析,总结出该桥的受力特点及规律。

关键词:曲线梁桥;有限元分析;结构受力曲线梁桥在我国桥梁工程应用十分的广泛,尤其是在城市及高速公路的匝道上。

虽然曲线梁桥有线性美观和便于路线设计便利的优点,但是,它由于受到曲率的影响,就会导致梁内弯矩和扭矩的耦合,更加容易出现支座脱空、主梁侧翻及横向滑移的病害,相对于直线梁桥就趋向于更加复杂[1]。

1工程背景本文以某16+16+16m连续曲线梁桥为工程背景,桥梁上部结构采用钢筋混凝土箱梁结构,桥梁标准跨径16米,桥宽12.6米。

采用MIDAS/Civil 2019有限元软件,分别对该桥的在恒载、偏载及温度荷载不同组合作用下的结构受力分析。

桥型总体布置图参见图1。

图1桥型总体布置图上部结构采用支架现浇混凝土箱梁,箱梁采用单箱双室结构,箱梁顶部宽度位12.6m,底部宽8.6m,悬臂长2.0m,箱梁中心高度(道路设计标高线处)1.2m。

主梁通过结构找横坡、纵坡,箱梁底部与顶板平行。

顶板厚25cm,底板厚22cm,腹板标准段厚度为50cm。

在靠近支承横梁实体段4.0m范围内,顶板由25cm加厚到45cm,底板由22cm加厚到42cm,腹板由50cm加宽到80cm。

在支承处1.5m范围内为实腹段(即支承端横梁实体段)。

桥墩P1、P2采用双柱桩柱式桥墩,墩柱直径1.4m,桩基直径1.6m。

P1桥墩与箱梁固结。

P1桥墩与箱梁固结且在桩顶设置桩基系梁,P2墩顶以下0.5m设置墩系梁并在桩顶设置桩基系梁。

结合实际浅析曲线桥梁设计

结合实际浅析曲线桥梁设计
张拉 产 生 的 径 向力 。
曲线梁桥受力状态较为复杂, 以在设计过程中, 所 必须对其
结构 受 力特 点 有 充 分 的 了解 , 全 面 综合 考 虑 各 种 因 素对 主 梁 及 墩 柱 的 不利 影 响 。 在全 国范 围 内 , 此类 桥 型 结 构 目前 已 出现 多次 因设 计 原 因而 在 施工 或 使 用 过程 中 发生 事 故 ;其 中有 的 引起 主 梁 开 裂 ; 的 引起 墩 柱 开裂 ; 有 的 引起 主 梁 向外 偏转 或 向 内偏 有 还
梁超载、 内梁卸载。 尤其在宽桥情况下 内、 外梁的差异更大。由于
4 结 语
我 国 目前 面 临 许 多 旧桥 的状 态 评 估 、 修 、 维 改造 与 加 固的 巨
参考 文 献
[] 1 谌润水 , 胡钊芳. 公路桥梁荷载试验[ . M】 北京: 民交通出版社. 0 . 人 2 3 0 [] 2交通部 部颁标准. 公路 旧桥承载力鉴定方法 ( 试行)s. [】 北京: 人民交通
影响。 使梁截面 处于弯扭耦合 作用状态, 其截面主拉应力往往 比 相应的直梁桥大得多. 这是弯梁曲线桥独有的受力特点。弯梁 曲
线 桥 由于 受 到 强 大 的 扭 矩 作 用 , 生 扭 转 变 形 , 曲 线 外 侧 的 竖 产 其 向挠 度 大 于 同跨 径 的 直桥 ; 弯 扭 耦 合 作 用 , 梁 端 可 能 出 现 由于 在 翘 曲, 端 横 桥 向约 束 较 弱 时 , 体 有 向弯 道 外 侧 “ 移 ” 趋 当梁 梁 爬 的
21 梁体 的弯扭耦 合作 用 .
曲梁在 外 荷 载 的 作 用 下 会 同 时 产 生 弯 矩 和 扭 矩 ,并 且互 相
3 下 部 支 承 方式 对 曲线 桥 内力 的影 响

第2讲 曲线梁桥结构受力特点及构造

第2讲 曲线梁桥结构受力特点及构造

墩台形式选择:与连续梁差别不大;
基础选择:与连续梁差别不大。
10
湖南大学土木工程学院桥梁工程系
(2)曲线梁桥主梁截面形式
曲线梁桥的主梁截面形式很多,应根据桥梁的跨径、宽度、建筑高度的要
求、支撑形式、施工方法、桥面超高方案和总体布置的情况,合理地选定主梁的 横截面形式,以便减轻结构自重、增大跨越能力、节省材料用量、简化施工方法、 改善主梁受力性能。 板式截面 特点:构造简单、施工方便, 适合跨度不是很大的 桥梁;
20
湖南大学土木工程学院桥梁工程系
2.5 曲线梁桥支座布置 曲线梁桥的支座布置是一个比较复杂的问题,支座布置是否合理,不但会影 响结构的受力,而且会影响车辆的正常行驶,其核心是如何通过支座布置来有效 承受由自重和活载偏载等因素所产生的组合扭矩作用。我国近年来一些城市所设
计的连续弯梁桥中,常因支座的布置不当而出现故障。
21
湖南大学土木工程学院桥梁工程系
支座布置建议: 桥台处设置具有切向位移功能的抗扭支座; 中间桥墩设置一固定的抗扭支座,见下图; 将中间一桥墩设计成墩梁固结形式,其余设计为点铰支承; 为了达到人为调整扭矩分布的目的,分别给中间各点铰支承以一定的预偏心; 当上部结构太宽时,由于温度作用会使主梁梁端产生水平面的内力,因此当上 部结构太宽时,可设计成分离而并列的两座窄桥。
16
湖南大学土木工程学院桥梁工程系
表1 箱梁顶板厚度随腹板间距的变化关系 腹板间距(m) 顶板厚度(cm) 箱梁腹板厚度 箱梁腹板的主要功能是抵抗扭—剪内力,在预应力混凝土梁中,采用弯 起预应力钢束可以有效地减小腹板中的竖向剪力。 满足抗剪、扭的承载能力要求; 3.0 17.5 <=4.5 20.0 <=7.5 25.0 <=10.0 30.0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线梁桥的受力施工特点及设计方法分析中华硕博网核心提示:摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。

:曲线梁桥,结构,施工近年来,随着公路建设事业摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。

:曲线梁桥,结构,施工近年来,随着公路建设事业的快速发展,涉及到曲线梁的桥梁设计已经越来越多了,以往设计者希望通过调整路线方案,尽量避开这种结构形式,或由于曲线半径较大,采用以“直”代“曲”的形式,在桥梁上部(如翼缘、护栏等进行曲线调整,以期达到与路线线形一致。

这些严格意义上说都不是曲线桥。

由于受原有地物或地形的限制,一些城市的立交桥梁和交叉工程的桥梁曲线半径比较小,桥墩基本上要设在指定位置,这种情况下只能考虑设计曲线梁桥。

1、曲线梁桥的力学特性1。

1曲线梁的受力情况曲线梁桥能很好地克服地形、地物的限制,可以让设计者较自由地发挥自己的想象,通过平顺、流畅的线条给人以美的享受。

但是曲线梁桥的受力比较复杂。

与直线梁相比,曲线梁的受力性能有如下特点:(1轴向变形与平面内弯曲的耦合;(2竖向挠曲与扭转的耦合;(3它们与截面畸变的耦合。

其中最主要的是挠曲变形和扭转变形的耦合。

曲梁在竖向荷载和扭距作用下,都会同时产生弯距和扭距,并相互影响。

同时弯道内外侧支座反力不等,内外侧反力差引起较大的扭距,使梁截面处于“弯-扭”耦合作用状态,其截面主拉应力比相应的直梁桥大得多。

故在曲线梁桥中,应选用抗扭刚度较大的箱型截面形式。

在曲梁中,由于存在较大的扭矩,通常会出现“外梁超载,内梁卸载”的现象,这种现象在小半径的宽桥中特别明显。

另外,由于曲梁内外侧支座反力有时相差很大,当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,通常称为“支座脱空”。

1。

2下部桥梁墩台的受力情况由于内外侧支座反力不相等,使各墩柱所受垂直力出现较大差距。

当扭矩很大时,如果设置了拉压支座,有些墩柱甚至会出现拉力。

曲线梁桥下部结构墩顶水平力,除了与直桥一样,有制动力、温度力、地震力等以外,还因为弯梁曲率的存在,多了离心力和预应力张拉时产生的径向力。

墩顶水平力的分配非常复杂。

在求温度零点时,曲线梁桥不能象直桥一样,只考虑一个方向力的平衡,而必须考虑两个方向的平衡;各墩顶处支座的类型和位置不一致,部分支座可能已处于临界滑移状态,其余支座还未达到临界状态;各支座的约束方向以及各墩柱不在同一平面内,使得水平力求解非常困难。

2、曲线梁桥的结构分析2。

1上部结构分析2。

1。

1结构力学方法这种方法沿用杆系系统的结构力学方法。

首先将弯梁视为一根曲杆,把抗扭支座以赘余扭矩代替,然后根据变形协调条件求解未知力。

这种方法较简单,比较适用于分析简支弯梁和等截面且跨内为圆弧的窄桥。

2。

1。

2梁格法梁格法是目前最常用的分析弯梁桥的方法。

梁格法实质是用一个等效的梁格来代替桥梁上部结构,是一种以梁为基本单元的有限元法。

这种方法概念明确,容易理解和使用,也比较容易操作,计算速度也比较快。

现有的计算曲线梁梁桥软件,如同济大学开发的“桥梁博士”和广州阿安毕公司开发的“3DBSA”,都采用了梁格法。

2。

1。

3空间有限元法空间有限元法是最有效的分析方法。

这种方法常采用体单元和壳单元来模拟结构,能计算任意形状的复杂结构,特别地,它能针对结构的局部作精确分析,这是上述两种计算方法无法做到的。

对于一些特殊的曲线梁桥,比如非径向支承的异型桥梁等,采用空间有限元法分析是非常有必要的。

此外,如果要了解曲线梁桥的稳定与振动特性,也必须采用空间有限元法。

常用的空间有限元软件有MIDAS、ANSYS、SAP2000等。

采用空间有限元法的缺点是计算工作量较大,在当前情况下,采用这种方法计算,需要付出较多的时间。

2。

2下部结构分析与直桥相比,曲线梁桥下部结构分析要复杂得多。

在荷载方面,曲线梁桥除了与直桥一样要承受各种外荷载,如自重、车辆荷载、温度力、地震力等,还要承受离心力、曲梁内预应力索产生的径向力等;在墩顶水平力的分配方面,由于曲线梁桥不能象直桥一样,在求温度零点时不能只考虑一个方向的平衡,而要考虑两个方向的平衡,求出“不动点(转动中心”;由于上部结构的扭转作用,各墩的轴力有很大的差异,在确定桩长时要特别注意这种情况;此外,由于各支座约束情况不一样,也会影响到各墩内力的分配。

长期以来,人们对曲线梁桥上部结构分析比较重视。

就目前的情况看,有关曲线梁桥上部结构分析的专著比较多,理论也比较成熟。

与上部结构相比,针对曲线梁桥下部结构的研究还不够深入。

3、曲线梁桥设计应注意的几个问题3。

1总体布置在进行桥梁总体布置时,要考虑两个方面问题:从结构受力方面,要注意调整梁内的扭矩分布,控制扭矩峰值,使梁截面以及支座受力较均匀;从结构变形方面,要注意控制梁端纵横向变位及翘曲变形,使之符合规范要求。

要得到这些结果,主要是靠调整跨径搭配和处理边界条件。

3。

1。

1跨径的搭配从已建成的桥梁看,梁端内侧支座“脱空”现象比较严重,主要是因为内侧支座反力太小甚至出现了负值。

所以,我们要使内侧支座处于受压状态,并且要有一定的压力储备。

比较有效的办法是控制边跨跨径,使边跨跨径与中跨比较接近。

当受实际条件限制,边跨跨径与中跨差距较大时,也可考虑采取其他一些措施,比如调整边跨与中跨的自重等。

3。

1。

2边界条件边界条件影响到整个结构的受力状态。

在实际设计时,要分别采用不同的约束进行试算,然后决定结构的边界条件。

3。

2曲线梁的结构设计直梁桥受“弯、剪”作用,而曲线梁桥处于“弯、剪、扭”的复合受力状态,故上、下部结构必须构成有利于抵抗“弯、剪、扭”的措施。

3。

2。

1曲线梁桥的弯扭刚度比对结构的受力状态和变形状态有着直接的关系:弯扭刚度比越大,由曲率因素而导致的扭转弯形越大,因此,对于曲线梁桥而言在满足竖向变形的前提下,应尽可能减小抗弯刚度、增大抗扭刚度。

所以在曲线桥梁中,宜选用低高度梁和抗扭惯矩较大的箱形截面。

3。

2。

2在曲线梁桥截面设计时,要在桥跨范围内设置一些横隔板,以加强横桥向刚度并保持全桥稳定性。

在截面发生较大变化的位置,要设渐变段过渡,减小应力集中效应。

3。

2。

3在进行配筋设计时要充分考虑扭矩效应,弯梁应在腹板侧面布置较多受力钢筋,其截面上下缘钢筋也比同等跨径的直桥多,且应配置较多的抗扭箍筋。

3。

2。

4城市立交桥中的弯箱梁桥中墩多布置成独柱支承构造。

在独柱式点铰支承曲线连续梁中,上部结构在外荷载作用下产生的扭矩不能通过中间支承传至基础,而只能通过曲梁两端抗扭支承来传递,从而易造成曲梁产生过大扭矩。

为减小曲线梁桥梁体受扭对上、下部结构产生的不利影响,可采用以下方法进行结构受力平衡的调整:①为减小此项扭矩的影响,比较有效的办法是通过调整独柱支承偏心值来改善主梁受力。

②通过预应力筋的径向偏心距来消除曲梁内某些截面过大的扭矩,改善主梁的受力状态也是一种行之有效的办法。

预应力曲线梁往往产生向外偏转的情况,这是由其结构特点造成的。

预应力产生的扭矩分布和自重、恒载作用下的扭矩分布规律有着较大的区别,为调整扭矩分布,可在曲线梁轴线两侧采用不同的预应力钢束及锚下控制应力,构成预应力束应力的偏心,形成内扭矩来调整曲线梁扭矩分布。

3。

2。

5下部支承方式的确定。

曲线梁桥的不同支承方式,对其上、下部结构内力影响非常大。

对于曲线梁桥,中间支承一般分为两种类型:抗扭型支承(多支点或墩梁固结和单支点铰支承。

在曲线梁桥选择支承方式时,可遵循以下原则:①对于较宽的桥(桥宽B>12m和曲线半径较大(一般R>100m的曲线梁桥,由于主梁扭转作用较小,桥体宽要求主梁增加横向稳定性,故在中墩宜采用具有抗扭较强的多柱或多支座的支承方式,亦可采用墩柱与梁固结的支承形式。

②对于较窄的桥(桥宽B≤12m和曲线半径较小(一般约R≤100m的曲线梁桥,由于主梁扭转作用的增加,尤其在预应力钢束径向力的作用下,主梁横向扭矩和扭转变形很大。

由于桥窄因此宜采用独柱墩,但在选用支承结构形式时应视墩柱高度不同而确定。

较高的中墩可采用墩柱与梁固结的结构支承形式。

较低的中墩可采用具有较弱抗扭能力的单点支承的方式。

这样可有效降低墩柱的弯短和减小主梁的横向扭转变形。

但这两种交承方式都需对横向支座偏心进行调整。

③墩柱截面的合理选用。

当采用墩柱与梁固结的支承形式时就必须注意墩柱的弯矩变化。

在主梁的扭转变形过大同时墩柱弯矩也很大(一般墩柱较矮的情况下,宜采用矩形截面墩柱。

因为矩形截面沿主梁纵向抗弯刚度较小,而沿主梁横向抗弯刚度较大,这样既减小了墩柱的配筋又降低了主梁的横向扭转变形,更适合其受力特点。

3。

3下部结构曲线梁桥墩顶水平力分配比较复杂,而且桥墩所受的外力方向常发生变化,因此,墩柱要尽量采用圆形截面;曲线梁桥墩柱受到纵横向水平力作用,墩身最大弯矩应是两个方向的力矢量合成值;同一座桥墩各墩柱的轴力可能有差异,所以要调整墩柱位置,使墩柱受力均匀,避免出现墩柱受拉的情况;在计算桩柱配筋量时,要分别验算各墩柱的内力,根据最不利组合进行配筋,在确定桩长时,要以轴力较大的墩柱进行控制。

4、曲线梁桥设计中需要注意的其它问题4。

1所有中墩支座,尽可能横桥向位移固定,可采用盆式或普通板式橡胶支座。

4。

2当桥长较大(如大于100m,梁端支座应能顺桥向自由滑动、横桥向位移固定,可采用盆式橡胶支座,或附加了横桥向位移固定装置的四氟板橡胶支座;此外,梁端间隙和伸缩缝构造,应保证在最大升温条件下,梁能够不受阻碍地自由伸缩变形;当桥长较小时,梁端支座可以采用普通板式橡胶支座。

“梁端设普通板式橡胶支座、所有中墩设横桥向自由滑动的盆式支座”,对曲线梁桥是危险的,应绝对避免。

4。

3当曲线梁桥比较宽、各墩也较宽时,应注意温度变化时由于曲线梁水平弯曲变形在墩顶产生的横桥向水平作用力可能会比较大,尤其是当所有中墩支座均为横桥向位移固定时。

5、施工特点5。

1测设放样由于曲梁桥在平面和纵横断面上的变化较大,因而在施工放样、标高控制、中线控制等方面都会增加许多麻烦,应予反复检查、严格要求。

另外,在进行预制底模控制时,如果内外侧边梁因跨径悬殊必须设置不同的预拱度时,应对其底模进行严格的标高控制。

5。

2超高处理曲梁桥的超高处理一般有两种方法:①超高值较小,且在桥宽不大的情况下,建议将超高部分直接设置在桥面铺装上;②当超高值较大时,建议将一部分设在桥面铺装上,另一部分设在墩台顶面上;当超高值不太大时,也可直接将超高部分全部设在墩台顶部。

5。

3边板处理对于预制的弯梁构件,其构件重心位置可能位于构件轴线以外(一般出现在内外侧边梁,在堆放时极易失稳倾覆,需增设临时支撑;即使构件的重心位置位于构件的轴线以内,而在施工过程中,当桥面横向联结尚未形成而一些预制小构件如缘石、人行道板等已搁置于内外侧边梁的情况下,也可能引起构件的倾覆。

相关文档
最新文档